

Learning Deep Learning

This page intentionally left blank

Learning Deep Learning

THEORY AND PRACTICE OF NEURAL
NETWORKS, COMPUTER VISION, NATURAL
LANGUAGE PROCESSING, AND
TRANSFORMERS USING TENSORFLOW

MAGNUS EKMAN

Boston • Columbus • New York • San Francisco • Amsterdam • Cape Town
Dubai • London • Madrid • Milan • Munich • Paris • Montreal • Toronto • Delhi • Mexico City
São Paulo • Sydney • Hong Kong • Seoul • Singapore • Taipei • Tokyo

Many of the designations used by manufacturers and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in this book, and the publisher was aware of a
trademark claim, the designations have been printed with initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no expressed
or implied warranty of any kind and assume no responsibility for errors or omissions. No liability is
assumed for incidental or consequential damages in connection with or arising out of the use of the
information or programs contained herein.

NVIDIA makes no warranty or representation that the techniques described herein are free from any
Intellectual Property claims. The reader assumes all risk of any such claims based on his or her use of
these techniques.

For information about buying this title in bulk quantities, or for special sales opportunities (which may
include electronic versions; custom cover designs; and content particular to your business, training
goals, marketing focus, or branding interests), please contact our corporate sales department at
corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact intlcs@pearson.com.

Visit us on the Web: informit.com/aw

Library of Congress Control Number: 2021937264

Copyright © 2022 NVIDIA Corporation

Cover image: R.Eva Robot design by Gavriil Klimov and Gregor Kopka

Figures P-4, 8-8, 8-10, 16-1, 16-6, 16-7, B-1, J-1, J-2: Magnus Ekman

All rights reserved. This publication is protected by copyright, and permission must be obtained from
the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any
form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information
regarding permissions, request forms and the appropriate contacts within the Pearson Education
Global Rights & Permissions Department, please visit www.pearson.com/permissions.

ISBN-13: 978-0-13-747035-8
ISBN-10: 0-13-747035-5

ScoutAutomatedPrintCode

mailto:corpsales@pearsoned.com
mailto:governmentsales@pearsoned.com
mailto:intlcs@pearson.com
http://informit.com/aw
http://www.pearson.com/permissions

For my wife Jennifer, my children Sebastian and Sofia, my dog Babette,

and my parents Ingrid and Krister

This page intentionally left blank

vii

Contents

Foreword by Dr. Anima Anandkumar . xxi

Foreword by Dr. Craig Clawson . xxiii

Preface . xxv

Acknowledgments . li

About the Author . liii

1 THE ROSENBLATT PERCEPTRON 1

Example of a Two-Input Perceptron . 4

The Perceptron Learning Algorithm . 7

Limitations of the Perceptron . 15

Combining Multiple Perceptrons . 17

Implementing Perceptrons with Linear Algebra 20

Vector Notation . 21

Dot Product . 23

Extending the Vector to a 2D Matrix . 24

Matrix-Vector Multiplication . 25

Matrix-Matrix Multiplication . 26

Summary of Vector and Matrix Operations Used for Perceptrons 28

Dot Product as a Matrix Multiplication . 29

Extending to Multidimensional Tensors . 29

CONTENTS

viii

Geometric Interpretation of the Perceptron . 30

Understanding the Bias Term . 33

Concluding Remarks on the Perceptron . 34

2 GRADIENT-BASED LEARNING 37

Intuitive Explanation of the Perceptron Learning Algorithm 37

Derivatives and Optimization Problems . 41

Solving a Learning Problem with Gradient Descent 44

Gradient Descent for Multidimensional Functions 46

Constants and Variables in a Network . 48

Analytic Explanation of the Perceptron Learning Algorithm 49

Geometric Description of the Perceptron Learning Algorithm 51

Revisiting Different Types of Perceptron Plots . 52

Using a Perceptron to Identify Patterns . 54

Concluding Remarks on Gradient-Based Learning 57

3 SIGMOID NEURONS AND BACKPROPAGATION 59

Modified Neurons to Enable Gradient Descent for Multilevel Networks 60

Which Activation Function Should We Use? . 66

Function Composition and the Chain Rule . 67

Using Backpropagation to Compute the Gradient 69

Forward Pass . 78

Backward Pass . 78

Weight Adjustment . 79

Backpropagation with Multiple Neurons per Layer 81

Programming Example: Learning the XOR Function 82

CONTENTS

ix

Network Architectures . 87

Concluding Remarks on Backpropagation . 89

4 FULLY CONNECTED NETWORKS APPLIED TO
MULTICLASS CLASSIFICATION 91

Introduction to Datasets Used When Training Networks 92

Exploring the Dataset . 94

Human Bias in Datasets . 96

Training Set, Test Set, and Generalization . 98

Hyperparameter Tuning and Test Set Information Leakage 100

Training and Inference . 100

Extending the Network and Learning Algorithm to Do Multiclass
Classification . 101

Network for Digit Classification . 102

Loss Function for Multiclass Classification . 103

Programming Example: Classifying Handwritten Digits 104

Mini-Batch Gradient Descent . 114

Concluding Remarks on Multiclass Classification 115

5 TOWARD DL: FRAMEWORKS AND NETWORK TWEAKS 117

Programming Example: Moving to a DL Framework 118

The Problem of Saturated Neurons and Vanishing Gradients 124

Initialization and Normalization Techniques to Avoid Saturated Neurons 126

Weight Initialization . 126

Input Standardization . 128

Batch Normalization . 128

Cross-Entropy Loss Function to Mitigate Effect of Saturated Output Neurons 130

Computer Implementation of the Cross-Entropy Loss Function 135

CONTENTS

x

Different Activation Functions to Avoid Vanishing Gradient in
Hidden Layers . 136

Variations on Gradient Descent to Improve Learning 141

Experiment: Tweaking Network and Learning Parameters 143

Hyperparameter Tuning and Cross-Validation 146

Using a Validation Set to Avoid Overfitting 148

Cross-Validation to Improve Use of Training Data 149

Concluding Remarks on the Path Toward Deep Learning 150

6 FULLY CONNECTED NETWORKS APPLIED TO
REGRESSION 153

Output Units . 154

Logistic Unit for Binary Classification . 155

Softmax Unit for Multiclass Classification 156

Linear Unit for Regression . 159

The Boston Housing Dataset . 160

Programming Example: Predicting House Prices with a DNN 161

Improving Generalization with Regularization 166

Experiment: Deeper and Regularized Models for House Price Prediction . . . 169

Concluding Remarks on Output Units and Regression Problems 170

7 CONVOLUTIONAL NEURAL NETWORKS APPLIED TO
IMAGE CLASSIFICATION 171

The CIFAR-10 Dataset . 173

Characteristics and Building Blocks for Convolutional Layers 175

Combining Feature Maps into a Convolutional Layer 180

Combining Convolutional and Fully Connected Layers into a Network 181

Effects of Sparse Connections and Weight Sharing 185

CONTENTS

xi

Programming Example: Image Classification with a Convolutional Network . . 190

Concluding Remarks on Convolutional Networks 201

8 DEEPER CNNs AND PRETRAINED MODELS 205

VGGNet . 206

GoogLeNet . 210

ResNet . 215

Programming Example: Use a Pretrained ResNet Implementation 223

Transfer Learning . 226

Backpropagation for CNN and Pooling . 228

Data Augmentation as a Regularization Technique 229

Mistakes Made by CNNs . 231

Reducing Parameters with Depthwise Separable Convolutions 232

Striking the Right Network Design Balance with EfficientNet 234

Concluding Remarks on Deeper CNNs . 235

9 PREDICTING TIME SEQUENCES WITH RECURRENT
NEURAL NETWORKS 237

Limitations of Feedforward Networks . 241

Recurrent Neural Networks . 242

Mathematical Representation of a Recurrent Layer 243

Combining Layers into an RNN . 245

Alternative View of RNN and Unrolling in Time 246

Backpropagation Through Time . 248

Programming Example: Forecasting Book Sales 250

Standardize Data and Create Training Examples 256

Creating a Simple RNN . 258

CONTENTS

xii

Comparison with a Network Without Recurrence 262

Extending the Example to Multiple Input Variables 263

Dataset Considerations for RNNs . 264

Concluding Remarks on RNNs . 265

10 LONG SHORT-TERM MEMORY 267

Keeping Gradients Healthy . 267

Introduction to LSTM . 272

LSTM Activation Functions . 277

Creating a Network of LSTM Cells . 278

Alternative View of LSTM . 280

Related Topics: Highway Networks and Skip Connections 282

Concluding Remarks on LSTM . 282

11 TEXT AUTOCOMPLETION WITH LSTM AND
BEAM SEARCH 285

Encoding Text . 285

Longer-Term Prediction and Autoregressive Models 287

Beam Search . 289

Programming Example: Using LSTM for Text Autocompletion 291

Bidirectional RNNs . 298

Different Combinations of Input and Output Sequences 300

Concluding Remarks on Text Autocompletion with LSTM 302

12 NEURAL LANGUAGE MODELS AND WORD
EMBEDDINGS 303

Introduction to Language Models and Their Use Cases 304

Examples of Different Language Models . 307

CONTENTS

xiii

n-Gram Model . 307

Skip-Gram Model . 309

Neural Language Model . 309

Benefit of Word Embeddings and Insight into How They Work 313

Word Embeddings Created by Neural Language Models 315

Programming Example: Neural Language Model and Resulting
Embeddings . 319

King − Man + Woman! = Queen . 329

King − Man + Woman ! = Queen . 331

Language Models, Word Embeddings, and Human Biases 332

Related Topic: Sentiment Analysis of Text . 334

Bag-of-Words and Bag-of-N-Grams . 334

Similarity Metrics . 338

Combining BoW and DL . 340

Concluding Remarks on Language Models and Word Embeddings 342

13 WORD EMBEDDINGS FROM word2vec AND GloVe 343

Using word2vec to Create Word Embeddings Without a Language Model . . . 344

Reducing Computational Complexity Compared to a Language Model . . 344

Continuous Bag-of-Words Model . 346

Continuous Skip-Gram Model . 348

Optimized Continuous Skip-Gram Model to Further Reduce
Computational Complexity . 349

Additional Thoughts on word2vec . 352

word2vec in Matrix Form . 353

Wrapping Up word2vec . 354

CONTENTS

xiv

Programming Example: Exploring Properties of GloVe Embeddings 356

Concluding Remarks on word2vec and GloVe . 361

14 SEQUENCE-TO-SEQUENCE NETWORKS AND NATURAL
LANGUAGE TRANSLATION 363

Encoder-Decoder Model for Sequence-
to-Sequence Learning . 366

Introduction to the Keras Functional API . 368

Programming Example: Neural Machine Translation 371

Experimental Results . 387

Properties of the Intermediate Representation 389

Concluding Remarks on Language Translation 391

15 ATTENTION AND THE TRANSFORMER 393

Rationale Behind Attention . 394

Attention in Sequence-to-Sequence Networks 395

Computing the Alignment Vector . 400

Mathematical Notation and Variations on the Alignment Vector 402

Attention in a Deeper Network . 404

Additional Considerations . 405

Alternatives to Recurrent Networks . 406

Self-Attention . 407

Multi-head Attention . 410

The Transformer . 411

Concluding Remarks on the Transformer . 415

CONTENTS

xv

16 ONE-TO-MANY NETWORK FOR IMAGE CAPTIONING 417

Extending the Image Captioning Network with Attention 420

Programming Example: Attention-Based Image Captioning 421

Concluding Remarks on Image Captioning . 443

17 MEDLEY OF ADDITIONAL TOPICS 447

Autoencoders . 448

Use Cases for Autoencoders . 449

Other Aspects of Autoencoders . 451

Programming Example: Autoencoder for Outlier Detection 452

Multimodal Learning . 459

Taxonomy of Multimodal Learning . 459

Programming Example: Classification with Multimodal Input Data 465

Multitask Learning . 469

Why to Implement Multitask Learning . 470

How to Implement Multitask Learning . 471

Other Aspects and Variations on the Basic Implementation 472

Programming Example: Multiclass Classification and Question
Answering with a Single Network . 473

Process for Tuning a Network . 477

When to Collect More Training Data . 481

Neural Architecture Search . 482

Key Components of Neural Architecture Search 482

Programming Example: Searching for an Architecture for
CIFAR-10 Classification . 488

Implications of Neural Architecture Search 501

Concluding Remarks . 502

CONTENTS

xvi

18 SUMMARY AND NEXT STEPS 503

Things You Should Know by Now . 503

Ethical AI and Data Ethics . 505

Problems to Look Out For . 506

Checklist of Questions . 512

Things You Do Not Yet Know . 512

Reinforcement Learning . 513

Variational Autoencoders and Generative Adversarial Networks 513

Neural Style Transfer . 515

Recommender Systems . 515

Models for Spoken Language . 516

Next Steps . 516

A LINEAR REGRESSION AND LINEAR CLASSIFIERS 519

Linear Regression as a Machine Learning Algorithm 519

Univariate Linear Regression . 520

Multivariate Linear Regression . 521

Modeling Curvature with a Linear Function 522

Computing Linear Regression Coefficients . 523

Classification with Logistic Regression . 525

Classifying XOR with a Linear Classifier . 528

Classification with Support Vector Machines . 531

Evaluation Metrics for a Binary Classifier . 533

CONTENTS

xvii

B OBJECT DETECTION AND SEGMENTATION 539

Object Detection . 540

R-CNN . 542

Fast R-CNN . 544

Faster R-CNN . 546

Semantic Segmentation . 549

Upsampling Techniques . 550

Deconvolution Network . 557

U-Net . 558

Instance Segmentation with Mask R-CNN . 559

C WORD EMBEDDINGS BEYOND word2vec AND GloVe 563

Wordpieces . 564

FastText . 566

Character-Based Method . 567

ELMo . 572

Related Work . 575

D GPT, BERT, AND RoBERTa 577

GPT . 578

BERT . 582

Masked Language Model Task . 582

Next-Sentence Prediction Task . 583

BERT Input and Output Representations . 584

Applying BERT to NLP Tasks . 586

RoBERTa . 586

CONTENTS

xviii

Historical Work Leading Up to GPT and BERT . 588

Other Models Based on the Transformer . 590

E NEWTON-RAPHSON VERSUS GRADIENT DESCENT 593

Newton-Raphson Root-Finding Method . 594

Newton-Raphson Applied to Optimization Problems 595

Relationship Between Newton-Raphson and Gradient Descent 597

F MATRIX IMPLEMENTATION OF DIGIT CLASSIFICATION
NETWORK 599

Single Matrix . 599

Mini-Batch Implementation . 602

G RELATING CONVOLUTIONAL LAYERS TO MATHEMATICAL
CONVOLUTION 607

H GATED RECURRENT UNITS 613

Alternative GRU Implementation . 616

Network Based on the GRU . 616

I SETTING UP A DEVELOPMENT ENVIRONMENT 621

Python . 622

Programming Environment . 623

Jupyter Notebook . 623

Using an Integrated Development Environment 624

Programming Examples . 624

Supporting Spreadsheet . 625

CONTENTS

xix

Datasets . 625

MNIST . 625

Bookstore Sales Data from US Census Bureau 626

Frankenstein from Project Gutenberg . 627

GloVe Word Embeddings . 627

Anki Bilingual Sentence Pairs . 627

COCO . 627

Installing a DL Framework . 628

System Installation . 628

Virtual Environment Installation . 629

GPU Acceleration . 629

Docker Container . 630

Using a Cloud Service . 630

TensorFlow Specific Considerations . 630

Key Differences Between PyTorch and TensorFlow 631

Need to Write Our Own Fit/Training Function 631

Explicit Moves of Data Between NumPy and PyTorch 633

Explicit Transfer of Data Between CPU and GPU 633

Explicitly Distinguishing Between Training and Inference 634

Sequential versus Functional API . 634

Lack of Compile Function . 635

Recurrent Layers and State Handling . 635

Cross-Entropy Loss . 635

View/Reshape . 636

J CHEAT SHEETS 637

CONTENTS

xx

Works Cited . 647

Index . 667

xxi

Foreword

Artificial intelligence (AI) has seen impressive progress over the last decade.
Humanity’s dream of building intelligent machines that can think and act like
us, only better and faster, seems to be finally taking off. To enable everyone to
be part of this historic revolution requires the democratization of AI knowledge
and resources. This book is timely and relevant toward accomplishing these lofty
goals.

Learning Deep Learning by Magnus Ekman provides a comprehensive instructional
guide for both aspiring and experienced AI engineers. In the book, Magnus shares
the rich hands-on knowledge he has garnered at NVIDIA, an established leader in
AI. The book does not assume any background in machine learning and is focused
on covering significant breakthroughs in deep learning over the last few years.
The book strikes a nice balance and covers both important fundamentals such as
backpropagation and the latest models in several domains (e.g., GPT for language
understanding, Mask R-CNN for image understanding).

AI is a trinity of data, algorithms, and computing infrastructure. The launch of the
ImageNet challenge provided a large-scale benchmark dataset needed to train
large neural networks. The parallelism of NVIDIA GPUs enabled the training of
such large neural networks. We are now in the era of billion, and even trillion,
parameter models. Building and maintaining large-scale models will soon be
deemed a prerequisite skill for any AI engineer. This book is uniquely placed to
teach such skills. It provides in-depth coverage of large-scale models in multiple
domains.

The book also covers emerging areas such as neural architecture search, which
will likely become more prevalent as we begin to extract the last ounce of
accuracy and hardware efficiency out of current AI models. The deep learning
revolution has almost entirely occurred in open source. This book provides
convenient access to code and datasets and runs through the code examples
thoroughly. There is extensive program code available in both TensorFlow and
PyTorch, the two most popular frameworks for deep learning.

FOREWORD

xxii

I do not think any book on AI will be complete without a discussion of ethical
issues. I believe that it is the responsibility of every AI engineer to think critically
about the societal implications around the deployment of AI. The proliferation of
harassment, hate speech, and misinformation in social media has shown how
poorly designed algorithms can wreak havoc on our society. Groundbreaking
studies such as the Gender Shades project and Stochastic Parrots have shown
highly problematic biases in AI models that are commercially deployed at scale. I
have advocated for banning the use of AI in sensitive scenarios until appropriate
guidelines and testing are in place (e.g., the use of AI-based face recognition
by law enforcement). I am glad to see the book cover significant developments
such as model cards that improve accountability and transparency in training
and maintaining AI models. I am hoping for a bright, inclusive future for the AI
community.

—Dr. Anima Anandkumar
Bren Professor, Caltech

Director of ML Research, NVIDIA

xxiii

Foreword

By training I am an economist. Prior to my work in technical education, I spent
years teaching students and professionals well-developed frameworks for
understanding our world and how to make decisions within it. The methods and
skills you will discover in Learning Deep Learning by Magnus Ekman parallel the
tools used by economists to make forecasts and predictions in a world full of
uncertainty. The power and capabilities of the deep learning techniques taught in
this book have brought amazing advances in our ability to make better predictions
and inferences from the data in the world around us.

Though their future benefits and importance can sometimes be exaggerated,
there is no doubt the world and industry have been greatly affected by deep
learning (DL) and its related supersets of machine learning (ML) and artificial
intelligence (AI). Applications of these technologies have proven durable and are
profound. They are with us everywhere: at home and at work, in our cars, and on
our phones. They influence how we travel, how we communicate, how we shop,
how we bank, and how we access information. It is very difficult to think of an
industry that has not or will not be impacted by these technologies.

The explosion in the use of these technologies has uncovered two important
gaps in knowledge and areas of opportunity for those who endeavor to learn.
First is the technical skillset required to develop useful applications. And second,
importantly, is an understanding of how these applications can address problems
and opportunities in the world around us. This book helps to address both gaps.
For these reasons, Learning Deep Learning has arrived in the right place at the
right time.

As NVIDIA’s education and training arm, the Deep Learning Institute exists
to help individuals and organizations grow their understanding of DL and
other computing techniques so they can find creative solutions to challenging
problems. Learning Deep Learning is the perfect addition to our training library.
It is accessible to those with basic skills in statistics and calculus, and it doesn’t
require the reader to first wade through tangential topics. Instead, Ekman focuses

FOREWORD

xxiv

on the building blocks of DL: the perceptron, other artificial neurons, deep neural
networks (DNNs), and DL frameworks. Then he gradually layers in additional
concepts that build on each other, all the way up to and including modern natural
language processing (NLP) architectures such as Transformer, BERT, and GPT.

Importantly, Ekman uses a learning technique that in our experience has proven
pivotal to success—asking readers to think about using DL techniques in practice.
Simple yet powerful coding examples and exercises are provided throughout the
book to help readers apply their understanding. At the same time, explanations
of the underlying theory are present, and those interested in deepening their
knowledge of relevant concepts and tools without getting into programming code
will benefit. Plenty of citations with references for further study of a specific topic
are also provided.

For all these reasons, Learning Deep Learning is a very good place to start one’s
journey to understanding the world of DL. Ekman’s straightforward approach
to helping the reader understand what DL is, how it was developed, and how
it can be applied in our ever-changing world is refreshing. He provides a
comprehensive yet clear discussion of the technology and an honest assessment
of its capabilities and its limitations. And through it all, he permits the reader to
dream, just a bit, about where DL may yet take us. That is exciting. It is why this
economist finds this book so timely and important, and why I think you will too.

—Dr. Craig Clawson
Director, NVIDIA Deep Learning Institute

xxv

Preface

Deep learning (DL) is a quickly evolving field, which has demonstrated amazing
results in performing tasks that traditionally have been performed well only by
humans. Examples of such tasks are image classification, generating natural
language descriptions of images, natural language translation, speech-to-text,
and text-to-speech conversion.

Learning Deep Learning (this book, hereafter known as LDL) quickly brings you up
to speed on the topic. It teaches how DL works, what it can do, and gives you some
practical experience, with the overall objective of giving you a solid foundation for
further learning.

You will learn about the perceptron and other artificial neurons. They are the
fundamental building blocks of deep neural networks that have enabled the
DL revolution. You will learn about fully connected feedforward networks
and convolutional networks. You will apply these networks to solve practical
problems, such as predicting housing prices based on a large number of variables
or identifying to which category an image belongs. Figure P-1 shows examples of
such categories and images.

You will also learn about ways to represent words from a natural language using
an encoding that captures some of the semantics of the encoded words. You will
then use these encodings together with a recurrent neural network to create
a neural-based natural language translator. This translator can automatically
translate simple sentences from English to French or other similar languages, as
illustrated in Figure P-2.

In this book, we use green text boxes like this one to highlight concepts that we
find extra important. The intent is to ensure that you do not miss key concepts.
Let us begin by pointing out that we find Deep Learning important.

PREFACE

xxvi

Finally, you will learn how to build an image-captioning network that combines
image and language processing. This network takes an image as an input and
automatically generates a natural language description of the image.

What we just described represents the main narrative of LDL. Throughout this
journey, you will learn many other details. In addition, we end with a medley of
additional important topics. We also provide appendixes that dive deeper into a
collection of the discussed topics.

Airplane

Automobile

Bird

Cat

Deer

Dog

Frog

Horse

Ship

Truck

Figure P-1 Categories and example images from the CIFAR-10 dataset
(Krizhevsky, 2009). This dataset will be studied in more detail in Chapter 7.
(Image source: https://www.cs.toronto.edu/~kriz/cifar.html)

Figure P-2 A neural network translator that takes a sentence in English as input
and produces the corresponding sentence in French as output

I am a student Je suis étudiant
Deep
Neural

Network

https://www.cs.toronto.edu/~kriz/cifar.html

PREFACE

xxvii

What Is Deep Learning?
We do not know of a crisp definition of what DL is, but one attempt is that DL is
a class of machine learning algorithms that use multiple layers of computational
units where each layer learns its own representation of the input data. These
representations are combined by later layers in a hierarchical fashion. This definition
is somewhat abstract, especially given that we have not yet described the concept
of layers and computational units, but in the first few chapters, we provide many
more concrete examples of what this means.

A fundamental part of DL is the deep neural network (DNN), a namesake of
the biological neuron, by which it is loosely inspired. There is an ongoing
debate about how closely the techniques within DL do mimic activity in a
brain, where one camp argues that using the term neural network paints the
picture that it is more advanced than it is. Along those lines, they recommend
using the terms unit instead of artificial neuron and just network instead of
neural network. No doubt, DL and the larger field of artificial intelligence (AI)
have been significantly hyped in mainstream media. At the time of writing this
book, it is easy to get the impression that we are close to creating machines
that think like humans, although lately, articles that express some doubt are
more common. After reading this book, you will have a more accurate view of
what kind of problems DL can solve. In this book, we choose to freely use the
words neural network and neuron but recognize that the algorithms presented
are more tied to machine capabilities than to how an actual human brain
works.

In this book, we use red text boxes like this one when we feel the urge to state
something that is somewhat beside the point, a subjective opinion or of similar
nature. You can safely ignore these boxes altogether if you do not find them
adding any value to your reading experience.

Let us dive into this book by stating the opinion that it is a little bit of a buzz
killer to take the stance that our cool DNNs are not similar to the brain. This is
especially true for somebody picking up this book after reading about machines
with superhuman abilities in the mainstream media. To keep the illusion alive,
we sometimes allow ourselves to dream a little bit and make analogies that
are not necessarily that well founded, but to avoid misleading you, we try not to
dream outside of the red box.

PREFACE

xxviii

To put DL and DNNs into context, Figure P-3 shows how they relate to the machine
learning (ML) and AI fields. DNN is a subset of DL. DL in turn is a subset of the
field of ML, which in turn is a subset of the greater field of AI.

In this book, we choose not to focus too much on the exact definition of DL and
its boundaries, nor do we go into the details of other areas of ML or AI. Instead,
we focus on details of what DNNs are and the types of tasks to which they can
be applied.

Brief History of Deep Neural Networks
In the last couple of sections, we loosely referred to networks without describing
what a network is. The first few chapters in this book discuss network
architectures in detail, but at this point, it is sufficient to think of a network as

Deep neural network (DNN) is a subset of DL.

DL is a subset of machine learning (ML), which is a subset of artificial
intelligence (AI).

Figure P-3 Relationship between artificial intelligence, machine learning, deep
learning, and deep neural networks. The sizes of the different ovals do not
represent the relative size of one field compared to another.

Artificial intelligence
(AI)

Machine learning
(ML)

Deep learning
(DL)

Deep Neural Networks
(DNN)

PREFACE

xxix

an opaque system that has inputs and outputs. The usage model is to present
something, for example, an image or a text sequence, as inputs to the network,
and the network will produce something useful on its outputs, such as an
interpretation of what the image contains, as in Figure P-4, or a natural language
translation in a different language, as was shown in Figure P-2.

As previously mentioned, a central piece of a neural network is the artificial neuron.
The first model of an artificial neuron was introduced in 1943 (McCulloch and Pitts,
1943), which started the first wave of neural network research. The McCulloch
and Pitts neuron was followed in 1957 by the Rosenblatt perceptron (Rosenblatt,
1958). A key contribution from the perceptron was its associated automated
learning algorithm that demonstrated how a system could learn desired behavior.
Details of how the perceptron works are found in Chapter 1. The perceptron has
some fundamental limitations, and although it was shown that these limitations
can be overcome by combining multiple perceptrons into a multilayer network, the
original learning algorithm did not extend to multilayer networks. According to a
common narrative, this resulted in neural network research falling out of fashion.
This is often referred to as the first AI winter, which was allegedly caused by a book
by Minsky and Papert (1969). In this book, they raised the absence of a learning
algorithm for multilayer networks as a serious concern.

This topic and narrative are controversial. Olazaran (1996) has studied whether
the statements of Minsky and Papert had been misrepresented. Further,
Schmidhuber (2015) pointed out that there did exist a learning algorithm for
multilevel networks (Ivakhnenko and Lapa, 1965) four years before the book by
Minsky and Papert was published.

Figure P-4 A deep neural network as an opaque system that can take an image as
an input and then output an indication of what type of object is in the image

Opaque
system

Dog

We note that in the days of Rosenblatt’s publications, they were certainly
not shy about comparing their work with the human brain. In reading about
the Rosenblatt perceptron (Rosenblatt, 1958), we see that the first paper he
references is called “Design for a Brain.”

PREFACE

xxx

The second wave of neural network research was initiated in the 1980s. It was
heavily influenced by a paper that described the backpropagation algorithm for
automatic training of multilayer networks (Rumelhart et al., 1986). Rumelhart
and colleagues showed that this algorithm could be used to overcome the
limitations of the perceptron. In the study, they explicitly pointed out that they
believed this addressed the concerns raised by Minsky and Papert. Rumelhart
and colleagues popularized the backpropagation algorithm in the context
of neural networks, but it was not the first occurrence of the algorithm in
the literature. The algorithm was applied to a similar problem domain in
1970 (Linnainmaa, 1970). Werbos (1981) described it in the context of neural
networks in 1981.

Details of how this algorithm works are found in Chapter 3. An important
outcome of this second wave of neural network research was the development
of LeNet in 1989. It was a convolutional neural network (CNN), which was shown
to be able to recognize handwritten zip codes (LeCun et al., 1990). It built on
Fukushima’s Neocognitron (Fukushima, 1980), which we believe is the first
published CNN.

An enhanced version of LeNet was later used by major US banks to read
handwritten checks, and it thereby became one of the first big commercial
applications of neural networks. Convolutional neural networks are described in
detail in Chapter 7. Despite the progress, neural networks fell out of fashion yet
again, partly because the limited computational capability at the time prevented
the networks from scaling to larger problems and partly because other traditional
ML approaches were perceived as better alternatives.

The third wave of neural network research was enabled by a combination of
algorithmic progress, availability of massive datasets, and the ability to use
graphics processing units (GPU) for general purpose computing. From an outsider
perspective, all this came together in 2012. At that point, the field had been
rebranded as DL and was popularized in large part due to AlexNet (Krizhevsky
et al., 2012), which was a CNN that scored significantly higher than any other
participant in a computer vision competition known as the ImageNet challenge.

In reality, this third wave was enabled by persistent research groups who had
continued to perform neural network research in the 1990s and first decade
of the 2000s. These insiders started using the term deep networks in 2006.
Further, the ImageNet challenge was not the first competition in which neural
networks, some of which were GPU accelerated, beat more traditional techniques.

PREFACE

xxxi

For example, Graves and colleagues (2009) won competitions in handwriting
recognition with a neural network in 2009. Similarly, Ciresan and colleagues
(2011) used a GPU accelerated network for image classification in 2011.

This work was shortly followed by similar breakthroughs in other fields, which
have led to the DL boom that is still ongoing as of the writing of this book. The rest
of this book will describe some of these key findings and how they can be applied
in practice. For a more detailed description of the history of DL, we recommend
Schmidhuber’s (2015) overview.

Is This Book for You?
There are already many books on this topic, and different people like to
approach subjects in different ways. In this book, we try to cut to the chase
while still providing enough background to give you a warm fuzzy feeling that
you understand why the techniques work. We decided to not start the book with
an overall introduction to the field of traditional ML. Although we believe that
anybody who wants to get serious about DL needs to also master traditional
ML, we do not believe that it is necessary to first learn about traditional ML
before learning the basics of DL. We even believe that having to first get through
multiple chapters that do not directly discuss DL can be a barrier to entry for
many people.

