|
""" |
|
Creates a text/category dataset using Wikipedia. |
|
|
|
Explores the 40 root categories and their sub-categories to collect pages that are seen only on |
|
each root category. The produced dataset provides 200 pages per category. |
|
|
|
Author: Tarek Ziadé / Mozilla |
|
|
|
""" |
|
import os |
|
from collections import defaultdict |
|
from concurrent.futures import ThreadPoolExecutor, as_completed |
|
from threading import Lock |
|
|
|
import wikipediaapi |
|
from datasets import Dataset, DatasetDict |
|
import nltk |
|
from nltk.tokenize import sent_tokenize |
|
import pandas as pd |
|
from tqdm import tqdm |
|
|
|
|
|
_LIMIT_PER_CAT = 200 |
|
_ROOT_CATS = [ |
|
"Academic_disciplines", |
|
"Business", |
|
"Communication", |
|
"Concepts", |
|
"Culture", |
|
"Economy", |
|
"Education", |
|
"Energy", |
|
"Engineering", |
|
"Entertainment", |
|
"Entities", |
|
"Ethics", |
|
"Food_and_drink", |
|
"Geography", |
|
"Government", |
|
"Health", |
|
"History", |
|
"Human_behavior", |
|
"Humanities", |
|
"Information", |
|
"Internet", |
|
"Knowledge", |
|
"Language", |
|
"Law", |
|
"Life", |
|
"Lists", |
|
"Mass media", |
|
"Mathematics", |
|
"Military", |
|
"Nature", |
|
"People", |
|
"Philosophy", |
|
"Politics", |
|
"Religion", |
|
"Science", |
|
"Society", |
|
"Sports", |
|
"Technology", |
|
"Time", |
|
"Universe", |
|
] |
|
|
|
|
|
class WikiExtractor: |
|
def __init__(self): |
|
self.visited_page_ids = defaultdict(set) |
|
self.all_ids = set() |
|
self.client = wikipediaapi.Wikipedia("MediaWikiCat Project", "en", timeout=30) |
|
self.data_lock = Lock() |
|
self.pbar = None |
|
|
|
def fetch_pages_from_category( |
|
self, |
|
root_category_name, |
|
category_name, |
|
limit_per_category=_LIMIT_PER_CAT, |
|
depth=0, |
|
max_depth=10, |
|
): |
|
if len(self.visited_page_ids[root_category_name]) >= limit_per_category: |
|
return [] |
|
|
|
if depth > max_depth: |
|
return [] |
|
|
|
cat = self.client.page(category_name) |
|
pages = [] |
|
|
|
|
|
for c in cat.categorymembers.values(): |
|
if ( |
|
c.ns == wikipediaapi.Namespace.MAIN |
|
and c.pageid not in self.visited_page_ids |
|
): |
|
if c.pageid in self.all_ids: |
|
continue |
|
pages.append(c) |
|
|
|
with self.data_lock: |
|
self.visited_page_ids[root_category_name].add(c.pageid) |
|
self.all_ids.add(c.pageid) |
|
|
|
if len(self.visited_page_ids[root_category_name]) >= limit_per_category: |
|
break |
|
|
|
|
|
for subcat in cat.categorymembers.values(): |
|
if subcat.ns == wikipediaapi.Namespace.CATEGORY: |
|
pages += self.fetch_pages_from_category( |
|
root_category_name, |
|
subcat.title, |
|
limit_per_category, |
|
depth + 1, |
|
max_depth, |
|
) |
|
|
|
return pages |
|
|
|
def preprocess_content(self, text): |
|
sentences = sent_tokenize(text)[:5] |
|
return " ".join(sentences) |
|
|
|
def process_page(self, page): |
|
if page.summary: |
|
summary = self.preprocess_content(page.summary) |
|
else: |
|
summary = self.preprocess_content(page.text) |
|
|
|
summary = self.preprocess_content(summary) |
|
return { |
|
"title": page.title, |
|
"id": page.pageid, |
|
"summary": summary, |
|
} |
|
|
|
def process_category(self, category): |
|
category_data = [] |
|
category = f"Category:{category}" |
|
pages = self.fetch_pages_from_category(category, category) |
|
|
|
for page in pages: |
|
try: |
|
data = self.process_page(page) |
|
except Exception as e: |
|
import pdb |
|
|
|
pdb.set_trace() |
|
continue |
|
|
|
data["category"] = category |
|
category_data.append(data) |
|
if self.pbar is not None: |
|
self.pbar.update(1) |
|
|
|
return category_data |
|
|
|
def __call__(self): |
|
with tqdm( |
|
total=len(_ROOT_CATS) * _LIMIT_PER_CAT, desc="Processing Categories" |
|
) as pbar: |
|
self.pbar = pbar |
|
with ThreadPoolExecutor(max_workers=15) as executor: |
|
future_to_category = { |
|
executor.submit(self.process_category, category): category |
|
for category in _ROOT_CATS |
|
} |
|
|
|
for future in as_completed(future_to_category): |
|
category_data = future.result() |
|
for item in category_data: |
|
yield item |
|
|
|
|
|
def main(): |
|
nltk.download("punkt") |
|
extractor = WikiExtractor() |
|
pages = list(extractor()) |
|
|
|
def gen(): |
|
for page in pages: |
|
yield page |
|
|
|
dataset = Dataset.from_generator(gen) |
|
|
|
train_test_split = dataset.train_test_split(test_size=0.1) |
|
dataset_dict = DatasetDict( |
|
{"train": train_test_split["train"], "test": train_test_split["test"]} |
|
) |
|
|
|
dataset_dict.save_to_disk(os.path.dirname(__file__)) |
|
|
|
|
|
if __name__ == "__main__": |
|
main() |
|
|