Datasets:
tau
/

Languages:
English
ArXiv:
zero_scrolls / metrics /zero_scrolls.py
Uri's picture
Update metrics/zero_scrolls.py
9af1d79
raw
history blame
16.1 kB
""" Zero-zero_scrolls benchmark metric. """
from collections import defaultdict
from copy import deepcopy
import datasets
# fmt: off
from .rouge import compute_rouge, postprocess_text as rouge_postprocess_text # From: https://huggingface.co/datasets/tau/zero_scrolls/raw/main/metrics/rouge.py
from .accuracy import compute_accuracy # From: https://huggingface.co/datasets/tau/zero_scrolls/raw/main/metrics/accuracy.py
from .f1 import compute_f1 # From: https://huggingface.co/datasets/tau/zero_scrolls/raw/main/metrics/f1.py
from .exp_similarity import compute_exp_similarity # From: https://huggingface.co/datasets/tau/zero_scrolls/raw/main/metrics/exp_similarity.py
from .concordance_index import compute_concordance_index # From: https://huggingface.co/datasets/tau/zero_scrolls/raw/main/metrics/concordance_index.py
# fmt: on
_CITATION = """
"""
_DESCRIPTION = """
ZeroSCROLLS: Zero-Shot CompaRison Over Long Language Sequences.
A zero shot benchmark for long text reasoning.
https://zero.scrolls-benchmark.com/
"""
_KWARGS_DESCRIPTION = """
Compute zero_scrolls evaluation metric associated to each zero_scrolls dataset.
Args:
predictions: list of predictions to score.
Each prediction should be a string.
references: list of lists of references for each example.
Each reference should be a string.
Returns: depending on the zero_scrolls subset, one or several of:
"accuracy": Accuracy score
"f1": F1 score
"rouge": ROUGE score
"exp_similarity": Exponential Similarity score
"concordance_index": Concordance Index score
Use the following code to download the metric:
```
import os, shutil
from huggingface_hub import hf_hub_download
def download_metric():
zero_scrolls_metric_path = hf_hub_download(repo_id="tau/zero_scrolls", repo_type="dataset", filename="metrics/zero_scrolls.py")
updated_zero_scrolls_metric_path = (
os.path.dirname(zero_scrolls_metric_path) + os.path.basename(zero_scrolls_metric_path).replace(".", "_") + ".py"
)
shutil.copy(zero_scrolls_metric_path, updated_zero_scrolls_metric_path)
return updated_zero_scrolls_metric_path
zero_scrolls_metric_path = download_metric()
```
Examples:
>>> predictions = ["hello there", "general kenobi"] # List[str]
>>> references = [["hello", "hi there"], ["commander kenobi"]] # List[List[str]]
>>> zero_scrolls_metric = datasets.load_metric(zero_scrolls_metric_path, 'gov_report') # "gov_report" or "summ_screen_fd" or "qmsum" or "squality]
>>> results = zero_scrolls_metric.compute(predictions=predictions, references=references)
>>> print(results)
{'rouge/rouge1': 72.2222, 'rouge/rouge2': 33.3333, 'rouge/rougeL': 72.2222, 'rouge/rougeLsum': 72.2222, 'rouge/geometric_mean': 55.8136,
'num_predicted': 3, 'mean_prediction_length_characters': 14.6667, 'zero_scrolls_score': 55.8136,
'display_keys': ['rouge/rouge1', 'rouge/rouge2', 'rouge/rougeL'], 'display': [72.2222, 33.3333, 72.2222]}
>>> zero_scrolls_metric = datasets.load_metric(zero_scrolls_metric_path, 'narrative_qa') # "qasper" or "narrative_qa" or "musique"
>>> results = zero_scrolls_metric.compute(predictions=predictions, references=references)
>>> print(results)
{'f1': 72.2222, 'num_predicted': 3, 'mean_prediction_length_characters': 14.6667, 'zero_scrolls_score': 72.2222,
'display_keys': ['f1'], 'display': [72.2222]}
>>> predictions = ["The answer is (B)", "D", "A"] # List[str]
>>> references = [["B"], ["C"], ["C"]] # List[List[str]]
>>> zero_scrolls_metric = datasets.load_metric(zero_scrolls_metric_path, 'quality')
>>> results = zero_scrolls_metric.compute(predictions=predictions, references=references)
>>> print(results)
{'accuracy': 33.3333, 'num_predicted': 3, 'mean_prediction_length_characters': 6.3333, 'zero_scrolls_score': 33.3333, 'display_keys': ['accuracy'], 'display': [33.3333]}
'display_keys': ['accuracy'], 'display': [33.3333]}
>>> predictions = ["Answer: 4,1,2,3", "2,4,5,4,1"] # List[str]
>>> references = [["1,2,3,4"], ["5,3,2,1,4"]] # List[List[str]]
>>> zero_scrolls_metric = datasets.load_metric(zero_scrolls_metric_path, 'book_sum_sort')
>>> results = zero_scrolls_metric.compute(predictions=predictions, references=references)
>>> print(results)
{'concordance_index': 25.0, 'num_predicted': 2, 'mean_prediction_length_characters': 12.0, 'zero_scrolls_score': 25.0, 'display_keys': ['concordance_index'], 'display': [25.0]}