In this book, we use yellow text boxes like this one to highlight things that
we otherwise do not discuss or explore in detail but nonetheless think are
important for you to learn at some point. We believe that an important part of
learning about a new topic is to not only acquire some basic skills but also get
some insights into what the next steps are. We use the yellow boxes to signal
to you that at this point it is perfectly fine to ignore a certain topic, but it will be
important to learn as a next step.

Let us now begin by stating that it is important to know about traditional ML if
you want to get serious about DL, but you can wait to learn about traditional ML
until you have gotten a taste of DL.

PREFACE

xxxii

Apart from deciding whether to include traditional ML as a topic, any author of a
book on DL needs to take a position on whether to include code examples and how
deeply to dive into the mathematics. Our view is that because DL is an applied
field, a book on this topic needs to contain a good mix of theory and practice,
so code examples are necessary. We also believe that many topics in DL are
inherently mathematical, and it is necessary to include some of the mathematics
to provide a good description of how things work. With that background, we try to
describe certain concepts from different angles using a good mix of elements:

• Figures

• Natural language (English) descriptions

• Programming code snippets

• Mathematical formulas

Readers who master all of the preceding might find some descriptions redundant,
but we believe that this is the best way of making the book accessible to a large
audience.

This book does not aim to include details about all the most recent and advanced
techniques in the DL field. Instead, we include concepts and techniques that we
believe are fundamental to understanding the latest developments in the field.
Some of the appendixes describe how some major architectures are built on
these concepts, but most likely, even better architectures will emerge. Our goal is
to give you enough knowledge to enable you to continue learning by reading more
recent research papers. Therefore, we have also decided to sprinkle references
throughout the book to enable you to follow up on topics that you find extra

Not starting the book with traditional ML techniques is an attempt to avoid one
of the buzz killers that we have found in other books. One very logical, and
therefore typical, way of introducing DL is to first describe what ML is and,
as such, to start with a very simple ML technique, namely, linear regression.
It is easy, as an excited beginner, to be a little disheartened when you expect
to learn about cool techniques to classify cat images and instead get stuck
reading a discussion about fitting a straight line to a set of random data points
using mathematics that seem completely unrelated to DL. We instead try to
take the quickest, while still logical, path to getting to image classification to
provide you with some instant satisfaction, but you will notice that we still
sneak in some references and comparisons to linear regression over time.

PREFACE

xxxiii

interesting. However, it has been our intention to make the book self-contained
so that you should never need to look up a reference to be able to follow the
explanations in the book. In some cases, we include references to things that we
do not explain but mention only in passing. In those cases, we try to make it clear
that it is meant as future reading instead of being a central element of the book.

Is DL Dangerous?
There are plenty of science fiction books and movies that depict AI as a threat
against humanity. Machines develop a form of consciousness and perceive
humans as a threat and therefore decide to destroy us. There have also been
thought experiments about how an AI accidentally destroys the human species as
a side effect of trying to deliver on what it is programmed to do. One example is
the paperclip maximizer (Bostrom, 2003), which is programmed with the goal of
making as many paper clips as possible. In order to do so, it might kill all human
beings to free up atoms needed to make paper clips. The risk that these exact
scenarios will play out in practice is probably low, but researchers still see future
powerful AIs as a significant risk.

More urgently, DL has already been shown to come with serious unintended
consequences and malignant use. One example is a study of a commercially
available facial recognition system (Buolamwini and Gebru, 2018) used by law
enforcement. Although the system achieved 99% accuracy on lighter-skinned
men, its accuracy on darker-skinned women was only 65%, thereby putting them
at much greater risk of being incorrectly identified and possibly wrongly accused
of crimes. An example of malignant use of DL is fake pornography (Dickson, 2019)
whereby the technology is used to make it appear as if a person (often a celebrity)
is featured in a pornographic video.

DL learns from data created by humans and consequently runs the risk of
learning and even amplifying human biases. This underscores the need for
taking a responsible approach to DL and AI. Historically, this topic has largely
been neglected, but more recently started to receive more attention. A powerful
demonstration can be found on the website of the Algorithmic Justice League
(Buolamwini, n.d.) with a video showing how a face detection system fails to detect
the face of a dark-skinned woman (Buolamwini) until she puts on a white mask.

The references in the book are strictly for future reading and should not be
necessary to read to be able to understand the main topics of the book.

PREFACE

xxxiv

Another example is the emergence of algorithmic auditing, where researchers
identify and report human biases and other observed problems in commercial
systems (Raji and Buolamwini, 2019). Researchers have proposed to document
known biases and intended use cases of any released system to mitigate these
problems. This applies both to the data used to create such systems (Gebru, et al.,
2018) and to the released DL model itself (Mitchell et al., 2018). Thomas suggests a
checklist of questions to guide DL practitioners throughout the course of a project
to avoid ethical problems (Thomas, 2019). We touch on these topics throughout the
book. We also provide resources for further reading in Chapter 18.

Choosing a DL Framework
As a practitioner of DL, you will need to decide what DL framework to use. A DL
framework provides functionality that handles much of the low-level details
when implementing DL models. Just as the DL field is rapidly evolving, so are the
different frameworks. To mention a few, Caffe, Theano, MXNet, Torch, TensorFlow,
and PyTorch have all been influential throughout the current DL boom. In addition
to these full-fledged frameworks, there are specialized frameworks such as Keras
and TensorRT. Keras is a high-level API that makes it easier to program for some of
these frameworks. TensorRT is an inference optimizer and runtime engine that can
be used to run models built and trained by many of the mentioned frameworks.

As of the writing of this book, our impression is that the two most popular full-
fledged frameworks are TensorFlow and PyTorch, where TensorFlow nowadays
includes native support for the Keras API. Another significant framework is
MXNet. Models developed in either of these frameworks can be deployed using
the TensorRT inference engine.

Deciding on what DL framework to use can be viewed as a life-changing
decision. Some people would say that it is comparable to choosing a text
editor or a spouse. We do not share that belief but think that the world is big
enough for multiple competing solutions. We decided to provide programming
examples in both TensorFlow and PyTorch for this book. The TensorFlow
examples are printed in the book itself, but equivalent examples in PyTorch,
including detailed descriptions, can be found on the book’s website. We suggest
that you pick a framework that you like or one that makes it easy to collaborate
with people you interact with.

PREFACE

xxxv

The programming examples in this book are provided in a TensorFlow version
using the Keras API (printed in the book) as well as in a PyTorch version (online).
Appendix I contains information about how to install TensorFlow and PyTorch,
as well as a description of some of the key differences between the two
frameworks.

Prerequisites for Learning DL
DL combines techniques from a number of different fields. If you want to get
serious about DL, and particularly if you want to do research and publish your
findings, over time you will need to acquire advanced knowledge within the scope
of many of these skillsets. However, we believe that it is possible to get started
with DL with little or partial knowledge in these areas. The sections that follow
list the areas we find important, and in each section, we list the minimum set of
knowledge that we think you need in order to follow this book.

STATISTICS AND PROBABILITY THEORY

Many DL problems do not have exact answers, so a central theme is probability
theory. As an example, if we want to classify objects in an image, there is often
uncertainty involved, such as how certain our model is that an object of a specific
category, such as a cat, is present in the picture. Further, we might want to
classify the type of cat—for example, is it a tiger, lion, jaguar, leopard, or snow
leopard? The answer might be that the model is 90% sure that it is a jaguar, but
there is a 5% probability that it is a leopard and so on. This book does not require
deep knowledge in statistics and probability theory. We do expect you to be able
to compute an arithmetic mean and understand the basic concept of probability.
It is helpful, although not strictly required, if you know about variance and how to
standardize a random variable.

LINEAR ALGEBRA

As you will learn in Chapter 1, the fundamental building block in DL is based on
calculating a weighted sum of variables, which implies doing many additions
and multiplications. Linear algebra is a field of mathematics that enables us to

PREFACE

xxxvi

describe such calculations in a compact manner. This book frequently specifies
formulas containing vectors and matrices. Further, calculations involve

• Dot products

• Matrix-vector multiplications

• Matrix-matrix multiplications

If you have not seen these concepts in the past, you will need to learn about them
to follow the book. However, Chapter 1 contains a section that goes through these
concepts. We suggest that you read that first and then assess whether you need
to pick up a book about linear algebra.

CALCULUS

As you will learn in Chapters 2 and 3, the learning part in DL is based on
minimizing the value of a function known as a loss function or error function. The
technique used to minimize the loss function builds on the following concepts
from calculus:

• Computing the derivative of a function of a single variable

• Computing partial derivatives of a function of multiple variables

• Calculating derivatives using the chain rule of calculus

However, just as we do for linear algebra, we provide sections that go through the
basics of these concepts. These sections are found in Chapters 2 and 3.

NUMERICAL METHODS FOR CONSTRAINED AND UNCONSTRAINED
OPTIMIZATION

In DL, it is typically not feasible to find an analytical solution when trying to
minimize the loss function. Instead, we rely on numerical optimization methods.
The most prevalent method is an iterative method known as gradient descent.
It is helpful if you already know something about iterative methods and finding
extreme points in continuous functions. However, we do not require prior
knowledge of gradient descent, and we describe how it works before using it in
Chapter 3.

PREFACE

xxxvii

PYTHON PROGRAMMING

It is hard to do anything except specific DL applications without some
knowledge about programming in general. Further, given that the most
popular DL frameworks are based on Python, it is highly recommended to
acquire at least basic Python skills to enable trying out and modifying code
examples. There are many good books on the topic of programming, and
if you have basic programming skills, it should be relatively simple to get
started with Python by just following tutorials at python.org. It is possible for
nonprogrammers to read this book and just skip the coding sections, but if you
intend to apply your DL skills in practice, you should learn the basics of Python
programming.

You do not need to learn everything about Python to get started with DL. Many
DL applications use only a small subset of the Python language, extended with
heavy use of domain-specific DL frameworks and libraries. In particular, many
introductory examples make little or no use of object-oriented programming
constructs. A specific module that is used frequently is the NumPy (numerical
Python) module that, among other things, provides data types for vectors and
matrices. It is also common to use pandas (Python Data Manipulation Library)
to manipulate multidimensional data, but we do not make use of pandas in
this book.

The following Python constructs are frequent in most of the code examples in
the book:

• Integer and floating point datatypes

• Lists and dictionaries

• Importing and using external packages

• NumPy arrays

• NumPy functions

• If-statements, for-loops, and while-loops

• Defining and calling functions

• Printing strings and numerical datatypes

http://python.org

PREFACE

xxxviii

• Plotting data with matplotlib

• Reading from and writing to files

In addition, many of the programming examples rely on constructs provided by
a DL framework (TensorFlow in the book and PyTorch provided online). There is
no need to know about these frameworks up front. The functionality is gradually
introduced in the descriptions of the code examples. The code examples become
progressively harder throughout the book, so if you are a beginner to coding, you
will need to be prepared to spend some time honing your coding skills in parallel
with reading the book.

DATA REPRESENTATION

Much of the DL mechanics are handled by highly optimized ML frameworks.
However, your input data first needs to be converted into suitable formats that can
be consumed by these frameworks. As such, you need to know something about
the format of the data that you will use and, when applicable, how to convert it
into a more suitable format. For example, for images, it is helpful to know the
basics about RGB (red, green, blue) representation. Similarly, for the cases that
use text as input data, it is helpful to know something about how characters are
represented by a computer. In general, it is good to have some insight into how
raw input data is often of low quality and needs to be cleaned. You will often
find missing or duplicated data entries, timestamps from different time zones,
and typos originating from manual processing. For the examples in this book,
this is typically not a problem, but it is something you need to be aware of in a
production setting.

About the Code Examples
You will find much overlap between the code examples in this book and code
examples found in online tutorials as well as in other DL books (e.g., Chollet 2018;
Glassner, 2018). Many of these examples have evolved from various published
research papers in combination with publicly available datasets. (Datasets are
described in more detail in Chapter 4.) In other words, we want to stress that we
have not made up these examples from scratch, but they are heavily inspired by
previously published work. However, we have done the actual implementation
of these examples, and we have put our own touch on them to follow the
organization of this book.

PREFACE

xxxix

The longer code examples are broken up into smaller pieces and presented step
by step interspersed throughout the text in the book. You should be able to just
copy/paste or type each code snippet into a Python interpreter, but it is probably
better to just put all code snippets for a specific code example in a single file and
execute in a noninteractive manner. The code examples are also available for
download both as regular Python files and as Jupyter notebooks at https://github
.com/NVDLI/LDL/. See Appendix I for more details.

In most chapters, we first present a basic version of a code example, and then we
present results for variations of the program. We do not provide the full listings
for all variations, but we try to provide all the necessary constructs in the book to
enable you to do these variations yourself.

DL algorithms are based on stochastic optimization techniques. As such, the
results from an experiment may vary from time to time. That is, when you run a
code example, you should not expect to get exactly the same result that is shown
in the book. However, the overall behavior should be the same.

Another thing to note is that the chosen format, where we intersperse code
throughout the book and explain each snippet, results in certain restrictions, such
as minimizing the length of each program, and we have also tried to maintain

Modifying the code is left as an exercise for the reader. Hah, we finally got to
say that!

Seriously, we do believe that modifying existing code is a good way of getting
your hands dirty. However, there is no need to exactly recreate the variations
we did. If you are new to programming, you can start with just tweaking
existing parameter values instead of adding new code. If you already have more
advanced coding skills, you can consider defining your own experiments based
on what you find extra interesting.

We were tempted to not provide downloadable versions of the code examples
but instead force you to type them in yourself. After all, that is what we had to
do in the 1980s when typing in a code listing from a computer magazine was
a perfectly reasonable way of obtaining a new game. The youth of today with
their app stores simply do not know how lucky they are.

https://github.com/NVDLI/LDL/
https://github.com/NVDLI/LDL/

PREFACE

xl

a linear flow and to not heavily modularize the code into classes and functions
in most cases. Thus, instead of using sound coding practices to make the code
examples easy to extend and maintain, focus is on keeping the examples small
and readable.

Another thing to consider is what kind of development environment is needed to
follow this book. In our opinion, anybody who wants to do serious work in DL will
need to get access to a hardware platform that provides specific acceleration for
DL—for example, a suitable graphics processing unit (GPU). However, if you do not
have access to a GPU-based platform just yet, the code examples in the first few
chapters are small enough to be run on a somewhat modern central processing
unit (CPU) without too much pain. That is, you can start with a vanilla setup using
the CPU for the first few chapters and then spend the resources needed to get
access to a GPU-accelerated platform1 when you are getting to Chapter 7.

Instructions on how to set up a machine with the necessary development
environment can be found in Appendix I, which also contains links to the code
examples and datasets used in this book.

How to Read This Book
This book is written in a linear fashion and is meant to be read from beginning
to end. We introduce new concepts in each chapter and frequently build on and
refer back to discussions in previous chapters. It is often the case that we try
to avoid introducing too many new concepts at once. This sometimes results in
logically similar concepts being introduced in different chapters. However, we do
sometimes take a step back and try to summarize a group of related techniques
once they have all been introduced. You will see this for hidden units in Chapter 5,

1. Nothing prevents you from running all programming examples on a CPU, but in some cases, you
might need to do it overnight.

Medium term, you should get access to a GPU accelerated platform, but you can
live with a standard CPU for the beginning of the book.

That is a lame excuse for writing ugly code, but whatever works. . .

PREFACE

xli

output units in Chapter 6, and techniques to address vanishing and exploding
gradients in Chapter 10.

Readers who are complete beginners to neural networks and DL (the core target
audience of the book) will likely find the first four chapters more challenging to
get through than the remainder of the book. We introduce many new concepts.
There is a fair amount of mathematical content, and we implement a neural
network from scratch in Python. We encourage you to still try to get through these
four chapters, but we also think it is perfectly fine to skim through some of the
mathematical equations if you find them challenging. In Chapter 5, we move on
to using a DL framework, and you will find that it will handle many of the details
under the hood, and you can almost forget about them.

APPENDIXES

This book ends with a number of appendixes. Appendixes A through D could have
been included as regular chapters in the book. However, we wanted to avoid
information overload for first-time readers. Therefore, we decided to put some
of the material in appendixes instead because we simply do not think that you
need to learn those concepts in order to follow the narrative of the book. Our
recommendation if you are a complete beginner to ML and DL is to read these
appendixes last.

If you feel that you already know the basics about ML or DL, then it can make
sense for you to read the first four appendixes interspersed among other
chapters during your first pass through the book. Appendix A can be read after
Chapter 3. Appendix B logically follows Chapter 8. Appendix C naturally falls after
Chapter 13. Finally, Appendix D extends topics presented in Chapter 15.

Alternatively, even if you are a beginner but want to learn more details about a
specific topic, then do go ahead and read the appendix that relates to that topic in
the order just presented.

Appendixes E through H are shorter and focus on providing background or
additional detail on some very specific topics. Appendix I describes how to set
up a development environment and how to access the programming examples.
Appendix J contains cheat sheets that summarize many of the concepts described
throughout the book.2

2. Larger versions of these cheat sheets can be downloaded from http://informit.com/
title/9780137470358.

http://informit.com/title/9780137470358
http://informit.com/title/9780137470358

PREFACE

xlii

GUIDANCE FOR READERS WHO DO NOT WANT TO READ ALL OF
THIS BOOK

We recognize that some readers want to read this book in a more selective
manner. This can be the case if you feel that you already have some of the
basic skills or if you just want to learn about a specific topic. In this section, we
provide some pointers for such readers, but this also means that we use some
terminology that has not yet been introduced. If you are not interested in cherry
picking chapters to read, then feel free to skip this section.

Figure P-5 illustrates three different envisioned tracks to follow depending on
your interests. The leftmost track is what we just described, namely, to read the
book from beginning to end.

If you are very interested in working with images and computer vision,
we suggest that you read Appendix B about object detection, semantic
segmentation, and instance segmentation. Further, the last few chapters of the
book focus on natural language processing, and if that does not interest you,
then we suggest that you skip Chapters 12 through 17. You should still skim
Chapters 9 through 11 about recurrent neural networks. This track is shown in
the middle of the figure.

If you want to focus mostly on language processing, then you can select the
rightmost track. We suggest that you just skim Chapter 8 but do pay attention
to the description of skip connections because it is referenced in later chapters.
Then read Chapters 9 through 13, followed by Appendix C, then Chapters 14 and
15, and conclude with Appendix D. These appendixes contain additional content
about word embeddings and describe GPT and BERT, which are important
network architectures for language processing tasks.

Overview of Each Chapter and Appendix
This section contains a brief overview of each chapter. It can safely be skipped if
you just want to cut to the chase and get started with LDL!

CHAPTER 1 – THE ROSENBLATT PERCEPTRON

The perceptron, a fundamental building block of a neural network, is introduced.
You will learn limitations of the perceptron, and we show how to overcome

PREFACE

xliii

Figure P-5 Three different tracks to follow when reading this book

Chapters 8: Well known
deeper convolutional
networks. Consider
reading Appendix B:

Detection and
Segmentation.

Chapters 9 – 11:
Recurrent neural

networks and time series
prediction.

Chapters 9 – 11:
Recurrent neural

networks and time series
prediction.

Chapters 12 – 13: Basic
word embeddings.
Consider reading

Appendix C: Additional
word embeddings.

Chapters 14 – 15: Neural
language translation,

attention, and the
Transformer. Consider

reading Appendix D: GPT,
BERT, and RoBERTa.

Generic track

Computer
vision
track

Chapters 1 – 4: Basic
neural networks.
Consider reading

Appendix A about linear
regression and classifiers

after Chapter 3.

Chapters 5 – 6: Get
started with DL

framework. Techniques
enabling DL.

Appendix B: Object
detection, semantic
segmentation and

instance segmentation.

Language
processing

track
Just skim Chapter 8: Well

known deeper
convolutional networks.

Chapters 12 – 13: Basic
word embeddings.

Chapters 14 – 15: Neural
language translation,

attention, and the
Transformer.

Appendix D: GPT, BERT,
 and RoBERTa.

Chapter 7: Convolutional
neural networks and
image classification.

Chapter 18: Next steps.

Consider skipping or
skimming depending
on prior knowledge.

Appendix C: Additional
word embeddings.

Just skim Chapters 9 – 11:
Recurrent neural

networks and time series
prediction.

Chapter 16: Image
captioning.

Chapter 16: Image
captioning.

Chapter 17: Mix of
additional topics.

PREFACE

xliv

these limitations by combining multiple perceptrons into a network. The chapter
contains some programming examples of how to implement a perceptron and its
learning algorithm.

CHAPTER 2 – GRADIENT-BASED LEARNING

We describe an optimization algorithm known as gradient descent and the theory
behind the perceptron learning algorithm. This is used as a stepping-stone in the
subsequent chapter that describes the learning algorithm for multilevel networks.

CHAPTER 3 – SIGMOID NEURONS AND BACKPROPAGATION

We introduce the backpropagation algorithm that is used for automatic learning
in DNNs. This is both described in mathematical terms and implemented as a
programming example used to do binary classification.

CHAPTER 4 – FULLY CONNECTED NETWORKS APPLIED TO
MULTICLASS CLASSIFICATION

This chapter describes the concept of datasets and how they can be divided into a
training set and a test set. It also touches on a network’s ability to generalize. We
extend the neural network architecture to handle multiclass classification, and
the programming example then applies this to the task of classifying handwritten
digits. This programming example is heavily inspired by an example created by
Nielsen (2015).

CHAPTER 5 – TOWARD DL: FRAMEWORKS AND NETWORK TWEAKS

The example from the previous chapter is reimplemented using a DL framework.
We show how this framework vastly simplifies the code and enables us to model
many variations on our network. Chapter 5 also introduces many techniques that
are needed to enable training of deeper networks.

CHAPTER 6 – FULLY CONNECTED NETWORKS APPLIED TO
REGRESSION

In this chapter, we study how a network can be used to predict a numerical value
instead of classification problems studied in previous chapters. We do this with
a programming example in which we apply the network to a regression problem

PREFACE

xlv

where we are trying to predict sales prices of houses based on a number of
variables.

CHAPTER 7 – CONVOLUTIONAL NEURAL NETWORKS APPLIED TO
IMAGE CLASSIFICATION

You will learn about the one type of network that initiated the DL boom in 2012,
namely, the convolutional neural network, or just convolutional network. A CNN
can be used in multiple problem domains, but it has been shown to be especially
effective when applied to image classification/analysis. We explain how it works
and walk through a programming example that uses a CNN to classify a more
complex image dataset. In this example, instead of just distinguishing between
different handwritten digits, we identify more complex object classes such as
airplanes, automobiles, birds, and cats.

CHAPTER 8 – DEEPER CNNs AND PRETRAINED MODELS

Here we describe deeper CNNs such as GoogLeNet, VGG, and ResNet. As
a programming example, we show how to download a pretrained ResNet
implementation and how to use it to classify your own images.

CHAPTER 9 – PREDICTING TIME SEQUENCES WITH RECURRENT
NEURAL NETWORKS

One limitation of the networks described in the previous chapters is that they
are not well suited to handle data of different input lengths. Important problem
domains such as text and speech often consist of sequences of varying lengths.
This chapter introduces the recurrent neural network (RNN) architecture, which
is well suited to handle such tasks. We use a programming example to explore
how this network architecture can be used to predict the next data point in a time
series.

CHAPTER 10 – LONG SHORT-TERM MEMORY

We discuss problems that prevent RNNs from learning long-term dependencies.
We describe the long short-term memory (LSTM) technique that enables better
handling of long sequences.

PREFACE

xlvi

CHAPTER 11 – TEXT AUTOCOMPLETION WITH LSTM AND BEAM
SEARCH

In this chapter, we explore how to use LSTM-based RNNs for longer-term
prediction and introduce a concept known as beam search. We illustrate it with
a programming example in which we build a network that can be used for
autocompletion of text. This is a simple example of natural language generation
(NLG), which is a subset of the greater field of natural language processing (NLP).

CHAPTER 12 – NEURAL LANGUAGE MODELS AND WORD
EMBEDDINGS

The example in the previous chapter is based on individual characters instead of
words. In many cases, it is more powerful to work with words and their semantics
instead of working with individual characters. Chapter 12 introduces the concepts
language models and word encodings in a vector space (also known as embedding
space) that can be used to capture some important relationships between words.
As code examples, we extend our autocompletion example to work with words
instead of characters and explore how to create word vectors in an embedding
space. We also discuss how to build a model that can do sentiment analysis on
text. This is an example of natural language understanding (NLU), which is yet
another subfield of NLP.

CHAPTER 13 – WORD EMBEDDINGS FROM word2vec AND GloVe

In this chapter, we discuss two popular techniques for creating word embeddings.
We download a set of existing embeddings and show how they capture various
semantic relationships between words.

CHAPTER 14 – SEQUENCE-TO-SEQUENCE NETWORKS AND NATURAL
LANGUAGE TRANSLATION

At this point, we introduce a network known as a sequence-to-sequence network,
which is a combination of two recurrent neural networks. A key property of such
a network is that its output sequence can be of a different length than the input
sequence. We combine this type of network with the word encodings studied in
the previous chapter. We build a natural language translator that takes a word
sequence in one language (e.g., French) as an input and outputs a word sequence
in a different language (e.g., English). Further, the output might be a different
number of words and in a different word order than the input word sequence. The

PREFACE

xlvii

sequence-to-sequence model is an example of an architecture known as encoder-
decoder architecture.

CHAPTER 15 – ATTENTION AND THE TRANSFORMER

In this chapter, we describe a technique known as attention, which can improve
the accuracy of encoder-decoder architectures. We describe how it can be used
to improve the neural machine translator from the previous chapter. We also
describe the attention-based Transformer architecture. It is a key building block
in many NLP applications.

CHAPTER 16 – ONE-TO-MANY NETWORK FOR IMAGE CAPTIONING

We describe in this chapter how a one-to-many network can be used to create
textual descriptions of images and how to extend such a network with attention.
A programming example implements this image-captioning network and
demonstrates how it can be used to generate textual descriptions of a set of
pictures.

CHAPTER 17 – MEDLEY OF ADDITIONAL TOPICS

Up until this point, we have organized topics so that they build on each other. In
this chapter, we introduce a handful of topics that we did not find a good way of
including in the previous chapters. Examples of such topics are autoencoders,
multimodal learning, multitask learning, and neural architecture search.

CHAPTER 18 – SUMMARY AND NEXT STEPS

In the final chapter, we organize and summarize the topics discussed in earlier
chapters to give you a chance to confirm that you have captured the key concepts
described in the book. In addition to the summary, we provide some guidance to
future reading tailored according to the direction you want to take—for example,
highly theoretical versus more practical. We also discuss the topics of ethical AI
and data ethics.

APPENDIX A – LINEAR REGRESSION AND LINEAR CLASSIFIERS

The focus of this book is DL. Our approach to the topic is to jump straight into
DL without first describing traditional ML techniques. However, this appendix

PREFACE

xlviii

does describe very basic ML topics so you can get an idea of how some of the
presented DL concepts relate to more traditional ML techniques. This appendix
logically follows Chapter 3.

APPENDIX B – OBJECT DETECTION AND SEGMENTATION

In this appendix, we describe techniques to detect and classify multiple objects
in a single image. It includes both coarse-grained techniques that draw bounding
boxes around the objects and fine-grained techniques that pinpoint the individual
pixels in an image that correspond to a certain object. This appendix logically
follows Chapter 8.

APPENDIX C – WORD EMBEDDINGS BEYOND word2vec AND GloVe

In this appendix, we describe some more elaborate techniques for word
embeddings. In particular, these techniques can handle words that did not exist
in the training dataset. Further, we describe a technique that can handle cases
in which a word has a different meaning depending on its context. This appendix
logically follows Chapter 13.

APPENDIX D – GPT, BERT, AND RoBERTa

This appendix describes architectures that build on the Transformer. These
network architectures have resulted in significant improvements in many NLP
tasks. This appendix logically follows Chapter 15.

APPENDIX E – NEWTON-RAPHSON VERSUS GRADIENT DESCENT

In Chapter 2, we introduce a mathematical concept technique known as gradient
descent. This appendix describes a different method, known as Newton-Raphson,
and how it relates to gradient descent.

APPENDIX F – MATRIX IMPLEMENTATION OF DIGIT CLASSIFICATION
NETWORK

In Chapter 4, we include a programming example implementing a neural network
in Python code. This appendix describes two different optimized variations of that
programming example.

PREFACE

xlix

APPENDIX G – RELATING CONVOLUTIONAL LAYERS TO
MATHEMATICAL CONVOLUTION

In Chapter 7, we describe convolutional neural networks. They are based on,
and named after, a mathematical operation known as convolution. This appendix
describes this connection in more detail.

APPENDIX H – GATED RECURRENT UNITS

In Chapter 10, we describe a network unit known as long short-term memory
(LSTM). In this appendix, we describe a simplified version of this unit known as
gated recurrent unit (GRU).

APPENDIX I – SETTING UP A DEVELOPMENT ENVIRONMENT

This appendix contains information about how to set up a development
environment. This includes how to install a deep learning framework and where
to find the code examples. It also contains a brief section about key differences
between TensorFlow and PyTorch, which are the two DL frameworks used for the
code examples in this book.

APPENDIX J – CHEAT SHEETS

This appendix contains a set of cheat sheets that summarize much of the content
in this book. They are also available for download in a different form factor:
http://informit.com/title/9780137470358.

Register your copy of Learning Deep Learning on the InformIT site for convenient
access to updates and/or corrections as they become available. To start
the registration process, go to informit.com/register and log in or create an
account. Enter the product ISBN (9780137470358) and click Submit. Look
on the Registered Products tab for an Access Bonus Content link next to this
product, and follow that link to access any available bonus materials. If you
would like to be notified of exclusive offers on new editions and updates, please
check the box to receive email from us.

http://informit.com/title/9780137470358
http://informit.com/register

This page intentionally left blank

li

Acknowledgments

I am incredibly grateful for all help I have received in the process of writing this
book. I would like to extend my warmest gratitude to all of you:

• Eric Haines for reading this book front to back and providing guidance and
feedback throughout the whole process. Having had you as a sounding board
and discussion partner was invaluable.

• Ankit Patel and Amanda Lam for believing in me. Without any prior interaction
with me, you worked extra hours to figure out how to make this book happen.
Thank you for finding the perfect publisher, and thanks to Jenny Chen for
working out the agreement. Being represented by a professional team allowed
me to focus solely on the content of the book.

• Nick Cohron, Orazio Gallo, Boris Ginsburg, Samuli Laine, Ryan Prenger, Raul
Puri, Kevin Shih, and Sophie Tabac for providing expert feedback on the
material. All of your comments greatly improved the book.

• Aaron Beddes and Torbjörn Ekman for reading an early manuscript and
providing valuable feedback, which gave me confidence to engage all the
people above.

• Anders Landin, Feihui Li, Niklas Lindström, Jatin Mitra, Clint Olsen, Sebastian
Sylvan, and Johan Överby for pointing out various issues, both in the
manuscript and in the code examples.

