orionhunts-ai commited on
Commit
476d115
1 Parent(s): 2ba274e

CR Model selection and implemented WandB for SKlearn

Browse files
.env.example ADDED
File without changes
.gitignore ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ __pycache__/
2
+ poetry.lock
3
+ *.env
4
+ **/.env
5
+ .DS_Store
6
+ **/wandb/
README.md ADDED
File without changes
__init__.py ADDED
File without changes
constants.py ADDED
File without changes
data/__init__.py ADDED
File without changes
data/processed/PII_Customer_Personality_Analysis/artifacts/corr_matrix_PII_Customer_Personality_Analysis_correlation_matrix.csv ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ,Education,Marital_Status,Income,Kidhome,Teenhome,Recency,MntWines,MntFruits,MntMeatProducts,MntFishProducts,MntSweetProducts,MntGoldProds,NumDealsPurchases,NumWebPurchases,NumCatalogPurchases,NumStorePurchases,NumWebVisitsMonth,AcceptedCmp3,AcceptedCmp4,AcceptedCmp5,AcceptedCmp1,AcceptedCmp2,Complain,target,Age
2
+ Education,1.0,0.00601057971479844,0.12069235890931647,-0.045390101722656215,0.12012771551954766,-0.011418202661844836,0.19788629514026926,-0.08246221470202815,0.03996093529190393,-0.11474748247768826,-0.10727879120827798,-0.09708394083472364,0.026207871865264364,0.08242517900615554,0.06904876324567108,0.06779203319202283,-0.040821622200267235,0.005822767693396697,0.0588849087724573,0.03266911640198275,-0.009741208717866857,0.02147726629373715,-0.05086296084713461,0.09080601779180715,0.1710648461886182
3
+ Marital_Status,0.00601057971479844,1.0,0.021352847397029834,-0.021718068362697428,-0.0032431226287101722,0.011137721721606375,0.009228819772649922,0.0005591923135064867,0.02780994113296931,0.03420772518449643,0.01565110733819486,0.0008966465168111868,-0.019293729796295137,0.00011772760451422034,0.014930606044176415,0.002603366103162813,-0.026657557466784578,-0.02623359458981945,0.014274398390713436,0.010256030152237389,-0.015569020204498948,0.018908848090815854,-0.005393690720407015,-0.012641150709966707,0.058228774244458686
4
+ Income,0.12069235890931647,0.021352847397029834,1.0,-0.42866900796918467,0.019133378179405063,-0.003969755538429371,0.5786497501367387,0.4308416809908738,0.5846333567663218,0.43887135945164113,0.44074379151936854,0.3259164464972651,-0.08310089573037695,0.38787781129179055,0.5891624419343273,0.5293621402734204,-0.5530880116530972,-0.016174440058630012,0.18440036817458086,0.3359432659885299,0.27681986364264505,0.08754477410485566,-0.02722451231447758,0.13304666375157864,0.16179142819632944
5
+ Kidhome,-0.045390101722656215,-0.021718068362697428,-0.42866900796918467,1.0,-0.03986909491269764,0.011492148877606401,-0.49733585804824904,-0.3733961018645468,-0.4392605293302491,-0.3888842203052554,-0.3780261275829725,-0.35502942464114273,0.2169130475866851,-0.3719765493465889,-0.5045006219645888,-0.5013488096627505,0.44747694055447784,0.016066022250294954,-0.16202597120826812,-0.20530460075712562,-0.17416308346026005,-0.08186792980170485,0.040977948951332006,-0.0779087218804935,-0.23361461678438017
6
+ Teenhome,0.12012771551954766,-0.0032431226287101722,0.019133378179405063,-0.03986909491269764,1.0,0.013837883216177588,0.003746662683131421,-0.17655763847960287,-0.26112238523373393,-0.2052418665057769,-0.1630557773562015,-0.01988723381366726,0.38624630410345656,0.16207718515997702,-0.11269219774843708,0.04973702442961182,0.13124002195157045,-0.04252154241540535,0.038375727599795045,-0.19079132962891837,-0.14485535030427124,-0.015520861256563333,0.003306980000913191,-0.15390119913873612,0.35079057250867324
7
+ Recency,-0.011418202661844836,0.011137721721606375,-0.003969755538429371,0.011492148877606401,0.013837883216177588,1.0,0.015721019423318053,-0.005843749911872586,0.022517635114411027,0.0005509232351481579,0.02510977031031601,0.01766263773496973,0.0021154508116066205,-0.005640853762668498,0.02408140757530815,-0.0004338265887671439,-0.01856364340172459,-0.03225726632386708,0.017566258881346348,-0.0004819996751676512,-0.021061220855675345,-0.0014003820869686575,0.01363667026546777,-0.19976636929150263,0.016294899725588837
8
+ MntWines,0.19788629514026926,0.009228819772649922,0.5786497501367387,-0.49733585804824904,0.003746662683131421,0.015721019423318053,1.0,0.3870238608948813,0.5688600028034905,0.3977210502397404,0.39032580211914597,0.3927309933121961,0.008885928846518159,0.5537859390502029,0.6347527405610132,0.6400119079346188,-0.3219779006408591,0.06146322133332154,0.37314333590551424,0.473550447360861,0.3514171077786048,0.20618492919071135,-0.03947021117770349,0.24629895700789062,0.15945109606670785
9
+ MntFruits,-0.08246221470202815,0.0005591923135064867,0.4308416809908738,-0.3733961018645468,-0.17655763847960287,-0.005843749911872586,0.3870238608948813,1.0,0.5478221664444243,0.5934310502810902,0.5716060634768749,0.39648692442903605,-0.13451209943613016,0.3020388491308559,0.4862630707589945,0.45849103147873843,-0.4187289323674573,0.014423959637837509,0.006395603242838285,0.21287107479087422,0.1918157630946309,-0.009980152400035486,-0.005324098581870991,0.12244267882212094,0.017746520210085638
10
+ MntMeatProducts,0.03996093529190393,0.02780994113296931,0.5846333567663218,-0.4392605293302491,-0.26112238523373393,0.022517635114411027,0.5688600028034905,0.5478221664444243,1.0,0.5735740153436658,0.5351361087117303,0.35944628071880613,-0.12130771413541634,0.30709036563638303,0.7341265978631459,0.4860055452848598,-0.5394844166382349,0.018437950940138954,0.09161819640940018,0.3768671184726933,0.31307611216860326,0.043521399455980485,-0.0237819441070392,0.23774641828315587,0.03369674544450875
11
+ MntFishProducts,-0.11474748247768826,0.03420772518449643,0.43887135945164113,-0.3888842203052554,-0.2052418665057769,0.0005509232351481579,0.3977210502397404,0.5934310502810902,0.5735740153436658,1.0,0.5838669550256257,0.4271420401285096,-0.14324108564174431,0.29968751037596947,0.5327567837134197,0.45774504320424736,-0.44642329175818335,-0.00021899209055690604,0.016105384537408233,0.19627745116954454,0.2616081098154486,0.0023448969973614508,-0.02122023035141569,0.10814510985482437,0.04042508416794455
12
+ MntSweetProducts,-0.10727879120827798,0.01565110733819486,0.44074379151936854,-0.3780261275829725,-0.1630557773562015,0.02510977031031601,0.39032580211914597,0.5716060634768749,0.5351361087117303,0.5838669550256257,1.0,0.35744974733671053,-0.12143192773267662,0.3339372174806106,0.49513581787229005,0.4552251635983501,-0.4223708035871346,0.0017804341899794044,0.029313011665345452,0.2592298737532875,0.24510196257446312,0.010188061683200663,-0.0226412001817123,0.1161703734475162,0.02020441495744574
13
+ MntGoldProds,-0.09708394083472364,0.0008966465168111868,0.3259164464972651,-0.35502942464114273,-0.01988723381366726,0.01766263773496973,0.3927309933121961,0.39648692442903605,0.35944628071880613,0.4271420401285096,0.35744974733671053,1.0,0.05190482939144336,0.40706566619258716,0.44242825214836723,0.3891801722259885,-0.2476905571725933,0.1249578642120278,0.024015092911599267,0.1813973755277105,0.17013156126608653,0.05073361018385326,-0.031133459344139035,0.1403316444499485,0.06420769327026418
14
+ NumDealsPurchases,0.026207871865264364,-0.019293729796295137,-0.08310089573037695,0.2169130475866851,0.38624630410345656,0.0021154508116066205,0.008885928846518159,-0.13451209943613016,-0.12130771413541634,-0.14324108564174431,-0.12143192773267662,0.05190482939144336,1.0,0.24144031825434095,-0.012118428034188273,0.06610659381931695,0.3460483799648631,-0.023135079994654903,0.016076520490276074,-0.1842529426068536,-0.12737389187862327,-0.03798115053624632,0.0004972466506366478,0.003451073256152576,0.05866805087264471
15
+ NumWebPurchases,0.08242517900615554,0.00011772760451422034,0.38787781129179055,-0.3719765493465889,0.16207718515997702,-0.005640853762668498,0.5537859390502029,0.3020388491308559,0.30709036563638303,0.29968751037596947,0.3339372174806106,0.40706566619258716,0.24144031825434095,1.0,0.3868676401456998,0.5162401826934668,-0.05122626307505021,0.04295782900243499,0.1629322581651734,0.14118889093609427,0.1592916660892605,0.034828595290096596,-0.016641779042421617,0.1514312334625439,0.1530513747670212
16
+ NumCatalogPurchases,0.06904876324567108,0.014930606044176415,0.5891624419343273,-0.5045006219645888,-0.11269219774843708,0.02408140757530815,0.6347527405610132,0.4862630707589945,0.7341265978631459,0.5327567837134197,0.49513581787229005,0.44242825214836723,-0.012118428034188273,0.3868676401456998,1.0,0.517840451115637,-0.5220037739848213,0.10434509873303167,0.14018199197446132,0.3224705753164749,0.3090257184513369,0.09991528121453742,-0.0208391906218129,0.2199136123036807,0.12176397201297959
17
+ NumStorePurchases,0.06779203319202283,0.002603366103162813,0.5293621402734204,-0.5013488096627505,0.04973702442961182,-0.0004338265887671439,0.6400119079346188,0.45849103147873843,0.4860055452848598,0.45774504320424736,0.4552251635983501,0.3891801722259885,0.06610659381931695,0.5162401826934668,0.517840451115637,1.0,-0.4323982572659749,-0.06891258923172716,0.17802019025920685,0.212953710216086,0.1787428895679233,0.08527077669680684,-0.016940707007434427,0.03624112917284234,0.12789072181374891
18
+ NumWebVisitsMonth,-0.040821622200267235,-0.026657557466784578,-0.5530880116530972,0.44747694055447784,0.13124002195157045,-0.01856364340172459,-0.3219779006408591,-0.4187289323674573,-0.5394844166382349,-0.44642329175818335,-0.4223708035871346,-0.2476905571725933,0.3460483799648631,-0.05122626307505021,-0.5220037739848213,-0.4323982572659749,1.0,0.06130723471258901,-0.028665889635463914,-0.2778831014680211,-0.19477318052693973,-0.0073616649308966215,0.01978500588725408,-0.002208954040941986,-0.12390393683196442
19
+ AcceptedCmp3,0.005822767693396697,-0.02623359458981945,-0.016174440058630012,0.016066022250294954,-0.04252154241540535,-0.03225726632386708,0.06146322133332154,0.014423959637837509,0.018437950940138954,-0.00021899209055690604,0.0017804341899794044,0.1249578642120278,-0.023135079994654903,0.04295782900243499,0.10434509873303167,-0.06891258923172716,0.06130723471258901,1.0,-0.07965858237443767,0.08024761492969107,0.09568286876259005,0.07170217241720112,0.008124113453170467,0.25400486323255694,-0.06178380024839474
20
+ AcceptedCmp4,0.0588849087724573,0.014274398390713436,0.18440036817458086,-0.16202597120826812,0.038375727599795045,0.017566258881346348,0.37314333590551424,0.006395603242838285,0.09161819640940018,0.016105384537408233,0.029313011665345452,0.024015092911599267,0.016076520490276074,0.1629322581651734,0.14018199197446132,0.17802019025920685,-0.028665889635463914,-0.07965858237443767,1.0,0.3113144997868341,0.24278177008858737,0.295049565226579,-0.027651941592759625,0.18020529304447308,0.06610852367279324
21
+ AcceptedCmp5,0.03266911640198275,0.010256030152237389,0.3359432659885299,-0.20530460075712562,-0.19079132962891837,-0.0004819996751676512,0.473550447360861,0.21287107479087422,0.3768671184726933,0.19627745116954454,0.2592298737532875,0.1813973755277105,-0.1842529426068536,0.14118889093609427,0.3224705753164749,0.212953710216086,-0.2778831014680211,0.08024761492969107,0.3113144997868341,1.0,0.407877927952029,0.22212082088409418,-0.009576350926681113,0.32337384792407603,-0.010574840069471311
22
+ AcceptedCmp1,-0.009741208717866857,-0.015569020204498948,0.27681986364264505,-0.17416308346026005,-0.14485535030427124,-0.021061220855675345,0.3514171077786048,0.1918157630946309,0.31307611216860326,0.2616081098154486,0.24510196257446312,0.17013156126608653,-0.12737389187862327,0.1592916660892605,0.3090257184513369,0.1787428895679233,-0.19477318052693973,0.09568286876259005,0.24278177008858737,0.407877927952029,1.0,0.17663707327744818,-0.025593647329387348,0.2973447406527777,0.009610506551183966
23
+ AcceptedCmp2,0.02147726629373715,0.018908848090815854,0.08754477410485566,-0.08186792980170485,-0.015520861256563333,-0.0014003820869686575,0.20618492919071135,-0.009980152400035486,0.043521399455980485,0.0023448969973614508,0.010188061683200663,0.05073361018385326,-0.03798115053624632,0.034828595290096596,0.09991528121453742,0.08527077669680684,-0.0073616649308966215,0.07170217241720112,0.295049565226579,0.22212082088409418,0.17663707327744818,1.0,-0.011458504341450727,0.16929370922966702,0.006716955921569739
24
+ Complain,-0.05086296084713461,-0.005393690720407015,-0.02722451231447758,0.040977948951332006,0.003306980000913191,0.01363667026546777,-0.03947021117770349,-0.005324098581870991,-0.0237819441070392,-0.02122023035141569,-0.0226412001817123,-0.031133459344139035,0.0004972466506366478,-0.016641779042421617,-0.0208391906218129,-0.016940707007434427,0.01978500588725408,0.008124113453170467,-0.027651941592759625,-0.009576350926681113,-0.025593647329387348,-0.011458504341450727,1.0,-0.0020292937073078535,0.030407246701888446
25
+ target,0.09080601779180715,-0.012641150709966707,0.13304666375157864,-0.0779087218804935,-0.15390119913873612,-0.19976636929150263,0.24629895700789062,0.12244267882212094,0.23774641828315587,0.10814510985482437,0.1161703734475162,0.1403316444499485,0.003451073256152576,0.1514312334625439,0.2199136123036807,0.03624112917284234,-0.002208954040941986,0.25400486323255694,0.18020529304447308,0.32337384792407603,0.2973447406527777,0.16929370922966702,-0.0020292937073078535,1.0,-0.023692119864284135
26
+ Age,0.1710648461886182,0.058228774244458686,0.16179142819632944,-0.23361461678438017,0.35079057250867324,0.016294899725588837,0.15945109606670785,0.017746520210085638,0.03369674544450875,0.04042508416794455,0.02020441495744574,0.06420769327026418,0.05866805087264471,0.1530513747670212,0.12176397201297959,0.12789072181374891,-0.12390393683196442,-0.06178380024839474,0.06610852367279324,-0.010574840069471311,0.009610506551183966,0.006716955921569739,0.030407246701888446,-0.023692119864284135,1.0
data/processed/PII_Customer_Personality_Analysis/artifacts/correlation_matrix.png ADDED
data/processed/PII_Customer_Personality_Analysis/data/2024_08_25_PII_Customer_Personality_Analysis_v0.1.csv ADDED
The diff for this file is too large to render. See raw diff
 
data/processed/PII_Customer_Personality_Analysis/data/corr_matrix_PII_Customer_Personality_Analysis_correlation_matrix.csv ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ,Education,Marital_Status,Income,Kidhome,Teenhome,Recency,MntWines,MntFruits,MntMeatProducts,MntFishProducts,MntSweetProducts,MntGoldProds,NumDealsPurchases,NumWebPurchases,NumCatalogPurchases,NumStorePurchases,NumWebVisitsMonth,AcceptedCmp3,AcceptedCmp4,AcceptedCmp5,AcceptedCmp1,AcceptedCmp2,Complain,target,Age
2
+ Education,1.0,0.00601057971479844,0.12069235890931647,-0.045390101722656215,0.12012771551954766,-0.011418202661844836,0.19788629514026926,-0.08246221470202815,0.03996093529190393,-0.11474748247768826,-0.10727879120827798,-0.09708394083472364,0.026207871865264364,0.08242517900615554,0.06904876324567108,0.06779203319202283,-0.040821622200267235,0.005822767693396697,0.0588849087724573,0.03266911640198275,-0.009741208717866857,0.02147726629373715,-0.05086296084713461,0.09080601779180715,0.1710648461886182
3
+ Marital_Status,0.00601057971479844,1.0,0.021352847397029834,-0.021718068362697428,-0.0032431226287101722,0.011137721721606375,0.009228819772649922,0.0005591923135064867,0.02780994113296931,0.03420772518449643,0.01565110733819486,0.0008966465168111868,-0.019293729796295137,0.00011772760451422034,0.014930606044176415,0.002603366103162813,-0.026657557466784578,-0.02623359458981945,0.014274398390713436,0.010256030152237389,-0.015569020204498948,0.018908848090815854,-0.005393690720407015,-0.012641150709966707,0.058228774244458686
4
+ Income,0.12069235890931647,0.021352847397029834,1.0,-0.42866900796918467,0.019133378179405063,-0.003969755538429371,0.5786497501367387,0.4308416809908738,0.5846333567663218,0.43887135945164113,0.44074379151936854,0.3259164464972651,-0.08310089573037695,0.38787781129179055,0.5891624419343273,0.5293621402734204,-0.5530880116530972,-0.016174440058630012,0.18440036817458086,0.3359432659885299,0.27681986364264505,0.08754477410485566,-0.02722451231447758,0.13304666375157864,0.16179142819632944
5
+ Kidhome,-0.045390101722656215,-0.021718068362697428,-0.42866900796918467,1.0,-0.03986909491269764,0.011492148877606401,-0.49733585804824904,-0.3733961018645468,-0.4392605293302491,-0.3888842203052554,-0.3780261275829725,-0.35502942464114273,0.2169130475866851,-0.3719765493465889,-0.5045006219645888,-0.5013488096627505,0.44747694055447784,0.016066022250294954,-0.16202597120826812,-0.20530460075712562,-0.17416308346026005,-0.08186792980170485,0.040977948951332006,-0.0779087218804935,-0.23361461678438017
6
+ Teenhome,0.12012771551954766,-0.0032431226287101722,0.019133378179405063,-0.03986909491269764,1.0,0.013837883216177588,0.003746662683131421,-0.17655763847960287,-0.26112238523373393,-0.2052418665057769,-0.1630557773562015,-0.01988723381366726,0.38624630410345656,0.16207718515997702,-0.11269219774843708,0.04973702442961182,0.13124002195157045,-0.04252154241540535,0.038375727599795045,-0.19079132962891837,-0.14485535030427124,-0.015520861256563333,0.003306980000913191,-0.15390119913873612,0.35079057250867324
7
+ Recency,-0.011418202661844836,0.011137721721606375,-0.003969755538429371,0.011492148877606401,0.013837883216177588,1.0,0.015721019423318053,-0.005843749911872586,0.022517635114411027,0.0005509232351481579,0.02510977031031601,0.01766263773496973,0.0021154508116066205,-0.005640853762668498,0.02408140757530815,-0.0004338265887671439,-0.01856364340172459,-0.03225726632386708,0.017566258881346348,-0.0004819996751676512,-0.021061220855675345,-0.0014003820869686575,0.01363667026546777,-0.19976636929150263,0.016294899725588837
8
+ MntWines,0.19788629514026926,0.009228819772649922,0.5786497501367387,-0.49733585804824904,0.003746662683131421,0.015721019423318053,1.0,0.3870238608948813,0.5688600028034905,0.3977210502397404,0.39032580211914597,0.3927309933121961,0.008885928846518159,0.5537859390502029,0.6347527405610132,0.6400119079346188,-0.3219779006408591,0.06146322133332154,0.37314333590551424,0.473550447360861,0.3514171077786048,0.20618492919071135,-0.03947021117770349,0.24629895700789062,0.15945109606670785
9