>>> predictions = ["There are 30% positive reviews", "25%"] # List[str]
>>> references = [["40%"], ["82%"]] # List[List[str]]
>>> zero_scrolls_metric = datasets.load_metric(zero_scrolls_metric_path, 'space_digest')
>>> results = zero_scrolls_metric.compute(predictions=predictions, references=references)
>>> print(results)
{'exp_similarity': 25.9618, 'num_predicted': 2, 'mean_prediction_length_characters': 16.5, 'zero_scrolls_score': 25.9618, 'display_keys': ['exp_similarity'], 'display': [25.9618]}
"""
DATASET_TO_METRICS = {
"gov_report": {
"metrics_to_compute": ["rouge"],
"zero_scrolls_score_key": "rouge/geometric_mean",
"display_keys": ["rouge/rouge1", "rouge/rouge2", "rouge/rougeL"],
},
"narrative_qa": {
"metrics_to_compute": ["f1"],
"zero_scrolls_score_key": "f1",
"display_keys": ["f1"],
},
"qasper": {
"metrics_to_compute": ["f1"],
"zero_scrolls_score_key": "f1",
"display_keys": ["f1"],
},
"qmsum": {
"metrics_to_compute": ["rouge"],
"zero_scrolls_score_key": "rouge/geometric_mean",
"display_keys": ["rouge/rouge1", "rouge/rouge2", "rouge/rougeL"],
},
"summ_screen_fd": {
"metrics_to_compute": ["rouge"],
"zero_scrolls_score_key": "rouge/geometric_mean",
"display_keys": ["rouge/rouge1", "rouge/rouge2", "rouge/rougeL"],
},
"quality": {
"metrics_to_compute": ["accuracy"],
"zero_scrolls_score_key": "accuracy",
"display_keys": ["accuracy"],
},
"quality_hard": {
"metrics_to_compute": ["accuracy"],
"zero_scrolls_score_key": None,
"display_keys": ["accuracy"],
},
"squality": {
"metrics_to_compute": ["rouge"],
"zero_scrolls_score_key": "rouge/geometric_mean",
"display_keys": ["rouge/rouge1", "rouge/rouge2", "rouge/rougeL"],
},
"musique": {
"metrics_to_compute": ["f1"],
"zero_scrolls_score_key": "f1",
"display_keys": ["f1"],
},
"space_digest": {
"metrics_to_compute": ["exp_similarity"],
"zero_scrolls_score_key": "exp_similarity",
"display_keys": ["exp_similarity"],
},
"book_sum_sort": {
"metrics_to_compute": ["concordance_index"],
"zero_scrolls_score_key": "concordance_index",
"display_keys": ["concordance_index"],
},
}
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
class ZeroScrolls(datasets.Metric):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self._compute_helper_kwargs_fn = {
"rouge": lambda: {
"metric_fn": compute_rouge,
"agg_fn": max,
"metric_fn_kwargs": {"use_stemmer": False},
"metric_returns_per_example": True,
"transform_single_input_fn": lambda text: rouge_postprocess_text(text),
"transform_result_fn": lambda output: {
key: (value[0] if isinstance(value, list) else value).fmeasure * 100
for key, value in output.items()
},
"transform_aggregated_result_fn": lambda output: output.update(
{"geometric_mean": (output["rouge1"] * output["rouge2"] * output["rougeL"]) ** (1.0 / 3.0)}
)
or output,
},
"accuracy": lambda: {
"metric_fn": compute_accuracy,
"agg_fn": None, # compute_accuracy already takes max
"transform_result_fn": lambda output: {None: output},
},
"f1": lambda: {
"metric_fn": compute_f1,
"agg_fn": None, # compute_f1 already takes max
"transform_result_fn": lambda output: {None: output},
},
"exp_similarity": lambda: {
"metric_fn": compute_exp_similarity,
"agg_fn": None, # compute_exp_similarity already takes max
"transform_result_fn": lambda output: {None: output},
},
"concordance_index": lambda: {
"metric_fn": compute_concordance_index,
"agg_fn": None, # compute_concordance_index already takes max
"transform_result_fn": lambda output: {None: output},
},
}
custom_metrics = (
[metric for metric in self.config_name.split(",") if len(metric) > 0]
if self.config_name.startswith(",")
else None
)
if custom_metrics is not None:
for metric in custom_metrics:
if metric not in self._compute_helper_kwargs_fn:
raise KeyError(
f"You should supply a metric name selected in {list(self._compute_helper_kwargs_fn.keys())}"
)
self._metrics_to_compute = custom_metrics
else:
if self.config_name not in DATASET_TO_METRICS:
raise KeyError(f"You should supply a configuration name selected in {list(DATASET_TO_METRICS.keys())}")
self._metrics_to_compute = DATASET_TO_METRICS[self.config_name]["metrics_to_compute"]
def _info(self):
return datasets.MetricInfo(
description=_DESCRIPTION,
citation=_CITATION,
inputs_description=_KWARGS_DESCRIPTION,
features=datasets.Features(
{
"predictions": datasets.Value("string"),
"references": datasets.Sequence(datasets.Value("string")),
}
),
codebase_urls=[],
reference_urls=[],
)
