nihalbaig commited on
Commit
43bb048
1 Parent(s): 474efee

Update Readme

Browse files
Files changed (1) hide show
  1. README.md +128 -0
README.md CHANGED
@@ -1,3 +1,131 @@
1
  ---
2
  license: mit
 
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: mit
3
+ task_categories:
4
+ - audio-classification
5
+ language:
6
+ - bn
7
+ pretty_name: SUST BANGLA EMOTIONAL SPEECH CORPUS
8
+ size_categories:
9
+ - 1K<n<10K
10
  ---
11
+
12
+ # SUST BANGLA EMOTIONAL SPEECH CORPUS
13
+
14
+ ## Dataset Description
15
+
16
+ - **Homepage:**
17
+ - **Repository:**
18
+ - **Paper:**
19
+ - **Leaderboard:**
20
+ - **Point of Contact:** [Sadia Sultana]([email protected])
21
+
22
+ ### Dataset Summary
23
+
24
+ SUBESCO is an audio-only emotional speech corpus of 7000 sentence-level utterances of the Bangla language. 20 professional actors (10 males and 10 females) participated in the recordings of 10 sentences for 7 target emotions. The emotions are Anger, Disgust, Fear, Happiness, Neutral, Sadness and Surprise. Total duration of the corpus is 7 hours 40 min 40 sec. Total size of the dataset is 2.03 GB. The dataset was evaluated by 50 raters (25 males, 25 females). Human perception test achieved a raw accuracy of 71%. All the details relating to creation, evaluation and analysis of SUBESCO have been described in the corresponding journal paper which has been published in Plos One.
25
+
26
+ https://doi.org/10.1371/journal.pone.0250173
27
+
28
+ ### Downloading the data
29
+
30
+ '''
31
+ from datasets import load_dataset
32
+
33
+ test = load_dataset("sustcsenlp/bn_emotion_speech_corpus",split="train")
34
+
35
+ '''
36
+
37
+
38
+ ### Naming Convention
39
+
40
+ Each audio file in the dataset has a unique name. There are eight parts in the file name where all the parts are connected by underscores. The order of all the parts is organized as: Gender-Speaker's serial number-Speaker's name-Unit of recording-Unit number- Emotion name- Repeating number and the File format.
41
+
42
+ For example, the filename F_02_MONIKA_S_1_NEUTRAL_5.wav refers to:
43
+
44
+ | Symbol | Meaning |
45
+ | ----------- | ----------- |
46
+ | F | Speaker Gender |
47
+ | 02 | Speaker Number |
48
+ | MONIKA | Speaker Name |
49
+ | S_1 | Sentence Number |
50
+ | NEUTRAL | Emotion |
51
+ | 5 | Take Number |
52
+
53
+ ### Languages
54
+
55
+ This dataset contains Bangla Audio Data.
56
+
57
+ ## Dataset Structure
58
+
59
+ ### Data Instances
60
+
61
+ [More Information Needed]
62
+
63
+ ### Data Fields
64
+
65
+ [More Information Needed]
66
+
67
+ ### Data Splits
68
+
69
+ [More Information Needed]
70
+
71
+ ## Dataset Creation
72
+
73
+ ### Curation Rationale
74
+
75
+ [More Information Needed]
76
+
77
+ ### Source Data
78
+
79
+ #### Initial Data Collection and Normalization
80
+
81
+ [More Information Needed]
82
+
83
+ #### Who are the source language producers?
84
+
85
+ [More Information Needed]
86
+
87
+ ### Annotations
88
+
89
+ #### Annotation process
90
+
91
+ [More Information Needed]
92
+
93
+ #### Who are the annotators?
94
+
95
+ [More Information Needed]
96
+
97
+ ### Personal and Sensitive Information
98
+
99
+ [More Information Needed]
100
+
101
+ ## Considerations for Using the Data
102
+
103
+ ### Social Impact of Dataset
104
+
105
+ [More Information Needed]
106
+
107
+ ### Discussion of Biases
108
+
109
+ [More Information Needed]
110
+
111
+ ### Other Known Limitations
112
+
113
+ [More Information Needed]
114
+
115
+ ## Additional Information
116
+
117
+ ### Dataset Curators
118
+
119
+ [More Information Needed]
120
+
121
+ ### Licensing Information
122
+
123
+ [More Information Needed]
124
+
125
+ ### Citation Information
126
+
127
+ [More Information Needed]
128
+
129
+ ### Contributions
130
+
131
+ [More Information Needed]