+ MntFruits,-0.08246221470202815,0.0005591923135064867,0.4308416809908738,-0.3733961018645468,-0.17655763847960287,-0.005843749911872586,0.3870238608948813,1.0,0.5478221664444243,0.5934310502810902,0.5716060634768749,0.39648692442903605,-0.13451209943613016,0.3020388491308559,0.4862630707589945,0.45849103147873843,-0.4187289323674573,0.014423959637837509,0.006395603242838285,0.21287107479087422,0.1918157630946309,-0.009980152400035486,-0.005324098581870991,0.12244267882212094,0.017746520210085638
10
+ MntMeatProducts,0.03996093529190393,0.02780994113296931,0.5846333567663218,-0.4392605293302491,-0.26112238523373393,0.022517635114411027,0.5688600028034905,0.5478221664444243,1.0,0.5735740153436658,0.5351361087117303,0.35944628071880613,-0.12130771413541634,0.30709036563638303,0.7341265978631459,0.4860055452848598,-0.5394844166382349,0.018437950940138954,0.09161819640940018,0.3768671184726933,0.31307611216860326,0.043521399455980485,-0.0237819441070392,0.23774641828315587,0.03369674544450875
11
+ MntFishProducts,-0.11474748247768826,0.03420772518449643,0.43887135945164113,-0.3888842203052554,-0.2052418665057769,0.0005509232351481579,0.3977210502397404,0.5934310502810902,0.5735740153436658,1.0,0.5838669550256257,0.4271420401285096,-0.14324108564174431,0.29968751037596947,0.5327567837134197,0.45774504320424736,-0.44642329175818335,-0.00021899209055690604,0.016105384537408233,0.19627745116954454,0.2616081098154486,0.0023448969973614508,-0.02122023035141569,0.10814510985482437,0.04042508416794455
12
+ MntSweetProducts,-0.10727879120827798,0.01565110733819486,0.44074379151936854,-0.3780261275829725,-0.1630557773562015,0.02510977031031601,0.39032580211914597,0.5716060634768749,0.5351361087117303,0.5838669550256257,1.0,0.35744974733671053,-0.12143192773267662,0.3339372174806106,0.49513581787229005,0.4552251635983501,-0.4223708035871346,0.0017804341899794044,0.029313011665345452,0.2592298737532875,0.24510196257446312,0.010188061683200663,-0.0226412001817123,0.1161703734475162,0.02020441495744574
13
+ MntGoldProds,-0.09708394083472364,0.0008966465168111868,0.3259164464972651,-0.35502942464114273,-0.01988723381366726,0.01766263773496973,0.3927309933121961,0.39648692442903605,0.35944628071880613,0.4271420401285096,0.35744974733671053,1.0,0.05190482939144336,0.40706566619258716,0.44242825214836723,0.3891801722259885,-0.2476905571725933,0.1249578642120278,0.024015092911599267,0.1813973755277105,0.17013156126608653,0.05073361018385326,-0.031133459344139035,0.1403316444499485,0.06420769327026418
14
+ NumDealsPurchases,0.026207871865264364,-0.019293729796295137,-0.08310089573037695,0.2169130475866851,0.38624630410345656,0.0021154508116066205,0.008885928846518159,-0.13451209943613016,-0.12130771413541634,-0.14324108564174431,-0.12143192773267662,0.05190482939144336,1.0,0.24144031825434095,-0.012118428034188273,0.06610659381931695,0.3460483799648631,-0.023135079994654903,0.016076520490276074,-0.1842529426068536,-0.12737389187862327,-0.03798115053624632,0.0004972466506366478,0.003451073256152576,0.05866805087264471
15
+ NumWebPurchases,0.08242517900615554,0.00011772760451422034,0.38787781129179055,-0.3719765493465889,0.16207718515997702,-0.005640853762668498,0.5537859390502029,0.3020388491308559,0.30709036563638303,0.29968751037596947,0.3339372174806106,0.40706566619258716,0.24144031825434095,1.0,0.3868676401456998,0.5162401826934668,-0.05122626307505021,0.04295782900243499,0.1629322581651734,0.14118889093609427,0.1592916660892605,0.034828595290096596,-0.016641779042421617,0.1514312334625439,0.1530513747670212
16
+ NumCatalogPurchases,0.06904876324567108,0.014930606044176415,0.5891624419343273,-0.5045006219645888,-0.11269219774843708,0.02408140757530815,0.6347527405610132,0.4862630707589945,0.7341265978631459,0.5327567837134197,0.49513581787229005,0.44242825214836723,-0.012118428034188273,0.3868676401456998,1.0,0.517840451115637,-0.5220037739848213,0.10434509873303167,0.14018199197446132,0.3224705753164749,0.3090257184513369,0.09991528121453742,-0.0208391906218129,0.2199136123036807,0.12176397201297959
17
+ NumStorePurchases,0.06779203319202283,0.002603366103162813,0.5293621402734204,-0.5013488096627505,0.04973702442961182,-0.0004338265887671439,0.6400119079346188,0.45849103147873843,0.4860055452848598,0.45774504320424736,0.4552251635983501,0.3891801722259885,0.06610659381931695,0.5162401826934668,0.517840451115637,1.0,-0.4323982572659749,-0.06891258923172716,0.17802019025920685,0.212953710216086,0.1787428895679233,0.08527077669680684,-0.016940707007434427,0.03624112917284234,0.12789072181374891
18
+ NumWebVisitsMonth,-0.040821622200267235,-0.026657557466784578,-0.5530880116530972,0.44747694055447784,0.13124002195157045,-0.01856364340172459,-0.3219779006408591,-0.4187289323674573,-0.5394844166382349,-0.44642329175818335,-0.4223708035871346,-0.2476905571725933,0.3460483799648631,-0.05122626307505021,-0.5220037739848213,-0.4323982572659749,1.0,0.06130723471258901,-0.028665889635463914,-0.2778831014680211,-0.19477318052693973,-0.0073616649308966215,0.01978500588725408,-0.002208954040941986,-0.12390393683196442
19
+ AcceptedCmp3,0.005822767693396697,-0.02623359458981945,-0.016174440058630012,0.016066022250294954,-0.04252154241540535,-0.03225726632386708,0.06146322133332154,0.014423959637837509,0.018437950940138954,-0.00021899209055690604,0.0017804341899794044,0.1249578642120278,-0.023135079994654903,0.04295782900243499,0.10434509873303167,-0.06891258923172716,0.06130723471258901,1.0,-0.07965858237443767,0.08024761492969107,0.09568286876259005,0.07170217241720112,0.008124113453170467,0.25400486323255694,-0.06178380024839474
20
+ AcceptedCmp4,0.0588849087724573,0.014274398390713436,0.18440036817458086,-0.16202597120826812,0.038375727599795045,0.017566258881346348,0.37314333590551424,0.006395603242838285,0.09161819640940018,0.016105384537408233,0.029313011665345452,0.024015092911599267,0.016076520490276074,0.1629322581651734,0.14018199197446132,0.17802019025920685,-0.028665889635463914,-0.07965858237443767,1.0,0.3113144997868341,0.24278177008858737,0.295049565226579,-0.027651941592759625,0.18020529304447308,0.06610852367279324
21
+ AcceptedCmp5,0.03266911640198275,0.010256030152237389,0.3359432659885299,-0.20530460075712562,-0.19079132962891837,-0.0004819996751676512,0.473550447360861,0.21287107479087422,0.3768671184726933,0.19627745116954454,0.2592298737532875,0.1813973755277105,-0.1842529426068536,0.14118889093609427,0.3224705753164749,0.212953710216086,-0.2778831014680211,0.08024761492969107,0.3113144997868341,1.0,0.407877927952029,0.22212082088409418,-0.009576350926681113,0.32337384792407603,-0.010574840069471311
22
+ AcceptedCmp1,-0.009741208717866857,-0.015569020204498948,0.27681986364264505,-0.17416308346026005,-0.14485535030427124,-0.021061220855675345,0.3514171077786048,0.1918157630946309,0.31307611216860326,0.2616081098154486,0.24510196257446312,0.17013156126608653,-0.12737389187862327,0.1592916660892605,0.3090257184513369,0.1787428895679233,-0.19477318052693973,0.09568286876259005,0.24278177008858737,0.407877927952029,1.0,0.17663707327744818,-0.025593647329387348,0.2973447406527777,0.009610506551183966
23
+ AcceptedCmp2,0.02147726629373715,0.018908848090815854,0.08754477410485566,-0.08186792980170485,-0.015520861256563333,-0.0014003820869686575,0.20618492919071135,-0.009980152400035486,0.043521399455980485,0.0023448969973614508,0.010188061683200663,0.05073361018385326,-0.03798115053624632,0.034828595290096596,0.09991528121453742,0.08527077669680684,-0.0073616649308966215,0.07170217241720112,0.295049565226579,0.22212082088409418,0.17663707327744818,1.0,-0.011458504341450727,0.16929370922966702,0.006716955921569739
24
+ Complain,-0.05086296084713461,-0.005393690720407015,-0.02722451231447758,0.040977948951332006,0.003306980000913191,0.01363667026546777,-0.03947021117770349,-0.005324098581870991,-0.0237819441070392,-0.02122023035141569,-0.0226412001817123,-0.031133459344139035,0.0004972466506366478,-0.016641779042421617,-0.0208391906218129,-0.016940707007434427,0.01978500588725408,0.008124113453170467,-0.027651941592759625,-0.009576350926681113,-0.025593647329387348,-0.011458504341450727,1.0,-0.0020292937073078535,0.030407246701888446
25
+ target,0.09080601779180715,-0.012641150709966707,0.13304666375157864,-0.0779087218804935,-0.15390119913873612,-0.19976636929150263,0.24629895700789062,0.12244267882212094,0.23774641828315587,0.10814510985482437,0.1161703734475162,0.1403316444499485,0.003451073256152576,0.1514312334625439,0.2199136123036807,0.03624112917284234,-0.002208954040941986,0.25400486323255694,0.18020529304447308,0.32337384792407603,0.2973447406527777,0.16929370922966702,-0.0020292937073078535,1.0,-0.023692119864284135
26
+ Age,0.1710648461886182,0.058228774244458686,0.16179142819632944,-0.23361461678438017,0.35079057250867324,0.016294899725588837,0.15945109606670785,0.017746520210085638,0.03369674544450875,0.04042508416794455,0.02020441495744574,0.06420769327026418,0.05866805087264471,0.1530513747670212,0.12176397201297959,0.12789072181374891,-0.12390393683196442,-0.06178380024839474,0.06610852367279324,-0.010574840069471311,0.009610506551183966,0.006716955921569739,0.030407246701888446,-0.023692119864284135,1.0
data/processed/__init__.py ADDED
File without changes
data/processed/clustering_ml.py ADDED
@@ -0,0 +1,102 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+
3
+ import pandas as pd
4
+ import torch
5
+ from dotenv import load_dotenv
6
+ from sklearn.cluster import AgglomerativeClustering, KMeans
7
+ from sklearn.metrics import silhouette_score
8
+ from sklearn.model_selection import train_test_split
9
+ from sklearn.pipeline import Pipeline
10
+ from sklearn.preprocessing import StandardScaler
11
+
12
+ import wandb
13
+
14
+ load_dotenv()
15
+
16
+
17
+
18
+ device = "mps" if torch.backends.mps.is_available() else "cpu"
19
+ # Initialize a W&B run
20
+ wandb.login(key=os.getenv("WANDB_API_KEY"))
21
+ wandb.init(project="customer_personality_analysis", entity="orionai", name="clustering", job_type="train")
22
+
23
+ # Load the processed data
24
+ df_processed = pd.read_csv('df_processed.csv')
25
+
26
+ # Train-Test Split
27
+ X = df_processed.drop(columns=['target'])
28
+ y = df_processed['target']
29
+
30
+ X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
31
+
32
+ # Log dataset artifact to W&B
33
+ dataset_artifact = wandb.Artifact('processed_data', dataset_artifact='dataset')
34
+ dataset_artifact.add_file('df_processed.csv')
35
+ wandb.log_artifact(dataset_artifact)
36
+
37
+ # KMeans Clustering
38
+ kmeans = KMeans(n_clusters=2, random_state=42)
39
+ kmeans.fit(X_train)
40
+ kmeans_labels = kmeans.predict(X_test)
41
+ kmeans_silhouette = silhouette_score(X_test, kmeans_labels)
42
+
43
+ # Log KMeans results
44
+ wandb.log({"KMeans Silhouette Score": kmeans_silhouette})
45
+
46
+ # Agglomerative Clustering
47
+ agg_clustering = AgglomerativeClustering(n_clusters=2)
48
+ agg_labels = agg_clustering.fit_predict(X_test)
49
+ agg_silhouette = silhouette_score(X_test, agg_labels)
50
+
51
+ # Log Agglomerative Clustering results
52
+ wandb.log({"Agglomerative Clustering Silhouette Score": agg_silhouette})
53
+
54
+ # Summary of results
55
+ print("\nSummary of Clustering Results:")
56
+ print(f"KMeans Silhouette Score: {kmeans_silhouette:.2f}")
57
+ print(f"Agglomerative Clustering Silhouette Score: {agg_silhouette:.2f}")
58
+
59
+ # Log final model metrics and artifacts
60
+ wandb.log({
61
+ "kmeans_silhouette_score": kmeans_silhouette,
62
+ "agg_silhouette_score": agg_silhouette
63
+ })
64
+
65
+ # Optional: Save the trained models and log them as artifacts
66
+ k_model_artifact = wandb.Artifact('kmeans_model', type='model')
67
+ wandb.log_artifact(k_model_artifact)
68
+
69
+ agg_model_artifact = wandb.Artifact('agg_clustering_model', type='model')
70
+ wandb.log_artifact(agg_model_artifact)
71
+
72
+ # Finish the W&B run
73
+ wandb.finish()
74
+
75
+ # Optional: If you want to run hyperparameter sweeps with W&B
76
+ sweep_config = {
77
+ 'method': 'random',
78
+ 'parameters': {
79
+ 'n_clusters': {
80
+ 'values': [2, 3, 4, 5]
81
+ }
82
+ }
83
+ }
84
+
85
+ sweep_id = wandb.sweep(sweep_config, project="customer-response-prediction")
86
+
87
+ def sweep_train():
88
+ # Initialize a W&B run
89
+ with wandb.init() as run:
90
+ config = wandb.config
91
+
92
+ # Run KMeans with the sweep's number of clusters
93
+ kmeans_sweep = KMeans(n_clusters=config.n_clusters, random_state=42)
94
+ kmeans_sweep.fit(X_train)
95
+ kmeans_sweep_labels = kmeans.predict(X_test)
96
+ kmeans_sweep_silhouette = silhouette_score(X_test, kmeans_sweep_labels)
97
+
98
+ # Log the results
99
+ wandb.log({"KMeans Silhouette Score": kmeans_sweep_silhouette})
100
+
101
+ # Run the sweep
102
+ wandb.agent(sweep_id, sweep_train)
data/processed/customer_profile_marketing.csv ADDED
The diff for this file is too large to render. See raw diff
 
data/processed/eda.py.bak ADDED
@@ -0,0 +1,104 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pandas as pd
2
+ import numpy as np
3
+ import seaborn as sns
4
+ import matplotlib.pyplot as plt
5
+ from sklearn.preprocessing import LabelEncoder, StandardScaler
6
+ from sklearn.feature_selection import SelectKBest, f_classif
7
+ from sklearn.model_selection import train_test_split
8
+ from sklearn.cluster import KMeans, AgglomerativeClustering
9
+ from sklearn.pipeline import Pipeline
10
+ from sklearn.metrics import silhouette_score
11
+
12
+ # Load the data
13
+ file_path = 'customer_profile_marketing.csv'
14
+ df = pd.read_csv(file_path)
15
+
16
+ # Initial Analysis
17
+ print("Initial DataFrame Info:")
18
+ df.info()
19
+ print("\nInitial DataFrame Head:")
20
+ print(df.head())
21
+
22
+ # Drop irrelevant columns
23
+ df = df.drop(columns=['Unnamed: 0', 'ID', 'Dt_Customer', 'Z_CostContact', 'Z_Revenue'])
24
+
25
+ # Handle missing values (if any)
26
+ print("Missing Values: {}", df.isna().sum())
27
+ df = df.dropna()
28
+
29
+ # Feature Engineering
30
+ # Calculate age from 'Year_Birth'
31
+ df['Age'] = 2024 - df['Year_Birth'] # Assuming the current year is 2024
32
+ df = df.drop(columns=['Year_Birth'])
33
+
34
+ # Convert categorical variables to numerical format using Label Encoding
35
+ label_encoder = LabelEncoder()
36
+ df['Education'] = label_encoder.fit_transform(df['Education'])
37
+ df['Marital_Status'] = label_encoder.fit_transform(df['Marital_Status'])
38
+
39
+ df.to_csv("./data_pre_processed_v1")
40
+ # Correlation Analysis
41
+ corr_matrix = df.corr()
42
+ plt.figure(figsize=(16, 12))
43
+ sns.heatmap(corr_matrix, annot=True, fmt='.2f', cmap='coolwarm', square=True)
44
+ plt.title('Correlation Matrix')
45
+ plt.show()
46
+
47
+ # Feature Selection using SelectKBest
48
+ X = df.drop(columns=['Response']) # Features
49
+ y = df['Response'] # Target variable
50
+
51
+ # Select the top 10 features
52
+ selector = SelectKBest(score_func=f_classif, k=10)
53
+ X_new = selector.fit_transform(X, y)
54
+
55
+ # Get the columns selected
56
+ selected_features = X.columns[selector.get_support()]
57
+ print("Selected Features:")
58
+ print(selected_features)
59
+
60
+ # Drop unimportant features
61
+ df_processed = df[selected_features]
62
+ df_processed['Response'] = y
63
+
64
+ # Normalize the relevant numerical features
65
+ scaler = StandardScaler()
66
+ numerical_cols = df_processed.select_dtypes(include=[np.number]).columns.tolist()
67
+ numerical_cols.remove('Response') # Remove the target variable from the list
68
+
69
+ df_processed[numerical_cols] = scaler.fit_transform(df_processed[numerical_cols])
70
+
71
+ # Encoding categorical variables (already encoded with LabelEncoder)
72
+ # No additional encoding is necessary if the categorical columns have been encoded
73
+
74
+ # Train-Test Split
75
+ X_train, X_test, y_train, y_test = train_test_split(df_processed.drop(columns=['Response']),
76
+ df_processed['Response'],
77
+ test_size=0.3,
78
+ random_state=42)
79
+
80
+ # Clustering Algorithms
81
+ # 1. KMeans
82
+ kmeans = KMeans(n_clusters=2, random_state=42)
83
+ kmeans.fit(X_train)
84
+ kmeans_labels = kmeans.predict(X_test)
85
+ kmeans_silhouette = silhouette_score(X_test, kmeans_labels)
86
+ print(f"KMeans Silhouette Score: {kmeans_silhouette:.2f}")
87
+
88
+ # 2. Agglomerative Clustering
89
+ agg_clustering = AgglomerativeClustering(n_clusters=2)
90
+ agg_labels = agg_clustering.fit_predict(X_test)
91
+ agg_silhouette = silhouette_score(X_test, agg_labels)
92
+ print(f"Agglomerative Clustering Silhouette Score: {agg_silhouette:.2f}")
93
+
94
+ # Summary of Results
95
+ print("\nSummary of Clustering Results:")
96
+ print(f"KMeans Silhouette Score: {kmeans_silhouette:.2f}")
97
+ print(f"Agglomerative Clustering Silhouette Score: {agg_silhouette:.2f}")
98
+
99
+ # Optional: If you want to use a pipeline for scaling and clustering together
100
+ # pipeline = Pipeline([('scaler', StandardScaler()), ('kmeans', KMeans(n_clusters=2, random_state=42))])
101
+ # pipeline.fit(X_train)
102
+ # pipeline_labels = pipeline.predict(X_test)
103
+ # pipeline_silhouette = silhouette_score(X_test, pipeline_labels)
104
+ # print(f"Pipeline KMeans Silhouette Score: {pipeline_silhouette:.2f}")
data/processed/eda_code_final_fixed.py ADDED
@@ -0,0 +1,128 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ from datetime import datetime
3
+
4
+ import matplotlib.pyplot as plt
5
+ import numpy as np
6
+ import pandas as pd
7
+ import seaborn as sns
8
+ from dotenv import load_dotenv
9
+ from sklearn.feature_selection import SelectKBest, f_classif
10
+ from sklearn.preprocessing import LabelEncoder, StandardScaler
11
+
12
+ import wandb
13
+ from constants import project, version
14
+
15
+ load_dotenv()
16
+
17
+ project = project
18
+ version = version
19
+
20
+ # Log in to W&B
21
+ wandb.login(key=os.getenv("WANDB_API_KEY"))
22
+
23
+ # Initialize W&B run
24
+ wandb.init(project=project, entity="orionai", name="PII_customer_relationship", job_type="dataset")
25
+
26
+ if os.path.exists(f'./{project}/') is False:
27
+ os.makedirs(f'./{project}/')
28
+ os.makedirs(f'./{project}/artifacts/')
29
+ os.makedirs(f'./{project}/data/')
30
+
31
+ print("Loading data...")