• Andy Cook for your vision of how to tie the book to efforts within the NVIDIA
Deep Learning Institute, as well as your involvement in the cover art proposal,
together with Sandra Froehlich and Chris Strach. Sandra and Chris also
contributed with other aspects of style and branding. The original image of the
R.Eva Robot was designed by Gavriil Klimov and Gregor Kopka.

• Anima Anandkumar and Craig Clawson for writing the forewords.

ACKNOWLEDGMENTS

lii

• All people who Pearson involved in the publishing process, in particular Debra
Williams Cauley, Carol Lallier, Julie Nahil, Chuti Prasertsith, and Chris Zahn.

• Darrell Boggs for providing your support when I first introduced the idea of
starting this project. Further, the following NVIDIA colleagues all played a role
in making this happen by supporting the project or connecting me with the
right people: Tomas Akenine-Möller, Anima Anandkumar, Jonathan Cohen, Greg
Estes, Sanja Fidler, David Hass, Brian Kelleher, Will Ramey, and Mohammad
Shoeybi.

• The research community and other authors. This book does not contain original
ideas. Its focus is on describing published work from multiple sources in a
common framework. This would not have been possible without the original
publications as well as multiple books on the topic. I have done my best to list
all these sources in the bibliography.

Finally, I am grateful to my wife, Jennifer, and my children, Sebastian and Sofia,
for being understanding and enabling me to spend the time required to write this
book. I also want to give credit to our dog, Babette, and late cat, Stella, because I
used their pictures in various object classification examples.

liii

About the Author

Magnus Ekman, PhD, is a Director of Architecture at NVIDIA Corporation. His
doctorate is in computer engineering, and he holds multiple patents. He was
first exposed to artificial neural networks in the late 1990s in his native country,
Sweden. After some dabbling in evolutionary computation, he focused on
computer architecture and relocated to Silicon Valley, where he lives with his
wife, Jennifer, children, Sebastian and Sofia, and dog, Babette. He has previously
worked with processor design and R&D at Sun Microsystems and Samsung
Research America and has been involved in starting two companies, one of which
(Skout) was later acquired by The Meet Group, Inc. In his current role at NVIDIA,
he leads an engineering team working on CPU performance and power efficiency
for chips targeting markets ranging from autonomous vehicles to data centers for
artificial intelligence (AI).

As the deep learning (DL) field exploded in the past few years, fueled by NVIDIA’s
GPU technology and CUDA, Dr. Ekman found himself in the midst of a company
expanding beyond computer graphics and becoming a DL powerhouse. As a part
of that journey, he challenged himself to stay up to date with the most recent
developments in the field. He considers himself an educator, and in the process of
writing Learning Deep Learning (LDL) he partnered with the NVIDIA Deep Learning
Institute (DLI), which offers hands-on training in AI, accelerated computing, and
accelerated data science. He is thrilled about DLI’s plans to add LDL to its existing
portfolio of self-paced online courses; live, instructor-led workshops; educator
programs; and teaching kits.

This page intentionally left blank

1

Chapter 1

The Rosenblatt
Perceptron

This chapter describes the Rosenblatt perceptron and shows how it can be used.
Chapters 3 and 5 describe how the perceptron has been modified over time to
enable more advanced networks. The perceptron is an artificial neuron, that is, a
model of a biological neuron. Therefore, it makes sense to first briefly describe
the parts of a biological neuron, as shown in Figure 1-1.

A biological neuron consists of one cell body, multiple dendrites, and a single
axon. The connections between neurons are known as synapses. The neuron
receives stimuli on the dendrites, and in cases of sufficient stimuli, the neuron
fires (also known as getting activated or excited) and outputs stimulus on its

Figure 1-1 A biological neuron (Source: Glassner, A., Deep Learning: From Basics
to Practice, The Imaginary Institute, 2018.)

ChAPTER 1 ThE RoSEnBLATT PERCEPTRon

2

axon, which is transmitted to other neurons that have synaptic connections to
the excited neuron. Synaptic signals can be excitatory or inhibitory; that is, some
signals can prevent a neuron from firing instead of causing it to fire.

The perceptron consists of a computational unit, a number of inputs (one of which is
a special bias input, which is detailed later in this chapter), each with an associated
input weight and a single output. The perceptron is shown in Figure 1-2.

The inputs are typically named x
0
, x

1
, . . ., x

n
 in the case of n general inputs (x

0
 being

the bias input), and the output is typically named y. The inputs and output loosely
correspond to the dendrites and the axon. Each input has an associated weight
(w

i
, where i = 0, . . ., n), which historically has been referred to as synaptic weight

because it in some sense represents how strong the connection is from one neuron
to another, but nowadays it is typically just called weight or input weight. For the
perceptron, the output can take on only one of two values, −1 or 1, but this constraint
will be relaxed to a range of real values for other types of artificial neurons
discussed in later chapters. The bias input is always 1. Each input value is multiplied
by its corresponding weight before it is presented to the computational unit (the
dashed rectangle with rounded corners in Fig. 1-2), which loosely corresponds to
the cell body of a biological neuron.1 The computational unit computes the sum of
the weighted inputs and then applies a so-called activation function, y = f(z), where z
is the sum of the weighted inputs. The activation function for a perceptron is the sign
function, also known as the signum function,2 which evaluates to 1 if the input is 0 or
higher and −1 otherwise. The sign function is shown in Figure 1-3.

1. hereafter, we do not discuss biological neurons, so any future reference to a neuron refers to an
artificial neuron. Further, we often refer to a perceptron as a neuron because the perceptron is just a
special type of neuron, and we often prefer the more generic name neuron except for when we detail
properties that apply only to the perceptron.
2. The signum function should not be confused with the sigmoid function that is used for other neurons
than perceptrons, as described in later chapters.

+

wn

w1
w2

w0

x0 = 1
(bias)

x1

x2

xn

z
SIGN

y

Figure 1-2 The perceptron

3

ThE RoSEnBLATT PERCEPTRon

To summarize, the perceptron will output −1 if the weighted sum is less than zero,
and otherwise it will output 1. Written as an equation, we have the following:

y , wheref z()=

0

z w x
i

n

i i∑=
=

1, 0

1, 0
f z

z

z
() =

− <
≥

1 (bias term)0x =

Figure 1-3 Sign (or signum) function. The figure uses variable names typically
used for generic functions (y is a function of x). In our perceptron use case, the
input to the signum function is not x but the weighted sum z.

A perceptron is a type of artificial neuron. It sums up the inputs to compute
an intermediate value z, which is fed to an activation function. The perceptron
uses the sign function as an activation function, but other artificial neurons
use other functions.

ChAPTER 1 ThE RoSEnBLATT PERCEPTRon

4

We note how the bias term x
0
 is special in that it always is assigned the value 1.

Its corresponding weight w
0
 is treated just like any other weight. Code Snippet 1-1

implements this function programmatically in Python. The first element of x
represents the bias term and thus must be set to 1 by the caller of the function.

At this point, the special bias input might seem odd, but we show later in this
chapter how varying the bias weight is equivalent to adjusting the threshold at
which the perceptron changes its output value.

Example of a Two-Input Perceptron
A simple example provides an idea of how the perceptron works in practice. Let
us study a perceptron with two inputs in addition to the bias input. Without any
justification (at this point), we set the weights to w

0
 = 0.9, w

1
 = −0.6, and w

2
 = −0.5.

See Figure 1-4.

now let us see how this perceptron behaves for all input combinations assuming
that each of the two inputs can take on only the values −1.0 and 1.0. If you want
to get your hands dirty, you can paste Code Snippet 1-1 into a Python interpreter

First element in vector x must be 1.

Length of w and x must be n+1 for neuron with n inputs.

def compute_output(w, x):
 z = 0.0

 for i in range(len(w)):

 z += x[i] * w[i] # Compute sum of weighted inputs

 if z < 0: # Apply sign function

 return -1

 else:

 return 1

Code Snippet 1-1 Python Implementation of Perceptron Function

We said in the preface that you should learn Python, so if you have not yet, now
is a good time for you to start going over that Python tutorial.

ExAmPLE oF A TWo-InPuT PERCEPTRon

5

window (see Appendix I) and then call the function with the chosen weights and
different x-input combinations. Remember that the first x-input should always be
1.0 because it represents the bias term. You should end up with the following if
you call the function four times with all different combinations of x-inputs:

>>> compute_output([0.9, -0.6, -0.5], [1.0, -1.0, -1.0])

1

>>> compute_output([0.9, -0.6, -0.5], [1.0, -1.0, 1.0])

1

>>> compute_output([0.9, -0.6, -0.5], [1.0, 1.0, -1.0])

1

>>> compute_output([0.9, -0.6, -0.5], [1.0, 1.0, 1.0])

-1

To explore this behavior in more detail, we show the four different combinations
in Table 1-1.

The table shows the inputs and the outputs, the intermediate values after
applying the weights, as well as the sum before applying the activation function.
note what happens if we interpret the inputs and outputs as Boolean values,
where −1 represents False and +1 represents True. The perceptron with
these specific weights implements a NAND gate! Paraphrasing nielsen, this is
comforting because we know that by combining multiple NAND gates, we can
build any logical function, but it is also kind of disappointing because we thought
that neural networks were going to be something much more exciting than just
Boolean logic (nielsen, 2015).

+

x0 = 1
(bias)

x1

x2

z
SIGN

y

w0 = +0.9

w1 = –0.6

w2 = –0.5

Figure 1-4 Perceptron with two inputs (in addition to the bias input) and defined
weights

ChAPTER 1 ThE RoSEnBLATT PERCEPTRon

6

As we soon will see, it turns out that neural networks are different from Boolean
logic. This difference becomes clear in later chapters, where we demonstrate the
amazing things that neural networks can achieve. meantime, we can list some
specific differences:

• Perceptron inputs are not limited to Boolean values. In addition, although
perceptrons are limited to outputting only one of two values, other neuron
models can output a range of real numbers.

• In our simple example, the perceptron has only two inputs and implements a
basic logical function. In the networks we study later in the book, each neuron
has many more inputs, often more than what is typical for a logic gate. Each
neuron can also implement more complex functions than AND and OR.

• We know of a learning algorithm that can be used to automatically design
neural networks by learning from examples. Curiously, the resulting networks

We said in the Preface that we would avoid starting with traditional machine
learning techniques in favor of jumping straight to the more recent stuff, and
now we start talking about basic binary logic gates instead. not cool! Seems
like an epic fail, but bear with us. At least we are already talking about neurons,
and we will soon move on to more impressive ways of using them.

Table 1-1 Behavior of a Perceptron with Two Inputs*

X0 X1 X2 W0*X0 W1*X1 W2*X2 Z Y

1 −1

(False)

−1

(False)

0.9 0.6 0.5 2.0 1

(True)

1 1

(True)

−1

(False)

0.9 −0.6 0.5 0.8 1

(True)

1 −1

(False)

1

(True)

0.9 0.6 −0.5 1.0 1

(True)

1 1

(True)

1

(True)

0.9 −0.6 −0.5 −0.2 −1

(False)

*The values of the inputs and output can also be interpreted as Boolean values.

ThE PERCEPTRon LEARnInG ALGoRIThm

7

tend to generalize and learn behavior that makes sense for not-yet-observed
examples (this statement may seem fairly abstract, but the next section
introduces the perceptron learning algorithm, and Chapter 4, “Fully Connected
networks Applied to multiclass Classification,” discusses generalization).

The Perceptron Learning Algorithm
In the previous example, we somewhat arbitrarily picked the three weights, and we
ended up with a perceptron that behaves like a NAND gate if we view the inputs as
Boolean values. By inspecting Table 1-1, it should be fairly easy to convince yourself
that the chosen weights are not the only ones that result in this outcome. For
example, you can see that the z-value is far enough from zero in all cases, so you
should be able to adjust one of the weights by 0.1 in either direction and still end
up with the same behavior. This raises the questions of how we came up with these
weights in the first place and whether there is a general approach for determining
the weights. This is where the perceptron learning algorithm comes into play.

We first describe the algorithm itself and apply it to a couple of problems. These
experiments provide some understanding of how the algorithm works but also
reveal some of the limitations of the perceptron. We then show that it is possible
to overcome these limitations and examine the perceptron from other angles.
In Chapter 2, “Gradient-Based Learning,” we describe a somewhat more formal
reasoning behind what the algorithm does.

The perceptron learning algorithm is what is called a supervised learning
algorithm. The notion of supervision implies that the model that is being trained
(in this case, the perceptron) is presented with both the input data and the desired
output data (also known as ground truth). Think of it as a teacher presenting the
question and answer to the model with the expectation that the model will learn
that a certain input is associated with a corresponding output. The opposite of
supervised learning is unsupervised learning in which the learning algorithm is
responsible for finding patterns in the data by itself. An example of this concept
is an algorithm that can find structure in natural language text. We study this
concept in more detail in Chapter 11, “Text Autocompletion with LSTm and Beam
Search,” where we train a model to do autocompletion of text.

The term model is often used as a synonym for a network. That is, when we
talk about training a model, it is the same thing as coming up with weights for a
network consisting of one or more neurons.

ChAPTER 1 ThE RoSEnBLATT PERCEPTRon

8

In our example, we have four sets of input/output data, each corresponding to one
row in Table 1-1. The algorithm works as follows:

1. Randomly initialize the weights.

2. Select one input/output pair at random.

3. Present the values x
1
, . . ., x

n
 to the perceptron to compute the output y.

4. If the output y is different from the ground truth for this input/output pair,
adjust the weights in the following way:

a. If y < 0, add hx
i
 to each w

i
.

b. If y > 0, subtract hx
i
 from each w

i
.

5. Repeat steps 2, 3, and 4 until the perceptron predicts all examples correctly.

The perceptron has certain limitations to what it can predict, so for some sets of
input/output pairs, the algorithm will not converge. however, if it is possible to
come up with a set of weights that enables the perceptron to represent the set
of input/output pairs, then the algorithm is guaranteed to converge by finding
these weights. The arbitrary constant h is known as the learning rate3 and can
be set to 1.0, but setting it to a different value can lead to faster convergence of
the algorithm. The learning rate is an example of a hyperparameter, which is not
a parameter that is adjusted by the learning algorithm but can still be adjusted.
For a perceptron, the weights can be initialized to 0, but for more complex neural
networks, that is a bad idea. Therefore, we initialize them randomly to get into
that habit. Finally, in step 4, it might seem like all the weights will be adjusted
by the same amount, but remember that the input x

i
 is not limited to take on the

two values −1 and 1. It could well be 0.4 for one input and 0.9 for another, so the
actual weight adjustment will vary.

We now walk through a Python implementation of this algorithm and apply it to
our NAND example. Code Snippet 1-2 shows the initialization code where we first
import a library for randomization and then initialize variables for the training
examples and perceptron weights.

3. Some descriptions of the perceptron learning algorithm do not include the learning rate parameter,
but since learning rate is an important parameter for the learning algorithm used for more
complicated networks, we choose to introduce it here.

ThE PERCEPTRon LEARnInG ALGoRIThm

9

note how each input example consists of three values, but the first value is
always 1.0 because it is the bias term. Code Snippet 1-3 restates the perceptron
output computation that was shown in Code Snippet 1-1.

import random

def show_learning(w):
 print('w0 =', '%5.2f' % w[0], ', w1 =', '%5.2f' % w[1],

 ', w2 =', '%5.2f' % w[2])

Define variables needed to control training process.

random.seed(7) # To make repeatable

LEARNING_RATE = 0.1

index_list = [0, 1, 2, 3] # Used to randomize order

Define training examples.

x_train = [(1.0, -1.0, -1.0), (1.0, -1.0, 1.0),

 (1.0, 1.0, -1.0), (1.0, 1.0, 1.0)] # Inputs

y_train = [1.0, 1.0, 1.0, -1.0] # Output (ground truth)

Define perceptron weights.

w = [0.2, -0.6, 0.25] # Initialize to some "random" numbers

Print initial weights.

show_learning(w)

Code Snippet 1-2 Initialization Code for our Perceptron Learning Example

First element in vector x must be 1.

Length of w and x must be n+1 for neuron with n inputs.

def compute_output(w, x):
 z = 0.0

 for i in range(len(w)):

 z += x[i] * w[i] # Compute sum of weighted inputs

 if z < 0: # Apply sign function

 return -1

 else:

 return 1

Code Snippet 1-3 Perceptron Function as Shown in Code Snippet 1-1

ChAPTER 1 ThE RoSEnBLATT PERCEPTRon

10

Code Snippet 1-4 contains the perceptron training loop. It is a nested loop in
which the inner loop runs through all four training examples in random order. For
each example, it computes the output and adjusts and prints the weights if the
output is wrong. The weight adjustment line contains a subtle detail that makes
it look slightly different than how we described the algorithm. Instead of using an
if statement to determine whether to use addition or subtraction to adjust the
weights, the adjustment value is multiplied by y. The value of y will either be −1
or +1, and consequently results in selecting between addition and subtraction for
the update. The outer loop tests whether the perceptron provided correct output
for all four examples and, if so, terminates the program.

If we paste the three snippets together into a single file and then run it in a Python
interpreter, the output will look something like the following:

w0 = 0.20 , w1 = -0.60 , w2 = 0.25

w0 = 0.30 , w1 = -0.50 , w2 = 0.15

w0 = 0.40 , w1 = -0.40 , w2 = 0.05

w0 = 0.30 , w1 = -0.50 , w2 = -0.05

w0 = 0.40 , w1 = -0.40 , w2 = -0.15

Perceptron training loop.

all_correct = False

while not all_correct:

 all_correct = True

 random.shuffle(index_list) # Randomize order

 for i in index_list:

 x = x_train[i]

 y = y_train[i]

 p_out = compute_output(w, x) # Perceptron function

 if y != p_out: # Update weights when wrong

 for j in range(0, len(w)):

 w[j] += (y * LEARNING_RATE * x[j])

 all_correct = False

 show_learning(w) # Show updated weights

Code Snippet 1-4 Perceptron Training Loop

ThE PERCEPTRon LEARnInG ALGoRIThm

11

note how the weights are gradually adjusted from the initial values to arrive at
weights that produce the correct output. most code examples in this book make
use of random values, so your results might not exactly match our results.

In addition to the described Python implementation, we also provide a
spreadsheet that performs the same calculations. We find that directly modifying
weights and input values in a spreadsheet is often a good way to build intuition.
The location from which to download the spreadsheet can be found in the
programming examples section in Appendix I.

now that we have seen that this algorithm can learn the NAND function, we will
explore a little bit more in depth what it learned. up until now, we have restricted
ourselves to making each input take on just one of two values (either −1 or 1).
however, there is nothing that prevents us from presenting any real number on
the two inputs. That is, we can present any combination of two real numbers
to the perceptron, and it will produce either −1 or 1 on its output. one way to
illustrate this is to make a chart of a 2D coordinate system where one axis
represents the first input (x

1
), and the other axis represents the second input (x

2
).

For each point in this coordinate system, we can write a “+” or a “−” depending on
what value the perceptron outputs. Such a chart is plotted in Figure 1-5.

Figure 1-5 output of a perceptron as a function of two inputs x
1
 and x

2

ChAPTER 1 ThE RoSEnBLATT PERCEPTRon

12

This chart is different than plotting the function y = f(x
1
, x

2
) in a traditional manner. A

traditional plot of a function that takes two values as inputs and produces one value
as an output would produce a 3D chart where some kind of surface is plotted as a
function of the two inputs (this is shown later under “Geometrical Interpretation of
the Perceptron”). Figure 1-5 is different in that instead of plotting the output value
on its own axis (the z-axis in a 3D chart), we simply show the numeric values as
symbols (+ and −) on the chart, which is simple to do because there are only two
possible values (−1 and 1), and they also happen to fall in a nice simple pattern.

As you can see from the figure, the perceptron divides the 2D space into two regions,
separated by a straight line, where all input values on one side of the line produce
the output −1, and all input values on the other side of the line produce the output +1.
A natural question is how we came up with the chart in the first place. one brute-
force way of doing this is to test all combinations of (x

1
, x

2
) pairs and record the

output from the perceptron. For the purpose of this discussion, this would be a fine
way to do things, but if you are interested, it is simple to derive the equation for the
line that separates the two regions. We know that the line represents the boundary
between negative and positive output values of the perceptron. This boundary is
exactly where the weighted sum of the inputs is zero, because the sign function will
change its value when its input is zero. That is, we have

0 0 0 1 1 2 2w x w x w x+ + =

We want to rewrite this equation so that x
2
 is a function of x

1
, because x

2
 is plotted

on the y-axis, and normally when plotting a straight line, we do y = f(x). We insert 1
for x

0
, solve the equation for x

2
, and arrive at

 2
1

2
1

0

2

x
w

w
x

w

w
= − −

In other words, it is a straight line with slope −w
1
/w

2
 and a y-intercept of −w

0
/w

2
.

now that we are familiar with this type of chart, we can look at the learning
process in more detail. We replace the initialization code in our program by
the extended version shown in Code Snippet 1-5. In this code snippet, we
have extended the show_learning() function to produce a plot like the one
described previously. In addition to the changes in Code Snippet 1-5, we need to
add the following code line at the end of the program:

plt.show()

We do not describe details of the plot routine because it is uninteresting and is not
built upon later in the book.

ThE PERCEPTRon LEARnInG ALGoRIThm

13

Code Snippet 1-5 Extended Version of Initialization Code with Function to Plot the
output

import matplotlib.pyplot as plt

import random

Define variables needed for plotting.

color_list = ['r-', 'm-', 'y-', 'c-', 'b-', 'g-']

color_index = 0

def show_learning(w):
 global color_index

 print('w0 =', '%5.2f' % w[0], ', w1 =', '%5.2f' % w[1],

 ', w2 =', '%5.2f' % w[2])

 if color_index == 0:

 plt.plot([1.0], [1.0], 'b_', markersize=12)

 plt.plot([-1.0, 1.0, -1.0], [1.0, -1.0, -1.0],

 'r+', markersize=12)

 plt.axis([-2, 2, -2, 2])

 plt.xlabel('x1')

 plt.ylabel('x2')

 x = [-2.0, 2.0]

 if abs(w[2]) < 1e-5:

 y = [-w[1]/(1e-5)*(-2.0)+(-w[0]/(1e-5)),

 -w[1]/(1e-5)*(2.0)+(-w[0]/(1e-5))]

 else:

 y = [-w[1]/w[2]*(-2.0)+(-w[0]/w[2]),

 -w[1]/w[2]*(2.0)+(-w[0]/w[2])]

 plt.plot(x, y, color_list[color_index])

 if color_index < (len(color_list) - 1):

 color_index += 1

Define variables needed to control training process.

random.seed(7) # To make repeatable

LEARNING_RATE = 0.1

index_list = [0, 1, 2, 3] # Used to randomize order

ChAPTER 1 ThE RoSEnBLATT PERCEPTRon

14

The resulting plot is shown in Figure 1-6, where the four input points are shown
as three plus signs and one minus sign. The red line corresponds to the initial
set of weights that do not correctly divide the chart between the plus and minus
signs. For each weight update, we plot another line in the following color order:
magenta, yellow, cyan, and blue. The blue line correctly divides the chart with
all plus signs on one side and the minus sign on the other side, so the learning
algorithm terminates.

Figure 1-6 Learning process progressing in the following order: red, magenta,
yellow, cyan, blue

Define training examples.

x_train = [(1.0, -1.0, -1.0), (1.0, -1.0, 1.0),

 (1.0, 1.0, -1.0), (1.0, 1.0, 1.0)] # Inputs

y_train = [1.0, 1.0, 1.0, -1.0] # Output (ground truth)

Define perceptron weights.

w = [0.2, -0.6, 0.25] # Initialize to some "random" numbers

Print initial weights.

show_learning(w)

LImITATIonS oF ThE PERCEPTRon

15

We have now shown that the perceptron can learn to do a simple classification
task, namely, to determine if a two-value input pair belongs to one class or
another. It is not as advanced as distinguishing between a dog and a cat, but we
need to learn to walk before we can run.

Limitations of the Perceptron
In Chapter 2, we look at the learning algorithm in more detail to justify why it
works. however, you might have noticed4 that we just ran into a big limitation
of the perceptron. Let us take a moment to understand this limitation and its
implications.

We saw that the two-input perceptron learns how to draw a straight line between
two groups of data points. That is exciting, but what happens if a straight line
cannot separate the data points? We explore this scenario using a different
Boolean function, namely, the exclusive OR, also known as XOR. Its truth table is
shown in Table 1-2.

Figure 1-7 shows these four data points on the same type of chart that we studied
before, illustrating how the algorithm tries to learn how to draw a line between
the plus and minus signs. The top chart shows what it looks like after 6 weight
updates and the bottom chart, after 30 weight updates—where we have also run
out of colors and the algorithm never converges.

It is trivial to solve the problem with a curved line but is not possible with a
straight line. This is one of the key limitations of the perceptron. It can solve

4. It is perfectly fine if you did not notice this. It is far from obvious when you see it the first time.

Table 1-2 Truth Table for a Two-Input XOR Gate

X0 X1 Y

False False False

True False True

False True True

True True False

ChAPTER 1 ThE RoSEnBLATT PERCEPTRon

16

classification problems only where the classes are linearly separable, which in
two dimensions (two inputs) means that the data points can be separated by a
straight line. Thus, it seems we need to either come up with a different model of a
neuron or combine multiple of them to solve the problem. In the next section, we
explore the latter solution.

Figure 1-7 Perceptron attempting to learn XOR. Top: After 6 weight adjustments.
Bottom: After 30 weight adjustments.

ComBInInG muLTIPLE PERCEPTRonS

17

Combining multiple Perceptrons
As shown previously, a single perceptron can separate the chart into two regions,
illustrated by drawing a straight line on the chart. That means that if we add
another perceptron, we can draw another straight line. Figure 1-8 shows one
such attempt: one line separates one of the minuses from all other data points.
Similarly, the other line separates the other minus also from all other data points.
If we somehow can output 1 only for the data points between the two lines, then
we have solved the problem.

Another way to look at it is that each of the two perceptrons will fire correctly
for three out of four data points; that is, both of them almost do the right thing.
They both incorrectly categorize one data point, but not the same one. If we
could combine the output of the two, and output 1 only when both of them
compute the output as a 1, then we would get the right result. So, we want to do
an AND of their outputs, and we know how to do that. We just add yet another
perceptron that uses the outputs of the two previous perceptrons as its inputs.
The architecture of this two-level neural network and the weights are shown in
Figure 1-9.

Table 1-3 shows the output of each of the three neurons. Looking at x
1
, x

2
, and y

2
, it

is clear that the neural network implements the XOR function.

Figure 1-8 XOR output values isolated by two lines

ChAPTER 1 ThE RoSEnBLATT PERCEPTRon

18

This neural network is one of the simplest examples of a fully connected
feedforward network. Fully connected means that the output of each neuron in one
layer is connected to all neurons in the next layer. Feedforward means that there

Table 1-3 Input and output Values Showing That the network Implements the XOR
Function

X0 X1 X2 Y0 Y1 Y2

1 −1

(False)

−1

(False)

1.0 −1.0 −1.0
(False)

1 1

(True)

−1

(False)

1.0 1.0 1.0
(True)

1 −1

(False)

1

(True)

1.0 1.0 1.0
(True)

1 1

(True)

1

(True)

−1.0 1.0 −1.0
(False)

y0

0.6

P0

0.6

y1

P1

P2
0.6

–0.6
x1

–0.5

0.6
x2

Bias: 0.9

Bias: 0.2

Bias: –0.9

y2

Input layer Hidden layer Output layer

Figure 1-9 Two-level feedforward network implementing XOR function

ComBInInG muLTIPLE PERCEPTRonS

19

are no backward connections, or, using graph terminology, it is a directed acyclic
graph (DAG). The figure also highlights the concept of layers. A multilevel neural
network has an input layer, one or more hidden layers, and an output layer. The
input layer does not contain neurons but contains only the inputs themselves;
that is, there are no weights associated with the input layer. note that the single
perceptron we looked at also had an input layer, but we did not explicitly draw
it. In Figure 1-9, the output layer has only one neuron, but in general, the output
layer can consist of more than one neuron. Similarly, the network in the figure has
only a single hidden layer (with two neurons), but a deep neural network (Dnn)
has more than one hidden layer and typically many more neurons in each layer.
The weights (including bias) in the figure are spelled out, but in most cases, it is
just assumed that they are there, and they are not shown. A feedforward network
is also known as a multilevel perceptron even when it is built from neuron models
that are not perceptrons, which can be somewhat confusing.

This XOR example is starting to get close to our definition of deep learning
(DL): DL is a class of machine learning algorithms that use multiple layers of
computational units where each layer learns its own representation of the input
data. These representations are combined by later layers in a hierarchical fashion.
In the preceding example, we did have multiple (two) layers. The neurons in the
first layer had their own representation (the output from the hidden layer) of
the input data, and these representations were combined hierarchically by the
output neuron. A missing piece is that each layer learns its own representation. In
our example, the network did not learn the weights, but we came up with them. A
valid question is how we came up with all these weights. The answer is that we
picked them carefully. The weights for the first perceptron already implemented a
NAND function. We then picked weights for the second perceptron in the first layer
to implement an OR function, and finally we picked the weights for the perceptron
in the second layer to implement an AND function. By doing this, we arrived at the
Boolean function for XOR:

()A B A B()⋅ ⋅ +

In a fully connected network, a neuron in one layer receives inputs from all
other neurons in the immediately preceding layer. A feedforward network
or multilevel perceptron has no cycles. The input layer has no neurons. The
outputs of neurons in a hidden layer are not visible (they are hidden) outside
of the network. Dnns have multiple hidden layers. The output layer can have
multiple neurons.

ChAPTER 1 ThE RoSEnBLATT PERCEPTRon

20

Although we are just assuming −1 and +1 as input values in this discussion, the
neural network that we have created can take any real numbers as inputs, and
it will output 1 for all the points between the two lines in Figure 1-8. We chose
the weights carefully to make the neural network behave the way we wanted,
which was possible for this specific example but is nontrivial for the general
case. Is there such an algorithm for a multilevel neural network? As described
in the Preface, minsky and Papert (1969) did not think so. however, it turns out
that history proved the doubters wrong. The back-propagation algorithm was
applied to various problem types from at least 1970 (Linnainmaa, 1970) and
was popularized for neural networks in 1986 (Rumelhart, hinton, and Williams,
1986). We cover this algorithm in detail in Chapter 3, “Sigmoid neurons and Back-
Propagation,” but first we explore the perceptron a little bit more.

