Datasets:

Modalities:
Text
Formats:
parquet
Languages:
Estonian
Libraries:
Datasets
Dask
License:
File size: 9,007 Bytes
dd8313e
 
 
a841612
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
81e53f6
 
a841612
 
 
59933fc
 
e61389f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
59933fc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
---
license: cc-by-4.0
configs:
- config_name: default
  data_files:
  - split: train
    path: estner-*/train/*
  - split: dev
    path: estner-*/dev/*
  - split: test
    path: estner-*/test/*
- config_name: estner-reannotated
  data_files:
  - split: train
    path: estner-reannotated/train/*
  - split: dev
    path: estner-reannotated/dev/*
  - split: test
    path: estner-reannotated/test/*
- config_name: estner-new
  data_files:
  - split: train
    path: estner-new/train/*
  - split: dev
    path: estner-new/dev/*
  - split: test
    path: estner-new/test/*
language:
- et
pretty_name: EstNER
size_categories:
- 10K<n<100K
task_categories:
- token-classification
---

# Dataset Card for EstNER

## Dataset Description

EstNER dataset for named entity recogintion in Estonian language comprised of two parts: _New EstNER_ and _Reannotated EstNER_ (refer to the corresponding sections of this readme for additional details).

By default the joint version of the dataset is loaded.

```python
from datasets import load_dataset

ds = load_dataset("tartuNLP/EstNER")
```

Each part can be loaded individually, as well.

```python
from datasets import load_dataset

new_ds = load_dataset("tartuNLP/EstNER", "estner-new")
reannotated_ds = load_dataset("tartuNLP/EstNER", "estner-reannotated")
```


### New Estonian NER dataset

The dataset is a collection of Estonian news and social media texts annotated with named entities. 

#### Dataset statistics

The dataset is divided into training, development and test sets. The annotations can be hierarchical, meaning that there can be one named entity inside another. The maximum number of levels in the hierarchical annotations is three. 

|                 | Train  | Dev   | Test  | Total  |
|-----------------|--------|-------|-------|--------|
| Documents       | 78     | 16    | 15    | 109    |
| Sentences       | 7001   | 882   | 890   | 8773   |
| Tokens          | 111858 | 13130 | 14686 | 139674 |
|1-level entities	| 7480	 | 497	 | 938	 | 8915   |
|2-level entities	| 571    | 44	   | 59	   | 674    |
|3-level entities	| 27	   | 0	   | 1	   | 28     |

#### Annotated entities

The dataset is annotated with the following entities: 
* PER - person names
*	GPE - geopolitical entities
* LOC - geographical locations
* ORG - organizations
* PROD - products, things, works of art
* EVENT - events
* DATE - dates
* TIME - times
* TITLE - titles and professions
* MONEY - monetary expressions
* PERCENT - percentages

##### Level 1 entities

|         | Train | Dev | Test  | Total |
|---------|-------|-----|-------|-------|
| PER	    | 2601	| 109	| 299	  | 3009  |
| ORG	    | 1177	| 85	| 150	  | 1412  | 
| LOC	    | 449	  | 31	| 35	  | 515   |
| GPE	    | 1253	| 129	| 231	  | 1613  |
| TITLE   | 702	  | 19 	| 59	  | 772   |
| PROD	  | 624	  | 60	| 117	  | 801   |
| EVENT	  | 230	  | 15	| 26	  | 271   |
| DATE	  | 746	  | 64	| 77	  | 887   |
| TIME	  | 103	  | 6	  | 6	    | 115   |
| PERCENT	| 75	  | 11	| 1	  | 87    |
| MONEY	  | 118	  | 12 	| 1	  | 131   |
| Total   | 8078	| 541	| 994   | 9613  |

##### Level 2 entities

|         | Train | Dev | Test  | Total |
|---------|-------|-----|-------|-------|
| PER	    | 108   | 1	  | 14	  | 123   |
| ORG	    | 92	  | 8	  | 6	    | 106   |
| LOC	    | 25	  | 1 	| 0	    | 26    |
| GPE	    | 379	  | 35	| 42	  | 456   |
| TITLE	  | 3	    | 0	  | 0	    | 3     |
| PROD    | 4	    | 0	  | 0	    | 4     |
| EVENT	  | 1	    | 0	  | 0	    | 1     |
| DATE	  | 10	  | 0	  | 0	    | 10    |
| TIME	  | 0	    | 0	  | 0     | 0     |
| PERCENT	| 0	    | 0	  | 0	    | 0     |
| MONEY   | 0   	| 0	  | 0	    | 0     |
| Total	  | 622	  | 45	| 62	  | 729   |


##### Level 3 entities

|         | Train | Dev | Test  | Total |
|---------|-------|-----|-------|-------|
| PER	    | 1     | 0	  | 0	    | 1     |
| ORG	    | 0	    | 0	  | 0	    | 0     |
| LOC	    | 1	    | 0 	| 0	    | 1     |
| GPE	    | 25	  | 0	  | 1	    | 26    |
| TITLE	  | 0	    | 0	  | 0	    | 0     |
| PROD    | 0	    | 0	  | 0	    | 0     |
| EVENT	  | 0	    | 0	  | 0	    | 0     |
| DATE	  | 0	    | 0	  | 0	    | 0     |
| TIME	  | 0	    | 0	  | 0     | 0     |
| PERCENT	| 0	    | 0	  | 0	    | 0     |
| MONEY   | 0   	| 0	  | 0	    | 0     |
| Total	  | 27	  | 0	  | 1	    | 28    |


### Reannotated Estonian NER dataset

This is the Estonian NER dataset ([Tkachenko, 2010](https://core.ac.uk/download/pdf/16270382.pdf); [Tkachenko et al., 2013](https://aclanthology.org/W13-2412.pdf)) reannotated with a richer set of entities. 

