MHoubre commited on
Commit
45a6f1a
1 Parent(s): 375799a

simpler prmu script

Browse files
Files changed (1) hide show
  1. prmu.py +33 -64
prmu.py CHANGED
@@ -1,37 +1,18 @@
1
- #!/usr/bin/env python
2
- # coding: utf-8
3
 
4
- # In[1]:
5
-
6
-
7
- from this import d
8
- from datasets import load_dataset, load_from_disk
9
- import spacy
10
- import re
11
- # from spacy.lang.en import English
12
- from spacy.tokenizer import _get_regex_pattern
13
- from spacy.lang.char_classes import ALPHA, ALPHA_LOWER, ALPHA_UPPER
14
- from spacy.lang.char_classes import CONCAT_QUOTES, LIST_ELLIPSES, LIST_ICONS
15
- from spacy.util import compile_infix_regex
16
- from nltk.stem.snowball import SnowballStemmer as Stemmer
17
- import numpy as np
18
  import sys
 
 
19
 
20
- # In[2]:
21
-
22
- print("LOADING DATASET")
23
- dataset = load_dataset("json", data_files={"test":"data.jsonl"})
24
-
25
-
26
-
27
- # In[3]:
28
 
29
  nlp = spacy.load("en_core_web_sm")
30
- re_token_match = _get_regex_pattern(nlp.Defaults.token_match)
31
- re_token_match = f"({re_token_match}|\w+-\w+)"
32
- nlp.tokenizer.token_match = re.compile(re_token_match).match
33
 
 
34
 
 
 
 
35
 
36
  # Modify tokenizer infix patterns
37
  infixes = (
@@ -53,15 +34,10 @@ infix_re = compile_infix_regex(infixes)
53
  nlp.tokenizer.infix_finditer = infix_re.finditer
54
 
55
 
56
- # In[5]:
57
-
58
-
59
  def contains(subseq, inseq):
60
  return any(inseq[pos:pos + len(subseq)] == subseq for pos in range(0, len(inseq) - len(subseq) + 1))
61
 
62
 
63
-
64
-
65
  def find_pmru(tok_title, tok_text, tok_kp):
66
  """Find PRMU category of a given keyphrase."""
67
 
@@ -84,48 +60,41 @@ def find_pmru(tok_title, tok_text, tok_kp):
84
  # if "no" words are present
85
  else:
86
  return "U"
87
- return prmu
88
 
89
- def tokenize(dataset):
90
- keyphrases_stems= []
91
- for keyphrase in dataset["keyphrases"]:
92
- keyphrase_spacy = nlp(keyphrase)
93
- keyphrase_tokens = [token.text for token in keyphrase_spacy]
94
- keyphrase_stems = [Stemmer('porter').stem(w.lower()) for w in keyphrase_tokens]
95
- keyphrase_stems = " ".join(keyphrase_stems)
96
- keyphrases_stems.append(keyphrase_stems)
97
-
98
- dataset["tokenized_keyphrases"] = keyphrases_stems
99
- return dataset
100
 
101
- """
102
- Function that tokenizes the dataset (title, text and keyphrases)
103
- and runs the prmu algorithm.
104
- """
105
- def prmu_dataset(dataset):
106
- title_spacy = nlp(dataset['title'])
107
- abstract_spacy = nlp(dataset['text'])
108
 
109
- title_tokens = [token.text for token in title_spacy]
110
- abstract_tokens = [token.text for token in abstract_spacy]
111
 
112
- title_stems = [Stemmer('porter').stem(w.lower()) for w in title_tokens]
113
- abstract_stems = [Stemmer('porter').stem(w.lower()) for w in abstract_tokens]
 
 
 
114
 
115
- prmu = [find_pmru(title_stems, abstract_stems, kp) for kp in dataset["tokenized_keyphrases"]]
116
 
117
- dataset['prmu'] = prmu
 
118
 
119
- return dataset
 
120
 
 
 
121
 
122
- # In[6]:
 
 
123
 
 
124
 
125
- print("TOKENIZATION")
126
- dataset = dataset.map(tokenize,num_proc=sys.argv[1])
127
 
128
- print("GETTING PRMU")
129
- dataset = dataset.map(prmu_dataset,num_proc=sys.argv[1])
130
 
131
- dataset["test"].to_json("data.jsonl")
 
 
 
1
+ # -*- coding: utf-8 -*-
 
2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
  import sys
4
+ import json
5
+ import spacy
6
 
7
+ from nltk.stem.snowball import SnowballStemmer as Stemmer
 
 
 
 
 
 
 
8
 
9
  nlp = spacy.load("en_core_web_sm")
 
 
 
10
 
11
+ # https://spacy.io/usage/linguistic-features#native-tokenizer-additions
12
 
13
+ from spacy.lang.char_classes import ALPHA, ALPHA_LOWER, ALPHA_UPPER
14
+ from spacy.lang.char_classes import CONCAT_QUOTES, LIST_ELLIPSES, LIST_ICONS
15
+ from spacy.util import compile_infix_regex
16
 
17
  # Modify tokenizer infix patterns
18
  infixes = (
 
34
  nlp.tokenizer.infix_finditer = infix_re.finditer
35
 
36
 
 
 
 
37
  def contains(subseq, inseq):
38
  return any(inseq[pos:pos + len(subseq)] == subseq for pos in range(0, len(inseq) - len(subseq) + 1))
39
 
40
 
 
 
41
  def find_pmru(tok_title, tok_text, tok_kp):
42
  """Find PRMU category of a given keyphrase."""
43
 
 
60
  # if "no" words are present
61
  else:
62
  return "U"
 
63
 
 
 
 
 
 
 
 
 
 
 
 
64
 
65
+ if __name__ == '__main__':
 
 
 
 
 
 
66
 
67
+ data = []
 
68
 
69
+ # read the dataset
70
+ with open(sys.argv[1], 'r') as f:
71
+ # loop through the documents
72
+ for line in f:
73
+ doc = json.loads(line.strip())
74
 
75
+ print(doc['id'])
76
 
77
+ title_spacy = nlp(doc['title'])
78
+ abstract_spacy = nlp(doc['abstract'])
79
 
80
+ title_tokens = [token.text for token in title_spacy]
81
+ abstract_tokens = [token.text for token in abstract_spacy]
82
 
83
+ title_stems = [Stemmer('porter').stem(w.lower()) for w in title_tokens]
84
+ abstract_stems = [Stemmer('porter').stem(w.lower()) for w in abstract_tokens]
85
 
86
+ keyphrases_stems = []
87
+ for keyphrase in doc['keyphrases']:
88
+ keyphrases_stems.append(keyphrase.split())
89
 
90
+ prmu = [find_pmru(title_stems, abstract_stems, kp) for kp in keyphrases_stems]
91
 
92
+ if doc['prmu'] != prmu:
93
+ print("PRMU categories are not identical!")
94
 
95
+ doc['prmu'] = prmu
96
+ data.append(json.dumps(doc))
97
 
98
+ # write the json
99
+ with open(sys.argv[2], 'w') as o:
100
+ o.write("\n".join(data))