Implementing Perceptrons with
Linear Algebra

Knowledge of linear algebra is handy when working with neural networks.
We now introduce some basic concepts and describe how they relate to the
perceptron and why this knowledge is useful. In particular, we show how we can
describe the input examples and perceptron weights as vectors and matrices
and how parts of the perceptron calculations are equivalent to dot products,
matrix-vector multiplications, and matrix multiplications. Computing dot products,
matrix-vector multiplications, and matrix multiplications efficiently is important
in many scientific fields, so much effort has been spent on creating efficient
implementations of these operations. For example, if you program in Python, there
is a package known as numPy, which is used for scientific computations. It has
specific functions for the above-mentioned operations. under the hood, numPy
makes use of the Basic Linear Algebra Subprograms (BLAS), which is heavily
optimized to run as fast as possible on the platform where it is run. Further, if you
have a graphics processing unit (GPu) capable of running CuDA, there is the CuDA
BLAS (cuBLAS) library that enables numPy to perform these operations efficiently
on the GPu,5 which can give you orders of magnitude speedup compared to
running on a CPu.

5. modern DL frameworks make use of a library known as cuDnn, which is specifically developed to
accelerate neural network computations by offloading them to the GPu.

ImPLEmEnTInG PERCEPTRonS WITh LInEAR ALGEBRA

21

If you already know linear algebra, you will find that much of this section
describes basic mathematical concepts. If this is the case, you should focus on
how the perceptron weights and inputs map to these basic concepts. If you have
some linear algebra knowledge but have not used these skills for a while, we
think this section will serve as a good refresher. If you have never seen linear
algebra before, then we recommend that you start with reading this section. This
is likely sufficient for many readers, whereas others might want to pursue more
in-depth descriptions of the topic.

VECToR noTATIon

In the previous sections, we saw examples of a large number of variables, such as
multiple inputs (x) and corresponding weights (w) for each neuron, intermediate
representations (z), and outputs (y). Common for all these variables is that they
consist of a single value, which also is known as a scalar variable. It is often the
case that we have a number of variables that kind of belong together, such as all
the input variables x

0
, x

1
, . . ., x

n
 for a single neuron. one way to look at things is

that each of these individual variables is only one component of the overall input.
A more compact notation to use in this case is to arrange these scalar values into
a vector variable:

�
=

0

1x

x

x

xn

Specifying mathematical problems in vector or matrix form enables you
to take advantage of efficient mathematics library implementations, and in
particular to offload computations to the GPU.

We start variable subscripts at 0 because that is how it is done in most
programming languages. The typical convention in linear algebra is to start
indexing at 1, but we will continue using 0 to stay consistent and avoid any
confusion when translating formulas into code.

ChAPTER 1 ThE RoSEnBLATT PERCEPTRon

22

Similarly, we can arrange the weight variables into a single weight vector
variable:

�
=

0

1

w

w

wn

w

If you are a programmer, then a vector should be a familiar concept, although it is
typically known as an array. The vectors shown so far are also known as column
vectors, because they are arranged vertically as a column. We can also arrange
the elements horizontally into a row vector. We use the transpose operation to
convert a column vector into a row vector. The vector x and its transpose are
shown here:

x

x

x

x x x

n

T
n ,

0

1
0 1x x

�
=

= …

In the field of linear algebra, mathematical operations have been defined for
vectors and other related structures. one example is vector addition, which can
be used to add one vector to another vector with the same number of elements.
Vector addition is an element-wise operation. Element 0 of both vectors are added
together to form element 0 of the output vector, element 1 of both vectors are
added together to form element 1 of the output vector, and so on:

� � �
=

=

+ =

+

+

+

0

1

0

1

0 0

1 1

a

a

a

b

b

b

a b

a b

a bn n n n

a b a b

We use lowercase bold italic letters to denote vectors in this book.

ImPLEmEnTInG PERCEPTRonS WITh LInEAR ALGEBRA

23

All of this enables a compact way of describing operations on the elements in the
vectors. This is just an abstraction. We hide the individual elements when writing
down the equations, but when we need to perform the computations, we are
still working on each individual value (although, as previously mentioned, some
hardware implementations can do the operations efficiently in parallel).

DoT PRoDuCT

Another important operation on two vectors is the dot product. The dot product is
defined only if the two vectors are of equal length, just like vector addition. It is
computed by multiplying element 0 of the two vectors, then multiplying element 1
of the two vectors and so on, and finally adding all of these products:

∑⋅ = + +…+ =
=

 0 0 1 1
0

w x w x w x w xn n
i

n

i iw x

These computations might seem familiar. It is exactly how we compute the
weighted sum z in our perceptron. That is, assuming that we have arranged the
inputs into a vector x (where the first element is 1) and the weights into a vector w
(where the first element is the bias weight), then we can write the perceptron
equation as

()= ⋅y sign w x

It is almost as if the dot product was invented to implement perceptrons. Just as
with the vector addition, the dot product did not eliminate any of the computations
but only simplified the notation. however, in practice, it also enabled us to call
an efficient library implementation of the computation instead of a loop-based
implementation of the weighted sum. Code Snippet 1-6 shows how we can write
our perceptron function using the numPy dot-product functionality. We also
changed the code to use the numPy sign function instead of implementing it with
an if statement.

import numpy as np

def compute_output_vector(w, x):
 z = np.dot(w, x)

 return np.sign(z)

Code Snippet 1-6 our Perceptron Function Rewritten using Vector notation

ChAPTER 1 ThE RoSEnBLATT PERCEPTRon

24

ExTEnDInG ThE VECToR To A 2D mATRIx

The vector concept is a special case of the more general concept of a multidimen-
sional structure where the dimension of a vector is 1. A multidimensional structure
in two dimensions is known as a matrix and is described next. An example of a
matrix A with m+1 rows and n+1 columns is shown here:6

00 01 0

10 11 1

0 1

� � � �
A

a a a

a a a

a a a

n

n

m m mn

=

…
…

…

The numbering of elements in a matrix is somewhat different than if you refer to
coordinates in a 2D coordinate system (an xy chart). In particular, the elements
in the vertical direction are numbered in increasing order going downward in a
matrix, whereas an increasing y-value in an xy chart is increasing going upward.
In addition, in an xy chart, we state the horizontal coordinate (x) first and the
vertical coordinate (y) second, whereas for a matrix, we state the row first and the
column second. As an example, element a

01
 is the top element second from the

left in a matrix, and the coordinate (x=0, y=1) is the leftmost element and second
from the bottom in an xy chart.

Why do we want to use this 2D structure when working with neurons? It is seldom
the case that we work with a single neuron or a single input example. We just
saw how the weights (w) for a single neuron can be represented by a vector.
This means that we can represent the weights for n neurons with n vectors
by arranging them in a matrix. Similarly, we seldom work with a single input
example (x), but we have a whole set of input examples. Just as for multiple
neurons, we can represent a set of input examples as a set of vectors that can be
arranged in a matrix structure.

Just as we can transpose a vector, we can also transpose a matrix. We do
this by flipping the matrix along its diagonal; that is, element ij, where i is the

6. Just as we do for vectors, in this book we start with a subscript of 0 for matrices to keep it
consistent with programming in Python. The convention in mathematical texts on the topic is to start
with a subscript of 1.

We use italic uppercase letters to denote matrices in this book.

ImPLEmEnTInG PERCEPTRonS WITh LInEAR ALGEBRA

25

column and j is the row, becomes element ji. An example for a 2×2 matrix is
shown here:

1 2
3 4

 1 3
2 4

A AT=

=

now that we know the basics of the matrix, we are ready to move on to some
important matrix operations.

mATRIx-VECToR muLTIPLICATIon

using the preceding concepts, we are now ready to define matrix-vector
multiplication:

A

a a a

a a a

a a a

x

x

x

a x a x a x

a x a x a x

a x a x a x

n

n

m m mn n

n n

n n

m m mn n

00 01 0

10 11 1

0 1

0

1

00 0 01 1 0

10 0 11 1 1

0 0 1 1

y x
� � � � � �

= =

…
…

…

=

+ +…+
+ +…+

+ +…+

It is defined only for cases where the number of columns in the matrix matches
the number of elements in the vector. It results in a vector with the same number
of elements as there are rows in the matrix. The elements in this resulting vector
are defined as

0

y a xi
j

n

ij j∑=
=

We recognize the sum as the dot product between two vectors, as previously
described; that is, a slightly different view of the matrix is to consider each of
the m+1 rows of the matrix as row vectors (a transposed vector). In that case,
the matrix-vector multiplication can be viewed as doing m+1 dot products of the
matrix rows and the x-vector, as shown here:

A

x

x

x

T

T

m
T

n

T

T

m
T

0

1

0

1

0

1y x

a

a

a

a x

a x

a x
� � �

= =

=

⋅

⋅

⋅

ChAPTER 1 ThE RoSEnBLATT PERCEPTRon

26

now let us look at how to use matrix-vector multiplication in the context of
perceptrons. Assume that we have m+1 perceptrons, each having n inputs plus
the bias input. Further, we have a single input example consisting of n+1 values,
where the first element in the input vector is 1 to represent the bias input value.
now assume that we arrange the vectors for the perceptrons’ weights into a
matrix W, so we have

�
=

0

1W

T

T

m
T

w

w

w

where each wi is a multielement vector corresponding to a single neuron. We can
now compute the weighted sums for all m+1 perceptrons for the input example x
by multiplying the matrix by the vector:

= Wz x

The vector z will now contain m+1 elements, where each element represents the
weighted sum for a single neuron presented with the input example.

mATRIx-mATRIx muLTIPLICATIon

Let us now introduce matrix-matrix multiplication of two matrices, A and B:

C AB= =

00 01 0

10 11 1

0 1

00 01 0

10 11 1

0 1

00 01 0

10 11 1

0 1

� � � � � � � � � � � �

a a a

a a a

a a a

b b b

b b b

b b b

c c c

c c c

c c c

n

n

m m mn

p

p

n n np

p

p

m m mp

…
…

…

…

…

…

=

…

…

…

The number of columns in the first matrix A must match the number of rows in
the second matrix B. The elements of the resulting matrix C are defined as

0 0 1 1c a b a b a bij i j i j in nj= + +…+

ImPLEmEnTInG PERCEPTRonS WITh LInEAR ALGEBRA

27

or, alternatively,

0

c a bij
k

n

ik kj∑=
=

Again, we recognize this sum as a dot product. That is, if we view each of the m+1
rows of matrix A as a row vector and each of the p+1 columns of matrix B as a
column vector, then the matrix multiplication results in (m+1) × (p+1) dot products.
In other words, we compute all the dot products between all row-vectors in
matrix A and all column-vectors in matrix B. To make this abundantly clear, we
can write the definition in a slightly different form. We state the two matrices A
and B as being collections of vectors, and the elements of the resulting matrix are
computed as dot products between these vectors:

�

�

� � � �
�

()= =

… =

⋅ ⋅ … ⋅

⋅ ⋅ ⋅

⋅ ⋅ ⋅

0

1
0 1

0 0 0 1 0

1 0 1 1 1

0 1

C AB

T

T

m
T

p

p

p

m m m p

a

a

a

b b b

a b a b a b

a b a b a b

a b a b a b

Similarly, to what we did with matrix-vector multiplication, we can use matrix-
matrix multiplication in the context of perceptrons. Assume that we have m+1
perceptrons, each having n inputs (+ bias input) just as in the previous example.
Further, we have p+1 input examples, each consisting of n+1 values. As always,
we assume that the first element in each input vector is 1 to represent the bias
input value. now assume that in addition to the matrix W, which represents
the perceptrons’ weights, we arrange the vectors for the input examples into
matrix X:

�
()=

= … ,

0

1
0 1W X

T

T

m
T

p

w

w

w

x x x

All of this can be somewhat heavy to get through if you are not well versed in
linear algebra, but familiarity with these notations will be very helpful for your
future work with DL.

ChAPTER 1 ThE RoSEnBLATT PERCEPTRon

28

In this example, both w
i
 and x

i
 refer to multielement vectors. We can now compute

the weighted sums for all m+1 perceptrons for all p+1 input examples by
multiplying the two matrices:

Z WX=

The matrix Z will now contain (m+1) × (p+1) elements, where each element
represents the weighted sum for a single neuron presented with a single input
example. To make this more concrete, matrix W corresponds to the two neurons
in the first layer of our XOR network previously shown in Figure 1-9. matrix X
contains all four input examples. The resulting matrix WX contains the weighted
sum for the two neurons for all four input examples:

0.9 0.6 0.5
0.2 0.6 0.6

 00 01 02

10 11 12

W
w w w

w w w
=

 = − −

1 1 1 1
1 1 1 1
1 1 1 1

00 01 02 03

10 11 12 13

20 21 22 23

X

x x x x

x x x x

x x x x

=

= − −
− −

 2 1 0.8 0.2
1 0.2 0.2 1.4

WX = −
−

The computation resulting in the value 2 for the upper left element in the resulting
matrix is

0.9 1 0.6 1 0.5 1 200 00 01 10 02 20w x w x w x ()() ()() ()()+ + = + − − + − − =

The other values can be computed following the same pattern. We simply
compute the dot products between row vectors in W and column vectors in X.

SummARY oF VECToR AnD mATRIx oPERATIonS uSED FoR
PERCEPTRonS

The preceding discussion described how linear algebra operations map to
various combinations of input examples and number of perceptrons. Table 1-4
summarizes the mappings.

none of the preceding exercises have simplified or eliminated any computations,
but the notation enables computations to be computed efficiently in parallel on
a GPu.

ImPLEmEnTInG PERCEPTRonS WITh LInEAR ALGEBRA

29

DoT PRoDuCT AS A mATRIx muLTIPLICATIon

Before moving on from matrices and vectors, we want to introduce one more
common notation. We note that a vector can be viewed as the special case of a
matrix with a single column. This implies that we can formulate our dot product
of two vectors as a matrix multiplication. Assume that we have vectors a and b as
follows:

a

a

a

b

b

bn n

 ,

0

1

0

1a b
� �

=

=

a b a a a

b

b

b
i

n

i i n

n

T

0
0 1

0

1a b a b
�

∑⋅ = = …

=
=

That is, if we transpose vector a so it becomes a matrix with a single row, we can
now do matrix multiplication between aT and b and thereby omit the dot product
operator. This is a common notation with which it is good to be familiar.

ExTEnDInG To muLTIDImEnSIonAL TEnSoRS

Vectors and matrices are special cases of the more generalized concept of a
tensor, which is equivalent to the programming concept of a multidimensional

Table 1-4 Combinations of Perceptrons and Input Examples and the
Corresponding Linear Algebra operation

NUMBER OF PERCEPTRONS
NUMBER OF INPUT
EXAMPLES

LINEAR ALGEBRA
OPERATION

one one Dot product

multiple one matrix-vector multiplication

multiple multiple matrix-matrix multiplication

ChAPTER 1 ThE RoSEnBLATT PERCEPTRon

30

array. In other words, if we extended a matrix to another dimension, we would call
the resulting entity a 3D tensor. Tensors can show up in cases where the input
data itself is multidimensional, such as in a color image. It consists of a 2D array
of pixel values, and each pixel consists of three components (red, green, and blue,
or RGB for short). That is, the input data itself is 3D, and if we have a collection of
images as input values, then we can organize all of these as a 4D tensor. This can
be tricky at first and often takes some time to get used to. The greatest challenge
is to keep track of all the indices correctly. In the end, all the computations are
typically reduced to a large number of dot products.

Geometric Interpretation of the
Perceptron

Previously in this chapter, we visualized the decision boundary created by a two-
input perceptron. In that type of chart, we identified all the coordinates where the
perceptron would output −1 and all the coordinates where the perceptron would
output +1. Another way of visualizing what the perceptron does is to plot z as a
function of x

1
 and x

2
. This takes the form of a 3D chart, as shown in Figure 1-10.

We can see that the z-value in the perceptron forms a plane. The actual output
(y) of the perceptron will take on the value of −1 for any point on the plane that is
less than 0, whereas it will be +1 for any point that is greater than or equal to 0. If
you look at this chart from above and draw a line where the z-value of the plane

Figure 1-10 3D plot of two-input perceptron decision surface

GEomETRIC InTERPRETATIon oF ThE PERCEPTRon

31

is 0, you will end up with the same type of chart that we previously looked at in
Figure 1-5.

The positioning and the orientation of the plane are determined by the three
weights. The bias weight (w

0
) determines where the plane will cross the z-axis

at the point where both x
1
 and x

2
 equal 0; that is, changing w

0
 causes the plane

to move up or down on the z-axis. This is shown in the two upper charts in
Figure 1-11, where the left chart is the same as in Figure 1-10, but in the
right chart, we changed w

0
 from −0.2 to 0.0. The two other weights (w

1
 and w

2
)

determine the slope of the plane in the two different dimensions. If the weights
are 0, then the plane will be parallel to the x

1
 and x

2
 axes, while a positive or

negative value will cause the plane to tilt. This is shown in the two lower charts

Figure 1-11 Decision surface defined by two-input perceptron. The surface
orientation changes as the weights are modified.

ChAPTER 1 ThE RoSEnBLATT PERCEPTRon

32

in Figure 1-11, where in addition to setting w
0
 to 0, we set w

1
 to 0 in the lower left

chart and all weights to 0 in the lower right chart and end up with a level plane.

This whole discussion has been centered on a perceptron with two inputs (in
addition to the bias input) because it makes it possible to visualize the function.
Adding more inputs is straightforward, but visualizing it is much harder because
humans are inherently bad at visualizing more than three dimensions. The trick
is to not even try to visualize but instead try to understand it from a mathematical
point of view.

An example of this is that, as previously mentioned, the perceptron has the
restriction that it can distinguish between two classes only if they are linearly
separable, which for a two-input perceptron (two dimensions) means that they
can be separated by a straight line. For a three-input neuron (three dimensions), it
means that they can be separated by a plane. We do not delve into details here, but
for readers who are already familiar with linear algebra, we point out that for the
general case of a perceptron with n inputs (n dimensions), two classes are linearly
separable if they can be separated by an n−1 dimensional hyperplane. This is a fairly
abstract discussion, but do not worry if you have a hard time following it. Knowing
about hyperplanes is not required to be able to understand the rest of the book.

Finally, there is also a geometric interpretation of the computation performed
by the perceptron. The perceptron computes a dot product between the two
vectors w and x, and we then apply the sign function to the result. Instead of
implementing the dot product as a weighted sum, the dot product of the two
vectors can also be computed as

θ⋅ = ()cosw x w x

where q is the angle between the vectors w and x. Since both and w x are
positive, the angle between the two vectors will determine the output of the
perceptron (an angle greater than 90 degrees will cause −1, and an angle less
than 90 degrees will cause +1 as output).

It turns out that we can use the geometric definition of the dot product to reason
about what weights will maximize the weighted sum for a given input, but you
can safely ignore this for now if it is the first time you have seen this definition
of the dot product.

unDERSTAnDInG ThE BIAS TERm

33

understanding the Bias Term
our description of the perceptron includes the use of a bias term that we did not
justify further. In addition, taking a closer look at our equations for the perceptron,
a couple of things stick out:

y , wheref z()=

0

z w x
i

n

i i∑=
=

1, 0

1, 0
f z

z

z
() =

− <
≥

1 (bias term)0x =

In particular, the output values of −1 and 1 and the threshold of 0 seem like they
have been chosen somewhat arbitrarily. If you are familiar with digital electronics,
it might feel more natural if the output values were 0 and 1, and you might also feel
that a threshold of 0.5 is more appropriate. We will get back to that in Chapter 3, but
for now, we focus on the threshold, which is often denoted by q (Greek letter theta).
We could make our perceptron more general by replacing the activation function
with the following, where the threshold is simply a parameter q :

1,

1,
f z

z

z

θ
θ

() =
− <

≥

Looking more closely at the condition that needs to be fulfilled for the output to
take on the value 1, we have

 z θ≥

This can be rewritten as

 0z θ− ≥

That is, as long as we subtract the threshold from z, we can keep our
implementation that uses 0 as its threshold. Looking carefully at our original
description of the perceptron, it turns out that we were a little bit sneaky and
did this all along by including the bias term x

0
 in the sum that computes z. That

is, the rationale for the bias term in the first place was to make the perceptron
implement an adjustable threshold value. It might seem like we should have
subtracted the bias, but it does not matter because we have the associated

ChAPTER 1 ThE RoSEnBLATT PERCEPTRon

34

weight w
0
, which can be both positive and negative. That is, by adjusting w

0
, our

perceptron can be made to implement any arbitrary threshold q. To be crystal
clear, if we want the perceptron to use a threshold of q, then we set w

0
 to be −q.

Finally, if we ignore the activation function for a moment, we can consider how
the bias term affects just the weighted sum z. We saw in the previous section how
changing w

0
 resulted in the plane sliding up and down along the z-axis. To make it

even simpler, consider the lower-dimensional case where we have a straight line
instead of a plane. The bias term is simply the intercept term b in the equation for
a straight line:

y mx b= +

What we just described in this section does not change how we use the
perceptron. It is just a justification for why we implemented it the way we did in
the first place. It is also helpful to know when reading other texts that might use
an explicit threshold instead of a bias term.

Concluding Remarks on the Perceptron
In this chapter, we introduced the perceptron and looked at it from a couple
of different angles. We showed how it can be used to implement a logical
function, starting with NAND. A key reason for starting by using the perceptron
to implement logical functions is that it quickly leads to one of the perceptron’s
limitations, as we saw when trying to implement the XOR function. This then
explained the need for connecting multiple perceptrons into a network.

In reality, when working with neural networks and DL, we typically do not think
about the perceptron or other neurons in terms of logical gates. A perhaps more
common view of looking at the perceptron is as a binary classifier. We feed the
perceptron an input example consisting of a vector of input values. The perceptron
classifies this input example as belonging to one of two classes. The vector of
input values typically contains many more variables than two. For example, in
a medical setting, the values in the vector might represent data about a patient,
such as age, sex, and various laboratory results. The task for the perceptron is to
classify whether the input values indicate that the patient has a specific medical
condition. In reality, because of the limitations of the perceptron, this classifier
would likely not be very good. Instead, just as for the XOR example, it is likely that

ConCLuDInG REmARKS on ThE PERCEPTRon

35

a network of neurons would do better. We will see plenty of examples of such
networks in the remainder of this book.

We also introduced the perceptron learning algorithm and showed how it learns
a simple task. however, we never described why it works. That is the main
topic of Chapter 2, which will also serve as a steppingstone for describing the
backpropagation algorithm used to train multilevel networks in Chapter 3.

This page intentionally left blank

37

Chapter 2

Gradient-Based
Learning

In this chapter, we describe how the perceptron learning algorithm works, which we
then build upon in Chapter 3, “Sigmoid Neurons and Backpropagation,” by extending
it to multilevel networks. These two chapters contain more mathematical content
than other chapters in this book, but we also describe the concepts in an intuitive
manner for readers who do not like reading mathematical formulas.

Intuitive Explanation of the Perceptron
Learning Algorithm

In Chapter 1, “The Rosenblatt Perceptron,” we presented and used the perceptron
learning algorithm, but we did not explain why it works. Let us now look at what
the learning algorithm does. To refresh our memory, the weight adjustment step
in the perceptron learning algorithm is first restated in Code Snippet 2-1, where

for i in range(len(w)):

 w[i] += (y * LEARNING_RATE * x[i])

Code Snippet 2-1 Weight Update Step of Perceptron Learning Algorithm

ChAPTER 2 GRAdIENT-BASEd LEARNING

38

w is an array representing the weight vector, x is an array representing the input
vector, and y is the desired output.

If an example is presented to the perceptron and the perceptron correctly predicts
the output, we do not adjust any weights at all (the code that ensures this is not
shown in the snippet). This makes sense because if the current weights already
result in the correct output, there is no good reason to adjust them.

In the cases where the perceptron predicts the outputs incorrectly, we need to
adjust the weights as shown in Code Snippet 2-1, and we see that the weight
adjustment is computed by combining the desired y value, the input value, and
a parameter known as LEARNING_RATE. We now show why the weights are
adjusted the way they are. Let us consider three different training examples
where x

0
 represents the bias input that is always 1:

Training example 1: x
0
 = 1, x

1
 = 0, x

2
 = 0, y = 1

Training example 2: x
0
 = 1, x

1
 = 0, x

2
 = 1.5, y = −1

Training example 3: x
0
 = 1, x

1
 = −1.5, x

2
 = 0, y = 1

We further know that the z-value (the input to the signum function) for our
perceptron is computed as

z w x w x w x0 0 1 1 2 2= + +

For training example 1, the result is

z w w w w1 0 00 1 2 0= + + =

Clearly, w
1
 and w

2
 do not affect the result, so the only weight that makes sense to

adjust is w
0
. Further, if the desired output value is positive (y = 1), then we would

want to increase the value of w
0
. On the other hand, if the desired output value

is negative (y = −1), then we want to decrease the value of w
0
. Assuming that the

LEARNING_RATE parameter is positive, Code Snippet 2-1 does exactly this when it
adjusts w

i
 by adding a value that is computed as y * LEARNING_RATE * x[i],

where x
1
 and x

2
 are zero for training example 1 and thus only w

0
 will be adjusted.

doing the same kind of analysis for training example 2, we see that only w
0
 and

w
2
 will be adjusted, both in a negative direction because y is −1 and x

0
 and x

2
 are

positive. Further, the magnitude of the adjustment for w
2
 is greater than for w

0

since x
2
 is greater than x

1
.

Similarly, for training example 3, only w
0
 and w

1
 will be adjusted, where w

0
 will

be adjusted in a positive direction and w
1
 will be adjusted in a negative direction

because y is positive and x
1
 is negative.

39

INTUITIvE ExPLANATION OF ThE PERCEPTRON LEARNING ALGORIThm

To make this even more concrete, we compute the adjustment value for each
weight for the three training examples, with an assumed learning rate of 0.1. They
are summarized in Table 2-1.

We make a couple of observations:

• The adjustment of the bias weight depends only on the desired output value
and will thus be determined by whether the majority of the training examples
have positive or negative desired outputs.1

• For a given training example, only the weights that can significantly affect
the output will see a significant adjustment, because the adjustments are
proportional to the input values. In the extreme, where an input value is 0 for a
training example, its corresponding weight will see zero adjustment.

This makes much sense. In a case where more than 50% of the training examples
have the same output value, adjusting the bias weight toward that output value
will make the perceptron be right more than 50% of the time if all other weights
are 0. It also makes sense to not adjust weights that do not have a big impact on
a given training example, which will likely do more harm than good because the
weight could have a big impact on other training examples.

In Chapter 1, we described how the z-value of a two-input (plus bias term)
perceptron creates a plane in a 3d space (where x

1
 is one dimension, x

2
 the

second, and the resulting value z is the third). One way to visualize the perceptron
learning algorithm is to consider how it adjusts the orientation of this plane. Every

1. Only training examples that are incorrectly predicted will cause an adjustment. Thus, a case with
many training examples with positive outputs can still result in a negative bias weight if many of
the positive training examples already are correctly predicted and thus do not cause any weight
adjustments.

Table 2-1 Adjustment values for Each Weight for the Three Training Examples

W0 CHANGE W1 CHANGE W2 CHANGE

Example 1 1*1*0.1 = 0.1 1*0*0.1 = 0 1*0*0.1 = 0

Example 2 (−1)*1*0.1 = −0.1 (−1)*0*0.1 = 0 (−1)*1.5*0.1 = −0.15

Example 3 1*1*0.1 = 0.1 1*(−1.5)*0.1 = −0.15 1*0*0.1 = 0

ChAPTER 2 GRAdIENT-BASEd LEARNING

40

update will adjust the bias weight. This will push the overall plane upward for
positive training examples and downward for negative training examples.

For example, close to the z-axis (x
1
 and x

2
 are small), the bias weight is all that

counts. For cases that are further away from the z-axis, the angle of the plane
becomes a more significant lever. Thus, for mispredicted learning examples
where the x

1
 value is big, we make a big change to the weight that determines the

tilt angle in the x
1
 direction, and the same applies for cases with big x

2
 values but

in the orthogonal direction. A point on the plane that is located directly on the x
2

axis will not move as we rotate the plane around the x
2
 axis, which is what we do

when we adjust the weight corresponding to the x
1
 value.

An attempt at illustrating this is shown in Figure 2-1, with w
0
 = 1.0, w

1
 = −1.0, and

w
2
 = −1.0, which are weights that we could imagine would result from repeatedly

applying the weight adjustments from Table 2-1.

Looking at the plane, we can now reason about how it satisfies the three training
examples. Because w

0
 = 1.0, the output will be positive when x

1
 and x

2
 are close

to zero (z = 1.0 when x
1
 and x

2
 are 0), which will ensure that training example 1 is

correctly handled. We further see that w
1
 is chosen so that the plane is slanted in

a direction that z increases as x
1
 decreases. This ensures that training example

3 is taken care of because it has a negative x
1
 value and wants a positive output.

Finally, w
2
 is chosen so that the plane is slanted in a direction (around its other

axis) that z increases as x
2
 decreases. This satisfies training example 2 with its

positive x
2
 input and desired negative output value.

Figure 2-1 Example of weights that correctly predicts all three training examples

dERIvATIvES ANd OPTImIzATION PROBLEmS

41

We believe that the reasoning is sufficient to give most people an intuitive idea
of why the learning algorithm works the way it does. It also turns out that for
cases that are linearly separable (i.e., cases where a perceptron has the ability
to distinguish between the two classes), this learning algorithm is guaranteed to
converge to a solution. This is true regardless of the magnitude of the learning
rate parameter. In other words, the value of this parameter will only affect how
quickly the algorithm converges.

To prepare ourselves for the learning algorithm for multilevel networks, we would
now like to arrive at an analytical explanation of why we adjust the weights the
way that we do in the perceptron learning algorithm, but we will first go through
some concepts from calculus and numerical optimization that we will build upon.

derivatives and Optimization Problems
In this section, we briefly introduce the mathematical concepts that we use in this
chapter. It is mostly meant as a refresher for readers who have not used calculus
lately, so feel free to skip to the next section if that does not apply to you. We start
by briefly revisiting what a derivative is. Given a function

y f x()=

the derivative of y with respect to x tells us how much the value of y changes
given a small change in x. A few common notations are

, , y f x
dy

dx
()′ ′

The first notation (y') can be somewhat ambiguous if y is a function of multiple
variables, but in this case, where y is only a function of x, the notation is
unambiguous. Because our neural networks typically are functions of many
variables, we will prefer the two other notations.

Figure 2-2 plots the value of an arbitrary function y = f(x). The plot also illustrates
the derivative f'(x) by plotting the tangent line in three different points. The tangent
to a curve is a straight line with the same slope (derivative) as the curve at the
location where the line touches the curve.

We can make a couple of observations. First, the derivative at the point that
minimizes the value of y is 0 (the tangent is horizontal). Second, as we move
further away from the minimum, the derivative increases (it decreases if we move
in the other direction). We can make use of these observations when solving an

ChAPTER 2 GRAdIENT-BASEd LEARNING

42

optimization problem in which we want to find what value of the variable x will
minimize2 the value of the function y. Given an initial value x and its corresponding
y, the sign of the derivative indicates in what direction to adjust x to reduce the
value of y. Similarly, if we know how to solve x for 0, we will find an extreme point
(minimum, maximum, or saddle point)3 of y.

As we saw in Chapter 1, we typically work with many variables. Therefore, before
moving on to how to apply these concepts to neural networks, we need to extend
them to two or more dimensions. Let us assume that we have a function of two
variables, that is, y = f(x

0
, x

1
), or alternatively, y = f(x),where x is a 2d vector. This

function can be thought of as a landscape that can contain hills and valleys,4 as in
Figure 2-3.