32
+ # Load the data
33
+ file_path = 'customer_profile_marketing.csv'
34
+ df = pd.read_csv(file_path)
35
+ df.rename(columns={'Response': 'target'}, inplace=True)
36
+
37
+ # Log the raw data as a W&B artifact
38
+ raw_data_artifact = wandb.Artifact('customer_profile_marketing_raw', type='dataset')
39
+ raw_data_artifact.add_file(file_path)
40
+ wandb.log_artifact(raw_data_artifact)
41
+
42
+ # Drop irrelevant columns
43
+ df = df.drop(columns=['Unnamed: 0', 'ID', 'Dt_Customer', 'Z_CostContact', 'Z_Revenue'])
44
+
45
+ print("Cleaning Data...")
46
+ # Handle missing values (if any)
47
+ df_copy = df.copy()
48
+ df = df.dropna()
49
+ print("Dropped missing values...")
50
+
51
+ # Log a table with the cleaned data (before feature engineering)
52
+ wandb.log({"cleaned_data": wandb.Table(dataframe=df)})
53
+
54
+ # Feature Engineering
55
+ df['Age'] = 2024 - df['Year_Birth'] # Assuming the current year is 2024
56
+ df = df.drop(columns=['Year_Birth'])
57
+
58
+ print("Converting categorical variables...")
59
+ # Convert categorical variables to numerical format using LabelEncoder
60
+ label_encoder = LabelEncoder()
61
+ df['Education'] = label_encoder.fit_transform(df['Education'])
62
+ df['Marital_Status'] = label_encoder.fit_transform(df['Marital_Status'])
63
+ # Log a table with the data after feature engineering
64
+ wandb.log({"feature_engineered_data": wandb.Table(dataframe=df)})
65
+
66
+
67
+ # Splitting data (train_test_split in model training files)
68
+ df_features = df.copy()
69
+ y = df_features['target'] # Target variable
70
+ X = df_features.drop(columns=['target']) # Features
71
+
72
+ print("Normalising numerical values...")
73
+
74
+ # Normalize the relevant numerical features
75
+ scaler = StandardScaler()
76
+ if y.values.any():
77
+ numerical_cols = X.select_dtypes(include=[np.number]).columns.tolist()
78
+
79
+ df_transform = scaler.fit_transform(X[numerical_cols])
80
+ df_transform = pd.DataFrame(df_transform)
81
+
82
+ # Log the processed data table
83
+ pc_artifact = wandb.Artifact("processed_data", type="dataset")
84
+ wandb.log_artifact(pc_artifact)
85
+ wandb.log({"processed_data": wandb.Table(dataframe=df_transform)})
86
+
87
+ print("beginning encoding...")
88
+ pre_encoding_path = f"./{project}/data/df_pre_encoding_{project}.csv"
89
+ # Log the processed data as a W&B artifact
90
+ pre_encoding = df_transform.to_csv(pre_encoding_path, index=False)
91
+ processed_data_artifact = wandb.Artifact("pre-encoding-file", type='dataset')
92
+ processed_data_artifact.add_file(pre_encoding_path)
93
+ wandb.log_artifact(processed_data_artifact)
94
+
95
+ # Correlation Analysis
96
+ corr_matrix = df.corr()
97
+ plt.figure(figsize=(16, 12))
98
+ sns.heatmap(corr_matrix, annot=True, fmt='.2f', cmap='coolwarm', square=True)
99
+ plt.title('Correlation Matrix')
100
+ #plt.show()
101
+ corr_matrix_str = corr_matrix.to_string()
102
+ print(corr_matrix_str)
103
+ corr_matrix_plot_path = f"./{project}/artifacts/"
104
+ corr_matrix_csv = corr_matrix.to_csv(f"./{project}/artifacts/corr_matrix_{project}_correlation_matrix.csv", index=True)
105
+ wandb.log({"corr_matrix": corr_matrix})
106
+
107
+
108
+ # Step 3: Log the Correlation Matrix as an Artifact in W&B
109
+ art_path=f"./{project}/artifacts/corr_matrix_{project}_"
110
+ artifact = wandb.Artifact(name='correlation_matrix', type='dataset', description="Correlation matrix of the dataset")
111
+ artifact.add_file(f"./{project}/artifacts/corr_matrix_{project}_correlation_matrix.csv")
112
+ wandb.log_artifact(artifact)
113
+
114
+ # Optional: Visualize the Correlation Matrix
115
+ plt.figure(figsize=(16, 12))
116
+ sns.heatmap(corr_matrix, annot=True, fmt='.2f', cmap='coolwarm', square=True)
117
+ plt.title('Correlation Matrix After Encoding')
118
+ plt.show()
119
+
120
+ print("Finishing WandB...")
121
+ if wandb.run is not None:
122
+ final_csv = df_transform.to_csv(f"{project}/data/{datetime.now().strftime('%Y_%m_%d')}_{project}_v{version}.csv", index=True)
123
+ final_data_artifact = wandb.Artifact("final_data", type='dataset')
124
+ final_data_artifact.add_file(final_csv)
125
+ wandb.log_artifact(final_data_artifact)
126
+ wandb.finish()
127
+ print("ALL DONE...")
128
+
data/processed/supervized_ml.py ADDED
@@ -0,0 +1,195 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import json
2
+ import os
3
+ import random
4
+ from typing import Any, Dict, Tuple
5
+
6
+ import pandas as pd
7
+ import torch
8
+ from dotenv import load_dotenv
9
+ from sklearn.ensemble import RandomForestClassifier
10
+ from sklearn.feature_selection import SelectKBest, f_classif
11
+ from sklearn.linear_model import LogisticRegression
12
+ from sklearn.metrics import (accuracy_score, classification_report,
13
+ confusion_matrix, f1_score, roc_auc_score)
14
+ from sklearn.model_selection import train_test_split
15
+ from sklearn.preprocessing import StandardScaler
16
+ from sklearn.svm import SVC
17
+
18
+ import wandb
19
+
20
+ # Load environment variables
21
+ load_dotenv()
22
+
23
+ # Load project details
24
+ from eda_code_final_fixed import project, version
25
+
26
+
27
+ def initialize_project(project: str, version: str) -> Tuple[pd.DataFrame, pd.Series, pd.DataFrame, pd.Series, Dict[str, Any]]:
28
+ """
29
+ Initializes a project and performs a train-test split on the processed data.
30
+
31
+ Parameters:
32
+ project (str): The name of the project.
33
+ version (str): The version of the project.
34
+
35
+ Returns:
36
+ tuple: A tuple containing the following:
37
+ - X_train (pd.DataFrame): The training features.
38
+ - X_test (pd.DataFrame): The testing features.
39
+ - y_train (pd.Series): The training targets.
40
+ - y_test (pd.Series): The testing targets.
41
+ - models (dict): A dictionary of model instances.
42
+ """
43
+ data_path = "/Users/nullzero/Documents/repos/github.com/privacy-identity/vda-simulation-medical/vda-sim-medical/data/processed/PII_Customer_Personality_Analysis/data/2024_08_25_PII_Customer_Personality_Analysis_v0.1.csv"
44
+
45
+ # Load the processed data
46
+ df_processed = pd.read_csv(data_path)
47
+
48
+ # Train-Test Split
49
+ X = df_processed.drop(columns=['target'])
50
+ y = df_processed['target']
51
+
52
+ # Select the top 10 features
53
+ selector = SelectKBest(score_func=f_classif, k=10)
54
+ X_new = selector.fit_transform(X, y)
55
+ selected_features = X.columns[selector.get_support()]
56
+ X = pd.DataFrame(X_new, columns=selected_features)
57
+
58
+ # Log the selected features to W&B
59
+ wandb.init(project=project, entity="orionai", name="supervized_binary_classification", job_type="supervized_train")
60
+ wandb.log({"selected_features": selected_features.tolist()})
61
+
62
+ # Normalize the data
63
+ scaler = StandardScaler()
64
+ X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.1, random_state=42)
65
+ X_train = scaler.fit_transform(X_train)
66
+ X_test = scaler.transform(X_test)
67
+
68
+ # Define models
69
+ models = {
70
+ "Logistic Regression": LogisticRegression(random_state=42, max_iter=1000),
71
+ "Random Forest": RandomForestClassifier(random_state=42, n_estimators=100),
72
+ "SVM": SVC(random_state=42, probability=True)
73
+ }
74
+
75
+ return X_train, X_test, y_train, y_test, models
76
+
77
+
78
+ def training_clf(X_train: pd.DataFrame, X_test: pd.DataFrame, y_train: pd.Series, y_test: pd.Series, models: Dict[str, Any], project: str, version: str) -> Dict[str, Any]:
79
+ """
80
+ Trains and logs multiple classification models using Weights & Biases (W&B).
81
+
82
+ Args:
83
+ X_train (pd.DataFrame): The training features.
84
+ X_test (pd.DataFrame): The testing features.
85
+ y_train (pd.Series): The training targets.
86
+ y_test (pd.Series): The testing targets.
87
+ models (dict): A dictionary of classification models to train and log.
88
+ project (str): The W&B project name.
89
+ version (str): The model version.
90
+
91
+ Returns:
92
+ dict: A dictionary containing the model name, classification report, confusion matrix, accuracy, ROC AUC, and F1 score for each model.
93
+ """
94
+ results = {}
95
+
96
+ for model_name, model in models.items():
97
+ # Initialize a new W&B run for each model
98
+ run = wandb.init(project=project, entity="orionai", job_type="supervized_train", name=model_name)
99
+
100
+ # Train the model
101
+ model.fit(X_train, y_train)
102
+
103
+ # Predict and evaluate
104
+ y_pred = model.predict(X_test)
105
+ y_prob = model.predict_proba(X_test)[:, 1] if hasattr(model, "predict_proba") else None
106
+ accuracy = accuracy_score(y_test, y_pred)
107
+ roc_auc = roc_auc_score(y_test, y_prob) if y_prob is not None else None
108
+ f1_metric = f1_score(y_test, y_pred)
109
+
110
+ # Log metrics
111
+ wandb.log({
112
+ "accuracy": accuracy,
113
+ "roc_auc": roc_auc,
114
+ "f1_score": f1_metric
115
+ })
116
+
117
+ # Log model
118
+ wandb.sklearn.plot_classifier(model, X_train, X_test, y_train, y_test, y_pred, y_prob, labels=["Not Buy", "Buy"])
119
+
120
+ # Save the model to a file
121
+ model_filename = f"{model_name.replace(' ', '_').lower()}_model_v{version}.pkl"
122
+ torch.save(model, model_filename)
123
+
124
+ # Create and log the W&B artifact for the model
125
+ model_artifact = wandb.Artifact(name=f"{model_name.replace(' ', '_').lower()}_v{version}", type='model')
126
+ model_artifact.add_file(model_filename)
127
+ wandb.log_artifact(model_artifact)
128
+
129
+ # Log classification report and confusion matrix
130
+ class_report = classification_report(y_test, y_pred, output_dict=True)
131
+ conf_matrix = confusion_matrix(y_test, y_pred)
132
+
133
+ wandb.log({
134
+ "classification_report": class_report,
135
+ "confusion_matrix": conf_matrix
136
+ })
137
+
138
+ results[model_name] = {
139
+ "clf_report": class_report,
140
+ "conf_matrix": conf_matrix,
141
+ "accuracy": accuracy,
142
+ "roc_auc": roc_auc,
143
+ "f1_score": f1_metric
144
+ }
145
+
146
+ # End W&B run for this model
147
+ run.finish()
148
+
149
+ return results
150
+
151
+
152
+ def json_convert(input_dict: Dict[str, Any], project: str) -> str:
153
+ """
154
+ Converts a dictionary into a JSON file and saves it to a specified directory.
155
+
156
+ Args:
157
+ input_dict (dict): The dictionary to be converted into a JSON file.
158
+ project (str): The name of the project for directory organization.
159
+
160
+ Returns:
161
+ str: The file path where the JSON file is saved.
162
+ """
163
+ # Ensure the folder exists
164
+ folder_path = f"../data/{project}/results/"
165
+ os.makedirs(folder_path, exist_ok=True)
166
+
167
+ file_name = f"{project}_supervized_v{random.randint(1, 100)}.json"
168
+ file_path = os.path.join(folder_path, file_name)
169
+
170
+ with open(file_path, 'w') as json_file:
171
+ json.dump(input_dict, json_file, indent=4)
172
+
173
+ print(f"Results saved to {file_path}")
174
+
175
+ return file_path
176
+
177
+
178
+ def main():
179
+ device = "mps" if torch.backends.mps.is_available() else "cpu"
180
+
181
+ print("Initializing project...")
182
+ X_train, X_test, y_train, y_test, models = initialize_project(project, version)
183
+
184
+ print("Training classifiers...")
185
+ clf_train_results = training_clf(X_train, X_test, y_train, y_test, models, project, version)
186
+
187
+ print("Saving results to JSON...")
188
+ json_convert(clf_train_results, project)
189
+
190
+ print("Finished.")