def convert_from_map_format(self, id_to_pred, id_to_labels):
index_to_id = list(id_to_pred.keys())
predictions = [id_to_pred[id_] for id_ in index_to_id]
references = [id_to_labels[id_] for id_ in index_to_id]
return {"predictions": predictions, "references": references}
def _compute(self, predictions, references):
metrics = {}
for metric in self._metrics_to_compute:
result = _compute_helper(
deepcopy(predictions),
deepcopy(references),
**self._compute_helper_kwargs_fn[metric](),
)
metrics.update(
{(f"{metric}/{key}" if key is not None else metric): value for key, value in result.items()}
)
metrics["num_predicted"] = len(predictions)
prediction_lengths = [len(prediction) for prediction in predictions]
metrics["mean_prediction_length_characters"] = sum(prediction_lengths) / len(prediction_lengths)
metrics = {key: round(value, 4) for key, value in metrics.items()}
if self.config_name in DATASET_TO_METRICS:
zero_scrolls_score_key = DATASET_TO_METRICS[self.config_name]["zero_scrolls_score_key"]
if zero_scrolls_score_key is not None:
metrics["zero_scrolls_score"] = metrics[zero_scrolls_score_key]
else:
metrics["zero_scrolls_score"] = None
display_keys = DATASET_TO_METRICS[self.config_name]["display_keys"]
metrics["display_keys"] = display_keys
metrics["display"] = []
for display_key in display_keys:
metrics["display"].append(metrics[display_key])
return metrics
def _compute_helper(
predictions,
references,
metric_fn,
agg_fn,
metric_fn_kwargs=None,
transform_single_input_fn=None,
transform_result_fn=None,
transform_aggregated_result_fn=None,
metric_returns_per_example=False,
):
if metric_fn_kwargs is None:
metric_fn_kwargs = {}
if agg_fn is None:
assert metric_returns_per_example is False
if transform_single_input_fn is not None:
predictions = [transform_single_input_fn(prediction) for prediction in predictions]
references = [
[transform_single_input_fn(reference) for reference in reference_list] for reference_list in references
]
if transform_result_fn is None:
transform_result_fn = lambda x: x
do_transform_result = False
else:
do_transform_result = True
if transform_aggregated_result_fn is None:
transform_aggregated_result_fn = lambda x: x
if agg_fn is not None:
# Required when the metric doesn't do the aggregation we need
scores = defaultdict(list)
if metric_returns_per_example is False:
# If when given a list of prediction and references the metric returns an aggregated score,
# we need to compute the metric for each prediction and reference and then aggregate the results.
# This is only an issue when we want to get the best aggregated score (e.g. max) for prediction
# with multiple references.
for prediction, reference_list in zip(predictions, references):
prediction_scores = defaultdict(list)
for reference in reference_list:
result = transform_result_fn(metric_fn([prediction], [reference], **metric_fn_kwargs))
for key in result:
prediction_scores[key].append(result[key])
for key in prediction_scores:
scores[key].append(agg_fn(prediction_scores[key]))
else:
# Flatten the references and then aggregate per prediction with agg_fn
mapping = [[] for _ in range(len(predictions))]
flattened_predictions = []
flattened_references = []
for i, prediction in enumerate(predictions):
for reference in references[i]:
flattened_predictions.append(prediction)
flattened_references.append(reference)
mapping[i].append(len(flattened_references) - 1)
results = metric_fn(flattened_predictions, flattened_references, **metric_fn_kwargs)
if isinstance(results, dict):
# Convert a dictionary with lists per key to a list with dictionary with the same keys per element
results_list = [{k: None for k in results} for _ in range(len(flattened_predictions))]
for k, v in results.items():
for i in range(len(v)):
results_list[i][k] = v[i]
else:
results_list = results
if do_transform_result:
for i in range(len(results_list)):
results_list[i] = transform_result_fn(results_list[i])
for reference_indexes in mapping:
prediction_scores = defaultdict(list)
for reference_index in reference_indexes:
result = results_list[reference_index]
for key in result:
prediction_scores[key].append(result[key])
for key in prediction_scores:
scores[key].append(agg_fn(prediction_scores[key]))
return transform_aggregated_result_fn({key: sum(value) / len(value) for key, value in scores.items()})
else:
return transform_aggregated_result_fn(
transform_result_fn(metric_fn(predictions, references, **metric_fn_kwargs))
)