We can now compute two partial derivatives:

0 1

y

x
and

y

x

∂
∂

∂
∂

2. We assume that the optimization problem is a minimization problem. There are also maximization
problems, but we can convert a maximization problem into a minimization problem by negating the
function we want to maximize.
3. We worry only about minima in this book. Further, it is worth noting that these extreme points may
well be local extremes. That is, there is no guarantee that a global minimum is found.
4. It can also contain discontinuities, asymptotes, and so on.

Figure 2-2 Plot showing a curve y = f(x) and its derivative at the minimum value
and in two other points

dERIvATIvES ANd OPTImIzATION PROBLEmS

43

A partial derivative is just like a normal derivative, but we pretend that all but
one of the variables are constants. The one variable that we want to compute the
derivative with respect to is the only variable that is not treated as a constant.
A simple example is if we have the function y = ax

0
 + bx

1
, in which case our two

partial derivatives become

0

y

x
a

∂
∂

=

1

y

x
b

∂
∂

=

If we arrange these partial derivatives in a vector, we get

 0

1

y

y

x

y

x

∇ =

∂
∂
∂
∂

which is called the gradient of the function—that is, the gradient is a derivative
but generalized to a function with multiple variables. The symbol ∇ (upside-down
Greek letter delta) is pronounced “nabla.”

Figure 2-3 Plot of function of two variables and the direction and slope of
steepest ascent in three different points

ChAPTER 2 GRAdIENT-BASEd LEARNING

44

The gradient has a geometric interpretation. Being a vector, the gradient consists
of a direction and a magnitude.5 The direction is defined in the same dimensional
space as the inputs to the function. That is, in our example, this is the 2d space
represented by the horizontal plane in Figure 2-3. For our example gradient, the
direction is (a, b). Geometrically, this direction indicates where to move from a
given point (x

0
, x

1
) in order for the resulting function value (y) to increase the most.

That is, it is the direction of the steepest ascent. The magnitude of the gradient
indicates the slope of the hill in that direction.

The three arrows in Figure 2-3 illustrate both the direction and the slope of the
steepest ascent in three point. Each arrow is defined by the gradient in its point,
but the arrow does not represent the gradient vector itself. Remember that the
direction of the gradient falls in the horizontal plane, whereas the arrows in the
figure also have a vertical component that illustrates the slope of the hill in that
point.

There is nothing magic about two input dimensions, but we can compute partial
derivatives of a function of any number of dimensions and create the gradient by
arranging them into a vector. however, this is not possible to visualize in a chart.

Solving a Learning Problem with
Gradient descent

One way to state our learning problem is to identify the weights that, given the
input values for a training example, result in the network output matching the
desired output for that training example. mathematically, this is the same as
solving the following equation:

y ŷ 0− =

where y is the desired output value and ŷ (pronounced “y hat”) is the value
predicted by the network. In reality, we do not have just a single training example
(data point), but we have a set of training examples that we want our function

5. This explanation assumes that you are familiar with the direction and magnitude of vectors. The
magnitude can be computed using the distance formula that is derived from the Pythagorean theorem.
details of this theorem can be found in texts about linear algebra.

SOLvING A LEARNING PROBLEm WITh GRAdIENT dESCENT

45

to satisfy. We can combine these multiple training examples into a single error
metric by computing their mean squared error (mSE):6

1
ˆ ()

1

() () 2

m
y y mean squared error

i

m
i i∑()−

=

The notation with a superscript number inside parentheses is used to distinguish
between different training examples. It is not an indication to raise y to the
power of i. Looking closer, it seems like using mSE presents a problem. For
most problems, the mSE is strictly greater than 0, so trying to solve it for 0 is
impossible. Instead, we will treat our problem as an optimization problem in
which we try to find weights that minimize the value of the error function.

In most deep learning (dL) problems, it is not feasible to find a closed form
solution7 to this minimization problem. Instead, a numerical method known as
gradient descent is used. It is an iterative method in which we start with an initial
guess of the solution and then gradually refine it. Gradient descent is illustrated
in Figure 2-4, where we start with an initial guess x

0
. We can insert this value into

6. We will later see that mSE is not necessarily a great error function for some neural networks, but
we use it for now because many readers are likely familiar with it.
7. A closed form solution is a solution found by analytically solving an equation to find an exact
solution. An alternative is to use a numerical method. A numerical method often results in an
approximate solution.

Figure 2-4 Gradient descent in one dimension

ChAPTER 2 GRAdIENT-BASEd LEARNING

46

f(x) and compute the corresponding y as well as its derivative. Assuming that we
are not already at the minimum value of y, we can now come up with an improved
guess x

1
 by either increasing or decreasing x

0
 slightly. The sign of the derivative

indicates whether we should increase or decrease x
0
. A positive slope (as in the

figure), indicates that y will decrease if we decrease x. We can then iteratively
refine the solution by repeatedly doing small adjustments to x.

In addition to indicating in what direction to adjust x, the derivative provides an
indication of whether the current value of x is close to or far away from the value
that will minimize y. Gradient descent makes use of this property by using the
value of the derivative to decide how much to adjust x. This is shown in the update
formula used by gradient descent:

()1x x f xn n nη= − ′+

where h (Greek letter eta) is a parameter known as the learning rate. We see that
the step size depends on both the learning rate and the derivative, so the step
size will decrease as the derivative decreases. The preceding figure illustrates the
behavior of gradient descent using a learning rate (h) of 0.3. We see how the step
size decreases as the derivative gets closer to 0. As the algorithm converges at
the minimum point, the fact that the derivative approaches 0 implies that the step
size also approaches 0.

If the learning rate is set to too large a value, gradient descent can also overshoot
the solution and fail to converge. Further, even with a small step size, the
algorithm is not guaranteed to find the global minimum because it can get stuck
in a local minimum. however, in practice, it has been shown to work well for
neural networks.

If you have encountered numerical optimization problems before, chances are
that you have used a different iterative algorithm known as the Newton-Raphson
or Newton’s method. If you are curious about how it relates to gradient descent,
you can find a description in Appendix E.

GRAdIENT dESCENT FOR mULTIdImENSIONAL FUNCTIONS

The preceding example worked with a function of a single variable, but our
neural networks are functions of many variables, so we need the ability to

Gradient descent is a commonly used learning algorithm in dL.

SOLvING A LEARNING PROBLEm WITh GRAdIENT dESCENT

47

minimize multidimensional functions. Extending it to more dimensions is
straightforward. As described in the section “derivatives and Optimization
Problems,” a gradient is a vector consisting of partial derivatives and indicates
the direction in the input space that results in the steepest ascent for the
function value. Conversely, the negative gradient is the direction of steepest
descent, or the direction of the quickest path to reducing the function value.
Therefore, if we are at the point x = (x

0
, x

1
) and want to minimize y, then we

choose our next point as

x

x
y0

1

η

− ∇

where ∇y is the gradient. This generalizes to functions of any number of
dimensions. In other words, if we have a function of n variables, then our gradient
will consist of n partial derivatives, and we can compute the next step as

η− ∇yx

where both x and ∇y are vectors consisting of n elements. Figure 2-5 shows
gradient descent for a function of two input variables. The function value y
gradually decreases as we move from point 1 to point 2 and 3.

Figure 2-5 Gradient descent for a function of two variables

ChAPTER 2 GRAdIENT-BASEd LEARNING

48

It is worth noting again that the algorithm can get stuck in a local minimum. There
are various ways of trying to avoid this, some of which are mentioned in later
chapters but are not discussed in depth in this book.

We are now almost ready to apply gradient descent to our neural networks. First,
we need to point out some pitfalls related to working with the multidimensional
functions implemented by neural networks.

Constants and variables in a Network
A key idea when applying gradient descent to our neural network is that we
consider input values (x) to be constants, with our goal being to adjust the
weights (w), including the bias input weight (w

0
). This might seem odd given our

description of gradient descent, where we try to find input values that minimize a
function. At first sight, for the two-input perceptron, it seems like x

1
 and x

2
 would

be considered input values. That would be true if we had a perceptron with fixed
weights and a desired output value and the task at hand was to find the x-values
that result in this output value given the fixed weights. however, this is not what
we are trying to do with our learning algorithm. The purpose of our learning
algorithm is to, given a fixed input (x

1
, x

2
), adjust the weights (w

0
, w

1
, w

2
) so that

the output value takes on the value we want to see. That is, we treat x
1
 and x

2
 as

constants (x
0
 as well, but that is always the constant 1, as stated earlier), while we

treat w
0
, w

1
, and w

2
 as variables that we can adjust.

To make it more concrete, if we are training a network to distinguish between a
dog and a cat, the pixel values would be the inputs (x) to the network. If it turned
out that the network incorrectly classified a picture of a dog as being a cat, we
would not go ahead and adjust the picture to look more like a cat. Instead, we
would adjust the weights of the network to try to make it correctly classify the dog
as being a dog.

during learning, not the inputs (x) but the weights (w) are considered to be the
variables in our function.

ANALyTIC ExPLANATION OF ThE PERCEPTRON LEARNING ALGORIThm

49

Analytic Explanation of the Perceptron
Learning Algorithm

Now we have the tools needed to explain why the perceptron learning algorithm
is defined the way it is. Starting with the two-input perceptron, we have the
following variables:

w

w

w

x

x

x

y, ,
0

1

2

0

1

2

w x=

=

The weight vector w is initialized with arbitrary values. This is our first guess at
what the weights should be. We also have a given input combination x (where x

0

is 1) and its desired output value (y), also known as the ground truth. Let us first
consider the case where the current weights result in an output of +1 but the
ground truth is −1. This means that the z-value (the input to the signum function)
is positive and we want to drive it down toward (and below) 0. We can do this by
applying gradient descent to the following function:8

 w w w0 0 1 1 2 2z x x x= + +

where x
0
, x

1
, x

2
 are constants and the weights are treated as variables. First, we

need to compute the gradient, which consists of the three partial derivatives with
respect to w

0
, w

1
, and w

2
. Remember that when computing a partial derivative, all

the variables except for the one that we are taking the derivative with respect to
are constants, so the gradient simply turns out to be

0

1

2

0

1

2

z

z

w

z

w

z

w

x

x

x

∇ =

∂
∂
∂
∂
∂

∂

=

8. In this description of the single perceptron case, we do not formally define an error function that
we want to minimize but instead simply identify that we want to reduce the z-value to get the desired
output and then use gradient descent to accomplish this. We will use an error function in the next
chapter.

ChAPTER 2 GRAdIENT-BASEd LEARNING

50

Given the current weight vector w, and the gradient ∇z, we can now compute a
new attempt at w that will result in a smaller z-value by using gradient decent.
Our new w will be

η− ∇zw

which expands to the following for each component of the vector w:

0 0

1 1

2 2

w x

w x

w x

η
η
η

−
−
−

This is exactly the update rule for the perceptron learning algorithm. That is, the
perceptron learning algorithm is equivalent to applying gradient descent to the
perceptron function.9

If the learning case we considered instead had a ground truth of +1 and our
current weight results in −1, then we can multiply all terms by −1 to still make it
a minimization problem, and the only difference will be that the gradient will have
a different sign, which again makes gradient descent equivalent to the perceptron
learning algorithm.

At this point, it is worth pointing out that what we have described so far is an
algorithm known as stochastic gradient descent (SGd). The distinction between
stochastic and true gradient descent is that, with true gradient descent, we would
compute the gradient as the mean value of the gradients for all individual training
examples, whereas with SGd, we approximate the gradient by computing it for only a
single training example. There are also hybrid approaches in which you approximate
the gradient by computing a mean of some, but not all, training examples. This
approach is studied more in later chapters, but for now we will continue using SGd.

We stated the gradient descent algorithm for this problem in vector form. This
form applies to any number of dimensions (i.e., it can be used for perceptrons
with any number of inputs).

9. This statement is not strictly correct: There are some subtleties with respect to the perceptron
function not being differentiable in all points, but for the purpose of this discussion, we can ignore that.

Gradient descent requires you to compute the gradient for all input examples
before updating the weights, but stochastic gradient descent only requires you
to compute the gradient for a single input example.

GEOmETRIC dESCRIPTION OF ThE PERCEPTRON LEARNING ALGORIThm

51

Geometric description of the Perceptron
Learning Algorithm

Finally, we offer a geometric explanation to how the perceptron learning
algorithm works for readers who think visually. Given that we are limited to three
dimensions when plotting, we can only visualize a function with two adjustable
parameters. This corresponds to a single-input perceptron, which has w

0
 and w

1

as adjustable parameters. Given a specific input example (x
0
, x

1
), where x

0
 = 1.0 as

always, our weighted sum z is now a function of the two weights w
0
 and w

1
. The

independent variables w
0
 and w

1
 together with the resulting variable z will define

a plane oriented in a 3d space. All points on this plane with a positive z-value
will result in an output value of +1 for the given input values (x

0
, x

1
), whereas a

negative z-value will result in an output value of −1 for the given input.

Let us assume that with the current input values and weights, the z-value is
positive, but the ground truth is negative. The perceptron learning algorithm will
simply adjust the weights w

0
 and w

1
 so that the z-value moves to a different point

on this plane, and the point that we move to will be in the direction that the plane
is tilted. you can envision that if we place a ball on the point corresponding to (w

0
,

w
1
) and let it roll, it will roll straight toward the point that the perceptron learning

algorithm will end up with in the next iteration. This is illustrated in Figure 2-6.

Figure 2-6 visualization of weight adjustment for a perceptron when desired
output is −1

ChAPTER 2 GRAdIENT-BASEd LEARNING

52

Revisiting different Types of
Perceptron Plots

At this point, we have introduced a number of different plots using two and three
dimensions. In some cases, we treated the perceptron inputs (x) as independent
variables, and in some cases, we instead switched to making the plot a function
of the weights (w). To avoid confusion, we revisit four charts in Figure 2-7 and
explain how they relate to each other. The perceptron is presented with an input
vector x and produces a single output y. Internally, it has a weight vector w and

(A) (B)

(C) (D)

Figure 2-7 (A) Weighted sum z as function of weights w
0
, w

1
 for one-input

perceptron. (B) Weighted sum z as function of inputs x
1
, x

2
 for two-input

perceptron. (C) Perceptron output y as function of weighted sum z. (d) decision
boundary for two-input perceptron acting as a binary classifier.

REvISITING dIFFERENT TyPES OF PERCEPTRON PLOTS

53

computes a weighted sum of x and w. We call the weighted sum z and use it as
input to a sign function that produces the output y.

Figure 2-7(A) shows the weighed sum z as a function of two weights w
0
 and w

1
.

This type of chart is used to understand how the perceptron behavior will change
if we adjust its internal weights (w). The chart assumes a specific input vector
x (x

0
 = 1.0, x

1
 = 0.3). The weight w

0
 is the bias weight, and x

0
 is not a true input

but is always set to 1.0. That implies that this chart represents a single-input
perceptron. We cannot plot this type of chart for perceptrons with two or more
inputs.

Figure 2-7(B) shows the weighted sum z as a function of two inputs x
1
 and x

2
. This

type of chart is used to understand how a perceptron behavior will change when
different input values (x) are presented to its inputs. The chart assumes a specific
set of weights (w

0
 = −0.2, w

1
 = −0.2 , w

2
 = −0.15). Both x

1
 and x

2
 are real inputs, so

the chart represents a two-input perceptron. That is, when we plot z as a function
of the inputs, we can represent a perceptron with more inputs than can be done
when we plot z as a function of the weights. This naturally follows from the fact
that the bias input x

0
 is always 1.0 (treated as a constant), whereas the bias

weight w
0
 is adjustable (treated as a variable).

Charts A and B visualize the weighted sum z. The two remaining charts visualize
the output y as a dependent variable. Figure 2-7(C) simply shows the output y as
a function of the weighted sum z. This chart applies to all perceptrons regardless
of their weights or number of inputs. As such, the chart might seem somewhat
uninteresting, but we see in Chapter 3 how we can replace the sign function by a
different function to create a different type of artificial neuron.

Finally, Figure 2-7(d) visualizes the output y as a function of two inputs x
1
 and

x
2
. At a first glance, this can be confusing when comparing to Figure 2-7(B),

which also represents a two-input perceptron. Why must one chart be 3d when
another chart can get away with being 2d? The explanation is that the 2d chart
exploits the fact that the output has only two possible values (−1 and +1), and the
regions that take on these two different values are clearly separated. Instead of
plotting the output value on its own dimension, we indicate the output value for
each point with plus and minus signs. We further draw a line representing the
boundary between the two regions. The equation for this line can be derived from
the perceptron function. This type of plot is very common when looking at any
binary classification problem. The perceptron is just one out of many techniques
for binary classification. It belongs to a class of techniques known as linear
classifiers. Appendix A describes some other linear classifiers and uses the same
type of chart to describe their behavior.

ChAPTER 2 GRAdIENT-BASEd LEARNING

54

This is about as far as we can get in terms of visualizing the behavior of a
perceptron. In reality, we often work with many more dimensions, so the
attempts at visualizing the process break down. Instead, we will need to trust the
mathematics and the formulas we have introduced.

Using a Perceptron to Identify Patterns
Before moving on to extending the learning algorithm to multilevel networks, we
will sidetrack a little and look at a different use case for the perceptron. So far,
we have studied cases in which the perceptron implements simple two-input
logical functions. That is, the perceptron was used to classify data points as
belonging to one of two classes, as long as the classes are linearly separable.
This is an example of binary classification. An important case for this is to use the
perceptron to identify a specific pattern. In such a case, we use the perceptron to
classify inputs as either belonging to a specific class of interest or not belonging
to that class. That is, we are still doing binary classification, but the other class
is “everything else.” Along these lines, we could envision a perceptron that works
as a cat identifier. If we present an image of a cat to the perceptron, it will fire, but
if we present any other image to the perceptron, it will not fire. If the perceptron
does not fire, the only thing we know is that the image was not of a cat, but
that does not mean we know what it is. It could be a dog, a boat, a mountain, or
anything else. Now, before getting too excited about creating our cat-detecting
perceptron, we point out that given the severe limitations of a single perceptron,
it is not possible to build a good cat identifier from a single perceptron. We need
to combine multiple perceptrons, as we did to solve the XOR problem, and that
is something we will do in future chapters. For now, let us consider just a single
perceptron and use it to identify some simpler image patterns.

In this example, we analyze a small part of a larger image. We arbitrarily choose
to just look at 9 pixels that are arranged in a 3×3 grid. Further, to keep things
simple, we assume that a pixel can take on only one of three intensities: white
(1.0), gray (0.0), or black (−1.0). This is done to limit the number of training
examples. Further, a training example will only consist of combinations of black
and white pixels or black and gray pixels. There are no training examples with a
combination of gray and white pixels or with black, gray, and white pixels. That is,
we have 29 = 512 examples that are black and white and 29 = 512 examples that
are black and gray. These two sets overlap at only one place: each contains an
image of all-black pixels. So, to be precise, we end up with 1,023 unique training
examples.

USING A PERCEPTRON TO IdENTIFy PATTERNS

55

The task for the perceptron is to signal +1 as output for the specific example that
we want it to be able to identify and to signal −1 for all others. To illustrate this,
we trained five perceptrons. Each perceptron was trained to identify a specific
pattern. The training process consisted of repeatedly presenting all input patterns
in random order to the perceptron. We used a ground truth of +1 for the pattern
that we wanted the perceptron to learn to identify and −1 for all other examples.
Figure 2-8 shows the results.

The five columns correspond to the five different perceptrons. The top row in the
figure shows the pattern that we wanted each perceptron to identify. The score
under each pattern is the input value to the sign function in the perceptron after it
had been trained (i.e., the weighted sum of the inputs when we present the target

Target
pattern

Highest
scoring
pattern

Lowest
scoring
pattern

Score:

0.6 0.2 0.2 −.4 −.6 −.4 −.2 0 0 0.2 −.2 0.8 0.2 0 0

0.2 0.2 0.2 −1 −.6 −.4 0.2 0 0 0.8 −.2 0.4 0.2 −.2 0

0.6 0.2 0.2 −.4 −.4 −.4 0 −.2 0.2 0.4 −.4 0.2 0 0 0.2

Weigh
matrix

Score:

Score:

Bias weight: −2.6

9.99e−16

−5.2

9.99e−16

−4.2

0.39

0.39

−8.8

−0.2

−1.0

−1.8

−1.0

−7.0

0.2

0.2

−3.4

−2.8

−1.2

−1.8

−2.0

Pattern 1 Pattern 2 Pattern 3 Pattern 4 Pattern 5

Figure 2-8 Five example patterns, the resulting weights, and highest- and lowest-
scoring patterns

ChAPTER 2 GRAdIENT-BASEd LEARNING

56

pattern to the trained perceptron). The second row shows the highest scoring
pattern (we simply presented all combinations to the trained neuron and recorded
which patterns resulted in the highest score) and its score. If the highest-scoring
pattern is identical to the target pattern, then that means that our classifier is
successful at identifying the target pattern. This does not necessarily mean that it
does not make any mistakes. For example, a perceptron could output a high score
on all patterns, in which case it signals many false positives. The third row shows
the lowest-scoring pattern and its score. The bottom row shows the weights after
training, including the bias weight.

We make the following observations:

• The perceptron is successful at identifying the black-and-white patterns (1, 2,
and 4). Looking at the weights for these cases, they kind of mimic the pattern.
Intuitively, this makes much sense if you think about it. If a pixel is white (1.0), you
want to multiply it by a positive value to end up with a high score, and if a pixel is
black (−1.0), you want to multiply it by a negative value to end up with a high score.

• For the all-white case, the target example barely brings the score above 0. This
also makes sense because it implies that other examples that have many, but
not all, white pixels will still not be able to get above 0; that is, the number of
false positives is limited.

• Even if the input pattern is perfectly symmetric (e.g., all white or all black), the
resulting weight pattern is not necessarily symmetric. This is a result of the
random initialization of the weights and the algorithm finding one out of many
working solutions.

• We see that the perceptron is not successful in perfectly identifying cases
in which some of the pixels are gray. In these cases, the algorithm never
converged, and we stopped after a fixed number of iterations. Apparently, these
are not linearly separable10 from the other examples. To identify such patterns,
we will need to combine multiple neurons as we did for the XOR problem.

10. We have mentioned linear separability a fair number of times, which might give the impression
that it is a very important concept to understand. however, the remainder of this book focuses on
multilevel networks, which do not suffer from the limitation related to linear separability. Therefore,
you do not need to worry much about this concept for the remainder of the book.

We can formalize the discussion about false positives and introduce the two
concepts precision and recall. This is described in Appendix A.

CONCLUdING REmARkS ON GRAdIENT-BASEd LEARNING

57

• From these examples, it starts getting clear that the perceptron is more
powerful than a simple NAND gate. In particular, it can work with real-valued
inputs, and we can change its behavior by applying a training algorithm.

This concludes our experiment with the perceptron as a pattern (also known as
feature) identifier, but we use these pattern identifiers as building blocks in future
chapters for more advanced image analysis in multilevel networks.

Concluding Remarks on Gradient-Based
Learning

This chapter continued to focus on the individual perceptron. We discussed more
details of how the perceptron learning algorithm works, from both an intuitive
perspective and a more mathematical perspective. As a part of the mathematical
description of the perceptron learning algorithm, we introduced how to minimize
a function with gradient descent. In addition to describing the learning algorithm,
we explored how to use the perceptron as a pattern detector.

It is now time to shift focus from the single perceptron to multilevel networks.
The key topic in the next chapter is how to extend the learning algorithm to such
networks. The algorithm used to train multilevel networks is based on gradient
descent and builds nicely on what you have learned in this chapter.

In Chapter 1, we briefly described how the dot product can be stated in terms
of the angle between the two vectors. For two vectors of a given length, the dot
product is maximized when the angle between the two vectors is 0. That is, if
the two vectors are of the same length, the dot product is maximized if the two
vectors are identical. Therefore, it makes total sense that the weight vector
mimics the input pattern.

This page intentionally left blank

59

Chapter 3

Sigmoid Neurons and
Backpropagation

In this chapter, we describe the basic learning algorithm, which virtually all
neural-network learning algorithms are variations of. This algorithm is based on a
technique known as backpropagation (or just backprop) and was introduced in the
context of neural networks in the mid-1980s. It was a significant step on the path
to deep learning (DL). Our impression is that even to many DL practitioners, this
algorithm can be a little bit of a mystery because much of it is hidden under the
hood of modern DL frameworks. Still, it is crucial to know the basics of how the
algorithm works.

At the highest level, the algorithm consists of three simple steps. First, present
one or more training examples to the neural network. Second, compare the output
of the neural network to the desired value. Finally, adjust the weights to make the
output get closer to the desired value. It is as simple as that! It is exactly what
we did in the perceptron learning algorithm, and we used gradient descent to
determine how much to adjust the weights. For a single perceptron, computing
the partial derivatives was trivial. For a multilevel network with multiple neurons
per layer, it can be hairy. This is where backprop comes to the rescue. It is a
simple and efficient way to compute partial derivatives with respect to weights in
a neural network.

ChAPTEr 3 SIgmOID NEurONS AND BACkPrOPAgATION

60

Before describing how it works, it is worth pointing out a terminology
inconsistency that can be confusing. Our description states that we use backprop
to compute the partial derivatives that are needed by gradient descent to train
the network. An alternative naming convention is to refer to the overall training
algorithm as the backpropagation algorithm. regardless of which terminology we
use, the overall process consists of the following passes:

• The forward pass, where we present a learning example to the network and
compare the network output to the desired value (the ground truth).

• The backward pass, where we compute the partial derivatives with respect to
the weights. These derivatives are then used to adjust the weights to make the
network output get closer to the ground truth.

Throughout this chapter, we build up the description of how the learning
algorithm for a multilevel network works, and in the final section, we present a
code example for implementing it to solve the XOR problem.

modified Neurons to Enable gradient
Descent for multilevel Networks

When we applied gradient descent to the perceptron, we sort of ignored the
activation function, that is, the sign function that is applied to the z-value to arrive
at the y-value. We did this by using gradient descent to drive z in the desired
direction, which we knew would implicitly affect y. That trick cannot be used
when working with a multilayer network where the outputs from the activation
functions in one layer are used as inputs to the next layer. This is one reason
that it was nontrivial to extend the perceptron learning algorithm to multilayer
networks.

A key requirement to be able to apply gradient descent is that the function that
it is applied to is differentiable, because we need to compute the gradient. The

The backpropagation algorithm consists of a forward pass in which training
examples are presented to the network. It is followed by a backward pass in
which weights are adjusted using gradient descent. The gradient is computed
using the backpropagation algorithm.

mODIFIED NEurONS TO ENABLE grADIENT DESCENT FOr muLTILEvEL NETWOrkS

61

sign function does not fulfill that requirement due to its discontinuity at zero.
rumelhart, hinton, and Williams (1986) addressed this when they presented
the backpropagation algorithm for multilevel networks. They replaced the sign
function with an S-shaped function. One example of such a function is shown in
Figure 3-1, which shows the hyperbolic tangent (tanh) function.

The reason that such a function was chosen is obvious when comparing its shape
to the sign function. Its shape mimics the sign function, but it is a continuous
function and thereby differentiable everywhere. It seems like it is the best of both
worlds because the sign function works well for perceptrons, but differentiability
is needed for learning.

Another S-shaped function that is important to DL is the logistic function, shown in
Figure 3-2. To avoid confusion, we should point out something about terminology.
Strictly speaking, both tanh and the logistic function belong to a class of functions
known as sigmoid functions. In older texts on neural networks, sigmoid function
is commonly used to refer to either the tanh function or the logistic function.
however, nowadays the DL field uses sigmoid function to refer only to the logistic
function. In this book, we interchangeably use the terms logistic function, sigmoid
function, and logistic sigmoid function when referring to said function, and we call
out tanh separately. The scales of the axes are different for the charts of the tanh

Figure 3-1 hyperbolic tangent (tanh) function. Note how it is symmetric around 0
on both axes.

ChAPTEr 3 SIgmOID NEurONS AND BACkPrOPAgATION

62

function and the logistic function, so although the curves look similar, they are
different.

Before discussing these two functions in more detail, we first introduce their
mathematical definitions:

 : tanh
1

1

2

2Hyperbolic tangent x
e e

e e

e

e

x x

x x

x

x() =
−
+

=
−
+

−

−

 : ()
1

1 1
Logistic sigmoid function S x

e

e

ex

x

x=
+

=
+−

Each function can be stated in a couple of different forms, and you may well run
into all of them in other texts on the subject. At a first glance, these definitions
might look scary, and it seems magical that anybody could come up with the idea
to use these functions when simulating neurons. however, the mathematical
definition is less important, and it is the shape that was the driving force.
If you study the asymptotes (the output value when x goes to the extreme),

Figure 3-2 Logistic sigmoid function. Note how it is symmetric around 0 on the
x-axis and around 0.5 on the y-axis. The scale of both the x-axis and the y-axis is
different than in Figure 3-1.

mODIFIED NEurONS TO ENABLE grADIENT DESCENT FOr muLTILEvEL NETWOrkS

63

it is fairly easy to convince yourself1 that as x approaches infinity, the tanh
function approaches +1, and as x approaches negative infinity, the tanh function
approaches −1, just like the sign function. If we do the same exercise for the
logistic sigmoid function, we see that it also approaches +1 as x approaches
infinity, whereas it instead approaches 0 as x approaches negative infinity.

1. One way of doing this is to play with a spreadsheet and insert different values of x, then look at how
the values vary for the various exponential functions and the result of combining them.

We note that both functions are combinations of exponential functions. The
shape of an exponential function is similar to a half S as shown in Figure 3-3.
If you think about it a little bit, it seems intuitive that it is possible to combine
exponential functions to create an S-shape. In particular, an exponential taking
x as an argument will dominate for positive x but will be close to 0 for negative
x. On the contrary, an exponential taking −x as an argument will exhibit the
opposite behavior.

Figure 3-3 Exponential function shaped like the lower half of an S

ChAPTEr 3 SIgmOID NEurONS AND BACkPrOPAgATION

64

We mentioned earlier that the two S-shaped functions are differentiable. Before
going into more details of the functions themselves, let us first present their
derivatives:

Derivative of hyperbolic tangent x tanh x : tanh 1 2() ()′ = −

Derivative of logistic sigmoid function S x S x S x : 1()() () ()′ = −

One key property for both of these functions is that their derivatives can be
computed from the function values even if the x-values are not available.
Specifically, tanh'(x) is a function of tanh(x), and similarly, S'(x) is a function of S(x).
To make it more concrete, for tanh, if we have computed y = tanh(x) for a specific
x, then the derivative of the tanh function for that same x can easily be computed
as 1 – y2. We will make use of that property later in this chapter.