191
+
192
+
193
+ if __name__ == '__main__':
194
+ main()
195
+
data/raw/customer_profile_eda_normalization.ipynb ADDED
@@ -0,0 +1,332 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "code",
5
+ "execution_count": null,
6
+ "metadata": {},
7
+ "outputs": [],
8
+ "source": [
9
+ "import pandas as pd\n"
10
+ ]
11
+ },
12
+ {
13
+ "cell_type": "code",
14
+ "execution_count": null,
15
+ "metadata": {},
16
+ "outputs": [],
17
+ "source": [
18
+ "from datasets import load_dataset\n",
19
+ "df_raw = load_dataset('Ezi/medical_and_legislators_synthetic')\n",
20
+ "df_pandas = df_raw['train'].to_pandas()\n",
21
+ "df_pandas.columns"
22
+ ]
23
+ },
24
+ {
25
+ "cell_type": "code",
26
+ "execution_count": null,
27
+ "metadata": {},
28
+ "outputs": [],
29
+ "source": [
30
+ "df_raw = pd.read_csv('/Users/nullzero/Documents/repos/github.com/privacy-identity/vda-simulation-medical/vda-sim-medical/data/raw/marketing_campaign.csv', sep='\\t')\n",
31
+ "df_raw.shape\n",
32
+ "df_raw[\"Response\"].unique()\n",
33
+ "df_raw.rename(columns={'Reponse': 'target'}, inplace=True)"
34
+ ]
35
+ },
36
+ {
37
+ "cell_type": "code",
38
+ "execution_count": null,
39
+ "metadata": {},
40
+ "outputs": [],
41
+ "source": [
42
+ "df = df_raw.copy()"
43
+ ]
44
+ },
45
+ {
46
+ "cell_type": "code",
47
+ "execution_count": null,
48
+ "metadata": {},
49
+ "outputs": [],
50
+ "source": [
51
+ "print(df.describe) "
52
+ ]
53
+ },
54
+ {
55
+ "cell_type": "code",
56
+ "execution_count": 122,
57
+ "metadata": {},
58
+ "outputs": [
59
+ {
60
+ "name": "stdout",
61
+ "output_type": "stream",
62
+ "text": [
63
+ "shape is (2240, 29) and there are ID 0\n",
64
+ "Year_Birth 0\n",
65
+ "Education 0\n",
66
+ "Marital_Status 0\n",
67
+ "Income 24\n",
68
+ "Kidhome 0\n",
69
+ "Teenhome 0\n",
70
+ "Dt_Customer 0\n",
71
+ "Recency 0\n",
72
+ "MntWines 0\n",
73
+ "MntFruits 0\n",
74
+ "MntMeatProducts 0\n",
75
+ "MntFishProducts 0\n",
76
+ "MntSweetProducts 0\n",
77
+ "MntGoldProds 0\n",
78
+ "NumDealsPurchases 0\n",
79
+ "NumWebPurchases 0\n",
80
+ "NumCatalogPurchases 0\n",
81
+ "NumStorePurchases 0\n",
82
+ "NumWebVisitsMonth 0\n",
83
+ "AcceptedCmp3 0\n",
84
+ "AcceptedCmp4 0\n",
85
+ "AcceptedCmp5 0\n",
86
+ "AcceptedCmp1 0\n",
87
+ "AcceptedCmp2 0\n",
88
+ "Complain 0\n",
89
+ "Z_CostContact 0\n",
90
+ "Z_Revenue 0\n",
91
+ "Response 0\n",
92
+ "dtype: int64 NAs\n",
93
+ "Index(['ID', 'Year_Birth', 'Education', 'Marital_Status', 'Income', 'Kidhome',\n",
94
+ " 'Teenhome', 'Dt_Customer', 'Recency', 'MntWines', 'MntFruits',\n",
95
+ " 'MntMeatProducts', 'MntFishProducts', 'MntSweetProducts',\n",
96
+ " 'MntGoldProds', 'NumDealsPurchases', 'NumWebPurchases',\n",
97
+ " 'NumCatalogPurchases', 'NumStorePurchases', 'NumWebVisitsMonth',\n",
98
+ " 'AcceptedCmp3', 'AcceptedCmp4', 'AcceptedCmp5', 'AcceptedCmp1',\n",
99
+ " 'AcceptedCmp2', 'Complain', 'Z_CostContact', 'Z_Revenue', 'Response'],\n",
100
+ " dtype='object')\n"
101
+ ]
102
+ }
103
+ ],
104
+ "source": [
105
+ "print(f\"shape is {df.shape} and there are {df.isna().sum()} NAs\")\n",
106
+ "print(df.columns)\n",
107
+ "#columns = [\"Unnamed: 0\", \"suffix\", \"nickname, \"]"
108
+ ]
109
+ },
110
+ {
111
+ "cell_type": "code",
112
+ "execution_count": 124,
113
+ "metadata": {},
114
+ "outputs": [],
115
+ "source": [
116
+ "df.to_csv(\"./customer_profile_marketing.csv\")"
117
+ ]
118
+ },
119
+ {
120
+ "cell_type": "code",
121
+ "execution_count": null,
122
+ "metadata": {},
123
+ "outputs": [],
124
+ "source": [
125
+ "df.head(10)"
126
+ ]
127
+ },
128
+ {
129
+ "cell_type": "code",
130
+ "execution_count": null,
131
+ "metadata": {},
132
+ "outputs": [],
133
+ "source": [
134
+ "from sklearn.model_selection import train_test_split\n",
135
+ "from sklearn.cluster import KMeans, AgglomerativeClustering\n",
136
+ "from sklearn.feature_extraction.text import TfidfVectorizer\n",
137
+ "from sklearn.preprocessing import StandardScaler, OneHotEncoder\n",
138
+ "import seaborn as sns\n"
139
+ ]
140
+ },
141
+ {
142
+ "cell_type": "code",
143
+ "execution_count": null,
144
+ "metadata": {},
145
+ "outputs": [],
146
+ "source": [
147
+ "import pandas as pd\n",
148
+ "import numpy as np\n",
149
+ "import seaborn as sns\n",
150
+ "import matplotlib.pyplot as plt\n",
151
+ "from datetime import datetime\n",
152
+ "\n",
153
+ "# Drop irrelevant columns\n",
154
+ "df_bak = df.copy()\n",
155
+ "df = df_bak\n",
156
+ "\n",
157
+ "# Handle missing values\n",
158
+ "df['middle_name'].fillna('None', inplace=True)\n",
159
+ "df['suffix'].fillna('None', inplace=True)\n",
160
+ "\n",
161
+ "# Feature engineering - calculate age\n",
162
+ "df['birthday'] = pd.to_datetime(df['birthday'])\n",
163
+ "#df['age'] = (pd.Timestamp.now() - df['birthday']).astype('<m8[ns]')\n",
164
+ "\n",
165
+ "# Categorical encoding\n",
166
+ "df = pd.get_dummies(df, columns=['gender', 'party', 'state', 'type'])\n",
167
+ "\n",
168
+ "# Drop columns with all missing values (like washington_post_id.1)\n",
169
+ "df.dropna(axis=1, how='all', inplace=True)\n",
170
+ "\n",
171
+ "# Chart age before normalization\n",
172
+ "sns.boxplot(x=df['age'])\n",
173
+ "plt.title('Boxplot of Age to Detect Outliers')\n",
174
+ "plt.show()\n",
175
+ "\n",
176
+ "# Remove outliers for the age column (optional, if outliers are detected)\n",
177
+ "q_low = df['age'].quantile(0.1)\n",
178
+ "q_high = df['age'].quantile(0.90)\n",
179
+ "#df_filtered = df[(df['age'] > q_low) & (df['age'] < q_high)]\n",
180
+ "\n",
181
+ "# Visualization - Distribution of Age with limited bins\n",
182
+ "sns.histplot(df['age']) # Reduced bins for better performance\n",
183
+ "plt.title('Distribution of Age')\n",
184
+ "plt.xlabel('Age')\n",
185
+ "plt.ylabel('Frequency')\n",
186
+ "plt.show()\n",
187
+ "\n",
188
+ "\n",
189
+ "# Normalize continuous variables\n"
190
+ ]
191
+ },
192
+ {
193
+ "cell_type": "code",
194
+ "execution_count": null,
195
+ "metadata": {},
196
+ "outputs": [],
197
+ "source": [
198
+ "import pandas as pd\n",
199
+ "import numpy as np\n",
200
+ "from sklearn.preprocessing import StandardScaler, LabelEncoder\n",
201
+ "from datetime import datetime\n",
202
+ "\n",
203
+ "# Drop irrelevant columns and duplicates\n",
204
+ "critical_columns = ['last_name', 'first_name', 'age', 'gender', 'state', 'district', \\\n",
205
+ " 'party', 'twitter', 'facebook', 'youtube']\n",
206
+ "\n",
207
+ "# Handle missing values\n",
208
+ "df['middle_name'].fillna('None', inplace=True)\n",
209
+ "df['suffix'].fillna('None', inplace=True)\n",
210
+ "print(\"Suffix and middle name filled with 'None'\")\n",
211
+ "\n",
212
+ "# Feature engineering - calculate age\n",
213
+ "\n",
214
+ "# Ensure 'birthday' is in datetime format\n",
215
+ "df['birthday'] = pd.to_datetime(df['birthday']).dt.floor('D')\n",
216
+ "\n",
217
+ "# Calculate the current date\n",
218
+ "today = pd.Timestamp.now().normalize()\n",
219
+ "\n",
220
+ "# Calculate age in years\n",
221
+ "df['age'] = today.year - df['birthday'].dt.year\n",
222
+ "print(df['age'][0:3])\n",
223
+ "# Select only critical columns\n",
224
+ "df_reduced = df.copy()\n",
225
+ "df_reduced = df[critical_columns]\n",
226
+ "print(df_reduced.columns)\n"
227
+ ]
228
+ },
229
+ {
230
+ "cell_type": "code",
231
+ "execution_count": null,
232
+ "metadata": {},
233
+ "outputs": [],
234
+ "source": [
235
+ "\n",
236
+ "# Categorical encoding with LabelEncoder for binary categories\n",
237
+ "label_encoder = LabelEncoder()\n",
238
+ "df_reduced['gender'] = label_encoder.fit_transform(df_reduced['gender'])\n",
239
+ "\n",
240
+ "# Categorical encoding with OneHotEncoder for multi-class categories\n",
241
+ "df_reduced = pd.get_dummies(df_reduced, columns=['state', 'party', 'district'])\n",
242
+ "\n",
243
+ "# Handle online presence as binary features (e.g., presence/absence of account)\n",
244
+ "df_reduced['twitter'] = df_reduced['twitter'].notna().astype(int)\n",
245
+ "df_reduced['facebook'] = df_reduced['facebook'].notna().astype(int)\n",
246
+ "df_reduced['youtube'] = df_reduced['youtube'].notna().astype(int)\n",
247
+ "\n",
248
+ "# Normalize continuous variables\n",
249
+ "scaler = StandardScaler()\n",
250
+ "df_reduced[['age']] = scaler.fit_transform(df_reduced[['age']])\n",
251
+ "\n",
252
+ "# Visualization of the reduced dataframe\n",
253
+ "print(\"Reduced DataFrame:\")\n",
254
+ "print(df_reduced.head())\n",
255
+ "\n",
256
+ "# Correlation matrix to understand the relationship between features\n",
257
+ "import seaborn as sns\n",
258
+ "import matplotlib.pyplot as plt\n"
259
+ ]
260
+ },
261
+ {
262
+ "cell_type": "code",
263
+ "execution_count": null,
264
+ "metadata": {},
265
+ "outputs": [],
266
+ "source": [
267
+ "\n",
268
+ "# Missing data visualization\n",
269
+ "plt.figure(figsize=(12,8))\n",
270
+ "sns.heatmap(df.isnull(), cbar=False, cmap='viridis')\n",
271
+ "plt.title('Missing Data Heatmap')\n",
272
+ "plt.show()\n",
273
+ "\n",
274
+ "# Categorical distribution of gender\n",
275
+ "sns.countplot(x='gender_M', data=df)\n",
276
+ "plt.title('Distribution of Gender')\n",
277
+ "plt.xlabel('Gender (1 = Male, 0 = Female)')\n",
278
+ "plt.ylabel('Count')\n",
279
+ "plt.show()\n",
280
+ "\n",
281
+ "# Distribution by Party\n",
282
+ "sns.countplot(x='party', data=df)\n",
283
+ "plt.title('Distribution by Party')\n",
284
+ "plt.xlabel('Party')\n",
285
+ "plt.ylabel('Count')\n",
286
+ "plt.show()\n",
287
+ "\n",
288
+ "plt.figure(figsize=(12,8))\n",
289
+ "sns.heatmap(df.corr(), annot=True, fmt='.2f', cmap='coolwarm')\n",
290
+ "plt.title('Correlation Matrix')\n",
291
+ "plt.show()\n"
292
+ ]
293
+ },
294
+ {
295
+ "cell_type": "code",
296
+ "execution_count": null,
297
+ "metadata": {},
298
+ "outputs": [],
299
+ "source": [
300
+ "\n"
301
+ ]
302
+ },
303
+ {
304
+ "cell_type": "code",
305
+ "execution_count": null,
306
+ "metadata": {},
307
+ "outputs": [],
308
+ "source": []
309
+ }
310
+ ],
311
+ "metadata": {
312
+ "kernelspec": {
313
+ "display_name": "Python 3 (ipykernel)",
314
+ "language": "python",
315
+ "name": "python3"
316
+ },
317
+ "language_info": {
318
+ "codemirror_mode": {
319
+ "name": "ipython",
320
+ "version": 3
321
+ },
322
+ "file_extension": ".py",
323
+ "mimetype": "text/x-python",
324
+ "name": "python",
325
+ "nbconvert_exporter": "python",
326
+ "pygments_lexer": "ipython3",
327
+ "version": "3.11.9"
328
+ }
329
+ },
330
+ "nbformat": 4,
331
+ "nbformat_minor": 2
332
+ }
data/raw/data_notes.md ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Verida + PyTorch Differential Privacy Experiment
2
+
3
+ # Dataset:
4
+ https://huggingface.co/datasets/Ezi/medical_and_legislators_synthetic
5
+
6
+ # Objective:
7
+
8
+ #
9
+
10
+ # Notes:
11
+ 1. Appended with synthetically generated VDA DiD
data/raw/hf/.gitattributes ADDED
@@ -0,0 +1,58 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
5
+ *.ckpt filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.lz4 filter=lfs diff=lfs merge=lfs -text
12
+ *.mlmodel filter=lfs diff=lfs merge=lfs -text
13
+ *.model filter=lfs diff=lfs merge=lfs -text
14
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
15
+ *.npy filter=lfs diff=lfs merge=lfs -text
16
+ *.npz filter=lfs diff=lfs merge=lfs -text
17
+ *.onnx filter=lfs diff=lfs merge=lfs -text
18
+ *.ot filter=lfs diff=lfs merge=lfs -text
19
+ *.parquet filter=lfs diff=lfs merge=lfs -text
20
+ *.pb filter=lfs diff=lfs merge=lfs -text
21
+ *.pickle filter=lfs diff=lfs merge=lfs -text
22
+ *.pkl filter=lfs diff=lfs merge=lfs -text
23
+ *.pt filter=lfs diff=lfs merge=lfs -text
24
+ *.pth filter=lfs diff=lfs merge=lfs -text
25
+ *.rar filter=lfs diff=lfs merge=lfs -text
26
+ *.safetensors filter=lfs diff=lfs merge=lfs -text
27
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
28
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
29
+ *.tar filter=lfs diff=lfs merge=lfs -text
30
+ *.tflite filter=lfs diff=lfs merge=lfs -text
31
+ *.tgz filter=lfs diff=lfs merge=lfs -text
32
+ *.wasm filter=lfs diff=lfs merge=lfs -text
33
+ *.xz filter=lfs diff=lfs merge=lfs -text
34
+ *.zip filter=lfs diff=lfs merge=lfs -text
35
+ *.zst filter=lfs diff=lfs merge=lfs -text
36
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
37
+ # Audio files - uncompressed
38
+ *.pcm filter=lfs diff=lfs merge=lfs -text
39
+ *.sam filter=lfs diff=lfs merge=lfs -text
40
+ *.raw filter=lfs diff=lfs merge=lfs -text
41
+ # Audio files - compressed
42
+ *.aac filter=lfs diff=lfs merge=lfs -text
43
+ *.flac filter=lfs diff=lfs merge=lfs -text
44
+ *.mp3 filter=lfs diff=lfs merge=lfs -text
45
+ *.ogg filter=lfs diff=lfs merge=lfs -text
46
+ *.wav filter=lfs diff=lfs merge=lfs -text
47
+ # Image files - uncompressed
48
+ *.bmp filter=lfs diff=lfs merge=lfs -text
49
+ *.gif filter=lfs diff=lfs merge=lfs -text
50
+ *.png filter=lfs diff=lfs merge=lfs -text
51
+ *.tiff filter=lfs diff=lfs merge=lfs -text
52
+ # Image files - compressed
53
+ *.jpg filter=lfs diff=lfs merge=lfs -text
54
+ *.jpeg filter=lfs diff=lfs merge=lfs -text
55
+ *.webp filter=lfs diff=lfs merge=lfs -text
56
+ # Video files - compressed
57
+ *.mp4 filter=lfs diff=lfs merge=lfs -text
58
+ *.webm filter=lfs diff=lfs merge=lfs -text
data/raw/hf/README.md CHANGED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ annotations_creators:
3
+ - machine-generated
4
+ language:
5
+ - en
6
+ language_creators:
7
+ - machine-generated
8
+ license:
9
+ - mit
10
+ multilinguality:
11
+ - monolingual
12
+ pretty_name: Medical data with DiD's randomly generated
13
+ size_categories:
14
+ - n<1K
15
+ source_datasets:
16
+ - original
17
+ tags: []
18
+ task_categories:
19
+ - tabular-classification
20
+ - text-classification
21
+ task_ids:
22
+ - tabular-multi-class-classification
23
+ - multi-class-classification
24
+ ---
25
+
26
+ # Dataset Card for [Dataset Name]
27
+
28
+ ## Table of Contents
29
+ - [Table of Contents](#table-of-contents)
30
+ - [Dataset Description](#dataset-description)
31
+ - [Dataset Summary](#dataset-summary)
32
+ - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
33
+ - [Languages](#languages)
34
+ - [Dataset Structure](#dataset-structure)
35
+ - [Data Instances](#data-instances)
36
+ - [Data Fields](#data-fields)
37
+ - [Data Splits](#data-splits)
38
+ - [Dataset Creation](#dataset-creation)
39
+ - [Curation Rationale](#curation-rationale)
40
+ - [Source Data](#source-data)
41
+ - [Annotations](#annotations)
42
+ - [Personal and Sensitive Information](#personal-and-sensitive-information)
43
+ - [Considerations for Using the Data](#considerations-for-using-the-data)
44
+ - [Social Impact of Dataset](#social-impact-of-dataset)
45
+ - [Discussion of Biases](#discussion-of-biases)
46
+ - [Other Known Limitations](#other-known-limitations)
47
+ - [Additional Information](#additional-information)
48
+ - [Dataset Curators](#dataset-curators)
49
+ - [Licensing Information](#licensing-information)
50
+ - [Citation Information](#citation-information)
51
+ - [Contributions](#contributions)
52
+
53
+ ## Dataset Description
54
+ Medical data with DiD's for differential privacy.
