Datasets:
updating the code again!!
Browse files- bn_emotion_speech_corpus.py +65 -48
bn_emotion_speech_corpus.py
CHANGED
@@ -1,73 +1,90 @@
|
|
|
|
|
|
|
|
1 |
import datasets
|
2 |
|
3 |
_CITATION = """\
|
4 |
-
@dataset{sadia_sultana_2021_4526477,
|
5 |
-
author = {Sadia Sultana},
|
6 |
-
title = {SUST Bangla Emotional Speech Corpus (SUBESCO)},
|
7 |
-
month = feb,
|
8 |
-
year = 2021,
|
9 |
-
note = {{This database was created as a part of PhD thesis
|
10 |
-
project of the author Sadia Sultana. It was
|
11 |
-
designed and developed by the author in the
|
12 |
-
Department of Computer Science and Engineering of
|
13 |
-
Shahjalal University of Science and Technology.
|
14 |
-
Financial grant was supported by the university.
|
15 |
-
If you use the dataset please cite SUBESCO and the
|
16 |
-
corresponding academic journal publication in Plos
|
17 |
-
One.}},
|
18 |
-
publisher = {Zenodo},
|
19 |
-
version = {version - 1.1},
|
20 |
-
doi = {10.5281/zenodo.4526477},
|
21 |
-
url = {https://doi.org/10.5281/zenodo.4526477}
|
22 |
-
}
|
23 |
"""
|
24 |
|
25 |
_DESCRIPTION = """\
|
26 |
-
|
27 |
"""
|
28 |
-
_HOMEPAGE = "https://huggingface.co/datasets/sustcsenlp/bn_emotion_speech_corpus"
|
29 |
|
30 |
-
|
|
|
|
|
31 |
|
32 |
-
#_REPO = "https://huggingface.co/datasets/sustcsenlp/SUBESCO/resolve/main/corpus/speech/subesco.tar.gz"
|
33 |
|
34 |
-
|
35 |
-
""""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
|
|
|
37 |
def _info(self):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
return datasets.DatasetInfo(
|
39 |
description=_DESCRIPTION,
|
40 |
-
features=
|
41 |
-
{
|
42 |
-
'text': datasets.Value("string"),
|
43 |
-
"audio": datasets.Audio(sampling_rate=16000),
|
44 |
-
}
|
45 |
-
),
|
46 |
supervised_keys=None,
|
47 |
homepage=_HOMEPAGE,
|
|
|
48 |
citation=_CITATION,
|
49 |
)
|
50 |
|
51 |
def _split_generators(self, dl_manager):
|
52 |
-
|
53 |
-
|
|
|
|
|
|
|
54 |
return [
|
55 |
datasets.SplitGenerator(
|
56 |
name=datasets.Split.TRAIN,
|
57 |
gen_kwargs={
|
58 |
-
"
|
59 |
-
|
60 |
-
|
|
|
|
|
|
|
61 |
]
|
62 |
-
|
63 |
-
def _generate_examples(self,
|
64 |
-
"""
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import os
|
3 |
+
|
4 |
import datasets
|
5 |
|
6 |
_CITATION = """\
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
"""
|
8 |
|
9 |
_DESCRIPTION = """\
|
10 |
+
The corpus contains roughly 360 hours of audio and transcripts in Kannada language. The transcripts have beed de-duplicated using exact match deduplication.
|
11 |
"""
|
|
|
12 |
|
13 |
+
_HOMEPAGE = ""
|
14 |
+
|
15 |
+
_LICENSE = "https://creativecommons.org/licenses/"
|
16 |
|
|
|
17 |
|
18 |
+
_METADATA_URLS = {
|
19 |
+
"train": "train.jsonl",
|
20 |
+
}
|
21 |
+
_URLS = {
|
22 |
+
"train": "subesco.tar.gz",
|
23 |
+
|
24 |
+
}
|
25 |
+
|
26 |
+
class KannadaASRCorpus(datasets.GeneratorBasedBuilder):
|
27 |
+
"""Kannada ASR Corpus contains transcribed speech corpus for training ASR systems for Kannada language."""
|
28 |
|
29 |
+
VERSION = datasets.Version("1.1.0")
|
30 |
def _info(self):
|
31 |
+
features = datasets.Features(
|
32 |
+
{
|
33 |
+
"path": datasets.Value("string"),
|
34 |
+
"audio": datasets.Audio(sampling_rate=16000),
|
35 |
+
"speaker_gender": datasets.Value("string"),
|
36 |
+
"speaker_number": datasets.Value("int32"),
|
37 |
+
"speaker_name": datasets.Value("string"),
|
38 |
+
"sentence_number": datasets.Value("int32"),
|
39 |
+
"emotional_state": datasets.Value("string"),
|
40 |
+
"take_number": datasets.Value("int32"),
|
41 |
+
}
|
42 |
+
)
|
43 |
return datasets.DatasetInfo(
|
44 |
description=_DESCRIPTION,
|
45 |
+
features=features,
|
|
|
|
|
|
|
|
|
|
|
46 |
supervised_keys=None,
|
47 |
homepage=_HOMEPAGE,
|
48 |
+
license=_LICENSE,
|
49 |
citation=_CITATION,
|
50 |
)
|
51 |
|
52 |
def _split_generators(self, dl_manager):
|
53 |
+
metadata_paths = dl_manager.download(_METADATA_URLS)
|
54 |
+
train_archive = dl_manager.download(_URLS["train"])
|
55 |
+
local_extracted_train_archive = dl_manager.extract(train_archive) if not dl_manager.is_streaming else None
|
56 |
+
train_dir = "train"
|
57 |
+
|
58 |
return [
|
59 |
datasets.SplitGenerator(
|
60 |
name=datasets.Split.TRAIN,
|
61 |
gen_kwargs={
|
62 |
+
"metadata_path": metadata_paths["train"],
|
63 |
+
"local_extracted_archive": local_extracted_train_archive,
|
64 |
+
"path_to_clips": train_dir,
|
65 |
+
"audio_files": dl_manager.iter_archive(train_archive),
|
66 |
+
},
|
67 |
+
),
|
68 |
]
|
69 |
+
|
70 |
+
def _generate_examples(self, metadata_path, local_extracted_archive, path_to_clips, audio_files):
|
71 |
+
"""Yields examples as (key, example) tuples."""
|
72 |
+
examples = {}
|
73 |
+
with open(metadata_path, encoding="utf-8") as f:
|
74 |
+
for key, row in enumerate(f):
|
75 |
+
data = json.loads(row)
|
76 |
+
examples[data["path"]] = data
|
77 |
+
inside_clips_dir = False
|
78 |
+
id_ = 0
|
79 |
+
for path, f in audio_files:
|
80 |
+
if path.startswith(path_to_clips):
|
81 |
+
inside_clips_dir = True
|
82 |
+
if path in examples:
|
83 |
+
result = examples[path]
|
84 |
+
path = os.path.join(local_extracted_archive, path) if local_extracted_archive else path
|
85 |
+
result["audio"] = {"path": path, "bytes": f.read()}
|
86 |
+
result["path"] = path
|
87 |
+
yield id_, result
|
88 |
+
id_ += 1
|
89 |
+
elif inside_clips_dir:
|
90 |
+
break
|