# coding=utf-8 # Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python3 """XSum dataset.""" import json import os import datasets _CITATION = """ @article{Narayan2018DontGM, title={Don't Give Me the Details, Just the Summary! Topic-Aware Convolutional Neural Networks for Extreme Summarization}, author={Shashi Narayan and Shay B. Cohen and Mirella Lapata}, journal={ArXiv}, year={2018}, volume={abs/1808.08745} } """ _DESCRIPTION = """ Extreme Summarization (XSum) Dataset. There are three features: - document: Input news article. - summary: One sentence summary of the article. - id: BBC ID of the article. """ # From https://github.com/EdinburghNLP/XSum/issues/12 _URL_DATA = "data/data1.tar.gz" _URL_SPLITS = ( "https://raw.githubusercontent.com/EdinburghNLP/XSum/master/XSum-Dataset/XSum-TRAINING-DEV-TEST-SPLIT-90-5-5.json" ) _DOCUMENT = "document" _SUMMARY = "summary" _ID = "id" _REMOVE_LINES = set( [ "Share this with\n", "Email\n", "Facebook\n", "Messenger\n", "Twitter\n", "Pinterest\n", "WhatsApp\n", "Linkedin\n", "LinkedIn\n", "Copy this link\n", "These are external links and will open in a new window\n", ] ) class Xsum(datasets.GeneratorBasedBuilder): """Extreme Summarization (XSum) Dataset.""" # Version 1.2.0 expands coverage, includes ids, and removes web contents. VERSION = datasets.Version("1.2.0") def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features( { _DOCUMENT: datasets.Value("string"), _SUMMARY: datasets.Value("string"), _ID: datasets.Value("string"), } ), supervised_keys=(_DOCUMENT, _SUMMARY), homepage="https://github.com/EdinburghNLP/XSum/tree/master/XSum-Dataset", citation=_CITATION, ) def _split_generators(self, dl_manager): """Returns SplitGenerators.""" files_to_download = {"data": _URL_DATA, "splits": _URL_SPLITS} downloaded_files = dl_manager.download(files_to_download) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ "split_path": downloaded_files["splits"], "split_name": "train", "data_dir": "data", "files": dl_manager.iter_archive(downloaded_files["data"]), }, ), datasets.SplitGenerator( name=datasets.Split.VALIDATION, gen_kwargs={ "split_path": downloaded_files["splits"], "split_name": "validation", "data_dir": "data", "files": dl_manager.iter_archive(downloaded_files["data"]), }, ), datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={ "split_path": downloaded_files["splits"], "split_name": "test", "data_dir": "data", "files": dl_manager.iter_archive(downloaded_files["data"]), }, ), ] def _generate_examples(self, split_path, split_name, data_dir, files): """Yields examples.""" with open(split_path, "r", encoding="utf-8") as f: split_ids = json.load(f) split_ids = {k: set(v) for k, v in split_ids.items()} for path, f in files: if not split_ids[split_name]: break elif path.startswith(data_dir) and path.endswith(".txt"): i = os.path.basename(path).split(".")[0] if i in split_ids[split_name]: split_ids[split_name].remove(i) text = "".join( [ line.decode("utf-8") for line in f.readlines() if line.decode("utf-8") not in _REMOVE_LINES and line.strip() ] ) # Each file follows below format: # [SN]URL[SN] # http://somelink # # [SN]TITLE[SN] # some intro # # [SN]FIRST-SENTENCE[SN] # some intro # # [SN]RESTBODY[SN] # text line. # another text line. # "another text line." # According to the following issue, FIRST-SENTENCE # is the reference summary and TITLE is unused: # https://github.com/EdinburghNLP/XSum/issues/22 segs = text.split("[SN]") print(segs[6].strip()) yield i, {_DOCUMENT: segs[8].strip(), _SUMMARY: segs[6].strip(), _ID: i}