55
+
data/raw/marketing_campaign.csv ADDED
The diff for this file is too large to render. See raw diff
 
data/raw/medical_data_raw.ipynb ADDED
@@ -0,0 +1,207 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "markdown",
5
+ "metadata": {},
6
+ "source": [
7
+ "# PyTorch Differential Privacy Experiment"
8
+ ]
9
+ },
10
+ {
11
+ "cell_type": "code",
12
+ "execution_count": 1,
13
+ "metadata": {},
14
+ "outputs": [
15
+ {
16
+ "name": "stdout",
17
+ "output_type": "stream",
18
+ "text": [
19
+ "Collecting torch\n",
20
+ " Downloading torch-2.4.0-cp311-none-macosx_11_0_arm64.whl.metadata (26 kB)\n",
21
+ "Collecting torchvision\n",
22
+ " Downloading torchvision-0.19.0-cp311-cp311-macosx_11_0_arm64.whl.metadata (6.0 kB)\n",
23
+ "Collecting opacus\n",
24
+ " Downloading opacus-1.5.2-py3-none-any.whl.metadata (7.9 kB)\n",
25
+ "Requirement already satisfied: numpy in /Users/nullzero/Library/Caches/pypoetry/virtualenvs/verida-differential-privacy-OB45ac0m-py3.11/lib/python3.11/site-packages (2.1.0)\n",
26
+ "Requirement already satisfied: pandas in /Users/nullzero/Library/Caches/pypoetry/virtualenvs/verida-differential-privacy-OB45ac0m-py3.11/lib/python3.11/site-packages (2.2.2)\n",
27
+ "Requirement already satisfied: filelock in /Users/nullzero/Library/Caches/pypoetry/virtualenvs/verida-differential-privacy-OB45ac0m-py3.11/lib/python3.11/site-packages (from torch) (3.15.4)\n",
28
+ "Requirement already satisfied: typing-extensions>=4.8.0 in /Users/nullzero/Library/Caches/pypoetry/virtualenvs/verida-differential-privacy-OB45ac0m-py3.11/lib/python3.11/site-packages (from torch) (4.12.2)\n",
29
+ "Collecting sympy (from torch)\n",
30
+ " Downloading sympy-1.13.2-py3-none-any.whl.metadata (12 kB)\n",
31
+ "Collecting networkx (from torch)\n",
32
+ " Using cached networkx-3.3-py3-none-any.whl.metadata (5.1 kB)\n",
33
+ "Requirement already satisfied: jinja2 in /Users/nullzero/Library/Caches/pypoetry/virtualenvs/verida-differential-privacy-OB45ac0m-py3.11/lib/python3.11/site-packages (from torch) (3.1.4)\n",
34
+ "Requirement already satisfied: fsspec in /Users/nullzero/Library/Caches/pypoetry/virtualenvs/verida-differential-privacy-OB45ac0m-py3.11/lib/python3.11/site-packages (from torch) (2024.6.1)\n",
35
+ "Collecting pillow!=8.3.*,>=5.3.0 (from torchvision)\n",
36
+ " Downloading pillow-10.4.0-cp311-cp311-macosx_11_0_arm64.whl.metadata (9.2 kB)\n",
37
+ "Collecting numpy\n",
38
+ " Using cached numpy-1.26.4-cp311-cp311-macosx_11_0_arm64.whl.metadata (114 kB)\n",
39
+ "Collecting scipy>=1.2 (from opacus)\n",
40
+ " Downloading scipy-1.14.1-cp311-cp311-macosx_14_0_arm64.whl.metadata (60 kB)\n",
41
+ "Collecting opt-einsum>=3.3.0 (from opacus)\n",
42
+ " Downloading opt_einsum-3.3.0-py3-none-any.whl.metadata (6.5 kB)\n",
43
+ "Requirement already satisfied: python-dateutil>=2.8.2 in /Users/nullzero/Library/Caches/pypoetry/virtualenvs/verida-differential-privacy-OB45ac0m-py3.11/lib/python3.11/site-packages (from pandas) (2.9.0.post0)\n",
44
+ "Requirement already satisfied: pytz>=2020.1 in /Users/nullzero/Library/Caches/pypoetry/virtualenvs/verida-differential-privacy-OB45ac0m-py3.11/lib/python3.11/site-packages (from pandas) (2024.1)\n",
45
+ "Requirement already satisfied: tzdata>=2022.7 in /Users/nullzero/Library/Caches/pypoetry/virtualenvs/verida-differential-privacy-OB45ac0m-py3.11/lib/python3.11/site-packages (from pandas) (2024.1)\n",
46
+ "Requirement already satisfied: six>=1.5 in /Users/nullzero/Library/Caches/pypoetry/virtualenvs/verida-differential-privacy-OB45ac0m-py3.11/lib/python3.11/site-packages (from python-dateutil>=2.8.2->pandas) (1.16.0)\n",
47
+ "Requirement already satisfied: MarkupSafe>=2.0 in /Users/nullzero/Library/Caches/pypoetry/virtualenvs/verida-differential-privacy-OB45ac0m-py3.11/lib/python3.11/site-packages (from jinja2->torch) (2.1.5)\n",
48
+ "Collecting mpmath<1.4,>=1.1.0 (from sympy->torch)\n",
49
+ " Using cached mpmath-1.3.0-py3-none-any.whl.metadata (8.6 kB)\n",
50
+ "Downloading torch-2.4.0-cp311-none-macosx_11_0_arm64.whl (62.1 MB)\n",
51
+ "\u001b[2K \u001b[38;2;114;156;31m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m62.1/62.1 MB\u001b[0m \u001b[31m440.8 kB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0mm eta \u001b[36m0:00:01\u001b[0m[36m0:00:04\u001b[0m\n",
52
+ "\u001b[?25hDownloading torchvision-0.19.0-cp311-cp311-macosx_11_0_arm64.whl (1.7 MB)\n",
53
+ "\u001b[2K \u001b[38;2;114;156;31m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m1.7/1.7 MB\u001b[0m \u001b[31m560.7 kB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m1m557.0 kB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m\n",
54
+ "\u001b[?25hDownloading opacus-1.5.2-py3-none-any.whl (239 kB)\n",
55
+ "Using cached numpy-1.26.4-cp311-cp311-macosx_11_0_arm64.whl (14.0 MB)\n",
56
+ "Downloading opt_einsum-3.3.0-py3-none-any.whl (65 kB)\n",
57
+ "Downloading pillow-10.4.0-cp311-cp311-macosx_11_0_arm64.whl (3.4 MB)\n",
58
+ "\u001b[2K \u001b[38;2;114;156;31m━━━━━━━━━━━━━━━━━━━━━━━━��━━━━━━━━━━━━━━━\u001b[0m \u001b[32m3.4/3.4 MB\u001b[0m \u001b[31m457.2 kB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m kB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m:02\u001b[0m\n",
59
+ "\u001b[?25hDownloading scipy-1.14.1-cp311-cp311-macosx_14_0_arm64.whl (23.1 MB)\n",
60
+ "\u001b[2K \u001b[38;2;114;156;31m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m23.1/23.1 MB\u001b[0m \u001b[31m442.0 kB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0mm eta \u001b[36m0:00:01\u001b[0m[36m0:00:02\u001b[0m\n",
61
+ "\u001b[?25hUsing cached networkx-3.3-py3-none-any.whl (1.7 MB)\n",
62
+ "Downloading sympy-1.13.2-py3-none-any.whl (6.2 MB)\n",
63
+ "\u001b[2K \u001b[38;2;114;156;31m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m6.2/6.2 MB\u001b[0m \u001b[31m462.5 kB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m1m487.3 kB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m\n",
64
+ "\u001b[?25hUsing cached mpmath-1.3.0-py3-none-any.whl (536 kB)\n",
65
+ "Installing collected packages: mpmath, sympy, pillow, numpy, networkx, torch, scipy, opt-einsum, torchvision, opacus\n",
66
+ " Attempting uninstall: numpy\n",
67
+ " Found existing installation: numpy 2.1.0\n",
68
+ " Uninstalling numpy-2.1.0:\n",
69
+ " Successfully uninstalled numpy-2.1.0\n",
70
+ "Successfully installed mpmath-1.3.0 networkx-3.3 numpy-1.26.4 opacus-1.5.2 opt-einsum-3.3.0 pillow-10.4.0 scipy-1.14.1 sympy-1.13.2 torch-2.4.0 torchvision-0.19.0\n",
71
+ "Note: you may need to restart the kernel to use updated packages.\n",
72
+ "Requirement already satisfied: wandb in /Users/nullzero/Library/Caches/pypoetry/virtualenvs/verida-differential-privacy-OB45ac0m-py3.11/lib/python3.11/site-packages (0.17.7)\n",
73
+ "Requirement already satisfied: datasets in /Users/nullzero/Library/Caches/pypoetry/virtualenvs/verida-differential-privacy-OB45ac0m-py3.11/lib/python3.11/site-packages (2.21.0)\n",
74
+ "Requirement already satisfied: tqdm in /Users/nullzero/Library/Caches/pypoetry/virtualenvs/verida-differential-privacy-OB45ac0m-py3.11/lib/python3.11/site-packages (4.66.5)\n",
75
+ "Requirement already satisfied: click!=8.0.0,>=7.1 in /Users/nullzero/Library/Caches/pypoetry/virtualenvs/verida-differential-privacy-OB45ac0m-py3.11/lib/python3.11/site-packages (from wandb) (8.1.7)\n",
76
+ "Requirement already satisfied: docker-pycreds>=0.4.0 in /Users/nullzero/Library/Caches/pypoetry/virtualenvs/verida-differential-privacy-OB45ac0m-py3.11/lib/python3.11/site-packages (from wandb) (0.4.0)\n",
77
+ "Requirement already satisfied: gitpython!=3.1.29,>=1.0.0 in /Users/nullzero/Library/Caches/pypoetry/virtualenvs/verida-differential-privacy-OB45ac0m-py3.11/lib/python3.11/site-packages (from wandb) (3.1.43)\n",
78
+ "Requirement already satisfied: platformdirs in /Users/nullzero/Library/Caches/pypoetry/virtualenvs/verida-differential-privacy-OB45ac0m-py3.11/lib/python3.11/site-packages (from wandb) (4.2.2)\n",
79
+ "Requirement already satisfied: protobuf!=4.21.0,<6,>=3.19.0 in /Users/nullzero/Library/Caches/pypoetry/virtualenvs/verida-differential-privacy-OB45ac0m-py3.11/lib/python3.11/site-packages (from wandb) (5.27.3)\n",
80
+ "Requirement already satisfied: psutil>=5.0.0 in /Users/nullzero/Library/Caches/pypoetry/virtualenvs/verida-differential-privacy-OB45ac0m-py3.11/lib/python3.11/site-packages (from wandb) (6.0.0)\n",
81
+ "Requirement already satisfied: pyyaml in /Users/nullzero/Library/Caches/pypoetry/virtualenvs/verida-differential-privacy-OB45ac0m-py3.11/lib/python3.11/site-packages (from wandb) (6.0.2)\n",
82
+ "Requirement already satisfied: requests<3,>=2.0.0 in /Users/nullzero/Library/Caches/pypoetry/virtualenvs/verida-differential-privacy-OB45ac0m-py3.11/lib/python3.11/site-packages (from wandb) (2.32.3)\n",
83
+ "Requirement already satisfied: sentry-sdk>=1.0.0 in /Users/nullzero/Library/Caches/pypoetry/virtualenvs/verida-differential-privacy-OB45ac0m-py3.11/lib/python3.11/site-packages (from wandb) (2.13.0)\n",
84
+ "Requirement already satisfied: setproctitle in /Users/nullzero/Library/Caches/pypoetry/virtualenvs/verida-differential-privacy-OB45ac0m-py3.11/lib/python3.11/site-packages (from wandb) (1.3.3)\n",
85
+ "Requirement already satisfied: setuptools in /Users/nullzero/Library/Caches/pypoetry/virtualenvs/verida-differential-privacy-OB45ac0m-py3.11/lib/python3.11/site-packages (from wandb) (73.0.1)\n",
86
+ "Requirement already satisfied: filelock in /Users/nullzero/Library/Caches/pypoetry/virtualenvs/verida-differential-privacy-OB45ac0m-py3.11/lib/python3.11/site-packages (from datasets) (3.15.4)\n",
87
+ "Requirement already satisfied: numpy>=1.17 in /Users/nullzero/Library/Caches/pypoetry/virtualenvs/verida-differential-privacy-OB45ac0m-py3.11/lib/python3.11/site-packages (from datasets) (1.26.4)\n",
88
+ "Requirement already satisfied: pyarrow>=15.0.0 in /Users/nullzero/Library/Caches/pypoetry/virtualenvs/verida-differential-privacy-OB45ac0m-py3.11/lib/python3.11/site-packages (from datasets) (17.0.0)\n",
89
+ "Requirement already satisfied: dill<0.3.9,>=0.3.0 in /Users/nullzero/Library/Caches/pypoetry/virtualenvs/verida-differential-privacy-OB45ac0m-py3.11/lib/python3.11/site-packages (from datasets) (0.3.8)\n",
90
+ "Requirement already satisfied: pandas in /Users/nullzero/Library/Caches/pypoetry/virtualenvs/verida-differential-privacy-OB45ac0m-py3.11/lib/python3.11/site-packages (from datasets) (2.2.2)\n",
91
+ "Requirement already satisfied: xxhash in /Users/nullzero/Library/Caches/pypoetry/virtualenvs/verida-differential-privacy-OB45ac0m-py3.11/lib/python3.11/site-packages (from datasets) (3.5.0)\n",
92
+ "Requirement already satisfied: multiprocess in /Users/nullzero/Library/Caches/pypoetry/virtualenvs/verida-differential-privacy-OB45ac0m-py3.11/lib/python3.11/site-packages (from datasets) (0.70.16)\n",
93
+ "Requirement already satisfied: fsspec<=2024.6.1,>=2023.1.0 in /Users/nullzero/Library/Caches/pypoetry/virtualenvs/verida-differential-privacy-OB45ac0m-py3.11/lib/python3.11/site-packages (from fsspec[http]<=2024.6.1,>=2023.1.0->datasets) (2024.6.1)\n",
94
+ "Requirement already satisfied: aiohttp in /Users/nullzero/Library/Caches/pypoetry/virtualenvs/verida-differential-privacy-OB45ac0m-py3.11/lib/python3.11/site-packages (from datasets) (3.10.5)\n",
95
+ "Requirement already satisfied: huggingface-hub>=0.21.2 in /Users/nullzero/Library/Caches/pypoetry/virtualenvs/verida-differential-privacy-OB45ac0m-py3.11/lib/python3.11/site-packages (from datasets) (0.24.6)\n",
96
+ "Requirement already satisfied: packaging in /Users/nullzero/Library/Caches/pypoetry/virtualenvs/verida-differential-privacy-OB45ac0m-py3.11/lib/python3.11/site-packages (from datasets) (24.1)\n",
97
+ "Requirement already satisfied: six>=1.4.0 in /Users/nullzero/Library/Caches/pypoetry/virtualenvs/verida-differential-privacy-OB45ac0m-py3.11/lib/python3.11/site-packages (from docker-pycreds>=0.4.0->wandb) (1.16.0)\n",
98
+ "Requirement already satisfied: aiohappyeyeballs>=2.3.0 in /Users/nullzero/Library/Caches/pypoetry/virtualenvs/verida-differential-privacy-OB45ac0m-py3.11/lib/python3.11/site-packages (from aiohttp->datasets) (2.4.0)\n",
99
+ "Requirement already satisfied: aiosignal>=1.1.2 in /Users/nullzero/Library/Caches/pypoetry/virtualenvs/verida-differential-privacy-OB45ac0m-py3.11/lib/python3.11/site-packages (from aiohttp->datasets) (1.3.1)\n",
100
+ "Requirement already satisfied: attrs>=17.3.0 in /Users/nullzero/Library/Caches/pypoetry/virtualenvs/verida-differential-privacy-OB45ac0m-py3.11/lib/python3.11/site-packages (from aiohttp->datasets) (24.2.0)\n",
101
+ "Requirement already satisfied: frozenlist>=1.1.1 in /Users/nullzero/Library/Caches/pypoetry/virtualenvs/verida-differential-privacy-OB45ac0m-py3.11/lib/python3.11/site-packages (from aiohttp->datasets) (1.4.1)\n",
102
+ "Requirement already satisfied: multidict<7.0,>=4.5 in /Users/nullzero/Library/Caches/pypoetry/virtualenvs/verida-differential-privacy-OB45ac0m-py3.11/lib/python3.11/site-packages (from aiohttp->datasets) (6.0.5)\n",
103
+ "Requirement already satisfied: yarl<2.0,>=1.0 in /Users/nullzero/Library/Caches/pypoetry/virtualenvs/verida-differential-privacy-OB45ac0m-py3.11/lib/python3.11/site-packages (from aiohttp->datasets) (1.9.4)\n",
104
+ "Requirement already satisfied: gitdb<5,>=4.0.1 in /Users/nullzero/Library/Caches/pypoetry/virtualenvs/verida-differential-privacy-OB45ac0m-py3.11/lib/python3.11/site-packages (from gitpython!=3.1.29,>=1.0.0->wandb) (4.0.11)\n",
105
+ "Requirement already satisfied: typing-extensions>=3.7.4.3 in /Users/nullzero/Library/Caches/pypoetry/virtualenvs/verida-differential-privacy-OB45ac0m-py3.11/lib/python3.11/site-packages (from huggingface-hub>=0.21.2->datasets) (4.12.2)\n",
106
+ "Requirement already satisfied: charset-normalizer<4,>=2 in /Users/nullzero/Library/Caches/pypoetry/virtualenvs/verida-differential-privacy-OB45ac0m-py3.11/lib/python3.11/site-packages (from requests<3,>=2.0.0->wandb) (3.3.2)\n",
107
+ "Requirement already satisfied: idna<4,>=2.5 in /Users/nullzero/Library/Caches/pypoetry/virtualenvs/verida-differential-privacy-OB45ac0m-py3.11/lib/python3.11/site-packages (from requests<3,>=2.0.0->wandb) (3.7)\n",
108
+ "Requirement already satisfied: urllib3<3,>=1.21.1 in /Users/nullzero/Library/Caches/pypoetry/virtualenvs/verida-differential-privacy-OB45ac0m-py3.11/lib/python3.11/site-packages (from requests<3,>=2.0.0->wandb) (2.2.2)\n",
109
+ "Requirement already satisfied: certifi>=2017.4.17 in /Users/nullzero/Library/Caches/pypoetry/virtualenvs/verida-differential-privacy-OB45ac0m-py3.11/lib/python3.11/site-packages (from requests<3,>=2.0.0->wandb) (2024.7.4)\n",
110
+ "Requirement already satisfied: python-dateutil>=2.8.2 in /Users/nullzero/Library/Caches/pypoetry/virtualenvs/verida-differential-privacy-OB45ac0m-py3.11/lib/python3.11/site-packages (from pandas->datasets) (2.9.0.post0)\n",
111
+ "Requirement already satisfied: pytz>=2020.1 in /Users/nullzero/Library/Caches/pypoetry/virtualenvs/verida-differential-privacy-OB45ac0m-py3.11/lib/python3.11/site-packages (from pandas->datasets) (2024.1)\n",
112
+ "Requirement already satisfied: tzdata>=2022.7 in /Users/nullzero/Library/Caches/pypoetry/virtualenvs/verida-differential-privacy-OB45ac0m-py3.11/lib/python3.11/site-packages (from pandas->datasets) (2024.1)\n",
113
+ "Requirement already satisfied: smmap<6,>=3.0.1 in /Users/nullzero/Library/Caches/pypoetry/virtualenvs/verida-differential-privacy-OB45ac0m-py3.11/lib/python3.11/site-packages (from gitdb<5,>=4.0.1->gitpython!=3.1.29,>=1.0.0->wandb) (5.0.1)\n",
114
+ "Note: you may need to restart the kernel to use updated packages.\n"
115
+ ]
116
+ }
117
+ ],
118
+ "source": [
119
+ "%pip install -qqq torch torchvision opacus numpy pandas\n",
120
+ "%pip install -qqq wandb datasets tqdm\n"
121
+ ]
122
+ },
123
+ {
124
+ "cell_type": "code",
125
+ "execution_count": 2,
126
+ "metadata": {},
127
+ "outputs": [],
128
+ "source": [
129
+ "import os\n",
130
+ "import torch \n",
131
+ "from dotenv import load_dotenv\n",
132
+ "import wandb \n",
133
+ "import logging\n",
134
+ "import shutil\n",
135
+ "import sys\n",
136
+ "from datetime import datetime, timedelta\n",
137
+ "\n",
138
+ "import argparse\n",
139
+ "from collections import Counter\n",
140
+ "from pathlib import Path\n",
141
+ "from statistics import mean\n",
142
+ "\n",
143
+ "import torch\n",
144
+ "import torch.nn as nn\n",
145
+ "from opacus import PrivacyEngine\n",
146
+ "from opacus.layers import DPGRU, DPLSTM, DPRNN\n",
147
+ "from torch.nn.utils.rnn import pad_sequence\n",
148
+ "from torch.utils.data import DataLoader, Dataset\n",
149
+ "from tqdm import tqdm, tqdm_notebook"
150
+ ]
151
+ },
152
+ {
153
+ "cell_type": "code",
154
+ "execution_count": 3,
155
+ "metadata": {},
156
+ "outputs": [],
157
+ "source": [
158
+ "device = \"mps\" if torch.backends.mps.is_available() else \"cpu\"\n",
159
+ "if os.path.exists('.env'):\n",
160
+ " load_dotenv('.env')\n"
161
+ ]
162
+ },
163
+ {
164
+ "cell_type": "code",
165
+ "execution_count": null,
166
+ "metadata": {},
167
+ "outputs": [],
168
+ "source": [
169
+ "logging.basicConfig(\n",
170
+ " format=\"%(asctime)s:%(levelname)s:%(message)s\",\n",
171
+ " datefmt=\"%m/%d/%Y %H:%M:%S\",\n",
172
+ " stream=sys.stdout,\n",
173
+ ")\n",
174
+ "logger = logging.getLogger(\"ddp\")\n",
175
+ "logger.setLevel(level=logging.INFO)\n"
176
+ ]
177
+ },
178
+ {
179
+ "cell_type": "code",
180
+ "execution_count": null,
181
+ "metadata": {},
182
+ "outputs": [],
183
+ "source": [
184
+ "wandb.login(key=os.getenv('WANDB_API_KEY'))\n",
185
+ "wandb.init(project=\"verida-pii\", name=\"verida_data_raw\")"
186
+ ]
187
+ },
188
+ {
189
+ "cell_type": "code",
190
+ "execution_count": null,
191
+ "metadata": {},
192
+ "outputs": [],
193
+ "source": [
194
+ "data_name = 'Ezi/medical_and_legislators_synthetic'"
195
+ ]
196
+ }
197
+ ],
198
+ "metadata": {
199
+ "kernelspec": {
200
+ "display_name": "Python 3 (ipykernel)",
201
+ "language": "python",
202
+ "name": "python3"
203
+ }
204
+ },
205
+ "nbformat": 4,
206
+ "nbformat_minor": 2
207
+ }
data/raw/raw_data.ipynb ADDED
@@ -0,0 +1,662 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "markdown",
5
+ "metadata": {},
6
+ "source": [
7
+ "# Data Preparation "
8
+ ]
9
+ },
10
+ {
11
+ "cell_type": "code",
12
+ "execution_count": 44,
13
+ "metadata": {},
14
+ "outputs": [],
15
+ "source": [
16
+ "!poetry add -qqq python-dotenv datasets wandb didkit\n"
17
+ ]
18
+ },
19
+ {
20
+ "cell_type": "code",
21
+ "execution_count": null,
22
+ "metadata": {},
23
+ "outputs": [],
24
+ "source": []
25
+ },
26
+ {
27
+ "cell_type": "code",
28
+ "execution_count": 34,
29
+ "metadata": {},
30
+ "outputs": [],
31
+ "source": [
32
+ "import os\n",
33
+ "from dotenv import load_dotenv, find_dotenv\n",
34
+ "if os.path.exists('../env'):\n",
35
+ " load_dotenv(find_dotenv())\n",
36
+ "import wandb"
37
+ ]
38
+ },
39
+ {
40
+ "cell_type": "code",
41
+ "execution_count": 36,
42
+ "metadata": {},
43
+ "outputs": [
44
+ {
45
+ "name": "stderr",
46
+ "output_type": "stream",
47
+ "text": [
48
+ "\u001b[34m\u001b[1mwandb\u001b[0m: \u001b[33mWARNING\u001b[0m Calling wandb.login() after wandb.init() has no effect.\n"
49
+ ]
50
+ },
51
+ {
52
+ "data": {
53
+ "text/html": [
54
+ "Finishing last run (ID:pnvhnkh8) before initializing another..."
