# Copied from https://github.com/huggingface/datasets/blob/d3c7b9481d427ce41256edaf6773c47570f06f3b/metrics/rouge/rouge.py # Added multiprocessing import multiprocessing import nltk from rouge_score import rouge_scorer from multiprocessing import Pool def compute_rouge(predictions, references, rouge_types=None, use_stemmer=False): if rouge_types is None: rouge_types = ["rouge1", "rouge2"] # "rougeL", "rougeLsum" scorer = rouge_scorer.RougeScorer(rouge_types=rouge_types, use_stemmer=use_stemmer) with Pool() as p: scores = p.starmap(scorer.score, zip(references, predictions)) result = {} for key in scores[0]: result[key] = list(score[key] for score in scores) return result # Copied from https://github.com/huggingface/transformers/blob/3977b58437b8ce1ea1da6e31747d888efec2419b/examples/pytorch/summarization/run_summarization.py#L520 def postprocess_text(text): # rougeLSum expects newline after each sentence return "\n".join(nltk.sent_tokenize(text))