#### Dataset statistics

The dataset is divided into training, development and test sets. The annotations can be hierarchical, meaning that there can be one named entity inside another. The maximum number of levels in the hierarchical annotations is three. 

|                 | Train  | Dev   | Test  | Total  |
|-----------------|--------|-------|-------|--------|
| Documents       | 525    | 18    | 39    | 582    |
| Sentences       | 9965   | 2415  | 1907  | 14287  |
| Tokens          | 155983 | 32890 | 28370 | 217243 |
|1-level entities	| 13918	 | 2571	 | 2396	 | 18885  |
|2-level entities	| 987    | 223	 | 122	 | 1332   |
|3-level entities	| 40	   | 14	   | 4	   | 58     |

#### Annotated entities

Originally, the Estonian NER dataset was annotated with PER, ORG and LOC entities only. The reannotated version is annotated with the following entities: 
* PER - person names
*	GPE - geopolitical entities
* LOC - geographical locations
* ORG - organizations
* PROD - products, things, works of art
* EVENT - events
* DATE - dates
* TIME - times
* TITLE - titles and professions
* MONEY - monetary expressions
* PERCENT - percentages

##### Level 1 entities

|         | Train | Dev | Test  | Total |
|---------|-------|-----|-------|-------|
| PER	    | 3563	| 642	| 722	  | 4927  |
| ORG	    | 3215	| 504	| 541	  | 4260  | 
| LOC	    | 328	  | 118	| 61	  | 507   |
| GPE	    | 3377	| 714	| 479	  | 4570  |
| TITLE   | 1302	| 171 | 209	  | 1682  |
| PROD	  | 874	  | 161	| 66	  | 1101  |
| EVENT	  | 56	  | 13	| 17	  | 86    |
| DATE	  | 1346	| 308	| 186	  | 1840  |
| TIME	  | 456	  | 39	| 30	  | 525   |
| PERCENT	| 137	  | 62	| 58	  | 257   |
| MONEY	  | 291	  | 76 	| 153	  | 520   |
| Total   | 14945	| 2808| 2522  | 20275 |

##### Level 2 entities

|         | Train | Dev | Test  | Total |
|---------|-------|-----|-------|-------|
| PER	    | 46    | 7	  | 4	    | 57    |
| ORG	    | 180	  | 31	| 12	  | 223   |
| LOC	    | 58	  | 12 	| 8	    | 78    |
| GPE	    | 745	  | 160	| 101	  | 1006  |
| TITLE	  | 6	    | 0	  | 0	    | 6     |
| PROD    | 3	    | 0	  | 0	    | 3     |
| EVENT	  | 5	    | 0	  | 0	    | 5     |
| DATE	  | 7	    | 34	| 1	    | 42    |
| TIME	  | 0	    | 0	  | 0     | 0     |
| PERCENT	| 1	    | 0	  | 0	    | 1     |
| MONEY   | 0   	| 0	  | 0	    | 0     |
| Total	  | 1051	| 126	| 244	  | 1421  |


##### Level 3 entities

|         | Train | Dev | Test  | Total |
|---------|-------|-----|-------|-------|
| PER	    | 1     | 0	  | 0	    | 1     |
| ORG	    | 1	    | 0	  | 0	    | 0     |
| LOC	    | 0	    | 1 	| 0	    | 1     |
| GPE	    | 38	  | 13	| 4	    | 26    |
| TITLE	  | 0	    | 0	  | 0	    | 0     |
| PROD    | 0	    | 0	  | 0	    | 0     |
| EVENT	  | 0	    | 0	  | 0	    | 0     |
| DATE	  | 0	    | 0	  | 0	    | 0     |
| TIME	  | 0	    | 0	  | 0     | 0     |
| PERCENT	| 0	    | 0	  | 0	    | 0     |
| MONEY   | 0   	| 0	  | 0	    | 0     |
| Total	  | 40	  | 14	| 4	    | 58    |

## BibTeX entry and citation info

```
@inproceedings{sirts-2023-estonian,
    title = "{E}stonian Named Entity Recognition: New Datasets and Models",
    author = "Sirts, Kairit",
    editor = {Alum{\"a}e, Tanel  and
      Fishel, Mark},
    booktitle = "Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa)",
    month = may,
    year = "2023",
    address = "T{\'o}rshavn, Faroe Islands",
    publisher = "University of Tartu Library",
    url = "https://aclanthology.org/2023.nodalida-1.76",
    pages = "752--761",
    abstract = "This paper presents the annotation process of two Estonian named entity recognition (NER) datasets, involving the creation of annotation guidelines for labeling eleven different types of entities. In addition to the commonly annotated entities such as person names, organization names, and locations, the annotation scheme encompasses geopolitical entities, product names, titles/roles, events, dates, times, monetary values, and percents. The annotation was performed on two datasets, one involving reannotating an existing NER dataset primarily composed of news texts and the other incorporating new texts from news and social media domains. Transformer-based models were trained on these annotated datasets to establish baseline predictive performance. Our findings indicate that the best results were achieved by training a single model on the combined dataset, suggesting that the domain differences between the datasets are relatively small.",
}
```