55
+ ],
56
+ "text/plain": [
57
+ "<IPython.core.display.HTML object>"
58
+ ]
59
+ },
60
+ "metadata": {},
61
+ "output_type": "display_data"
62
+ },
63
+ {
64
+ "data": {
65
+ "application/vnd.jupyter.widget-view+json": {
66
+ "model_id": "19afd929911c42f6ab4e9604948ade90",
67
+ "version_major": 2,
68
+ "version_minor": 0
69
+ },
70
+ "text/plain": [
71
+ "VBox(children=(Label(value='0.001 MB of 0.001 MB uploaded\\r'), FloatProgress(value=1.0, max=1.0)))"
72
+ ]
73
+ },
74
+ "metadata": {},
75
+ "output_type": "display_data"
76
+ },
77
+ {
78
+ "data": {
79
+ "text/html": [
80
+ " View run <strong style=\"color:#cdcd00\">verida_data_raw</strong> at: <a href='https://wandb.ai/orion-agents/verida-pii/runs/pnvhnkh8' target=\"_blank\">https://wandb.ai/orion-agents/verida-pii/runs/pnvhnkh8</a><br/> View project at: <a href='https://wandb.ai/orion-agents/verida-pii' target=\"_blank\">https://wandb.ai/orion-agents/verida-pii</a><br/>Synced 5 W&B file(s), 0 media file(s), 0 artifact file(s) and 0 other file(s)"
81
+ ],
82
+ "text/plain": [
83
+ "<IPython.core.display.HTML object>"
84
+ ]
85
+ },
86
+ "metadata": {},
87
+ "output_type": "display_data"
88
+ },
89
+ {
90
+ "data": {
91
+ "text/html": [
92
+ "Find logs at: <code>./wandb/run-20240825_035519-pnvhnkh8/logs</code>"
93
+ ],
94
+ "text/plain": [
95
+ "<IPython.core.display.HTML object>"
96
+ ]
97
+ },
98
+ "metadata": {},
99
+ "output_type": "display_data"
100
+ },
101
+ {
102
+ "data": {
103
+ "text/html": [
104
+ "The new W&B backend becomes opt-out in version 0.18.0; try it out with `wandb.require(\"core\")`! See https://wandb.me/wandb-core for more information."
105
+ ],
106
+ "text/plain": [
107
+ "<IPython.core.display.HTML object>"
108
+ ]
109
+ },
110
+ "metadata": {},
111
+ "output_type": "display_data"
112
+ },
113
+ {
114
+ "data": {
115
+ "text/html": [
116
+ "Successfully finished last run (ID:pnvhnkh8). Initializing new run:<br/>"
117
+ ],
118
+ "text/plain": [
119
+ "<IPython.core.display.HTML object>"
120
+ ]
121
+ },
122
+ "metadata": {},
123
+ "output_type": "display_data"
124
+ },
125
+ {
126
+ "data": {
127
+ "application/vnd.jupyter.widget-view+json": {
128
+ "model_id": "76495a6b8c1843b09162b9ec31d99dfe",
129
+ "version_major": 2,
130
+ "version_minor": 0
131
+ },
132
+ "text/plain": [
133
+ "VBox(children=(Label(value='Waiting for wandb.init()...\\r'), FloatProgress(value=0.01112003148947325, max=1.0)…"
134
+ ]
135
+ },
136
+ "metadata": {},
137
+ "output_type": "display_data"
138
+ },
139
+ {
140
+ "data": {
141
+ "text/html": [
142
+ "Tracking run with wandb version 0.17.7"
143
+ ],
144
+ "text/plain": [
145
+ "<IPython.core.display.HTML object>"
146
+ ]
147
+ },
148
+ "metadata": {},
149
+ "output_type": "display_data"
150
+ },
151
+ {
152
+ "data": {
153
+ "text/html": [
154
+ "Run data is saved locally in <code>/Users/nullzero/Documents/repos/github.com/privacy-identity/vda-simulation-medical/vda-sim-medical/wandb/run-20240825_035604-69f6mbdr</code>"
155
+ ],
156
+ "text/plain": [
157
+ "<IPython.core.display.HTML object>"
158
+ ]
159
+ },
160
+ "metadata": {},
161
+ "output_type": "display_data"
162
+ },
163
+ {
164
+ "data": {
165
+ "text/html": [
166
+ "Syncing run <strong><a href='https://wandb.ai/orion-agents/verida-pii/runs/69f6mbdr' target=\"_blank\">verida_data_raw</a></strong> to <a href='https://wandb.ai/orion-agents/verida-pii' target=\"_blank\">Weights & Biases</a> (<a href='https://wandb.me/run' target=\"_blank\">docs</a>)<br/>"
167
+ ],
168
+ "text/plain": [
169
+ "<IPython.core.display.HTML object>"
170
+ ]
171
+ },
172
+ "metadata": {},
173
+ "output_type": "display_data"
174
+ },
175
+ {
176
+ "data": {
177
+ "text/html": [
178
+ " View project at <a href='https://wandb.ai/orion-agents/verida-pii' target=\"_blank\">https://wandb.ai/orion-agents/verida-pii</a>"
179
+ ],
180
+ "text/plain": [
181
+ "<IPython.core.display.HTML object>"
182
+ ]
183
+ },
184
+ "metadata": {},
185
+ "output_type": "display_data"
186
+ },
187
+ {
188
+ "data": {
189
+ "text/html": [
190
+ " View run at <a href='https://wandb.ai/orion-agents/verida-pii/runs/69f6mbdr' target=\"_blank\">https://wandb.ai/orion-agents/verida-pii/runs/69f6mbdr</a>"
191
+ ],
192
+ "text/plain": [
193
+ "<IPython.core.display.HTML object>"
194
+ ]
195
+ },
196
+ "metadata": {},
197
+ "output_type": "display_data"
198
+ },
199
+ {
200
+ "name": "stderr",
201
+ "output_type": "stream",
202
+ "text": [
203
+ "\u001b[34m\u001b[1mwandb\u001b[0m: Network error resolved after 1:13:41.968146, resuming normal operation.\n",
204
+ "\u001b[34m\u001b[1mwandb\u001b[0m: Network error resolved after 0:42:49.841123, resuming normal operation.\n",
205
+ "\u001b[34m\u001b[1mwandb\u001b[0m: Network error resolved after 0:18:54.049113, resuming normal operation.\n"
206
+ ]
207
+ }
208
+ ],
209
+ "source": [
210
+ "wandb.login(key=os.getenv('WANDB_API_KEY'))\n",
211
+ "run = wandb.init(project=\"verida-pii\", name=\"verida_data_raw\")"
212
+ ]
213
+ },
214
+ {
215
+ "cell_type": "code",
216
+ "execution_count": 62,
217
+ "metadata": {},
218
+ "outputs": [
219
+ {
220
+ "name": "stdout",
221
+ "output_type": "stream",
222
+ "text": [
223
+ "539\n"
224
+ ]
225
+ }
226
+ ],
227
+ "source": [
228
+ "from datasets import load_dataset\n",
229
+ "import pandas as pd\n",
230
+ "data_name=\"Ezi/medical_and_legislators_synthetic\"\n",
231
+ "data = load_dataset(path=data_name, split='train')\n",
232
+ "data_df = data.to_pandas()\n",
233
+ "data_df.head()\n",
234
+ "print(len(data_df))\n",
235
+ "\n"
236
+ ]
237
+ },
238
+ {
239
+ "cell_type": "code",
240
+ "execution_count": 30,
241
+ "metadata": {},
242
+ "outputs": [
243
+ {
244
+ "data": {
245
+ "text/plain": [
246
+ "'mps'"
247
+ ]
248
+ },
249
+ "execution_count": 30,
250
+ "metadata": {},
251
+ "output_type": "execute_result"
252
+ }
253
+ ],
254
+ "source": [
255
+ "device = \"mps\" if torch.backends.mps.is_available() else \"cpu\"\n",
256
+ "device"
257
+ ]
258
+ },
259
+ {
260
+ "cell_type": "code",
261
+ "execution_count": 63,
262
+ "metadata": {},
263
+ "outputs": [],
264
+ "source": [
265
+ "# DiD Generator\n",
266
+ "import didkit\n",
267
+ "\n",
268
+ "def generate_did():\n",
269
+ " key = didkit.generate_ed25519_key()\n",
270
+ " did = didkit.key_to_did(\"key\", key)\n",
271
+ " return did, key"
272
+ ]
273
+ },
274
+ {
275
+ "cell_type": "code",
276
+ "execution_count": 64,
277
+ "metadata": {},
278
+ "outputs": [],
279
+ "source": [
280
+ "from tqdm import tqdm, tqdm_notebook, tqdm_pandas\n",
281
+ "import pandas as pd"
282
+ ]
283
+ },
284
+ {
285
+ "cell_type": "code",
286
+ "execution_count": 70,
287
+ "metadata": {},
288
+ "outputs": [
289
+ {
290
+ "data": {
291
+ "text/plain": [
292
+ "Index(['last_name', 'first_name', 'middle_name', 'suffix', 'nickname',\n",
293
+ " 'full_name', 'birthday', 'gender', 'type', 'state', 'district',\n",
294
+ " 'senate_class', 'party', 'url', 'address', 'phone', 'contact_form',\n",
295
+ " 'rss_url', 'twitter', 'facebook', 'youtube', 'youtube_id',\n",
296
+ " 'bioguide_id', 'thomas_id', 'opensecrets_id', 'lis_id', 'fec_ids',\n",
297
+ " 'cspan_id', 'govtrack_id', 'votesmart_id', 'ballotpedia_id',\n",
298
+ " 'washington_post_id', 'icpsr_id', 'wikipedia_id', 'last_name.1',\n",
299
+ " 'first_name.1', 'middle_name.1', 'suffix.1', 'nickname.1',\n",
300
+ " 'full_name.1', 'birthday.1', 'gender.1', 'type.1', 'state.1',\n",
301
+ " 'district.1', 'senate_class.1', 'party.1', 'url.1', 'address.1',\n",
302
+ " 'phone.1', 'contact_form.1', 'rss_url.1', 'twitter.1', 'facebook.1',\n",
303
+ " 'youtube.1', 'youtube_id.1', 'bioguide_id.1', 'thomas_id.1',\n",
304
+ " 'opensecrets_id.1', 'lis_id.1', 'fec_ids.1', 'cspan_id.1',\n",
305
+ " 'govtrack_id.1', 'votesmart_id.1', 'ballotpedia_id.1',\n",
306
+ " 'washington_post_id.1', 'icpsr_id.1', 'wikipedia_id.1'],\n",
307
+ " dtype='object')"
308
+ ]
309
+ },
310
+ "execution_count": 70,
311
+ "metadata": {},
312
+ "output_type": "execute_result"
313
+ }
314
+ ],
315
+ "source": [
316
+ "#data_df['did'] = data_df.apply(lambda x: generate_did()[0], axis=1)\n",
317
+ "#data_df['key'] = data_df.apply(lambda x: generate_did()[1], axis=1)\n",
318
+ "cleaned_df = data_df.copy()\n",
319
+ "cleaned_df.head()\n",
320
+ "cleaned_df.isna().sum()\n",
321
+ "cleaned_df.isna().dropna()\n",
322
+ "cleaned_df.describe()\n",
323
+ "cleaned_df.shape\n",
324
+ "cleaned_df.columns"
325
+ ]
326
+ },
327
+ {
328
+ "cell_type": "code",
329
+ "execution_count": 71,
330
+ "metadata": {},
331
+ "outputs": [],
332
+ "source": [
333
+ "data_did = data_df.copy()\n",
334
+ "data_did.to_csv(\"data_did.csv\")\n",
335
+ "data_did"
336
+ ]
337
+ },
338
+ {
339
+ "cell_type": "code",
340
+ "execution_count": 76,
341
+ "metadata": {},
342
+ "outputs": [
343
+ {
344
+ "ename": "ModuleNotFoundError",
345
+ "evalue": "No module named 'DatasetDict'",
346
+ "output_type": "error",
347
+ "traceback": [
348
+ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
349
+ "\u001b[0;31mModuleNotFoundError\u001b[0m Traceback (most recent call last)",
350
+ "Cell \u001b[0;32mIn[76], line 2\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[38;5;66;03m# Back to dataset\u001b[39;00m\n\u001b[0;32m----> 2\u001b[0m \u001b[38;5;28;01mimport\u001b[39;00m \u001b[38;5;21;01mDatasetDict\u001b[39;00m \n\u001b[1;32m 3\u001b[0m secure_mode \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mFalse\u001b[39;00m\n\u001b[1;32m 4\u001b[0m train_split \u001b[38;5;241m=\u001b[39m \u001b[38;5;241m0.8\u001b[39m\n",
351
+ "\u001b[0;31mModuleNotFoundError\u001b[0m: No module named 'DatasetDict'"
352
+ ]
353
+ }
354
+ ],
355
+ "source": [
356
+ "# Back to dataset\n",
357
+ "\n",
358
+ "secure_mode = False\n",
359
+ "train_split = 0.8\n",
360
+ "test_every = 5\n",
361
+ "batch_size = 800\n",
362
+ "\n",
363
+ "ds = data_did\n",
364
+ "train_len = int(train_split * len(ds))\n",
365
+ "test_len = len(ds) - train_len\n",
366
+ "\n",
367
+ "print(f\"{train_len} samples for training, {test_len} for testing\")\n",
368
+ "\n",
369
+ "train_ds, test_ds = torch.utils.data.random_split(ds, [train_len, test_len])\n"
370
+ ]
371
+ },
372
+ {
373
+ "cell_type": "code",
374
+ "execution_count": 78,
375
+ "metadata": {},
376
+ "outputs": [
377
+ {
378
+ "ename": "TypeError",
379
+ "evalue": "expected str, bytes or os.PathLike object, not Subset",
380
+ "output_type": "error",
381
+ "traceback": [
382
+ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
383
+ "\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)",
384
+ "Cell \u001b[0;32mIn[78], line 2\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mdatasets\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m load_dataset\n\u001b[0;32m----> 2\u001b[0m ds \u001b[38;5;241m=\u001b[39m \u001b[43mload_dataset\u001b[49m\u001b[43m(\u001b[49m\u001b[43mtrain_ds\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mtest_ds\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43msplit\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43m[\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mtrain\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mtest\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m]\u001b[49m\u001b[43m)\u001b[49m\n",
385
+ "File \u001b[0;32m~/Library/Caches/pypoetry/virtualenvs/verida-differential-privacy-OB45ac0m-py3.11/lib/python3.11/site-packages/datasets/load.py:2588\u001b[0m, in \u001b[0;36mload_dataset\u001b[0;34m(path, name, data_dir, data_files, split, cache_dir, features, download_config, download_mode, verification_mode, ignore_verifications, keep_in_memory, save_infos, revision, token, use_auth_token, task, streaming, num_proc, storage_options, trust_remote_code, **config_kwargs)\u001b[0m\n\u001b[1;32m 2586\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m data_files \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m \u001b[38;5;129;01mand\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m data_files:\n\u001b[1;32m 2587\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mValueError\u001b[39;00m(\u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mEmpty \u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mdata_files\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124m: \u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;132;01m{\u001b[39;00mdata_files\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124m. It should be either non-empty or None (default).\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[0;32m-> 2588\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[43mPath\u001b[49m\u001b[43m(\u001b[49m\u001b[43mpath\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mconfig\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mDATASET_STATE_JSON_FILENAME\u001b[49m\u001b[43m)\u001b[49m\u001b[38;5;241m.\u001b[39mexists():\n\u001b[1;32m 2589\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mValueError\u001b[39;00m(\n\u001b[1;32m 2590\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mYou are trying to load a dataset that was saved using `save_to_disk`. \u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 2591\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mPlease use `load_from_disk` instead.\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 2592\u001b[0m )\n\u001b[1;32m 2594\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m streaming \u001b[38;5;129;01mand\u001b[39;00m num_proc \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n",
386
+ "File \u001b[0;32m/opt/homebrew/Cellar/[email protected]/3.11.9_1/Frameworks/Python.framework/Versions/3.11/lib/python3.11/pathlib.py:871\u001b[0m, in \u001b[0;36mPath.__new__\u001b[0;34m(cls, *args, **kwargs)\u001b[0m\n\u001b[1;32m 869\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mcls\u001b[39m \u001b[38;5;129;01mis\u001b[39;00m Path:\n\u001b[1;32m 870\u001b[0m \u001b[38;5;28mcls\u001b[39m \u001b[38;5;241m=\u001b[39m WindowsPath \u001b[38;5;28;01mif\u001b[39;00m os\u001b[38;5;241m.\u001b[39mname \u001b[38;5;241m==\u001b[39m \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mnt\u001b[39m\u001b[38;5;124m'\u001b[39m \u001b[38;5;28;01melse\u001b[39;00m PosixPath\n\u001b[0;32m--> 871\u001b[0m \u001b[38;5;28mself\u001b[39m \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mcls\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_from_parts\u001b[49m\u001b[43m(\u001b[49m\u001b[43margs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 872\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_flavour\u001b[38;5;241m.\u001b[39mis_supported:\n\u001b[1;32m 873\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mNotImplementedError\u001b[39;00m(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mcannot instantiate \u001b[39m\u001b[38;5;132;01m%r\u001b[39;00m\u001b[38;5;124m on your system\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 874\u001b[0m \u001b[38;5;241m%\u001b[39m (\u001b[38;5;28mcls\u001b[39m\u001b[38;5;241m.\u001b[39m\u001b[38;5;18m__name__\u001b[39m,))\n",