Let us now look closer at the differences between tanh and the logistic sigmoid
function. Figure 3-4 shows both functions plotted in the same chart. We noted
that the tanh function is more similar to the sign function in that it approaches
−1 as x approaches negative infinity, whereas the logistic function bottoms out
at 0. We also noted in Chapter 1, “The rosenblatt Perceptron,” that if you have a
background in digital electronics, it might feel more comfortable to use a function
with the output range 0 to 1 instead of −1 to +1. Another observation is that a
range from 0 to 1 can make more sense if we want to interpret the output as a

Figure 3-4 Chart comparing the tanh function and the logistic sigmoid functions

mODIFIED NEurONS TO ENABLE grADIENT DESCENT FOr muLTILEvEL NETWOrkS

65

probability—for example, how probable it is that the input to the network is a
picture of a cat.

In addition to the output range, there are some subtle differences to consider,
namely, the different threshold values (i.e., where the function is centered in the
x-direction). Table 3-1 shows three different combinations of threshold value and
output range.

From Figure 3-4 and Table 3-1, we can see that both the tanh and logistic sigmoid
functions are symmetric around 0 on the x-axis, so their threshold is 0. For
the case where the output range is 0 to 1, you may think that a threshold of 0.5
(which we call symmetric digital) is more intuitive. To illustrate why, consider
what happens if you connect multiple neurons after each other. Further assume
that the input to the first neuron is close to its threshold value, and therefore the
output of the neuron will fall in the middle of the output range. For both the tanh
and symmetric digital neuron, this means that the subsequent neuron will get an
input that is close to its threshold value, and again, its output will be in the middle
of the output range. On the other hand, in the case of the logistic sigmoid function,
the second neuron will get an input that is well above its threshold. Therefore, at a
first glance, it seems like a neural net based on neurons using the logistic sigmoid
function would be biased toward outputting +1.

The reasoning above ignores two important details. First, the weights can be
both positive and negative. Thus, if we have initialized the weights randomly
and each neuron is fed by the output from multiple neurons, then even if all the
inputs to a neuron in a subsequent layer are close to 0.5, their weighted sum
(the input to the activation function) will be close to 0 because about half of the
inputs will be multiplied by a negative weight and half will be multiplied by a
positive weight. That is, in practice, the symmetric digital function will be biased
toward outputting −1, whereas the logistic sigmoid function would be close to the
middle of its output range. Note that tanh works the same either way. The second

Table 3-1 Three Alternative Activation Functions

SIGN/TANH LOGISTIC SIGMOID SYMMETRIC DIGITAL

Max output 1 1 1

Min output −1 0 0

Threshold 0 0 0.5

ChAPTEr 3 SIgmOID NEurONS AND BACkPrOPAgATION

66

detail to consider is the bias input. Let us assume a case where all the weights
are positive. Even in this case, it is possible to set the bias weight for the logistic
sigmoid function to a value at which the output from the previous layer, combined
with the bias, will result in an input to the activation function that is close to the
threshold value. As described in Chapter 1, changing the bias term is equivalent
to picking a threshold. This means that as long as the bias weight is initialized (or
learned) properly, this entire threshold discussion is moot. Neither of the neurons
has a fixed threshold, but the threshold can be adjusted by changing the bias
weight.

Which Activation Function Should
We use?

This discussion has taken for granted that the activation function should be fairly
similar to the sign function but should be differentiable. This is all influenced by
history and the all-or-nothing activation (either the neuron fires or it does not
fire) described by both mcCulloch-Pitts (1943) and rosenblatt (1958). rosenblatt
mentioned that there were other ideas as well, and it turns out that there are other
powerful activation functions that are much different from the sign function. Some
of them are not even differentiable in all points even though that was assumed
to be a strict requirement in 1986 when the learning algorithm for multilevel
networks was introduced. various examples of these more modern activation
functions are introduced in Chapter 5, “Toward DL: Frameworks and Network
Tweaks,” and Chapter 6, “Fully Connected Networks Applied to regression,” but for
now we limit ourselves to the logistic sigmoid function and tanh, and an obvious
question, then, is which one to pick. As you will see later in this book, this is just
one of many similar questions, and there are multiple alternative implementations
to choose among. In general, there are no right or wrong answers, but the solution
is to experiment and pick whatever method is best for the specific problem that
you are working on. however, there are often heuristics that can point you in the
right direction as a starting point for these experiments.

When using an S-shaped function as an activation function, we recommend
starting with tanh for hidden layers because their output will be centered around
0, which coincides with the threshold of the next layer.2 For the output layer,
we recommend using the logistic sigmoid function so it can be interpreted as a

2. Assuming that the bias weight is initialized to 0 or randomly with an average of 0.

FuNCTION COmPOSITION AND ThE ChAIN ruLE

67

probability. We will also see that this function works well with a different type of
loss function introduced in Chapter 5.

The discussion about input and output ranges and their relationships to threshold
values focused on the behavior during the forward pass. It turns out that these
design choices also influence how easy it is for the backpropagation algorithm
to adjust the weights to their desired values. We do not go into details about this,
but some further discussions about the difference between the logistic sigmoid
function and tanh and how they affect the network training process can be found
in a paper by LeCun, Bottou, Orr, and müller (1998).

Function Composition and the Chain rule
A central theme in the backpropagation algorithm is to compute the derivative
of a composite function using the chain rule. In this section, we provide a brief
introduction to composite functions and the chain rule. As with the section about
partial derivatives and optimization problems in Chapter 2, “gradient-Based
Learning,” this section mainly targets readers who feel rusty with respect to these
topics, so feel free to skip to the next section if that does not apply to you.

Function composition is used to combine two or more functions into a new
function by using the output value of one function as input value to the next
function. Assume that we have two functions:

f x and g x, () ()

Further assume that we use the output of function g(x) as an input to function f(x).
Then we can combine them into the composite function

h x f g x()() ()=

A common alternative notation is to use the composition operator:

, � �h x f g x or just h f g() ()= =

There exist a large number of activation functions where some, but not all,
are S-shaped functions. Two popular choices are tanh and the logistic sigmoid
function. When picking between the two, choose tanh for hidden layers and
logistic sigmoid for the output layer.

ChAPTEr 3 SIgmOID NEurONS AND BACkPrOPAgATION

68

The notation with the composition operator is generally preferrable when
composing multiple functions to avoid all the nested parentheses. In most cases,
we use this notation for function composition.

The reason that we bring up function composition is that a multilayer neural
network can be written as a composite function. We will see details of that in
the next section, but before that, we also need to describe how to compute the
derivative for composite functions. The derivative will be needed when applying
gradient descent to a multilevel network. The chain rule states how we can
compute the derivative of a composition of functions. If we have

�h f g=

then the derivative is

()�h f g g′ = ′ ′

Stated differently, if we have

 and , so �z f y y g x z f g x() () ()= = =

then

z

x

z

y

y

x

∂
∂

=
∂
∂

⋅
∂
∂

which is also known as Leibniz’s notation. We will use this notation when applying
the chain rule.

In these examples, we only used functions of a single variable. When applying
these concepts to neural networks, we will generally work with functions with
multiple variables. As an example, assume two input variables for both our
functions g(x

1
, x

2
) and f(x

3
, x

4
). Further assume that the output of g is used as the

second argument to function f. We get the composite function

, , , , 1 2 3 3 1 2�h x x x f g f x g x x()() ()= =

Just as we did in the Chapter 2, we want to compute partial derivatives of this
resulting multivariate function. This is done by treating all other variables as
constants, as described in the previous chapter. For the function h that we just
described, this implies that we will need to use the chain rule to compute the
partial derivatives with respect to variables x

1
 and x

2
. When computing the

partial derivative with respect to x
3
, g is treated as a constant and we only need

to consider the derivative of function f. Detailed examples of this are found in the
next section where we do these computations for a neural network.

uSINg BACkPrOPAgATION TO COmPuTE ThE grADIENT

69

using Backpropagation to Compute
the gradient

It is now time to explore how to apply gradient descent to a multilevel network. To
keep it simple, we begin with one of the simplest multilevel networks that we can
think of, with only a single neuron in each layer. We assume two inputs to the first
neuron. The network is shown in Figure 3-5.

We have named the two neurons g and F, where g has three adjustable weights,
and F has two adjustable weights. In total, we have a network with five adjustable
weights. We want a learning algorithm to automatically find values for these
weights that result in the network implementing the desired functionality. The
figure also contains something that looks like a neuron to the very right, but this
is not a part of the network. Instead, it represents a function needed to determine
how right or wrong the network is, which is needed for learning. (This is described
in more detail shortly).

We use a weight-naming convention whereby the first letter in the subscript
represents the source layer and the second letter represents the destination
layer (the layer that the weight is a part of). The digit represents the input number,
where 0 is the bias input. That is, w

xg2
 means input number 2 to the g-neuron,

which receives its input from layer x. For consistency, we use the same naming

G F

wxg1

wxg0 wgf0

wgf1

wxg2

X1

X2

Input layer Hidden layer Output layer

E

1.0 1.0

Error

ytruth

Error function

Network output

Figure 3-5 Simple two-layer network used to explain backpropagation. The last
unit (dashed) is not a part of the network but represents the error function that
compares the output to ground truth.

ChAPTEr 3 SIgmOID NEurONS AND BACkPrOPAgATION

70

convention for the bias term as for the other terms, although technically it does
not have a source layer.

The perceptron studied in Chapter 2 used the sign function as its activation
function. As already noted, the sign function is not differentiable in all points.
In this chapter, we use activation functions that are differentiable in all points.
Neuron g uses tanh as an activation function, and neuron F uses S (the logistic
sigmoid function). This means that a small change to any of the five weights will
result in only a small change to the output. When we used a sign function, a small
change in a weight would not change anything until the change was big enough to
make one perceptron flip, in which case all bets were off because it could easily
flip dependent neurons as well.

Taking a step back, our neural network implements the following function:

ˆ tanh0 1 0 1 1 2 2y S w w w w x w xgf gf xg xg xg()()= + + +

We know of an algorithm (gradient descent) that can be used to minimize a
function. To make use of this algorithm we want to define an error function, also
known as a loss function, which has the property that if it is minimized, then the
overall network produces the results that we desire. Defining and minimizing
error functions is not unique to neural networks but is used in many other
contexts as well. One popular error function that comes to mind is the mean
squared error (mSE), which we introduced in Chapter 2, and you might already
have been familiar with because it is used for linear regression. The way to
compute it is to, for each learning example, subtract the predicted value from the
ground truth and square this difference, or stated as a mathematical formula:

1

(ˆ)
1

() () 2MSE
m

y y
i

m
i i∑= −

=

We promised in the preface to not start the book with linear regression, but
sometimes we still have to mention it. At least we waited until Chapter 3. For
the purpose of this chapter, there is no need to know anything about linear
regression, but if you are interested, then you can read more in Appendix A.

remember that error function and loss function are two names for the same
thing.

uSINg BACkPrOPAgATION TO COmPuTE ThE grADIENT

71

In other words, mSE is the mean (sum divided by m) of the squared error ˆ 2
y y()−

for all m training examples. In Chapter 5, we will learn that using mSE as an error
function with this type of neural network is not optimal, but we will use it for
now just to keep things familiar and simple. That is, assuming a single training
example, we want to minimize our loss function ˆ 2

y y()− , where ŷ was defined
above and y is a part of the training example. The following equation combines the
formula for mSE with the network function to arrive at the expression of the error
function that we want to minimize for a single learning example:

(()()= − + + +Error w w w w x w xgf gf xg xg xgy S tanh0 1 0 1 1 2 2

2

We know that we can minimize this function using gradient descent by computing
the gradient of the loss function (∇Error) with respect to our weights w, then
multiplying this gradient by the learning rate (h), and then subtract this result
from the initial guess of our weights. That seems straightforward enough, except
that computing the gradient of our loss function seems a little bit scary.

One brute-force way to solve this problem would be to compute the gradient
numerically. We could present an input example to the network and compute and
record the output. Then we add Δw to one of the weights and compute the new
output and can now compute Δy. An approximation of the partial derivative is now
Δy/Δw. Once we have repeated this procedure for all weights, we have computed
the gradient. unfortunately, this is an extremely computationally intensive way of
computing our gradient. We need to run through the network n+1 times, where n
is the number of weights in the network (the +1 is necessary because we need the
baseline output without any adjustments to the weights).

The backpropagation algorithm solves this problem in an elegant way by
computing the gradient analytically in a computationally efficient manner. The

There are multiple loss functions to choose among. We use mSE for historical
reasons in this section, but in reality, it is not a good choice in combination with
a sigmoid activation function.

A key thing to remember here is that because we want to adjust the weights,
we view the weights w as variables, and we view the inputs x as constants;
that is, the gradient is computed with respect to w and not with respect to x.

ChAPTEr 3 SIgmOID NEurONS AND BACkPrOPAgATION

72

starting point is to decompose our equation into smaller expressions. We start
with a function that computes the input to the activation function of neuron g:

, , 0 1 2 0 1 1 2 2z w w w w w x w xg xg xg xg xg xg xg() = + +

Next is the activation function for neuron g:

g z tanh zg g() ()=

It is followed by the input to the activation function of neuron F:

, , 0 1 0 1z w w g w w gf gf gf gf gf() = +

This in turn is followed by the activation function of neuron F:

f z S zf f() ()=

Finally, we conclude with the error function:

2

2

e f
y f() ()=

−

Looking closely at the formulas, you might wonder where the 2 in the
denominator of the error (e) came from. We added that to the formula because
it will simplify the solution further down. This is legal to do because the values
of variables that will minimize an expression do not change if we divide the
expression by a constant.

Overall, the error function that we want to minimize can now be written as a
composite function:

, , , ,0 1 0 1 2Error w w w w w e f z g zgf gf xg xg xg f g� � � �() =

That is, e is a function of f, which is a function of z
f
 , which is a function of g,

which is a function of z
g
. Function z

f
 is not only a function of g but also of the two

variables w
gf0

 and w
gf1

. That was already shown further up in the definition of z
f
.

Similarly, z
g
 is a function of the three variables w

xg0
, w

xg1
, and w

xg2
.

Now that we have stated our error function as a composition of multiple functions,
we can make use of the chain rule. We use that to compute the partial derivative

Again, note that this formula contains neither x nor y because they are not
treated as variables but as constants for a given training example.

uSINg BACkPrOPAgATION TO COmPuTE ThE grADIENT

73

of the error function e with respect to the input variables w
gf0

, w
gf1

, w
xg0

, w
xg1

, and
w

xg2
. Let us start with the first one: We compute the partial derivative of e with

respect to the variable w
gf0

. We do this by simply regarding the other variables as
constants, which also implies that the function g is a constant, and we then have a
function

 0� �Error e f z wf gf()=

Applying the chain rule now yields:

 (1)
0 0

e

w

e

f

f

z

z

wgf f

f

gf

∂
∂

=
∂
∂

⋅
∂
∂

⋅
∂

∂

Doing the same exercise, but with respect to w
gf1

, yields

 (2)
1 1

e

w

e

f

f

z

z

wgf f

f

gf

∂
∂

=
∂
∂

⋅
∂
∂

⋅
∂

∂

moving on to w
xg0

, w
xg1

, and w
xg2

 results in expressions with two more functions in
the composite function because the functions g and z

g
 are no longer treated as

constants:

 � � � �Error e f z g zf g=

The resulting partial derivatives are

 (3)
0 0

e

w

e

f

f

z

z

g

g

z

z

wxg f

f

g

g

xg

∂
∂

=
∂
∂

⋅
∂
∂

⋅
∂
∂

⋅
∂
∂

⋅
∂

∂

 (4)
1 1

e

w

e

f

f

z

z

g

g

z

z

wxg f

f

g

g

xg

∂
∂

=
∂
∂

⋅
∂
∂

⋅
∂
∂

⋅
∂
∂

⋅
∂

∂

 (5)
2 2

e

w

e

f

f

z

z

g

g

z

z

wxg f

f

g

g

xg

∂
∂

=
∂
∂

⋅
∂
∂

⋅
∂
∂

⋅
∂
∂

⋅
∂

∂

One thing that sticks out when looking at the five partial derivatives is that there
are a whole lot of common subexpressions. For example, the first two factors are
the same in each of the five formulas, and three of the formulas share yet another
two factors. This provides some intuition for why the backpropagation algorithm
is an efficient way of computing the gradient. Instead of being recomputed over
and over, these subexpressions are computed once and then reused for each
partial derivative where they are needed.

Now let us attempt to compute one of the partial derivatives in practice. We start
with number (1) above.

ChAPTEr 3 SIgmOID NEurONS AND BACkPrOPAgATION

74

2 2(y)

2
(1)

2

e

f

y f

f

f
y f

()
()∂

∂
=

∂
−

∂
=

−
⋅ − = − −

()() ()∂
∂

=
∂

∂
= ′

f

z

S z

z
S z

f

f

f
f

()
1

0

0 1

0

z

w

w w g

w
f

gf

gf gf

gf

∂
∂

=
∂ +

∂
=

Combining the three together, we get

(y) ()
0

e

w
f S z

gf
f

∂
∂

= − − ⋅ ′

There are three key observations here. First, we have all the values y, f, and
z

f
 because y comes from the training example and the others were computed

when doing the forward pass through the network. Second, the derivative of S is
possible to compute because we consciously chose S as an activation function.
This would not have been the case if we had stuck with the sign function. Third,
not only can we compute the derivative of S but, as we saw earlier in this chapter,
the derivative is a function of S itself. Therefore, we can compute the derivative
from the value f that was computed during the forward pass. We revisit these
three observations later in the chapter in a numerical example.

Let us now compute the partial derivative with respect to w
gf1

, that is, number (2)
presented earlier. The only difference compared to (1) is the third factor, which
becomes

()

1

0 1

1

z

w

w w g

w
gf

gf

gf gf

gf

∂
∂

=
∂ +

∂
=

Combining this with the first two factors yields

(y) ()
1

e

w
f S z g

gf
f

∂
∂

= − − ⋅ ′ ⋅

Note the negative sign for −(y − f). Some texts simply flip the position of the two
terms to get rid of it. In addition, some code implementations of the algorithm
omit it and later compensate by using + instead of − when adjusting the weights
further down.

uSINg BACkPrOPAgATION TO COmPuTE ThE grADIENT

75

This is the same as we had for w
gf0

 but multiplied by g, which is the output of
neuron g that we already computed during the forward pass.

We can do similar exercises for the remaining three partial derivatives and arrive
at all five derivatives that the gradient consists of (Equation 3-1).

0

e

w
y f S z

gf
f()()∂

∂
= − − ⋅ ′ (1)

1

e

w
y f S z g

gf
f()()∂

∂
= − − ⋅ ′ ⋅ (2)

0
1

e

w
y f S z w tanh z

xg
f gf g()()()∂

∂
= − − ⋅ ′ ⋅ ⋅ ′ (3)

1
1 1

e

w
y f S z w tanh z x

xg
f gf g()()()∂

∂
= − − ⋅ ′ ⋅ ⋅ ′ ⋅ (4)

2

1 2

e

w
y f S z w tanh z x

xg
f gf g()()()∂

∂
= − − ⋅ ′ ⋅ ⋅ ′ ⋅ (5)

Equation 3-1 All five partial derivatives of the gradient

The derivative of tanh, like the derivative of S, is also simple to compute. Looking
at the preceding equations, we can see a pattern. We start with the derivative
of the error function and then multiply that by the derivative of the activation
function for the output neuron. Let us call this product the error for the output
neuron (neuron F). Now, the partial derivative with respect to an input weight for
that neuron is obtained by multiplying the neuron error by the input value to that
weight. In the case of the bias weight, the input value is 1, so the partial derivative
is simply the neuron error. For the other weight, we multiply the neuron error by
the output of the preceding neuron, which is the input to the weight.

moving to the next (preceding) layer, we take the error for the output neuron,
multiply it by the weight connecting to the preceding neuron, and multiply the
result by the derivative of the activation function for the preceding neuron. We call
this the error of the preceding neuron (neuron g). These computations propagate
the error backward from the output of the network toward the beginning of the
network, hence the name backpropagation algorithm. The full learning algorithm is
shown in Figure 3-6.

So, as described, we start by applying the input example to the network to
compute the current error. This is known as the forward pass. During this pass,

ChAPTEr 3 SIgmOID NEurONS AND BACkPrOPAgATION

76

we also store the outputs (y) for all neurons because we will use them during the
backward pass. We then start the backward pass during which we propagate the
error backward and compute and store an error term for each neuron. We need
the derivative to compute this error term, and the derivative for each neuron
can be computed from the stored output (y) for the neuron. Finally, we can use
this error term together with the input values to the layer to compute the partial
derivatives that are used to adjust the weights. The input values to a hidden layer
are the output values from the preceding layer. The input values to the first layer
are simply the x-values from the training example.

G F

wxg1

wgf1

wgf0wxg0

wxg2

X1

E

1.0 1.0

Error

ytruth

Network output

1. Forward pass: Compute and store activation function output (y) for each neuron and finally
the error

yg yf ErrorResulting stored variables:

Compute the derivative eʹ(yf) of the error function. Compute (back propagate)
the error for each neuron by multiplying the error from the subsequent neuron
(that it feeds) by the weight to that neuron and then multiply by the derivative
of its own activation function. (e.g. the error for neuron G is errorg = errorf *
wgf1 * gʹ(zg) where gʹ(zg) is the derivative of the activation function for neuron G).
This derivative can be computed from the stored output of the activation
function.

2. Backward pass:

Resulting stored variables: errorg errorf eʹ(yf)

3. Update weights:For each weight, subtract (learning_rate * input * error) where input is the input
value to that weight (from network input or output from preceding neuron) and
error is the error term for the neuron the weight belongs to (e.g., for weight wgf1
the adjustment will be –(learning_rate * yg * errorf) where yg is the output of
neuron G).

X2

Figure 3-6 Network learning algorithm based on gradient descent using
backpropagation to compute gradient

uSINg BACkPrOPAgATION TO COmPuTE ThE grADIENT

77

Looking at the formula for a single component of the gradient, we can see that
there are a number of things that determine how much to adjust the weight when
the gradient is later used for gradient descent:

• The overall error—this makes sense in that a big error should lead to a big
adjustment.

• All the weights and derivatives on the path from the weight in question to the
error in the end of the network—this makes sense because if one or more
weights or derivatives on this path will suppress the effect of this weight
change, then it is not helpful to change it.

• The input to the weight in question—this makes sense because if the input to
the weight is small, then adjusting the weight will not have much of an effect.

The current value of the weight to adjust is not a part of the formula. Overall,
these observations make intuitive sense for how to identify which weights should
get significant adjustments.

To make this more concrete, we now walk through a numerical example for
the forward pass, backward pass, and weight adjustment for a single training
example:

 : 0.3; 0.6; 0.1; 0.2; 0.50 1 2 0 1Initial weights w w w w wxg xg xg gf gf= = = − = − =

 : 0.9; 0.1; 1.01 2Training example x x ytruth= − = =

 0.1Learning rate lr= =

Backpropagation consists of the following steps:

Compute the derivative of the error function with respect to network output,
and call this the output error. multiply this output error by the derivative of
the activation function of the output neuron, and call this the error term for
that neuron. The partial derivative with respect to any weight of that neuron
is the error term times the input value to the weight. The error term for the
preceding neuron is the error term for the current neuron times the weight
between the two neurons times the derivative of the activation function of the
preceding neuron.

ChAPTEr 3 SIgmOID NEurONS AND BACkPrOPAgATION

78

FOrWArD PASS

We compute the output of neuron g by applying the tanh activation function to the
weighted sum of the inputs, namely the bias term and the two x-values:

tanh 0 1 1 2 2y w w x w xg xg xg xg()= + +

tanh 0.3 0.6 0.9 0.1 0.1 0.25()() ()= + ⋅ − + − ⋅ = −

We then compute the output of neuron F by applying the logistic activation
function to the weighted sum of the inputs to this neuron, which is simply the bias
term and the output from neuron g:

S 0.2 0.5 0.25 0.420 1y w w y Sf gf gf g() ()()= + = − + ⋅ − =

We conclude the forward pass with computing the mSE between the desired
output and the actual output to see how well the current weights work, but we will
not use this computation for the backward pass.

2

1.0 0.42

2
0.17

2 2

MSE
y yf() ()=

−
=

−
=

BACkWArD PASS

We start the backward pass with computing the derivative of the error function:

1.0 0.42 0.58MSE y yf() ()′ = − − = − − = −

We then compute the error term for neuron F. The general way of doing this is
to multiply the just-computed error term (for the layer that follows the current
neuron) by the weight that connects this error to the current neuron and then
multiply by the derivative of the activation function for the current neuron. This
last layer is a little bit special in that there is no weight that connects the output
to the error function (i.e., the weight is 1). Thus, the error term for neuron F is
computed as

 0.58 0.42 1 0.42 0.14Error term f MSE yf ()= ′ ⋅ ′ = − ⋅ ⋅ − = −

In this formula, we computed the derivative of the logistic sigmoid function as
1S S()⋅ − .

We then move on to do the same computation for neuron g, where we now
multiply the just-computed error term for neuron F by the weight that connects

uSINg BACkPrOPAgATION TO COmPuTE ThE grADIENT

79

neuron F to neuron g and then multiply by the derivative of the activation function
for neuron g:

 0.14 0.5 1 (0.24) 0.0661
2Error term g Error term f w ygf g ()= ⋅ ⋅ ′ = − ⋅ ⋅ − − = −

In this formula, we computed the derivative of the tanh function as (1 − tanh2).

WEIghT ADJuSTmENT

We are now ready to adjust the weights. We compute the adjustment value for a
weight by multiplying the learning rate by the input value to the weight and then
multiply by the error term for the neuron that follows the weight. The input values
to the bias weights are 1. Note that for the weight connecting g to F, the input
value is the output of neuron g (−0.25):

1 0.1 1 0.066 0.00660w lr Error term gxg ()∆ = − ⋅ ⋅ = − ⋅ ⋅ − =

 0.1 0.9 0.066 0.00601 1w lr x Error term gxg () ()∆ = − ⋅ ⋅ = − ⋅ − ⋅ − = −

 0.1 0.1 0.066 0.000662 2w lr x Error term gxg ()∆ = − ⋅ ⋅ = − ⋅ ⋅ − =

1 0.1 1 0.14 0.0140w lr Error term fgf ()∆ = − ⋅ ⋅ = − ⋅ ⋅ − =

 0.1 0.25 0.14 0.00351w lr y Error term fgf g () ()∆ = − ⋅ ⋅ = − ⋅ − ⋅ − = −

We included a negative sign in the deltas above, so the updated weights can now
be computed by simply adding the deltas to the existing weights:

0.3 0.0066 0.30660wxg = + =

0.6 0.0060 0.59401wxg = − =

0.1 0.00066 0.09932wxg = − + = −

0.2 0.014 0.18590wgf = − + = −

0.5 0.0035 0.49651wgf = − =

Figure 3-7 shows the network annotated with key values computed during the
forward and backward passes. The green and red arrows indicate the direction
(green = positive, red = negative) and magnitude (wider is greater) of the resulting
weight adjustments.

We can gain some intuition by looking at the magnitude and direction of the
weight adjustments. Considering neuron g, we see that the weights for the
bias term and the x

1
 input are adjusted by an order of magnitude more than the

weight for x
2
 (0.0066 and −0.0060 for the bias and x

1
 weights vs. 0.00066 for

ChAPTEr 3 SIgmOID NEurONS AND BACkPrOPAgATION

80

the x
2
 weight). This makes sense because the magnitude of the bias input and

x
1
 is greater than the magnitude for x

2
, and thus these two weights are more

significant levers. Another observation is that the output is less than the desired
output, so we want to increase the output of the network. This property, together
with the sign of the input values that feed each weight, will determine the
direction that the weight is adjusted. For example, the bias weight is increased,
whereas the weight corresponding to input x

1
 is decreased because the x

1
 input is

a negative value.

Just as for the perceptron learning algorithm, we provide a spreadsheet that
replicates the computations. In addition, this spreadsheet contains multiple
iterations of the algorithm. We recommend playing with that spreadsheet to get a
better understanding of the computations and gain some intuition. The location of
the spreadsheet can be found under “Programming Examples” in Appendix I.

The number of computations needed to compute the entire gradient is about the
same as the number of computations that are needed for one forward pass. There
is one derivative per neuron in the network and one multiplication per weight.
This can be compared with the N+1 times the forward pass that would have been
needed if we computed the gradient numerically using the brute-force method that
we envisioned before describing the backpropagation algorithm. This makes it clear
that the backpropagation algorithm is an efficient way of computing the gradient.

yg =
–0.25

delta =
0.014

yf =
0.42

delta =
–0.0060

x1 =
–0.9

delta =
0.00066

X2 =
0.1

Input layer Hidden layer Output layer

delta =
–0.0034

MSE =
0.17

1.0

1.0

Error

1.0

Error function

Network output

Errorg =
–0.066

Errorf =
–0.14

MSE' =
–0.58

delta =
0.0066

Figure 3-7 Network annotated with numbers computed during forward and
backward passes. A green arrow represents a positive weight adjustment, and
red represents a negative adjustment. The width of the arrow indicates the
magnitude of the adjustment. Note that the actual weights are not shown in the
figure; only the adjustment value (delta) is shown.

BACkPrOPAgATION WITh muLTIPLE NEurONS PEr LAyEr

81

Backpropagation with multiple Neurons
per Layer

The network in the previous example was simple in that there was only a
single path from each weight to the output of the network. Let us now consider
networks that are a bit more complex with more layers, more neurons per
layer, and even multiple outputs. These kinds of networks are shown in
Figure 3-8.

The only difference for backpropagation in such networks is that when
computing the error term for a neuron, we need to add up the weighted errors
from all subsequent neurons instead of just a single weighted error term, as we
did in our previous example. To clarify, for the leftmost network in Figure 3-8,
when computing the error term for neuron m, we add together the weighted
errors from O and P. Similarly, for the network in the middle, we add together
the weighted errors from O, P, and Q. Finally, in the rightmost network, the
network has two output neurons (r and S). The error function will need to be
a function of both of these outputs to be able to compute error terms for both
r and S. Then we use the weighted errors for r and S when computing the
error terms for O, P, and Q. We will see examples of multioutput networks in
Chapter 4, “Fully Connected Networks Applied to multiclass Classification,” but
first we go over a programming example in which we apply backpropagation to
a single-output network.

O P

M N

x1 x1 x1x2 x2 x2

Q

W1

O Q

M N

R

w1

P O Q

M N

R

w1

P

S

Network output Network output Network outputs

Figure 3-8 more complex networks. In this figure, the inputs are at the bottom,
and layers are stacked vertically instead of horizontally. This is a common way to
draw neural networks.

ChAPTEr 3 SIgmOID NEurONS AND BACkPrOPAgATION

82

Programming Example: Learning the XOR
Function

Now we have gotten to the point where it is time to check if the learning algorithm
for multilevel feedforward networks works in practice. We use it to solve the XOR
problem presented in Chapter 1, and we use the same three-neuron network
that we used when we manually came up with a solution for the XOR problem.
The network in Figure 3-9 shows neurons N

0
, N

1
, and N

2
. We have omitted the

bias inputs and not stated the weights in the figure. We use tanh as an activation
function for N

0
 and N

1
 and the logistic sigmoid function as an activation function

for the output neuron N
2
, and we use mSE as the loss function.

