import pandas as pd import numpy as np import seaborn as sns import matplotlib.pyplot as plt from sklearn.preprocessing import LabelEncoder, StandardScaler from sklearn.feature_selection import SelectKBest, f_classif from sklearn.model_selection import train_test_split from sklearn.cluster import KMeans, AgglomerativeClustering from sklearn.pipeline import Pipeline from sklearn.metrics import silhouette_score # Load the data file_path = 'customer_profile_marketing.csv' df = pd.read_csv(file_path) # Initial Analysis print("Initial DataFrame Info:") df.info() print("\nInitial DataFrame Head:") print(df.head()) # Drop irrelevant columns df = df.drop(columns=['Unnamed: 0', 'ID', 'Dt_Customer', 'Z_CostContact', 'Z_Revenue']) # Handle missing values (if any) print("Missing Values: {}", df.isna().sum()) df = df.dropna() # Feature Engineering # Calculate age from 'Year_Birth' df['Age'] = 2024 - df['Year_Birth'] # Assuming the current year is 2024 df = df.drop(columns=['Year_Birth']) # Convert categorical variables to numerical format using Label Encoding label_encoder = LabelEncoder() df['Education'] = label_encoder.fit_transform(df['Education']) df['Marital_Status'] = label_encoder.fit_transform(df['Marital_Status']) df.to_csv("./data_pre_processed_v1") # Correlation Analysis corr_matrix = df.corr() plt.figure(figsize=(16, 12)) sns.heatmap(corr_matrix, annot=True, fmt='.2f', cmap='coolwarm', square=True) plt.title('Correlation Matrix') plt.show() # Feature Selection using SelectKBest X = df.drop(columns=['Response']) # Features y = df['Response'] # Target variable # Select the top 10 features selector = SelectKBest(score_func=f_classif, k=10) X_new = selector.fit_transform(X, y) # Get the columns selected selected_features = X.columns[selector.get_support()] print("Selected Features:") print(selected_features) # Drop unimportant features df_processed = df[selected_features] df_processed['Response'] = y # Normalize the relevant numerical features scaler = StandardScaler() numerical_cols = df_processed.select_dtypes(include=[np.number]).columns.tolist() numerical_cols.remove('Response') # Remove the target variable from the list df_processed[numerical_cols] = scaler.fit_transform(df_processed[numerical_cols]) # Encoding categorical variables (already encoded with LabelEncoder) # No additional encoding is necessary if the categorical columns have been encoded # Train-Test Split X_train, X_test, y_train, y_test = train_test_split(df_processed.drop(columns=['Response']), df_processed['Response'], test_size=0.3, random_state=42) # Clustering Algorithms # 1. KMeans kmeans = KMeans(n_clusters=2, random_state=42) kmeans.fit(X_train) kmeans_labels = kmeans.predict(X_test) kmeans_silhouette = silhouette_score(X_test, kmeans_labels) print(f"KMeans Silhouette Score: {kmeans_silhouette:.2f}") # 2. Agglomerative Clustering agg_clustering = AgglomerativeClustering(n_clusters=2) agg_labels = agg_clustering.fit_predict(X_test) agg_silhouette = silhouette_score(X_test, agg_labels) print(f"Agglomerative Clustering Silhouette Score: {agg_silhouette:.2f}") # Summary of Results print("\nSummary of Clustering Results:") print(f"KMeans Silhouette Score: {kmeans_silhouette:.2f}") print(f"Agglomerative Clustering Silhouette Score: {agg_silhouette:.2f}") # Optional: If you want to use a pipeline for scaling and clustering together # pipeline = Pipeline([('scaler', StandardScaler()), ('kmeans', KMeans(n_clusters=2, random_state=42))]) # pipeline.fit(X_train) # pipeline_labels = pipeline.predict(X_test) # pipeline_silhouette = silhouette_score(X_test, pipeline_labels) # print(f"Pipeline KMeans Silhouette Score: {pipeline_silhouette:.2f}")