Datasets:
tau
/

Languages:
English
ArXiv:
Uri's picture
add files
ee3ae9f
# Copied from https://github.com/huggingface/datasets/blob/d3c7b9481d427ce41256edaf6773c47570f06f3b/metrics/squad/evaluate.py
import re
import string
from collections import Counter
from unidecode import unidecode
def normalize_answer(s):
"""Lower text and remove punctuation, articles and extra whitespace."""
def remove_articles(text):
return re.sub(r"\b(a|an|the)\b", " ", text)
def white_space_fix(text):
return " ".join(text.split())
def remove_punc(text):
exclude = set(string.punctuation)
return "".join(ch for ch in text if ch not in exclude)
def lower(text):
return text.lower()
return unidecode(white_space_fix(remove_articles(remove_punc(lower(s)))))
def f1_score(prediction, ground_truth):
prediction_tokens = normalize_answer(prediction).split()
ground_truth_tokens = normalize_answer(ground_truth).split()
common = Counter(prediction_tokens) & Counter(ground_truth_tokens)
num_same = sum(common.values())
if num_same == 0:
return 0
precision = 1.0 * num_same / len(prediction_tokens)
recall = 1.0 * num_same / len(ground_truth_tokens)
f1 = (2 * precision * recall) / (precision + recall)
return f1
def metric_max_over_ground_truths(metric_fn, prediction, ground_truths):
scores_for_ground_truths = []
for ground_truth in ground_truths:
score = metric_fn(prediction, ground_truth)
scores_for_ground_truths.append(score)
return max(scores_for_ground_truths)
def compute_f1(predictions, references):
f1 = 0
for prediction, ground_truths in zip(predictions, references):
f1 += metric_max_over_ground_truths(f1_score, prediction, ground_truths)
return 100.0 * f1 / len(predictions)