The initialization code in Code Snippet 3-1 is similar to what we did for the
perceptron example in Code Snippet 1-2. One thing to note is that we have started
to use NumPy arrays so that we can make use of some NumPy functionality.
The same holds for our random number generator (we call np.random.seed
instead of just random.seed).

N1

N2

N0X1

X2

Figure 3-9 Network used to learn XOR problem.

import numpy as np

np.random.seed(3) # To make repeatable

LEARNING_RATE = 0.1

index_list = [0, 1, 2, 3] # Used to randomize order

Define training examples.

x_train = [np.array([1.0, -1.0, -1.0]),

Code Snippet 3-1 Init Code for XOR Learning Example

PrOgrAmmINg ExAmPLE: LEArNINg ThE xOr FuNCTION

83

For the training examples, we have now changed the ground truth to be between
0.0 and 1.0 because, as previously described, we have decided to use the logistic
sigmoid function as an activation function for the output neuron, and its output
range does not go to −1.0 as the perceptron did.

Next, we declare variables to hold the state of our three neurons in Code Snippet
3-2. A real implementation would typically be parameterized to be able to choose
number of inputs, layers, and number of neurons in each layer, but all of those
parameters are hardcoded in this example to focus on readability.

These are all the state variables that we need for each neuron for both the
forward pass and the backward pass: weights (n_w), output (n_y),3 and error
term (n_error). We arbitrarily initialize the input weights to random numbers
between −1.0 and 1.0, and we set the bias weights to 0.0. The reason to randomly
initialize the input weights is to break the symmetry. If all neurons start with the
same initial weights, then the initial output of all neurons in a layer would also be
identical. This in turn would lead to all neurons in the layer behaving the same
during backpropagation, and they would all get the same weight adjustments.

3. In our mathematical formulas, y refers to the ground truth, and ŷ refers to the output of the
network. By contrast, in our code examples, y (and variations thereof, such as n_y in this case) will
generally refer to the network output. The ground truth is typically called y_train or sometimes
train_label.

def neuron_w(input_count):
 weights = np.zeros(input_count+1)

 for i in range(1, (input_count+1)):

 weights[i] = np.random.uniform(-1.0, 1.0)

 return weights

n_w = [neuron_w(2), neuron_w(2), neuron_w(2)]

n_y = [0, 0, 0]

n_error = [0, 0, 0]

Code Snippet 3-2 variables Needed to Track State of Neurons

 np.array([1.0, -1.0, 1.0]),

 np.array([1.0, 1.0, -1.0]),

 np.array([1.0, 1.0, 1.0])]

y_train = [0.0, 1.0, 1.0, 0.0] # Output (ground truth)

ChAPTEr 3 SIgmOID NEurONS AND BACkPrOPAgATION

84

That is, we do not get any benefit from having multiple neurons in a layer. The
bias weight does not need to be randomly initialized because it is sufficient to
randomize the regular input weights to break the symmetry.

Code Snippet 3-3 starts with a function to print all the nine weights of the network
(each print statement prints a three-element weight vector). The forward_
pass function first computes the outputs of neurons 0 and 1 with the same inputs
(the inputs from the training example) and then puts their outputs into an array,
together with a bias value of 1.0, to use as input to neuron 2. That is, this function
defines the topology of the network. We use tanh for the neurons in the first layer
and the logistic sigmoid function for the output neuron.

Initializing bias weights to 0.0 is a common strategy.

reading all this code can be pretty dull. We forgive you if you quickly skim
it, as long as you pay attention to two things. First, not that much code is
required to build a simple neural network. When we later move on to using a DL
framework, amazing things can be done with even less code.

def show_learning():
 print('Current weights:')

 for i, w in enumerate(n_w):

 print('neuron ', i, ': w0 =', '%5.2f' % w[0],

 ', w1 =', '%5.2f' % w[1], ', w2 =',

 '%5.2f' % w[2])

 print('----------------')

def forward_pass(x):
 global n_y

 n_y[0] = np.tanh(np.dot(n_w[0], x)) # Neuron 0

 n_y[1] = np.tanh(np.dot(n_w[1], x)) # Neuron 1

 n2_inputs = np.array([1.0, n_y[0], n_y[1]]) # 1.0 is bias

 z2 = np.dot(n_w[2], n2_inputs)

 n_y[2] = 1.0 / (1.0 + np.exp(-z2))

Code Snippet 3-3 helper Functions for Backpropagation

PrOgrAmmINg ExAmPLE: LEArNINg ThE xOr FuNCTION

85

The backward_pass function starts by computing the derivative of the error
function and then computes the derivative of the activation function for the output
neuron. The error term of the output neuron is computed by multiplying these two
together. We then continue to backpropagate the error to each of the two neurons
in the hidden layer. This is done by computing the derivatives of their activation
functions and multiplying these derivatives by the error term from the output
neuron and by the weight to the output neuron.

Finally, the adjust_weights function adjusts the weights for each of the three
neurons. The adjustment factor is computed by multiplying the input by the
learning rate and the error term for the neuron in question.

With all these pieces in place, the only remaining piece is the training loop shown
in Code Snippet 3-4, which is somewhat similar to the training loop for the
perceptron example in Code Snippet 1-4.

def backward_pass(y_truth):
 global n_error

 error_prime = -(y_truth - n_y[2]) # Derivative of loss-func

 derivative = n_y[2] * (1.0 - n_y[2]) # Logistic derivative

 n_error[2] = error_prime * derivative

 derivative = 1.0 - n_y[0]**2 # tanh derivative

 n_error[0] = n_w[2][1] * n_error[2] * derivative

 derivative = 1.0 - n_y[1]**2 # tanh derivative

 n_error[1] = n_w[2][2] * n_error[2] * derivative

def adjust_weights(x):
 global n_w

 n_w[0] -= (x * LEARNING_RATE * n_error[0])

 n_w[1] -= (x * LEARNING_RATE * n_error[1])

 n2_inputs = np.array([1.0, n_y[0], n_y[1]]) # 1.0 is bias

 n_w[2] -= (n2_inputs * LEARNING_RATE * n_error[2])

Network training loop.

all_correct = False

while not all_correct: # Train until converged

 all_correct = True

Code Snippet 3-4 Training Loop to Learn the XOR Function with Backpropagation

ChAPTEr 3 SIgmOID NEurONS AND BACkPrOPAgATION

86

We pick training examples in random order, call the functions forward_pass,
backward_pass, and adjust_weights, and then print out the weights with
the function show_learning. We adjust the weights regardless whether the
network predicts correctly or not. Once we have looped through all four training
examples, we check whether the network can predict them all correctly, and if
not, we do another pass over them in random order.

We want to point out a couple of issues before running the program. First, you
might get a different result than our example produces given that the weights are
initialized randomly. Similarly, there is no guarantee that the learning algorithm
for a multilevel network will ever converge, and there are multiple reasons for
this. It could be that the network itself simply cannot learn the function, as we saw
in Chapter 2 when trying to learn XOR with a single perceptron. Another reason
convergence might fail is if the parameters and initial values for the learning
algorithm are initialized in a way that somehow prevents the network from
learning. That is, you might need to tweak the learning rate and initial weights to
make the network learn the solution.

Now let us run the program and look at the output. here are the final printouts
from our experiment:

Current weights:

neuron 0 : w0 = 0.70 , w1 = 0.77 , w2 = 0.76

 np.random.shuffle(index_list) # Randomize order

 for i in index_list: # Train on all examples

 forward_pass(x_train[i])

 backward_pass(y_train[i])

 adjust_weights(x_train[i])

 show_learning() # Show updated weights

 for i in range(len(x_train)): # Check if converged

 forward_pass(x_train[i])

 print('x1 =', '%4.1f' % x_train[i][1], ', x2 =',

 '%4.1f' % x_train[i][2], ', y =',

 '%.4f' % n_y[2])

 if(((y_train[i] < 0.5) and (n_y[2] >= 0.5))

 or ((y_train[i] >= 0.5) and (n_y[2] < 0.5))):

 all_correct = False

NETWOrk ArChITECTurES

87

neuron 1 : w0 = 0.40 , w1 = -0.58 , w2 = -0.56

neuron 2 : w0 = -0.43 , w1 = 1.01 , w2 = 0.89

x1 = -1.0 , x2 = -1.0 , y = 0.4255

x1 = -1.0 , x2 = 1.0 , y = 0.6291

x1 = 1.0 , x2 = -1.0 , y = 0.6258

x1 = 1.0 , x2 = 1.0 , y = 0.4990

The last four lines show the predicted output y for each x1, x2 combination, and
we see that it implements the XOR function, since the output is greater than 0.5
when only one of the inputs is positive, which is exactly the XOR function.

Just as for the example that described backpropagation, we provide a
spreadsheet that includes the mechanics of backpropagation for solving this XOR
problem so that you can gain some insight through hands-on experimentation.

We did it! We have now reached the point in neural network research that was
state-of-the art in 1986!

Network Architectures
Before moving on to solving a more complex classification problem in Chapter 4,
we want to introduce the concept of network architectures. Network architecture is
simply a name for how multiple units/neurons are connected when we build more
complex networks.

Three key architectures are fundamental in most contemporary neural network
applications:

• Fully connected feedforward network. We introduced this type of network when
we solved the XOR problem. We learn more about fully connected feedforward

This was two years after the release of the first Terminator movie where
a thinking machine was traveling back in time. meanwhile, the research
community is solving XOR, and we can conclude that more complicated AI was
still science fiction at the time.

ChAPTEr 3 SIgmOID NEurONS AND BACkPrOPAgATION

88

networks in the next couple of chapters. As previously mentioned, there are
no backward connections (also known as loops or cycles) in a feedforward
network.

• Convolutional neural network (CNN). The key property of convolutional networks
is that individual neurons do not have their own unique weights; they use the
same weights as other neurons in the same layer. This is a property known as
weight sharing. From a connectivity perspective, a CNN is similar to the fully
connected feedforward network, but it has considerably fewer connections
than a fully connected network. Instead of being fully connected, it is sparsely
connected. CNNs have been shown to excel on image classification problems
and therefore represent an important class of neural networks. The feature
identifier described in Chapter 2 that recognized a pattern in a 3×3 patch of an
image plays a central role in CNNs.

• Recurrent neural network (RNN). As opposed to the feedforward network, the
rNN has backward connections; that is, it is not a directed acyclic graph (DAg),
because it contains cycles. We have not yet shown any examples of recurrent
connections, but they are studied in more detail in Chapter 9, “Predicting Time
Sequences with recurrent Neural Networks.”

Figure 3-10 shows illustrations of the three network types.

Fully connected Convolutional Recurrent

Figure 3-10 Three types of network architectures. Neurons in a convolutional
network do not have unique weights but use the same weights (weight sharing) as
other neurons in the same layer (not shown in the figure).

CONCLuDINg rEmArkS ON BACkPrOPAgATION

89

We discuss these architectures in more detail in later chapters. For now, it is
helpful to know that the CNN has fewer connections than the fully connected
network, whereas the rNN has more connections and some additional elements
(the squares in the figure) needed to feed back the output to the input.

It is often the case that networks are hybrids of these three architectures. For
example, some layers of a CNN are often fully connected, but the network is still
considered to be a CNN. Similarly, some layers of an rNN might not have any
cycles, as seen in Figure 3-10. Finally, you can build a network from a combination
of fully connected layers, convolutional layers, and recurrent layers to tap into
properties of each type of architecture.

Concluding remarks on Backpropagation
This chapter contained a lot of mathematical formulas, and you might have found
it challenging to get through. however, there is no need to worry even if you
did not read it all in detail. The rest of the book is less heavy on the formulas,
and there will be more focus on different network architectures with a lot of
programming examples.

Taking a step back, it is worth considering the overall effect of all the equations. We
started with randomly initialized weights for the network. We then ran an example
through it and hoped that its output value would match the ground truth. Needless
to say, with weights selected at random, this is typically not the case. The next step
was therefore to identify in what direction and by how much to modify each weight
to make the network perform better. To do this, we needed to know how sensitive
the output was to a change in each weight. This sensitivity is simply the definition
of a partial derivative of the output with respect to the weight. That is, all in all,
we needed to calculate a partial derivative corresponding to each weight. The
backpropagation algorithm is a mechanical and efficient way of doing this.

In Chapter 4, we extend our multilevel network to be able to handle the case
of multiple outputs. That will be the last time in this book that we implement
the backpropagation algorithm in detail. After that, we move on to using a DL
framework, which implements the details under the hood.

Fully connected, convolutional, and recurrent networks are three key network
architectures. more complex networks often consist of combinations of these
three architectures.

This page intentionally left blank

91

Chapter 4

Fully Connected
Networks Applied
to Multiclass
Classification

In the first three chapters, we used our neural network to solve simple problems
that set a foundation for learning deep learning (DL). We reviewed the basic
workings of a neuron, how multiple neurons can be connected, and how to devise
a suitable learning algorithm. Combining this knowledge, we built a network that
can act as an XOR gate—something that arguably can be done in a simpler way.

In this chapter, we finally get to the point where we build a network that does
something nontrivial. We show how to build a network that can take an image of
a handwritten digit as input, identify which one of the ten digits 0 through 9 the
image represents, and present this information on its outputs.

Before showing how to build such a network, we introduce some concepts that
are central to both traditional machine learning (ML) and deep learning (DL),
namely, datasets and generalization.

ChaPtEr 4 FuLLy ConnECtED nEtWorks aPPLIED to MuLtICLass CLassIFICatIon

92

the programming example also provides more details on how to modify both
the networks and the learning algorithm to handle the case of multiclass
classification. this modification is needed because recognizing handwritten digits
implies that each input example needs to be classified as belonging to one of ten
classes.

Introduction to Datasets used When
training networks

as we saw in the previous chapters, we train a neural network by presenting
an input example to the network. We then compare the network output to the
expected output and use gradient descent to adjust the weights to try to make
the network provide the correct output for a given input. a reasonable question is
from where to get these training examples that are needed to train the network.
For our previous toy examples this was not an issue. a two-input XOR gate has
only four input combinations, so we could easily create a list of all combinations.
this assumes that we interpret the input and output values as binary variables,
which typically would not be the case but was true in our toy example.

In real applications of DL, obtaining these training examples can be a big
challenge. one of the key reasons that DL has gained so much traction lately is
that large online databases of images, videos, and natural language text have
made it possible to obtain large sets of training data. If a supervised learning
technique is used, it is not sufficient to obtain the input to the network. We also
need to know the expected output, the ground truth, for each example. the
process of associating each training input with an expected output is known as
labeling, which is often a manual process. that is, a human must add a label to
each example, detailing whether it is a dog, a cat, or a car. this process can be
tedious because we often need many thousands of examples to achieve good
results.

starting to experiment with DL might be hard if the first step involved putting
together a large collection of labeled training examples. Fortunately, other
people have already done so and have made these examples publicly available.
this is where the concept of datasets comes in. a (labeled) dataset consists
of a collection of labeled training examples that can be used for training
ML models. In this book, we will become familiar with a handful of different
datasets within the fields of images, historical housing-price data, and natural

IntroDuCtIon to DatasEts usED WhEn traInIng nEtWorks

93

languages. a section about datasets would not be complete without mentioning
the classic Iris Dataset (Fisher, 1936), which is likely the first widely available
dataset. It contains 150 instances of iris flowers, each instance belonging to
one of three iris species. Each instance consists of four measurements (sepal
length and width, petal length and width) of the particular plant. the Iris Dataset
is extremely small and simple, so instead we start with a more complicated,
although still simple, dataset: the Modified national Institute of standards and
technology (MnIst) database of handwritten digits, also known simply as the
MnIst dataset.

the MnIst dataset contains 60,000 training images and 10,000 test images.
(We detail the differences between training and test images later in the chapter.)
In addition to the images, the dataset consists of labels that describe which
digit each image represents. the original images are 32×32 pixels, and the
outermost two pixels around each image are blank, so the actual image content
is found in the centered 28×28 pixels. In the version of the dataset that we use,
the blank pixels have been stripped out, so each image is 28×28 pixels. Each
pixel is represented by a grayscale value ranging from 0 to 255. the source of
the handwritten digits is a mix of employees at the american Census Bureau
and american high school students. the dataset was made available in 1998
(LeCun, Bottou, Bengio, et al., 1998). some of the training examples are shown in
Figure 4-1.

Figure 4-1 Images from the MnIst dataset. (source: LeCun, y., L. Bottou,
y. Bengio, and P. haffner. "gradient-Based Learning applied to Document
recognition" in Proceedings of the IEEE vol. 86, no. 11 (nov. 1998), pp. 2278–2324.)

ChaPtEr 4 FuLLy ConnECtED nEtWorks aPPLIED to MuLtICLass CLassIFICatIon

94

EXPLorIng thE DatasEt

We start with getting our hands dirty by exploring the dataset a little bit. First, you
need to download it according to the instructions in appendix I under “MnIst.” the
file format is not a standard image format, but it is easy to read the files using the
idx2numpy library.1 Code snippet 4-1 shows how we load the files into numPy
arrays and then print the dimensions of these arrays.

the output follows:

dimensions of train_images: (60000, 28, 28)

dimensions of train_labels: (60000,)

1. our understanding is that this library is not available on all platforms. Many online programming
examples use a comma-separated value (CsV) version of the MnIst dataset instead. Consult the
book’s website, http://www.ldlbook.com, for additional information.

import idx2numpy

TRAIN_IMAGE_FILENAME = '../data/mnist/train-images-idx3-ubyte'

TRAIN_LABEL_FILENAME = '../data/mnist/train-labels-idx1-ubyte'

TEST_IMAGE_FILENAME = '../data/mnist/t10k-images-idx3-ubyte'

TEST_LABEL_FILENAME = '../data/mnist/t10k-labels-idx1-ubyte'

Read files.

train_images = idx2numpy.convert_from_file(

 TRAIN_IMAGE_FILENAME)

train_labels = idx2numpy.convert_from_file(

 TRAIN_LABEL_FILENAME)

test_images = idx2numpy.convert_from_file(TEST_IMAGE_FILENAME)

test_labels = idx2numpy.convert_from_file(TEST_LABEL_FILENAME)

Print dimensions.

print('dimensions of train_images: ', train_images.shape)

print('dimensions of train_labels: ', train_labels.shape)

print('dimensions of test_images: ', test_images.shape)

print('dimensions of test_images: ', test_labels.shape)

Code Snippet 4-1 Load the MnIst Dataset and Inspect Its Dimensions

http://www.ldlbook.com

IntroDuCtIon to DatasEts usED WhEn traInIng nEtWorks

95

dimensions of test_images: (10000, 28, 28)

dimensions of test_images: (10000,)

the image arrays are 3D arrays where the first dimension selects one of the
60,000 training images or 10,000 test images. the other two dimensions
represent the 28×28 pixel values (integers between 0 and 255). the label arrays
are 1D arrays where each element corresponds to one of the 60,000 (or 10,000)
images. Code snippet 4-2 prints out the first training label and image pattern, and
the resulting output follows.

label for first training example: 5

---beginning of pattern for first training example---

 * * * * * * * * * * * *

 * * * * * * * * * * * * * * * *

 * * * * * * * * * * * * * * * *

 * * * * * * * * * * *

Print one training example.

print('label for first training example: ', train_labels[0])

print('---beginning of pattern for first training example---')

for line in train_images[0]:

 for num in line:

 if num > 0:

 print('*', end = ' ')

 else:

 print(' ', end = ' ')

 print('')

print('---end of pattern for first training example---')

Code Snippet 4-2 Print out one training Example

ChaPtEr 4 FuLLy ConnECtED nEtWorks aPPLIED to MuLtICLass CLassIFICatIon

96

 * * * * * * * * *

 * * * * *

 * * * *

 * * * *

 * * * * * *

 * * * * * *

 * * * * * *

 * * * * *

 * * * *

 * * * * * * *

 * * * * * * * *

 * * * * * * * * *

 * * * * * * * * * *

 * * * * * * * * * *

 * * * * * * * * * *

 * * * * * * * *

---end of pattern for first training example---

as shown from the example, it is straightforward to load and use this dataset.

huMan BIas In DatasEts

Because ML models learn from input data, they are susceptible to the garbage-in/
garbage-out (gIgo) problem. It is therefore important to ensure that any used
dataset is of high quality. a subtle problem to look out for is if the dataset suffers
from human bias (or any other kind of bias). For example, a popular dataset
available online is the CelebFaces attributes (Celeba) dataset (Liu et al., 2015),
which is derived from the CelebFaces dataset (sun, Wang, and tang, 2013). It
consists of a large number of images of celebrities’ faces. given how resource
intensive it is to create a dataset, using a publicly available dataset makes sense.

IntroDuCtIon to DatasEts usED WhEn traInIng nEtWorks

97

however, this dataset is biased in that it contains a larger proportion of white,
young-looking individuals than is representative of society. this bias can have
the effect that a model trained on this dataset does not work well for older or
dark-skinned individuals.

Even if you have good intentions, you must actively consider the unintended
consequences. a dataset that is influenced by structural racism in society can
result in a model that discriminates against minorities.

to illustrate this point, it is worth noting that even a simple dataset like MnIst is
susceptible to bias. the handwritten digits in MnIst originate from the american
Census Bureau employees and american high school students. not surprisingly,
the digits will therefore be biased toward how people in the united states write
digits. In reality, there are slight variations in the handwriting style across
different geographical regions in the world. In particular, in some European and
Latin american countries, it is common to add a second horizontal line when
writing the digit 7. If you explore the MnIst dataset, you will see that although
such examples are included, they are far from the majority of the examples of the
digit 7 (only two of the 16 examples in Figure 4-1 have a second horizontal line).
that is, as expected, the dataset is biased toward how people in the united states
write these digits. therefore, it may well be that a model trained on MnIst works
better for people in the united states than for people from countries that use a
different style for the digit 7.

although this example likely is harmless in most cases, it serves as a reminder
of how easy it is to overlook problems with the input data. Consider a self-driving
car where the model needs to distinguish between a human being and a less
vulnerable object. If the model has not been trained on a diverse dataset with
enough representation of minority groups, then it can have fatal consequences.

note that a good dataset does not necessarily reflect the real world. using the
self-driving car example, it is very important that the car can handle rare but
dangerous events, such as an airplane emergency landing on the road. therefore,
a good dataset might well contain an overrepresentation of such events compared
to what is present in the real world. this is somewhat different from human bias
but is another example of how easy it is to make mistakes when selecting the
dataset and how such mistakes can lead to serious consequences. gebru and
colleagues (2018) proposed datasheets for datasets to address this problem.
Each released dataset should be accompanied by a datasheet that describes its
recommended use and other details.

ChaPtEr 4 FuLLy ConnECtED nEtWorks aPPLIED to MuLtICLass CLassIFICatIon

98

traInIng sEt, tEst sEt, anD gEnEraLIZatIon

a reasonable question to ask is why we would go through the convoluted process
of building a neural network to create a function that correctly predicts the output
for a set of labeled examples. after all, it would be much simpler to just create a
lookup table based on all the training examples. this brings us to the concept of
generalization. the goal for an ML model is not just to provide correct predictions
for data that it has been trained on; the more important goal is to provide correct
predictions for previously unseen data. therefore, we typically divide our dataset
into a training dataset and a test dataset. the training dataset is used to train the
model, and the test dataset is used to later evaluate how well the model was able
to generalize to previously unseen data. If it turns out that the model does well on
the training dataset but does poorly on the test dataset, then that is an indication
that the model has failed to learn the general solution needed to solve similar but
not identical examples. For example, it might have memorized only the specific
training examples. to make this more concrete, consider the case of teaching
children addition. you can tell them that 1 + 1 = 2 and 2 + 2 = 4 and 3 + 2 = 5, and
they might later successfully repeat the answer when asked, What is 3 + 2? yet be
unable to answer, What is 1 + 3? or even What is 2 + 3? (reversing the order of 3
and 2 compared to the training examples). this would indicate that the child has
memorized the three examples but not understood the concept of addition.

We can monitor the training error and test error during training to establish
whether the model is learning to generalize; see Figure 4-2.

In general, the training error will show a downward trend until it finally flattens
out. the test error, on the other hand, will often show a u-curve where it
decreases in the beginning but then at some point starts increasing again. If it
starts increasing while the training error is still decreasing, then that is a sign
that the model is overfitting to the training data. that is, it learns a function
that does really well on the training data but that is not useful on not-yet-seen
data. Memorizing individual examples from the training set is one strong form
of overfitting, but other forms of overfitting also exist. overfitting is not the only

We think that even somebody who knows addition and multiplication typically
uses memorized answers for many small numbers and invoke generalized
knowledge only for large numbers. on the other hand, we could argue that this
is an example of deep learning whereby we hierarchically combine simpler
representations into the final answer.

IntroDuCtIon to DatasEts usED WhEn traInIng nEtWorks

99

reason for lack of generalization. It can also be that the training examples are
simply not representative of the examples in the test set or, more important, the
examples it will be used on in production.

an effective technique to avoid overfitting is to increase the size of the training
dataset, but there exist a number of other techniques, collectively known as
regularization techniques, which are designed to reduce or avoid overfitting. one
obvious method is early stopping. simply monitor the test error during training
and stop when it starts to increase. It is often the case that the error fluctuates
during training and is not strictly moving in one direction or another, so it is not
necessarily obvious when it is time to stop. one approach to determining when
to stop is to save the weights of the model at fixed intervals during training
(i.e., create checkpoints of the model along the way). at the end of training,
identify the point with the lowest test error from a chart like the one in Figure 4-2,
and reload the corresponding model.

Figure 4-2 how training error and test error can evolve during learning process

the goal is for the network to learn to generalize. If the network does well on
the training set but not on the test set, then that indicates overfitting to the
training set. We increase the training dataset size or employ regularization
techniques to avoid overfitting. one such technique is early stopping.

ChaPtEr 4 FuLLy ConnECtED nEtWorks aPPLIED to MuLtICLass CLassIFICatIon

100

hyPErParaMEtEr tunIng anD tEst sEt InForMatIon LEakagE

It is extremely important to not leak information from the test set during the
training process. Doing so can lead to the model memorizing the test set, and
we end up with an overly optimistic assessment of how good our model is
compared to how the model will perform in production. Information leakage can
happen in subtle ways. When training a model, there is sometimes a need to tune
various parameters that are not adjusted by the learning algorithm itself. these
parameters are known as hyperparameters, and we have already encountered
a few examples: learning rate, network topology (number of neurons per layer,
number of layers, and how they are connected), and type of activation function.
hyperparameter tuning can be either a manual or an automated process. If we
change these hyperparameters on the basis of how the model performs on the
test set, then the test set risks influencing the training process. that is, we have
introduced information leakage from the test set to the training process.

one way to avoid such leakage is to introduce an intermediate validation dataset.
It is used for evaluating hyperparameter settings before doing a final evaluation
on the test dataset. In our examples in this book, we keep it simple and only do
manual tuning of hyperparameters, and we do not use a separate validation set.
We recognize that by not using a validation set we run the risk of getting somewhat
optimistic results. We discuss hyperparameter tuning and the validation dataset
concept in more detail in Chapter 5, “toward DL: Frameworks and network tweaks.”

training and Inference
our experiments and discussion so far have focused on the process of training
the network. We have interleaved testing of the network in the training process
to assess how well the network is learning. the process of using the network
without adjusting the weights is known as inference because the network is used
to infer a result.

using a validation set for hyperparameter tuning is an important concept. see
“using a Validation set to avoid overfitting,” in Chapter 5.

Training refers to coming up with the weights for the network and is typically
done before deploying it into production. In production, the network is often
used only for inference.

EXtEnDIng thE nEtWork anD LEarnIng aLgorIthM to Do MuLtICLass CLassIFICatIon

101

It is often the case that the training process is done only before the network is
deployed in a production setting, and once the network is deployed, it is used only
for inference. In such cases, training and inference may well be done on different
hardware implementations. For instance, training might be done on servers in
the cloud, and inference might be done on a less powerful device such as a phone
or tablet.

Extending the network and Learning
algorithm to Do Multiclass Classification

In the programming example in Chapter 3, our neural network had only a single
output, and we saw how we could use that to identify a certain pattern. now we
want to extend our network to be able to indicate to which of ten possible classes
a pattern belongs. one naïve way of doing that would be to simply create ten
different networks. Each of them is responsible for identifying one specific digit
type. It turns out that this is a somewhat inefficient approach. regardless of what
digit we want to classify, there are some commonalities among the different
digits, so it is more efficient if each “digit identifier” shares many of the neurons.
this strategy also forces the shared neurons to generalize better and can reduce
the risk of overfitting.

one way of arranging a network to do multiclass classification is to create one
output neuron per class and teach the network to output a one-hot encoded
number. one-hot encoding implies that only one of the outputs is excited (hot) at
any one point in time. one-hot encoding is an example of a sparse encoding, which
means that most of the signals are 0. readers familiar with binary numbers
might find this inefficient and wonder if it would make more sense to use binary
encoding, to reduce the number of output neurons, but that is not necessarily the
most suitable encoding for a neural network.

Binary encoding is an example of a dense encoding, which means that we have
a good mix of 1s and 0s. We discuss sparse and dense encodings further in
Chapter 12, “neural Language Models and Word Embeddings.” In Chapter 6, “Fully
Connected networks applied to regression,” we describe how to use a variation
of one-hot encoding to make the network express various levels of certainty in
its classification when it is unsure to which class an example belongs. For now,
one-hot serves the purpose for the example we are interested in.

ChaPtEr 4 FuLLy ConnECtED nEtWorks aPPLIED to MuLtICLass CLassIFICatIon

102

network for Digit Classification
this section presents the network architecture we use in our handwritten digit
classification experiment. this architecture is far from optimal for this task, but
our goal is to quickly get our hands dirty and demonstrate some impressive
results while still relying only on the concepts that we have learned so far. Later
chapters explore more advanced networks for image classification.

as previously described, each image contains 784 (28×28) pixels, so our network
needs to have 784 input nodes. these inputs are fed to a hidden layer, which we
have arbitrarily chosen to have 25 neurons. the hidden layer feeds an output
layer consisting of ten neurons, one for each digit that we want to recognize. We
use tanh as an activation function for the hidden neurons and the logistic sigmoid
function for the output layer. the network is fully connected; that is, each neuron
in one layer connects to all neurons in the next layer. With only a single hidden
layer, this network does not qualify as a deep network. at least two hidden layers
are needed to call it DL, although that distinction is irrelevant in practice. the
network is illustrated in Figure 4-3.

one thing that seems odd in Figure 4-3 is that we are not explicitly making use of
information about how the pixels are spatially related to each other. Would it not
be beneficial for a neuron to look at multiple neighboring pixels together? the
way they are laid out in the figure as a 1D vector instead of a 2D grid, it appears
that information related to which pixels are neighboring each other is lost.
two pixels neighboring each other in the y-direction are separated by 28 input
neurons. this is not completely true. In a fully connected network, there is no such
thing as pixels being “separated.” all 25 hidden neurons see all 784 pixels, so all
pixels are equally close to each other from the perspective of a single neuron.

