|
import re |
|
|
|
PATTERN = re.compile(r'\d+\.?\d*%') |
|
|
|
|
|
def find_percentage(s): |
|
match = PATTERN.search(s) |
|
if match is None: |
|
return None |
|
return match.group(0) |
|
|
|
|
|
def to_int(s): |
|
percentage_string = find_percentage(s) |
|
if percentage_string is None: |
|
return None |
|
percentage_string = percentage_string.replace("%", "") |
|
percentage = float(percentage_string) |
|
return percentage |
|
|
|
|
|
def exp_similarity_score(prediction, ground_truth): |
|
ground_truth_percentage = to_int(ground_truth) |
|
pred_percentage = to_int(str(prediction)) |
|
|
|
if ground_truth_percentage is None: |
|
raise ValueError(f"ground_truth_percentage is None: {ground_truth_percentage}") |
|
|
|
if pred_percentage is None: |
|
return 0.0 |
|
|
|
return 0.5 ** (abs(ground_truth_percentage - pred_percentage) / 10) |
|
|
|
|
|
def metric_max_over_ground_truths(metric_fn, prediction, ground_truths): |
|
scores_for_ground_truths = [] |
|
for ground_truth in ground_truths: |
|
score = metric_fn(prediction, ground_truth) |
|
scores_for_ground_truths.append(score) |
|
return max(scores_for_ground_truths) |
|
|
|
|
|
def compute_exp_similarity(predictions, references): |
|
exp_similarity = 0 |
|
for prediction, ground_truths in zip(predictions, references): |
|
exp_similarity += metric_max_over_ground_truths(exp_similarity_score, prediction, ground_truths) |
|
return 100 * exp_similarity / len(predictions) |
|
|