387
+ "File \u001b[0;32m/opt/homebrew/Cellar/[email protected]/3.11.9_1/Frameworks/Python.framework/Versions/3.11/lib/python3.11/pathlib.py:509\u001b[0m, in \u001b[0;36mPurePath._from_parts\u001b[0;34m(cls, args)\u001b[0m\n\u001b[1;32m 504\u001b[0m \u001b[38;5;129m@classmethod\u001b[39m\n\u001b[1;32m 505\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21m_from_parts\u001b[39m(\u001b[38;5;28mcls\u001b[39m, args):\n\u001b[1;32m 506\u001b[0m \u001b[38;5;66;03m# We need to call _parse_args on the instance, so as to get the\u001b[39;00m\n\u001b[1;32m 507\u001b[0m \u001b[38;5;66;03m# right flavour.\u001b[39;00m\n\u001b[1;32m 508\u001b[0m \u001b[38;5;28mself\u001b[39m \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mobject\u001b[39m\u001b[38;5;241m.\u001b[39m\u001b[38;5;21m__new__\u001b[39m(\u001b[38;5;28mcls\u001b[39m)\n\u001b[0;32m--> 509\u001b[0m drv, root, parts \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_parse_args\u001b[49m\u001b[43m(\u001b[49m\u001b[43margs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 510\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_drv \u001b[38;5;241m=\u001b[39m drv\n\u001b[1;32m 511\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_root \u001b[38;5;241m=\u001b[39m root\n",
388
+ "File \u001b[0;32m/opt/homebrew/Cellar/[email protected]/3.11.9_1/Frameworks/Python.framework/Versions/3.11/lib/python3.11/pathlib.py:493\u001b[0m, in \u001b[0;36mPurePath._parse_args\u001b[0;34m(cls, args)\u001b[0m\n\u001b[1;32m 491\u001b[0m parts \u001b[38;5;241m+\u001b[39m\u001b[38;5;241m=\u001b[39m a\u001b[38;5;241m.\u001b[39m_parts\n\u001b[1;32m 492\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[0;32m--> 493\u001b[0m a \u001b[38;5;241m=\u001b[39m os\u001b[38;5;241m.\u001b[39mfspath(a)\n\u001b[1;32m 494\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(a, \u001b[38;5;28mstr\u001b[39m):\n\u001b[1;32m 495\u001b[0m \u001b[38;5;66;03m# Force-cast str subclasses to str (issue #21127)\u001b[39;00m\n\u001b[1;32m 496\u001b[0m parts\u001b[38;5;241m.\u001b[39mappend(\u001b[38;5;28mstr\u001b[39m(a))\n",
389
+ "\u001b[0;31mTypeError\u001b[0m: expected str, bytes or os.PathLike object, not Subset"
390
+ ]
391
+ }
392
+ ],
393
+ "source": [
394
+ "from datasets import load_dataset\n",
395
+ "ds = load_dataset(train_ds, test_ds, split=[\"train\", \"test\"])\n"
396
+ ]
397
+ },
398
+ {
399
+ "cell_type": "code",
400
+ "execution_count": 79,
401
+ "metadata": {},
402
+ "outputs": [],
403
+ "source": [
404
+ "import torch\n",
405
+ "import torch.nn as nn\n",
406
+ "\n",
407
+ "class CharByteEncoder(nn.Module):\n",
408
+ " \"\"\"\n",
409
+ " This encoder takes a UTF-8 string and encodes its bytes into a Tensor. It can also\n",
410
+ " perform the opposite operation to check a result.\n",
411
+ " Examples:\n",
412
+ " >>> encoder = CharByteEncoder()\n",
413
+ " >>> t = encoder('Ślusàrski') # returns tensor([256, 197, 154, 108, 117, 115, 195, 160, 114, 115, 107, 105, 257])\n",
414
+ " >>> encoder.decode(t) # returns \"<s>Ślusàrski</s>\"\n",
415
+ " \"\"\"\n",
416
+ "\n",
417
+ " def __init__(self):\n",
418
+ " super().__init__()\n",
419
+ " self.start_token = \"<s>\"\n",
420
+ " self.end_token = \"</s>\"\n",
421
+ " self.pad_token = \"<pad>\"\n",
422
+ "\n",
423
+ " self.start_idx = 256\n",
424
+ " self.end_idx = 257\n",
425
+ " self.pad_idx = 258\n",
426
+ "\n",
427
+ " def forward(self, s: str, pad_to=0) -> torch.LongTensor:\n",
428
+ " \"\"\"\n",
429
+ " Encodes a string. It will append a start token <s> (id=self.start_idx) and an end token </s>\n",
430
+ " (id=self.end_idx).\n",
431
+ " Args:\n",
432
+ " s: The string to encode.\n",
433
+ " pad_to: If not zero, pad by appending self.pad_idx until string is of length `pad_to`.\n",
434
+ " Defaults to 0.\n",
435
+ " Returns:\n",
436
+ " The encoded LongTensor of indices.\n",
437
+ " \"\"\"\n",
438
+ " encoded = s.encode()\n",
439
+ " n_pad = pad_to - len(encoded) if pad_to > len(encoded) else 0\n",
440
+ " return torch.LongTensor(\n",
441
+ " [self.start_idx]\n",
442
+ " + [c for c in encoded] # noqa\n",
443
+ " + [self.end_idx]\n",
444
+ " + [self.pad_idx for _ in range(n_pad)]\n",
445
+ " )\n",
446
+ "\n",
447
+ " def decode(self, char_ids_tensor: torch.LongTensor) -> str:\n",
448
+ " \"\"\"\n",
449
+ " The inverse of `forward`. Keeps the start, end, and pad indices.\n",
450
+ " \"\"\"\n",
451
+ " char_ids = char_ids_tensor.cpu().detach().tolist()\n",
452
+ "\n",
453
+ " out = []\n",
454
+ " buf = []\n",
455
+ " for c in char_ids:\n",
456
+ " if c < 256:\n",
457
+ " buf.append(c)\n",
458
+ " else:\n",
459
+ " if buf:\n",
460
+ " out.append(bytes(buf).decode())\n",
461
+ " buf = []\n",
462
+ " if c == self.start_idx:\n",
463
+ " out.append(self.start_token)\n",
464
+ " elif c == self.end_idx:\n",
465
+ " out.append(self.end_token)\n",
466
+ " elif c == self.pad_idx:\n",
467
+ " out.append(self.pad_token)\n",
468
+ "\n",
469
+ " if buf: # in case some are left\n",
470
+ " out.append(bytes(buf).decode())\n",
471
+ " return \"\".join(out)\n",
472
+ "\n",
473
+ " def __len__(self):\n",
474
+ " \"\"\"\n",
475
+ " The length of our encoder space. This is fixed to 256 (one byte) + 3 special chars\n",
476
+ " (start, end, pad).\n",
477
+ " Returns:\n",
478
+ " 259\n",
479
+ " \"\"\"\n",
480
+ " return 259"
481
+ ]
482
+ },
483
+ {
484
+ "cell_type": "code",
485
+ "execution_count": 80,
486
+ "metadata": {},
487
+ "outputs": [],
488
+ "source": [
489
+ "from torch.nn.utils.rnn import pad_sequence\n",
490
+ "\n",
491
+ "def padded_collate(batch, padding_idx=0):\n",
492
+ " x = pad_sequence(\n",
493
+ " [elem[0] for elem in batch], batch_first=True, padding_value=padding_idx\n",
494
+ " )\n",
495
+ " y = torch.stack([elem[1] for elem in batch]).long()\n",
496
+ "\n",
497
+ " return x, y"
498
+ ]
499
+ },
500
+ {
501
+ "cell_type": "code",
502
+ "execution_count": 74,
503
+ "metadata": {},
504
+ "outputs": [],
505
+ "source": [
506
+ "from torch.utils.data import Dataset\n",
507
+ "from pathlib import Path\n",
508
+ "\n",
509
+ "\n",
510
+ "class NamesDataset(Dataset):\n",
511
+ " def __init__(self, root):\n",
512
+ " self.root = Path(root)\n",
513
+ "\n",
514
+ " self.labels = list({langfile.stem for langfile in self.root.iterdir()})\n",
515
+ " self.labels_dict = {label: i for i, label in enumerate(self.labels)}\n",
516
+ " self.encoder = CharByteEncoder()\n",
517
+ " self.samples = self.construct_samples()\n",
518
+ "\n",
519
+ " def __getitem__(self, i):\n",
520
+ " return self.samples[i]\n",
521
+ "\n",
522
+ " def __len__(self):\n",
523
+ " return len(self.samples)\n",
524
+ "\n",
525
+ " def construct_samples(self):\n",
526
+ " samples = []\n",
527
+ " for langfile in self.root.iterdir():\n",
528
+ " label_name = langfile.stem\n",
529
+ " label_id = self.labels_dict[label_name]\n",
530
+ " with open(langfile, \"r\") as fin:\n",
531
+ " for row in fin:\n",
532
+ " samples.append(\n",
533
+ " (self.encoder(row.strip()), torch.tensor(label_id).long())\n",
534
+ " )\n",
535
+ " return samples\n",
536
+ "\n",
537
+ " def label_count(self):\n",
538
+ " cnt = Counter()\n",
539
+ " for _x, y in self.samples:\n",
540
+ " label = self.labels[int(y)]\n",
541
+ " cnt[label] += 1\n",
542
+ " return cnt\n",
543
+ "\n",
544
+ "\n",
545
+ "VOCAB_SIZE = 256 + 3 # 256 alternatives in one byte, plus 3 special characters."
546
+ ]
547
+ },
548
+ {
549
+ "cell_type": "code",
550
+ "execution_count": 81,
551
+ "metadata": {},
552
+ "outputs": [],
553
+ "source": [
554
+ "# Data Loaders\n",
555
+ "from torch.utils.data import DataLoader\n",
556
+ "\n",
557
+ "train_loader = DataLoader(\n",
558
+ " train_ds,\n",
559
+ " batch_size=batch_size,\n",
560
+ " pin_memory=True,\n",
561
+ " collate_fn=padded_collate,\n",
562
+ ")\n",
563
+ "\n",
564
+ "test_loader = DataLoader(\n",
565
+ " test_ds,\n",
566
+ " batch_size=2 * batch_size,\n",
567
+ " shuffle=False,\n",
568
+ " pin_memory=True,\n",
569
+ " collate_fn=padded_collate,\n",
570
+ ")"
571
+ ]
572
+ },
573
+ {
574
+ "cell_type": "code",
575
+ "execution_count": 85,
576
+ "metadata": {},
577
+ "outputs": [],
578
+ "source": [
579
+ "import pandas as pd\n",
580
+ "\n",
581
+ "df = pd.read_csv(\"hf://datasets/synavate/medical_records_did/data_did.csv\")"
582
+ ]
583
+ },
584
+ {
585
+ "cell_type": "code",
586
+ "execution_count": 93,
587
+ "metadata": {},
588
+ "outputs": [
589
+ {
590
+ "data": {
591
+ "text/plain": [
592
+ "Index(['last_name', 'first_name', 'full_name', 'birthday', 'gender', 'type',\n",
593
+ " 'state', 'district', 'senate_class', 'party', 'url', 'address', 'phone',\n",
594
+ " 'contact_form', 'rss_url', 'twitter', 'facebook', 'youtube',\n",
595
+ " 'youtube_id', 'bioguide_id', 'thomas_id', 'opensecrets_id', 'lis_id',\n",
596
+ " 'fec_ids', 'cspan_id', 'govtrack_id', 'votesmart_id', 'ballotpedia_id',\n",
597
+ " 'washington_post_id', 'icpsr_id', 'wikipedia_id', 'last_name.1',\n",
598
+ " 'first_name.1', 'middle_name.1', 'suffix.1', 'nickname.1',\n",
599
+ " 'full_name.1', 'birthday.1', 'gender.1', 'type.1', 'state.1',\n",
600
+ " 'district.1', 'senate_class.1', 'party.1', 'url.1', 'address.1',\n",
601
+ " 'phone.1', 'contact_form.1', 'rss_url.1', 'twitter.1', 'facebook.1',\n",
602
+ " 'youtube.1', 'youtube_id.1', 'bioguide_id.1', 'thomas_id.1',\n",
603
+ " 'opensecrets_id.1', 'lis_id.1', 'fec_ids.1', 'cspan_id.1',\n",
604
+ " 'govtrack_id.1', 'votesmart_id.1', 'ballotpedia_id.1',\n",
605
+ " 'washington_post_id.1', 'icpsr_id.1', 'wikipedia_id.1'],\n",
606
+ " dtype='object')"
607
+ ]
608
+ },
609
+ "execution_count": 93,
610
+ "metadata": {},
611
+ "output_type": "execute_result"
612
+ }
613
+ ],
614
+ "source": [
615
+ "df_drop=df.copy()\n",
616
+ "df_drop.isnull().drop(index=1)\n",
617
+ "df_drop.isna().sum()\n",
618
+ "df_drop.drop(columns=['Unnamed: 0', 'middle_name', 'suffix', 'nickname'], inplace=True)\n",
619
+ "df_drop.columns"
620
+ ]
621
+ },
622
+ {
623
+ "cell_type": "code",
624
+ "execution_count": null,
625
+ "metadata": {},
626
+ "outputs": [],
627
+ "source": []
628
+ },
629
+ {
630
+ "cell_type": "code",
631
+ "execution_count": null,
632
+ "metadata": {},
633
+ "outputs": [],
634
+ "source": [
635
+ "!pip install scikit-learn\n",
636
+ "from sklearn import train_test_split\n",
637
+ "\n"
638
+ ]
639
+ }
640
+ ],
641
+ "metadata": {
642
+ "kernelspec": {
643
+ "display_name": "Python 3 (ipykernel)",
644
+ "language": "python",
645
+ "name": "python3"
646
+ },
647
+ "language_info": {
648
+ "codemirror_mode": {
649
+ "name": "ipython",
650
+ "version": 3
651
+ },
652
+ "file_extension": ".py",
653
+ "mimetype": "text/x-python",
654
+ "name": "python",
655
+ "nbconvert_exporter": "python",
656
+ "pygments_lexer": "ipython3",
657
+ "version": "3.11.9"
658
+ }
659
+ },
660
+ "nbformat": 4,
661
+ "nbformat_minor": 2
662
+ }
gretel_ai/gretel_exp.md ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ # Using Gretel AI to Redact PII
2
+ ### Applying Gretel.ai's dfferential AI to the equivalent dataset
3
+
4
+
medical_records_did ADDED
@@ -0,0 +1 @@
 
 
1
+ Subproject commit 7d84b291818a39727cd0e0dfe1ccad2c4bbda2dd
pyproject.toml ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [tool.poetry]
2
+ name = "verida-differential-privacy"
3
+ version = "0.1.0"
4
+ description = "A demonstration of using the PyTorch differential privacy library and a login DiD"
5
+ authors = ["snyata <[email protected]>"]
6
+ license = "MIT"
7
+ readme = "README.md"
8
+
9
+ [tool.poetry.dependencies]
10
+ python = "^3.10"
11
+ pydantic = "^2.8.2"
12
+ wandb = "^0.17.7"
13
+ python-dotenv = "^1.0.1"
14
+ ipykernel = "^6.29.5"
15
+ datasets = "^2.21.0"
16
+ didkit = "^0.3.3"
17
+ scikit-learn = "^1.5.1"
18
+ matplotlib = "^3.9.2"
19
+ seaborn = "^0.13.2"
20
+
21
+ [tool.poetry.group.dev.dependencies]
22
+ pytest = "8.3.2"
23
+ pip-tools = "^7.4.1"
24
+ isort = "^5.13.2"
25
+ datasets = "^2.21.0"
26
+ jupyter = "^1.0.0"
27
+
28
+ [build-system]
29
+ requires = ["poetry-core"]
30
+ build-backend = "poetry.core.masonry.api"
src/lstm.ipynb ADDED
File without changes
transformer_models/unsloth_model_colab.ipynb ADDED
@@ -0,0 +1,466 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "markdown",
5
+ "metadata": {},
6
+ "source": [
7
+ "# PyTorch Differential Privacy Experiment"
8
+ ]
9
+ },
10
+ {
11
+ "cell_type": "code",
12
+ "execution_count": null,
13
+ "metadata": {},
14
+ "outputs": [],
15
+ "source": [
16
+ "%pip install -qqq torch torchvision opacus numpy pandas\n",
17
+ "%pip install -qqq wandb datasets tqdm\n"
18
+ ]
19
+ },
20
+ {
21
+ "cell_type": "code",
22
+ "execution_count": null,
23
+ "metadata": {},
24
+ "outputs": [],
25
+ "source": [
26
+ "import os\n",
27
+ "import torch \n",
28
+ "from dotenv import load_dotenv\n",
29
+ "import wandb \n",
30
+ "import logging\n",
31
+ "import shutil\n",
32
+ "import sys\n",
33
+ "from datetime import datetime, timedelta\n",
34
+ "\n",
35
+ "import argparse\n",
36
+ "from collections import Counter\n",
37
+ "from pathlib import Path\n",
38
+ "from statistics import mean\n",
39
+ "\n",
40
+ "import torch\n",
41
+ "import torch.nn as nn\n",
42
+ "from opacus import PrivacyEngine\n",
43
+ "from opacus.layers import DPGRU, DPLSTM, DPRNN\n",
44
+ "from torch.nn.utils.rnn import pad_sequence\n",
45
+ "from torch.utils.data import DataLoader, Dataset\n",
46
+ "from tqdm import tqdm, tqdm_notebook"
47
+ ]
48
+ },
49
+ {
50
+ "cell_type": "code",
51
+ "execution_count": null,
52
+ "metadata": {},
53
+ "outputs": [],
54
+ "source": [
55
+ "device = \"mps\" if torch.backends.mps.is_available() else \"cpu\"\n",
56
+ "if os.path.exists('.env'):\n",
57
+ " load_dotenv('.env')\n",
58
+ "device\n"
59
+ ]
60
+ },
61
+ {
62
+ "cell_type": "code",
63
+ "execution_count": null,
64
+ "metadata": {},
65
+ "outputs": [],
66
+ "source": [
67
+ "logging.basicConfig(\n",
68
+ " format=\"%(asctime)s:%(levelname)s:%(message)s\",\n",
69
+ " datefmt=\"%m/%d/%Y %H:%M:%S\",\n",
70
+ " stream=sys.stdout,\n",
71
+ ")\n",
72
+ "logger = logging.getLogger(\"ddp\")\n",
73
+ "logger.setLevel(level=logging.INFO)\n"
74
+ ]
75
+ },
76
+ {
77
+ "cell_type": "code",
78
+ "execution_count": null,
79
+ "metadata": {},
80
+ "outputs": [],
81
+ "source": [
82
+ "wandb.login(key=os.getenv('WANDB_API_KEY'))\n",
83
+ "wandb.init(project=\"verida-pii\", name=\"deberta_finetune\")"
84
+ ]
85
+ },
86
+ {
87
+ "cell_type": "markdown",
88
+ "metadata": {},
89
+ "source": [
90
+ "# Fine Tuning w/ Unsloth (Colab Only)"
91
+ ]
92
+ },
93
+ {
94
+ "cell_type": "code",
95
+ "execution_count": null,
96
+ "metadata": {},
97
+ "outputs": [],
98
+ "source": [
99
+ "# Datasets\n",
100
+ "# Original data_name = 'Ezi/medical_and_legislators_synthetic'\n",
101
+ "# Tutorial: https://huggingface.co/blog/Andyrasika/finetune-unsloth-qlora\n"
102
+ ]
103
+ },
104
+ {
105
+ "cell_type": "code",
106
+ "execution_count": null,
107
+ "metadata": {},
108
+ "outputs": [],
109
+ "source": [
110
+ "# Get the major and minor version of the current CUDA device (GPU)\n",
111
+ "major_version, minor_version = torch.cuda.get_device_capability()\n",
112
+ "\n",
113
+ "# Apply the following if the GPU has Ampere or Hopper architecture (RTX 30xx, RTX 40xx, A100, H100, L40, etc.)\n",
114
+ "if major_version >= 8:\n",
115
+ " # Install the Unsloth library for Ampere and Hopper architecture from GitHub\n",
116
+ " !pip install \"unsloth[colab_ampere] @ git+https://github.com/unslothai/unsloth.git\" -q\n",
117
+ "\n",
118
+ "# Apply the following for older GPUs (V100, Tesla T4, RTX 20xx, etc.)\n",
119
+ "else:\n",
120
+ " # Install the Unsloth library for older GPUs from GitHub\n",
121
+ " !pip install \"unsloth[colab] @ git+https://github.com/unslothai/unsloth.git\" -q\n",
122
+ "\n",
123
+ "# Placeholder statement (does nothing)\n",
124
+ "pass\n",
125
+ "\n",
126
+ "# Install the Hugging Face Transformers library from GitHub, which allows native 4-bit loading\n",
127
+ "!pip install \"git+https://github.com/huggingface/transformers.git\" -q\n",
128
+ "\n"
129
+ ]
130
+ },
131
+ {
132
+ "cell_type": "code",
133
+ "execution_count": null,
134
+ "metadata": {},
135
+ "outputs": [],
136
+ "source": [
137
+ "from transformers import AutoTokenizer, AutoModelForTokenClassification\n",
138
+ "\n",
139
+ "tokenizer = AutoTokenizer.from_pretrained(\"lakshyakh93/deberta_finetuned_pii\")\n",
140
+ "model = AutoModelForTokenClassification.from_pretrained(\"lakshyakh93/deberta_finetuned_pii\")"
141
+ ]
142
+ },
143
+ {
144
+ "cell_type": "code",
145
+ "execution_count": null,
146
+ "metadata": {},
147
+ "outputs": [],
148
+ "source": [
149
+ "model = FastLanguageModel.get_peft_model(\n",
150
+ " model,\n",
151
+ " # Specify the existing model\n",
152
+ "\n",
153
+ " r=16, # Choose any positive number! Recommended values include 8, 16, 32, 64, 128, etc.\n",
154
+ " # Rank parameter for LoRA. The smaller this value, the fewer parameters will be modified.\n",
155
+ "\n",
156
+ " target_modules=[\"q_proj\", \"k_proj\", \"v_proj\", \"o_proj\",\n",
157
+ " \"gate_proj\", \"up_proj\", \"down_proj\",],\n",
158
+ " # Specify the modules to which LoRA will be applied\n",
159
+ "\n",
160
+ " lora_alpha=16,\n",
161
+ " # Alpha parameter for LoRA. This value determines the strength of the applied LoRA.\n",
162
+ "\n",
163
+ " lora_dropout=0, # Currently, only supports dropout = 0\n",
164
+ " # Dropout rate for LoRA. Currently supports only 0.\n",
165
+ "\n",
166
+ " bias=\"none\", # Currently, only supports bias = \"none\"\n",
167
+ " # Bias usage setting. Currently supports only the setting without bias.\n",
168
+ "\n",
169
+ " use_gradient_checkpointing=True,\n",
170
+ " # Whether to use gradient checkpointing to improve memory efficiency\n",
171
+ "\n",
172
+ " random_state=3407,\n",
173
+ " # Seed value for random number generation\n",
174
+ "\n",
175
+ " max_seq_length=max_seq_length,\n",
176
+ " # Set the maximum sequence length\n",
177
+ ")"
178
+ ]
179
+ },
180
+ {
181
+ "cell_type": "code",
182
+ "execution_count": null,
183
+ "metadata": {},
184
+ "outputs": [],
185
+ "source": [
186
+ "# @TODO - Add the relevant prompt\n",
187
+ "alpaca_prompt = \"\"\"Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.\n",
188
+ "\n",
189
+ "### Instruction:\n",
190
+ "{}\n",
191
+ "\n",
192
+ "### Input:\n",
193
+ "{}\n",
194
+ "\n",
195
+ "### Response:\n",
196
+ "{}\"\"\"\n",
197
+ "# Define the prompt format for the Alpaca dataset\n",
198
+ "\n",
199
+ "def formatting_prompts_func(examples):\n",
200
+ " # Define a function to format each example in the dataset\n",
201
+ "\n",
202
+ " instructions = examples[\"instruction\"]\n",
203
+ " inputs = examples[\"input\"]\n",
204
+ " outputs = examples[\"output\"]\n",
205
+ " # Get instructions, inputs, and outputs\n",
206
+ "\n",
207
+ " texts = []\n",
208
+ " for instruction, input, output in zip(instructions, inputs, outputs):\n",
209
+ " # Generate text by combining instructions, inputs, and outputs\n",
210
+ "\n",
211
+ " text = alpaca_prompt.format(instruction, input, output)\n",
212
+ " # Format the text according to the prompt format\n",
213
+ "\n",
214
+ " texts.append(text)\n",
215
+ " return { \"text\" : texts, }\n",
216
+ " # Return a list of formatted texts\n",
217
+ "\n",
218
+ "pass\n",
219
+ "# Placeholder (does nothing)\n",
220
+ "\n",
221
+ "from datasets import load_dataset\n",
222
+ "# Import the load_dataset function from the datasets library\n",
223
+ "\n",
224
+ "dataset = load_dataset(\"yahma/alpaca-cleaned\", split=\"train\")\n",
225
+ "# Load the training data of the cleaned version of the Alpaca dataset from yahma\n",
226
+ "\n",
227
+ "dataset = dataset.map(formatting_prompts_func, batched=True,)"
228
+ ]
229
+ },
230
+ {
231
+ "cell_type": "code",
232
+ "execution_count": null,
233
+ "metadata": {},
234
+ "outputs": [],
235
+ "source": [
236
+ "from trl import SFTTrainer\n",
237
+ "# Import SFTTrainer from the TRL library\n",
238
+ "\n",
239
+ "from transformers import TrainingArguments\n",
240
+ "# Import TrainingArguments from the Transformers library\n",
241
+ "\n",
242
+ "trainer = SFTTrainer(\n",
243
+ " # Initialize the SFTTrainer\n",
244
+ "\n",
245
+ " model=model,\n",
246
+ " # Specify the model to be used\n",
247
+ "\n",
248
+ " train_dataset=dataset,\n",
249
+ " # Specify the training dataset\n",
250
+ "\n",
251
+ " dataset_text_field=\"text\",\n",
252
+ " # Specify the text field in the dataset\n",
253
+ "\n",
254
+ " max_seq_length=max_seq_length,\n",
255
+ " # Specify the maximum sequence length\n",
256
+ "\n",
257
+ " args=TrainingArguments(\n",
258
+ " # Specify training arguments\n",
259
+ "\n",
260
+ " per_device_train_batch_size=2,\n",
261
+ " # Specify the training batch size per device\n",
262
+ "\n",
263
+ " gradient_accumulation_steps=4,\n",
264
+ " # Specify the number of steps for gradient accumulation\n",
265
+ "\n",
266
+ " warmup_steps=5,\n",
267
+ " # Specify the number of warm-up steps\n",
268
+ "\n",
269
+ " max_steps=20,\n",
270
+ " # Specify the maximum number of steps\n",
271
+ "\n",
272
+ " learning_rate=2e-4,\n",
273
+ " # Specify the learning rate\n",
274
+ "\n",
275
+ " fp16=not torch.cuda.is_bf16_supported(),\n",
276
+ " # Set whether to use 16-bit floating-point precision (fp16)\n",
277
+ "\n",
278
+ " bf16=torch.cuda.is_bf16_supported(),\n",
279
+ " # Set whether to use Bfloat16\n",
280
+ "\n",
281
+ " logging_steps=1,\n",
282
+ " # Specify the logging steps\n",
283
+ "\n",
284
+ " optim=\"adamw_8bit\",\n",
285
+ " # Specify the optimizer (here using 8-bit AdamW)\n",
286
+ "\n",
287
+ " weight_decay=0.01,\n",
288
+ " # Specify the weight decay value\n",
289
+ "\n",
290
+ " lr_scheduler_type=\"linear\",\n",
291
+ " # Specify the type of learning rate scheduler (linear)\n",
292
+ "\n",
293
+ " seed=3407,\n",
294
+ " # Specify the random seed\n",
295
+ "\n",
296
+ " output_dir=\"outputs\",\n",
297
+ " # Specify the output directory\n",
298
+ "\n",
299
+ " ),\n",
300
+ ")"
301
+ ]
302
+ },
303
+ {
304
+ "cell_type": "code",
305
+ "execution_count": null,
306
+ "metadata": {},
307
+ "outputs": [],
308
+ "source": [
309
+ "gpu_stats = torch.cuda.get_device_properties(0)\n",
310
+ "# Get properties of the GPU device at index 0\n",
311
+ "\n",
312
+ "start_gpu_memory = round(torch.cuda.max_memory_reserved() / 1024 / 1024 / 1024, 3)\n",
313
+ "# Get the maximum reserved GPU memory in GB and round to 3 decimal places\n",
314
+ "\n",
315
+ "max_memory = round(gpu_stats.total_memory / 1024 / 1024 / 1024, 3)\n",
316
+ "# Get the total GPU memory in GB and round to 3 decimal places\n",
317
+ "\n",
318
+ "print(f\"GPU = {gpu_stats.name}. Max memory = {max_memory} GB.\")\n",
319
+ "# Display the GPU name and maximum memory\n",
320
+ "\n",
321
+ "print(f\"{start_gpu_memory} GB of memory reserved.\")\n",
322
+ "# Display the reserved memory amount"
323
+ ]
324
+ },
325
+ {
326
+ "cell_type": "code",
327
+ "execution_count": null,
328
+ "metadata": {},
329
+ "outputs": [],
330
+ "source": [
331
+ "trainer_stats = trainer.train()"
332
+ ]
333
+ },
334
+ {
335
+ "cell_type": "markdown",
336
+ "metadata": {},
337
+ "source": [
338
+ "# Convert to GGUF"
339
+ ]
340
+ },
341
+ {
342
+ "cell_type": "code",
343
+ "execution_count": null,
344
+ "metadata": {},
345
+ "outputs": [],
346
+ "source": [
347
+ "def colab_quantize_to_gguf(save_directory, quantization_method=\"q4_k_m\"):\n",
348
+ " # Define a function for conversion to GGUF\n",
349
+ "\n",
350
+ " from transformers.models.llama.modeling_llama import logger\n",
351
+ " import os\n",
352
+ " # Import necessary libraries\n",
353
+ "\n",
354
+ " logger.warning_once(\n",
355
+ " \"Unsloth: `colab_quantize_to_gguf` is still in development mode.\\n\"\\\n",
356
+ " \"If anything errors or breaks, please file a ticket on Github.\\n\"\\\n",
357
+ " \"Also, if you used this successfully, please tell us on Discord!\"\n",
358
+ " )\n",
359
+ " # Warn that it's still in development mode and encourage reporting any issues\n",
360
+ "\n",
361
+ " # From https://mlabonne.github.io/blog/posts/Quantize_Llama_2_models_using_ggml.html\n",
362
+ " ALLOWED_QUANTS = \\\n",
363
+ " {\n",
364
+ " # Define currently allowed quantization methods\n",
365
+ " # Including descriptions for each quantization method\n",
366
+ " \"q2_k\" : \"Uses Q4_K for the attention.vw and feed_forward.w2 tensors, Q2_K for the other tensors.\",\n",
367
+ " \"q3_k_l\" : \"Uses Q5_K for the attention.wv, attention.wo, and feed_forward.w2 tensors, else Q3_K\",\n",
368
+ " \"q3_k_m\" : \"Uses Q4_K for the attention.wv, attention.wo, and feed_forward.w2 tensors, else Q3_K\",\n",
369
+ " \"q3_k_s\" : \"Uses Q3_K for all tensors\",\n",
370
+ " \"q4_0\" : \"Original quant method, 4-bit.\",\n",
371
+ " \"q4_1\" : \"Higher accuracy than q4_0 but not as high as q5_0. However has quicker inference than q5 models.\",\n",
372
+ " \"q4_k_m\" : \"Uses Q6_K for half of the attention.wv and feed_forward.w2 tensors, else Q4_K\",\n",
373
+ " \"q4_k_s\" : \"Uses Q4_K for all tensors\",\n",
374
+ " \"q5_0\" : \"Higher accuracy, higher resource usage and slower inference.\",\n",
375
+ " \"q5_1\" : \"Even higher accuracy, resource usage and slower inference.\",\n",
376
+ " \"q5_k_m\" : \"Uses Q6_K for half of the attention.wv and feed_forward.w2 tensors, else Q5_K\",\n",
377
+ " \"q5_k_s\" : \"Uses Q5_K for all tensors\",\n",
378
+ " \"q6_k\" : \"Uses Q8_K for all tensors\",\n",
379
+ " \"q8_0\" : \"Almost indistinguishable from float16. High resource use and slow. Not recommended for most users.\",\n",
380
+ " }\n",
381
+ "\n",
382
+ " if quantization_method not in ALLOWED_QUANTS.keys():\n",
383
+ " # If the specified quantization method is not allowed, raise an error\n",
384
+ " error = f\"Unsloth: Quant method = [{quantization_method}] not supported. Choose from below:\\n\"\n",
385
+ " for key, value in ALLOWED_QUANTS.items():\n",
386
+ " error += f\"[{key}] => {value}\\n\"\n",
387
+ " raise RuntimeError(error)\n",
388
+ "\n",
389
+ " # Display information about the conversion\n",
390
+ " print_info = \\\n",
391
+ " f\"==((====))== Unsloth: Conversion from QLoRA to GGUF information\\n\"\\\n",
392
+ " f\" \\\\\\ /| [0] Installing llama.cpp will take 3 minutes.\\n\"\\\n",
393
+ " f\"O^O/ \\_/ \\\\ [1] Converting HF to GUUF 16bits will take 3 minutes.\\n\"\\\n",
394
+ " f\"\\ / [2] Converting GGUF 16bits to q4_k_m will take 20 minutes.\\n\"\\\n",
395
+ " f' \"-____-\" In total, you will have to wait around 26 minutes.\\n'\n",
396
+ " print(print_info)\n",
397
+ " # Display information about the conversion process\n",
398
+ "\n",
399
+ " if not os.path.exists(\"llama.cpp\"):\n",
400
+ " # If llama.cpp does not exist, install it\n",
401
+ " print(\"Unsloth: [0] Installing llama.cpp. This will take 3 minutes...\")\n",
402
+ " !git clone https://github.com/ggerganov/llama.cpp\n",
403
+ " !cd llama.cpp && make clean && LLAMA_CUBLAS=1 make -j\n",
404
+ " !pip install gguf protobuf\n",
405
+ " pass\n",
406
+ "\n",
407
+ " print(\"Unsloth: Starting conversion from HF to GGUF 16bit...\")\n",
408
+ " # Display that conversion from HF to GGUF 16bit is starting\n",
409
+ " # print(\"Unsloth: [1] Converting HF into GGUF 16bit. This will take 3 minutes...\")\n",
410
+ " !python llama.cpp/convert.py {save_directory} \\\n",
411
+ " --outfile {save_directory}-unsloth.gguf \\\n",
412
+ " --outtype f16\n",
413
+ "\n",
414
+ " print(\"Unsloth: Starting conversion from GGUF 16bit to q4_k_m...\")\n",
415
+ " # Display that conversion from GGUF 16bit to the specified quantization method is starting\n",
416
+ " # print(\"Unsloth: [2] Converting GGUF 16bit into q4_k_m. This will take 20 minutes...\")\n",
417
+ " final_location = f\"./{save_directory}-{quantization_method}-unsloth.gguf\"\n",
418
+ " !./llama.cpp/quantize ./{save_directory}-unsloth.gguf \\\n",
419
+ " {final_location} {quantization_method}\n",
420
+ "\n",
421
+ " print(f\"Unsloth: Output location: {final_location}\")\n",
422
+ " # Display the output location of the converted file\n",
423
+ "pass"
424
+ ]
425
+ },
426
+ {
427
+ "cell_type": "code",
428
+ "execution_count": null,
429
+ "metadata": {},
430
+ "outputs": [],
431
+ "source": [
432
+ "from unsloth import unsloth_save_model\n",
433
+ "# Import the unsloth_save_model function from the Unsloth library\n",
434
+ "\n",
435
+ "# unsloth_save_model has the same args as model.save_pretrained\n",
436
+ "# unsloth_save_model has the same arguments as model.save_pretrained\n",
437
+ "unsloth_save_model(model, tokenizer, \"output_model\", push_to_hub=False, token=None)\n",
438
+ "# Save the model and tokenizer as \"output_model\". Do not push to the Hugging Face Hub\n",
439
+ "\n",
440
+ "colab_quantize_to_gguf(\"output_model\", quantization_method=\"q4_k_m\")\n",
441
+ "# Convert \"output_model\" to GGUF format. Use the quantization method \"q4_k_m\""
442
+ ]
443
+ }
444
+ ],
445
+ "metadata": {
446
+ "kernelspec": {
447
+ "display_name": "Python 3 (ipykernel)",
448
+ "language": "python",
449
+ "name": "python3"
450
+ },
451
+ "language_info": {
452
+ "codemirror_mode": {
453
+ "name": "ipython",
454
+ "version": 3
455
+ },
456
+ "file_extension": ".py",
457
+ "mimetype": "text/x-python",
458
+ "name": "python",
459
+ "nbconvert_exporter": "python",
460
+ "pygments_lexer": "ipython3",
461
+ "version": "3.11.9"
462
+ }
463
+ },
464
+ "nbformat": 4,
465
+ "nbformat_minor": 2
466
+ }