H0 H3

x1 x2

Y0

H1

Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9

x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x773 x774 x775 x776 x777 x778 x779 x780 x781 x782 x783 x784

H24H4 H6H5 H7 H8 H23H22H21H20H19H18H17

Figure 4-3 network for digit classification. a large number of neurons and
connections have been omitted from the figure to make it less cluttered. In reality,
each neuron in a layer is connected to all the neurons in the next layer.

Loss FunCtIon For MuLtICLass CLassIFICatIon

103

We could just as well have arranged the pixels and neurons in a 2D grid, but it
would not have changed the actual connections. however, it is true that we are
not communicating any prior knowledge about which pixels are neighboring each
other, so if it truly is beneficial to somehow take the spatial relationship between
pixels into account, then the network will have to learn this by itself. In Chapter 7,
“Convolutional neural networks applied to Image Classification,” we learn about
how to design networks in a way that does take the pixel location into account.

Loss Function for Multiclass
Classification

When we solved the XOR problem, we used mean squared error (MsE) as our loss
function. We can do the same in this image classification problem but must modify
our approach slightly to account for our network having multiple outputs. We can
do that by defining our loss (error) function as the sum of the squared error for
each individual output:

1

(ˆ)
0

1

0

1
() () 2Error

m
y y

i

m

j

n

j
i

j
i∑∑= −

=

−

=

−

where m is the number of training examples and n is the number of outputs. that
is, in addition to the outer sum that computes the mean, we have now introduced
an inner sum in the formula, which sums up the squared error for each output. to
be perfectly clear, for a single training example, we end up with the following:

 (ˆ)
0

1
2Error y y

j

n

j j∑= −
=

−

where n is the number of outputs and y jˆ refers to the output value of neuron y
j
.

to simplify our derivative later, we can play the same trick as before and divide
by 2 because minimizing a loss function that is scaled by 0.5 will result in the
same optimization process as minimizing the unscaled loss function:

Error e
y y

j

n
j j

: ˆ
ˆ

20

1
2

y ∑()() =
−

=

−

In this formula, we wrote the error function as a function of ŷ, which represents
the output of the network. note that ŷ is now a vector because the assumed
network has multiple output neurons. given this loss function, we can now

ChaPtEr 4 FuLLy ConnECtED nEtWorks aPPLIED to MuLtICLass CLassIFICatIon

104

compute the error term for each of the n output neurons, and once that is done,
the backpropagation algorithm is no different from what we did in Chapter 3. the
following formula shows the error term for neuron y

1
 with output value ŷ1

:

e

y

y y

y

y y
y y

j

n
j j

ˆ

ˆ

2
ˆ

2(ˆ)

2
(1) ˆ

1 0

1

2

1

1 1
1 1∑

()
()∂

∂
=

∂
−

∂
=

−
⋅ − = − −

=

−

When computing the derivative of the loss function with respect to a specific
output, all the other terms in the sum are constants (derivative is 0), which
eliminates the sum altogether, and the error term for a particular neuron ended
up being the same as in the single-output case. that is, the error term for neuron
y

2
 is ˆ2 2y y()− − , or in the general case, the error term for y

j
 is ˆy yj j()− − .

If these formulas seem confusing, take heart: things become clear as we now
dive into the programming example implementation and see how all of this works
out in practice.

Programming Example: Classifying
handwritten Digits

as mentioned in the preface, this programming example is heavily influenced by
nielsen’s (2019) online book, but we have put our own personal touch on it to align
with the organization of this book. our implementation of the image classification
experiment is a modified version of the implementation of the XOR learning
example in Chapter 3, so the code should look familiar. one difference is that
Code snippet 4-3 contains some initializations where we now provide paths to
the training and test datasets instead of defining the training values as hardcoded
variables. We also tweaked the learning rate to 0.01 and introduced a parameter
EPOCHS. We describe what an epoch is and discuss why we tweaked the learning
rate later in the chapter. the dataset is assumed to be in the directory ../data/
mnist/, as described in the dataset section of appendix I.

Code Snippet 4-3 Initialization section for MnIst Learning

import numpy as np

import matplotlib.pyplot as plt

import idx2numpy

PrograMMIng EXaMPLE: CLassIFyIng hanDWrIttEn DIgIts

105

We have also added a function to read the datasets from files, as shown in Code
snippet 4-4. a common theme in our coding examples is that there is some data
preprocessing required, which can be somewhat tedious, but unfortunately, there
is no good way around it.

np.random.seed(7) # To make repeatable

LEARNING_RATE = 0.01

EPOCHS = 20

TRAIN_IMAGE_FILENAME = '../data/mnist/train-images-idx3-ubyte'

TRAIN_LABEL_FILENAME = '../data/mnist/train-labels-idx1-ubyte'

TEST_IMAGE_FILENAME = '../data/mnist/t10k-images-idx3-ubyte'

TEST_LABEL_FILENAME = '../data/mnist/t10k-labels-idx1-ubyte'

Code Snippet 4-4 read training and test Data from Files

Function to read dataset.

def read_mnist():

 train_images = idx2numpy.convert_from_file(

 TRAIN_IMAGE_FILENAME)

 train_labels = idx2numpy.convert_from_file(

 TRAIN_LABEL_FILENAME)

 test_images = idx2numpy.convert_from_file(

 TEST_IMAGE_FILENAME)

 test_labels = idx2numpy.convert_from_file(

 TEST_LABEL_FILENAME)

 # Reformat and standardize.

 x_train = train_images.reshape(60000, 784)

 mean = np.mean(x_train)

 stddev = np.std(x_train)

 x_train = (x_train - mean) / stddev

 x_test = test_images.reshape(10000, 784)

 x_test = (x_test - mean) / stddev

 # One-hot encoded output.

 y_train = np.zeros((60000, 10))

 y_test = np.zeros((10000, 10))

ChaPtEr 4 FuLLy ConnECtED nEtWorks aPPLIED to MuLtICLass CLassIFICatIon

106

We already know the format of these files from the initial exercise where we
explored the dataset. to simplify feeding the input data to the network, we
reshape the images from two dimensions into a single dimension. that is, the
arrays of images are now 2D instead of 3D. after this, we scale the pixel values
and center them around 0. this is known as standardizing the data. In theory, this
step should not be necessary because a neuron can take any numerical value
as an input, but in practice, this scaling will be useful (we will explore why in
Chapter 5). We first compute the mean and standard deviation of all the training
values. We standardize the data by subtracting the mean from each pixel value
and dividing by the standard deviation. this should be a familiar operation for
anybody with a background in statistics. We do not go into the detail here but just
mention what the overall idea is. By subtracting the mean from each pixel value,
the new mean of all pixels will be 0. the standard deviation is a measure of how
spread out the data is, and dividing by the standard deviation changes the range
of the data values. this implies that if the data values were previously spread
out (high and low values), then they will be closer to 0 after this operation. In our
case, we started with pixel values between 0 and 255, and after standardization,
we will end up with a set of floating-point numbers centered around and much
closer to 0.

knowing about data distributions and how to standardize them is an important
topic, but we believe that you can make progress without understanding the
details at this point.

 for i, y in enumerate(train_labels):

 y_train[i][y] = 1

 for i, y in enumerate(test_labels):

 y_test[i][y] = 1

 return x_train, y_train, x_test, y_test

Read train and test examples.

x_train, y_train, x_test, y_test = read_mnist()

index_list = list(range(len(x_train))) # Used for random order

PrograMMIng EXaMPLE: CLassIFyIng hanDWrIttEn DIgIts

107

one thing to note is that we are using the mean and standard deviation from the
training data even when we standardize the test data. at first, this might look
like a bug, but it is intentional. the thinking here is that we want to apply exactly
the same transformation to the test data as we do to the training data. a natural
question is whether it would be better to compute the overall average of both
training and test data, but that should never be done because you then introduce
the risk of leaking information from the test data into the training process.

the next step is to one-hot encode the digit number to be used as a ground
truth for our ten-output network. We one-hot encode by creating an array of ten
numbers, each being 0 (using the numPy zeros function), and then set one of
them to 1.

Let us now move on to our implementation of the layer weights and the
instantiation of our network in Code snippet 4-5. this is similar to the XOR
example, but there are a couple of changes. Each neuron in the hidden layer will
have 784 inputs + bias, and each neuron in the output layer will have 25 inputs +
bias. the for loop that initializes the weights starts with i=1 and therefore does
not initialize the bias weight but just leaves it at 0 as before. the range for the
weights is different than in our XOR example (magnitude of 0.1 instead of 1.0). We
discuss that further in Chapter 5.

Standard deviation is a measure of the spread of the data. a data point is
standardized by subtracting the mean and dividing by the standard deviation.

you should apply exactly the same transformation to the test data as you apply
to your training data. Further, never use the test data to come up with the
transformation in the first place because that risks leaking information from
the test data into the training process.

Code Snippet 4-5 Instantiation and Initialization of all neurons in the system

def layer_w(neuron_count, input_count):
 weights = np.zeros((neuron_count, input_count+1))

 for i in range(neuron_count):

 for j in range(1, (input_count+1)):

 weights[i][j] = np.random.uniform(-0.1, 0.1)

 return weights

ChaPtEr 4 FuLLy ConnECtED nEtWorks aPPLIED to MuLtICLass CLassIFICatIon

108

Code snippet 4-6 shows two functions that are used to report progress and to
visualize the learning process. the function show_learning is called multiple
times during training; it simply prints the current training and test accuracy and
stores these values in two arrays. the function plot_learning is called at the
end of the program and uses the two arrays to plot the training and test error
(1.0 minus accuracy) over time.

Declare matrices and vectors representing the neurons.

hidden_layer_w = layer_w(25, 784)

hidden_layer_y = np.zeros(25)

hidden_layer_error = np.zeros(25)

output_layer_w = layer_w(10, 25)

output_layer_y = np.zeros(10)

output_layer_error = np.zeros(10)

Code Snippet 4-6 Functions to report Progress on the Learning Process

chart_x = []

chart_y_train = []

chart_y_test = []

def show_learning(epoch_no, train_acc, test_acc):
 global chart_x

 global chart_y_train

 global chart_y_test

 print('epoch no:', epoch_no, ', train_acc: ',

 '%6.4f' % train_acc,

 ', test_acc: ', '%6.4f' % test_acc)

 chart_x.append(epoch_no + 1)

 chart_y_train.append(1.0 - train_acc)

 chart_y_test.append(1.0 - test_acc)

def plot_learning():
 plt.plot(chart_x, chart_y_train, 'r-',

PrograMMIng EXaMPLE: CLassIFyIng hanDWrIttEn DIgIts

109

Code snippet 4-7 contains the functions for the forward and backward passes
as well as for adjusting the weights. the forward_pass and backward_pass
functions also implicitly define the topology of the network.

 label='training error')

 plt.plot(chart_x, chart_y_test, 'b-',

 label='test error')

 plt.axis([0, len(chart_x), 0.0, 1.0])

 plt.xlabel('training epochs')

 plt.ylabel('error')

 plt.legend()

 plt.show()

Code Snippet 4-7 Functions for Forward Pass, Backward Pass, and Weight
adjustment

def forward_pass(x):
 global hidden_layer_y

 global output_layer_y

 # Activation function for hidden layer

 for i, w in enumerate(hidden_layer_w):

 z = np.dot(w, x)

 hidden_layer_y[i] = np.tanh(z)

 hidden_output_array = np.concatenate(

 (np.array([1.0]), hidden_layer_y))

 # Activation function for output layer

 for i, w in enumerate(output_layer_w):

 z = np.dot(w, hidden_output_array)

 output_layer_y[i] = 1.0 / (1.0 + np.exp(-z))

def backward_pass(y_truth):
 global hidden_layer_error

 global output_layer_error

 # Backpropagate error for each output neuron

 # and create array of all output neuron errors.

 for i, y in enumerate(output_layer_y):

ChaPtEr 4 FuLLy ConnECtED nEtWorks aPPLIED to MuLtICLass CLassIFICatIon

110

the forward_pass function contains two loops. the first one loops over all
hidden neurons and presents the same input (the pixels) to them all. It also
collects all the outputs of the hidden neurons into an array together with a bias
term that can then be used as input to the neurons in the output layer. similarly,
the second loop presents this input to each of the output neurons and collects all
the outputs of the output layer into an array that is returned to the caller of the
function.

 error_prime = -(y_truth[i] - y) # Loss derivative

 derivative = y * (1.0 - y) # Logistic derivative

 output_layer_error[i] = error_prime * derivative

 for i, y in enumerate(hidden_layer_y):

 # Create array weights connecting the output of

 # hidden neuron i to neurons in the output layer.

 error_weights = []

 for w in output_layer_w:

 error_weights.append(w[i+1])

 error_weight_array = np.array(error_weights)

 # Backpropagate error for hidden neuron.

 derivative = 1.0 - y**2 # tanh derivative

 weighted_error = np.dot(error_weight_array,

 output_layer_error)

 hidden_layer_error[i] = weighted_error * derivative

def adjust_weights(x):
 global output_layer_w

 global hidden_layer_w

 for i, error in enumerate(hidden_layer_error):

 hidden_layer_w[i] -= (x * LEARNING_RATE

 * error) # Update all weights

 hidden_output_array = np.concatenate(

 (np.array([1.0]), hidden_layer_y))

 for i, error in enumerate(output_layer_error):

 output_layer_w[i] -= (hidden_output_array

 * LEARNING_RATE

 * error) # Update all weights

PrograMMIng EXaMPLE: CLassIFyIng hanDWrIttEn DIgIts

111

the backward_pass function is somewhat similar. It first loops through all
the output neurons and computes the derivative of the loss function for each
output neuron. In the same loop, it also computes the derivative of the activation
function for each neuron. the error term for each neuron can now be calculated
by multiplying the derivative of the loss function by the derivative of the activation
function. the second loop in the function loops over all hidden neurons. For the
hidden neurons, the error term is a little bit more complicated. It is computed as a
weighted sum (computed as a dot product) of the backpropagated error from each
of the output neurons, multiplied by the derivative of the activation function for the
hidden neuron.

the adjust_weights function is straightforward, where we again loop over
each neuron in each layer and adjust the weights using the input values and error
terms.

Finally, Code snippet 4-8 shows the network training loop. Instead of training until
it gets everything correct, as we did in the XOR example, we now train for a fixed
number of epochs. an epoch is defined as one iteration through all the training
data. For each training example, we do a forward pass followed by a backward
pass, and then we adjust the weights. We also track how many of the training
examples were correctly predicted. We then loop through all the test examples
and just record how many were correctly predicted. We use the numPy argmax
function to identify the array index corresponding to the greatest value; this
decodes our one-hot encoded vector into an integer number. Before passing the
input examples to forward_pass and adjust_weights, we extend each array
with a leading 1.0 because these functions expect a bias term of 1.0 as the first
entry in the array.

We do not do any backward pass or weight adjustments for the test data. the
reason for this is that we are not allowed to train on the test data because that
will result in an optimistic assessment of how well the network works. at the end
of each epoch, we print out the current accuracy for both the training data and the
test data.

the numPy function argmax() is a convenient way to find the element that the
network predicts as being most probable.

ChaPtEr 4 FuLLy ConnECtED nEtWorks aPPLIED to MuLtICLass CLassIFICatIon

112

We run the program and get periodic progress printouts. here are the first lines:

epoch no: 0 , train_acc: 0.8563 , test_acc: 0.9157

epoch no: 1 , train_acc: 0.9203 , test_acc: 0.9240

epoch no: 2 , train_acc: 0.9275 , test_acc: 0.9243

epoch no: 3 , train_acc: 0.9325 , test_acc: 0.9271

epoch no: 4 , train_acc: 0.9342 , test_acc: 0.9307

epoch no: 5 , train_acc: 0.9374 , test_acc: 0.9351

as before, your results might be slightly different due to random variations. When
the program completes, it produces a chart, as shown in Figure 4-4. We see that

Network training loop.

for i in range(EPOCHS): # Train EPOCHS iterations

 np.random.shuffle(index_list) # Randomize order

 correct_training_results = 0

 for j in index_list: # Train on all examples

 x = np.concatenate((np.array([1.0]), x_train[j]))

 forward_pass(x)

 if output_layer_y.argmax() == y_train[j].argmax():

 correct_training_results += 1

 backward_pass(y_train[j])

 adjust_weights(x)

 correct_test_results = 0

 for j in range(len(x_test)): # Evaluate network

 x = np.concatenate((np.array([1.0]), x_test[j]))

 forward_pass(x)

 if output_layer_y.argmax() == y_test[j].argmax():

 correct_test_results += 1

 # Show progress.

 show_learning(i, correct_training_results/len(x_train),

 correct_test_results/len(x_test))

plot_learning() # Create plot

Code Snippet 4-8 training Loop for MnIst

PrograMMIng EXaMPLE: CLassIFyIng hanDWrIttEn DIgIts

113

both the training and the test error are decreasing over time, and the test error
does not yet start to increase at the right side of a chart. that is, we do not seem
to have a significant problem with overfitting. We do see that the training error is
lower than the test error. this is common and not a reason for concern as long as
the gap is not too big.

as shown from the progress printouts and the chart, the test error quickly falls
below 10% (accuracy is above 90%); that is, our simple network can classify more
than nine of ten images correctly. this is an amazing result given how simple the
program is! Consider how lengthy a program you would need to write if you did
not use an ML algorithm but instead tried to hardcode information about what
defines the ten different digits. the beauty of ML is that instead of hardcoding this
information yourself, the algorithm discovers this information from the training
examples. In the case of a neural network, this information is encoded into the
network weights.

Figure 4-4 training and test error when learning to classify digits

We do not know how lengthy a program with a hardcoded approach would be,
as we are lazy and have not bothered to try to write one. We just assume that it
would be long because other people claim that this is the case.

ChaPtEr 4 FuLLy ConnECtED nEtWorks aPPLIED to MuLtICLass CLassIFICatIon

114

now sit back and relax for a moment, and think about what you have learned.
you have gone from the description of the single neuron to connecting multiple
neurons and applying a learning algorithm that results in a system that can
classify handwritten digits!

Mini-Batch gradient Descent
so far, we have been using stochastic gradient descent (sgD) as opposed to true
gradient descent. as previously described, the distinction is that for sgD we
compute the gradient for a single training example before updating the weights,
whereas for true gradient descent, we would loop through the entire dataset
and compute the average of the gradients for all training examples. there is a
clear trade-off here. Looping through the entire dataset gives us a more accurate
estimate of the gradient, but it requires many more computations before we
update any weights. It turns out that a good happy medium is to use a small set
of training examples known as a mini-batch. this enables more frequent weight
updates (less computation per update) than true gradient descent while still
getting a more accurate estimate of the gradient than when using just a single
example. Further, modern hardware implementations, and in particular graphics
processing units (gPus), do a good job of computing a full mini-batch in parallel,
so it does not take more time than computing just a single example.

the terminology is confusing here. the true gradient descent method uses
batches (the entire training dataset) and is also known as batch gradient descent.
at the same time, there is the hybrid between batch and stochastic gradient
descent that uses mini-batches, but the size of a mini-batch is often referred
to as batch size. Finally, sgD technically refers only to the case where a single
training example is used (mini-batch size = 1) to estimate the gradient, but the
hybrid approach with mini-batches is often also referred to as sgD. thus, it is
not uncommon to read statements such as “stochastic gradient descent with a
 mini-batch size of 64.” the mini-batch size is yet another parameter that can be
tuned, and as of the writing of this book, anything close to the range of 32 to 256
makes sense to try. Finally, sgD (mini-batch size of 1, to be clear) is sometimes
referred to as online learning because it can be used in an online setting where

the dataset used in this example was released in 1998. this was one year after
Judgment Day in Terminator 2, when the war against the machines started and
3 billion human lives ended. that is, there is still some difference between fact
and fiction.

ConCLuDIng rEMarks on MuLtICLass CLassIFICatIon

115

training examples are produced one by one instead of all being collected up front
before learning begins.

From an implementation perspective, a mini-batch can be represented by a
matrix because each individual training example is an array of inputs and an
array of arrays becomes a matrix. similarly, the weights for a single neuron can
be arranged as an array, and we can arrange the weights for all neurons in a layer
as a matrix. Computing the inputs to all activation functions for all neurons in the
layer for all input examples in the mini-batch is then reduced to a single matrix-
matrix multiplication. as previously mentioned, this is only a change in notation,
but it does lead to significant performance improvements on platforms that have
highly efficient matrix multiplication implementations. If you are interested, we
have extended our plain Python implementation of our neural network to use
matrices and mini-batches in appendix F. It is perfectly fine to skip appendix F,
though, because these kinds of optimizations are already done (better) in the
tensorFlow framework that is used in Chapter 5.

Concluding remarks on Multiclass
Classification

In this chapter, we implemented a network for handwritten digit classification. as
opposed to the previous examples that all worked on binary classification, this
was an example of a multiclass classification problem. the only real difference
was to modify the network to have multiple output neurons and to define a
suitable loss function. apart from that, no new mechanisms were needed to train
the network.

We should point out that the way we added multiple output neurons and the
chosen loss function in this chapter are not the best-known solutions. We aimed
for keeping things simple. In the next two chapters, we learn about better ways
of doing this, namely, using the softmax output unit and the categorical cross-
entropy loss function.

We also discussed the concept of dataset, a key part of enabling a model to learn.
an important, and often overlooked, issue when selecting or creating a dataset is
that it can pick up human biases, which may result in unintended consequences
when using the trained model.

ChaPtEr 4 FuLLy ConnECtED nEtWorks aPPLIED to MuLtICLass CLassIFICatIon

116

you are now well on your way toward exploring the field of DL. these first four
chapters have been challenging because we introduced a lot of new concepts
and implemented everything from scratch in Python. We believe that you will find
the next couple of chapters easier when we introduce a DL framework that does
much of the heavy lifting with respect to the low-level details. at the same time,
you can feel comfortable knowing that there is no magic going on. the framework
just provides efficient and easy-to-use implementations of the concepts that are
described in this book.

117

Chapter 5

Toward DL:
Frameworks and
Network Tweaks

An obvious next step would be to see if adding more layers to our neural
networks results in even better accuracy. However, it turns out getting deeper
networks to learn well is a major obstacle. A number of innovations were needed
to overcome these obstacles and enable deep learning (DL). We introduce the
most important ones later in this chapter, but before doing so, we explain how to
use a DL framework. The benefit of using a DL framework is that we do not need
to implement all these new techniques from scratch in our neural network. The
downside is that you will not deal with the details in as much depth as in previous
chapters. You now have a solid enough foundation to build on. Now we switch
gears a little and focus on the big picture of solving real-world problems using
a DL framework. The emergence of DL frameworks played a significant role in
making DL practical to adopt in the industry as well as in boosting productivity of
academic research.

CHAPTEr 5 ToWArD DL: FrAmEWorks AND NETWork TWEAks

118

Programming Example: moving to a
DL Framework

In this programming example, we show how to implement the handwritten digit
classification from Chapter 4, “Fully Connected Networks Applied to multiclass
Classification,” using a DL framework. In this book, we have chosen to use the two
frameworks TensorFlow and PyTorch. Both of these frameworks are popular and
flexible. The TensorFlow versions of the code examples are interspersed throughout
the book, and the PyTorch versions are available online on the book Web site.

TensorFlow provides a number of different constructs and enables you to
work at different abstraction levels using different application programming
interfaces (APIs). In general, to keep things simple, you want to do your work at
the highest abstraction level possible because that means that you do not need
to implement the low-level details. For the examples we will study, the keras API
is a suitable abstraction level. keras started as a stand-alone library. It was not
tied to TensorFlow and could be used with multiple DL frameworks. However, at
this point, keras is fully supported inside of TensorFlow itself. see Appendix I for
information about how to install TensorFlow and what version to use.

Appendix I also contains information about how to install PyTorch if that is your
framework of choice. Almost all programming constructs in this book exist both
in TensorFlow and in PyTorch. The section “key Differences between PyTorch
and TensorFlow” in Appendix I describes some key differences between the two
frameworks. You will find it helpful if you do not want to pick a single framework
but want to master both of them.

The frameworks are implemented as Python libraries. That is, we still write our
program as a Python program and we just import the framework of choice as
a library. We can then use DL functions from the famework in our program. The
initialization code for our TensorFlow example is shown in Code snippet 5-1.

Code Snippet 5-1 Import statements for our TensorFlow/keras Example

import tensorflow as tf

from tensorflow import keras

from tensorflow.keras.utils import to_categorical

import numpy as np

import logging

ProgrAmmINg ExAmPLE: movINg To A DL FrAmEWork

119

As you can see in the code, TensorFlow has its own random seed that needs to
be set if we want reproducible results. However, this still does not guarantee
that repeated runs produce identical results for all types of networks, so for the
remainder of this book, we will not worry about setting the random seeds. The
preceding code snippet also sets the logging level to only print out errors while
suppressing warnings.

We then load and prepare our mNIsT dataset. Because mNIsT is a common
dataset, it is included in keras. We can access it by a call to keras.datasets.
mnist and load_data. The variables train_images and test_images will
contain the input values, and the variables train_labels and test_labels
will contain the ground truth (Code snippet 5-2).

Just as before, we need to standardize the input data and one-hot encode the
labels. We use the function to_categorical to one-hot encode our labels

Load training and test datasets.

mnist = keras.datasets.mnist

(train_images, train_labels), (test_images,

 test_labels) = mnist.load_data()

Standardize the data.

mean = np.mean(train_images)

stddev = np.std(train_images)

train_images = (train_images - mean) / stddev

test_images = (test_images - mean) / stddev

One-hot encode labels.

train_labels = to_categorical(train_labels, num_classes=10)

test_labels = to_categorical(test_labels, num_classes=10)

Code Snippet 5-2 Load and Prepare the Training and Test Datasets

tf.get_logger().setLevel(logging.ERROR)

tf.random.set_seed(7)

EPOCHS = 20

BATCH_SIZE = 1

CHAPTEr 5 ToWArD DL: FrAmEWorks AND NETWork TWEAks

120

instead of doing it manually, as we did in our previous example. This serves
as an example of how the framework provides functionality to simplify our
implementation of common tasks.

We are now ready to create our network. There is no need to define variables for
individual neurons because the framework provides functionality to instantiate
entire layers of neurons at once. We do need to decide how to initialize the
weights, which we do by creating an initializer object, as shown in Code
snippet 5-3. This might seem somewhat convoluted but will come in handy when
we want to experiment with different initialization values.

If you are not so familiar with Python, it is worth pointing out that functions can
be defined with optional arguments, and to avoid having to pass the arguments
in a specific order, optional arguments can be passed by first naming which
argument we are trying to set. An example is the num_classes argument in the
to_categorical function.

Object used to initialize weights.

initializer = keras.initializers.RandomUniform(

 minval=-0.1, maxval=0.1)

Create a Sequential model.

784 inputs.

Two Dense (fully connected) layers with 25 and 10 neurons.

tanh as activation function for hidden layer.

Logistic (sigmoid) as activation function for output layer.

model = keras.Sequential([

 keras.layers.Flatten(input_shape=(28, 28)),

 keras.layers.Dense(25, activation='tanh',

 kernel_initializer=initializer,

 bias_initializer='zeros'),

 keras.layers.Dense(10, activation='sigmoid',

 kernel_initializer=initializer,

 bias_initializer='zeros')])

Code Snippet 5-3 Create the Network

ProgrAmmINg ExAmPLE: movINg To A DL FrAmEWork

121

The network is created by instantiating a keras.Sequential object, which
implies that we are using the keras sequential API. (This is the simplest API, and
we use it for the next few chapters until we start creating networks that require a
more advanced API.) We pass a list of layers as an argument to the Sequential
class. The first layer is a Flatten layer, which does not do computations but only
changes the organization of the input. In our case, the inputs are changed from a
28×28 array into an array of 784 elements. If the data had already been organized
into a 1D-array, we could have skipped the Flatten layer and simply declared
the two Dense layers. If we had done it that way, then we would have needed to
pass an input_shape parameter to the first Dense layer because we always
have to declare the size of the inputs to the first layer in the network.

The second and third layers are both Dense layers, which means they are fully
connected. The first argument tells how many neurons each layer should have,
and the activation argument tells the type of activation function; we choose
tanh and sigmoid, where sigmoid means the logistic sigmoid function.
We pass our initializer object to initialize the regular weights using the
kernel_initializer argument. The bias weights are initialized to 0 using the
bias_initializer argument.

one thing that might seem odd is that we are not saying anything about the
number of inputs and outputs for the second and third layers. If you think about it,
the number of inputs is fully defined by saying that both layers are fully connected
and the fact that we have specified the number of neurons in each layer along
with the number of inputs to the first layer of the network. This discussion
highlights that using the DL framework enables us to work at a higher abstraction
level. In particular, we use layers instead of individual neurons as building blocks,
and we need not worry about the details of how individual neurons are connected
to each other. This is often reflected in our figures as well, where we work with
individual neurons only when we need to explain alternative network topologies.
on that note, Figure 5-1 illustrates our digit recognition network at this higher
abstraction level. We use rectangular boxes with rounded corners to depict a
layer of neurons, as opposed to circles that represent individual neurons.

We are now ready to train the network, which is done by Code snippet 5-4. We
first create a keras.optimizer.SGD object. This means that we want to use
stochastic gradient descent (sgD) when training the network. Just as with the
initializer, this might seem somewhat convoluted, but it provides flexibility to
adjust parameters for the learning process, which we explore soon. For now,
we just set the learning rate to 0.01 to match what we did in our plain Python
example. We then prepare the model for training by calling the model’s compile

CHAPTEr 5 ToWArD DL: FrAmEWorks AND NETWork TWEAks

122

function. We provide parameters to specify which loss function to use (where we
use mean_squared_error as before), the optimizer that we just created and
that we are interested in looking at the accuracy metric during training.

We finally call the fit function for the model, which starts the training process.
As the function name indicates, it fits the model to the data. The first two
arguments specify the training dataset. The parameter validation_data is

Fully connected 25 tanh neurons

Fully connected 10
logistic neurons

Ten outputs representing ten classes

28x28 pixel input image

Flatten

Figure 5-1 Digit classification network using layers as building blocks

Use stochastic gradient descent (SGD) with

learning rate of 0.01 and no other bells and whistles.

MSE as loss function and report accuracy during training.

opt = keras.optimizers.SGD(learning_rate=0.01)

model.compile(loss='mean_squared_error', optimizer = opt,

 metrics =['accuracy'])

Train the model for 20 epochs.

Shuffle (randomize) order.

Update weights after each example (batch_size=1).

history = model.fit(train_images, train_labels,

 validation_data=(test_images, test_labels),

 epochs=EPOCHS, batch_size=BATCH_SIZE,

 verbose=2, shuffle=True)

Code Snippet 5-4 Train the Network

ProgrAmmINg ExAmPLE: movINg To A DL FrAmEWork

123

the test dataset. our variables EPOCHS and BATCH_SIZE from the initialization
code determine how many epochs to train for and what batch size we use. We
had set BATCH_SIZE to 1, which means that we update the weight after a single
training example, as we did in our plain Python example. We set verbose=2 to
get a reasonable amount of information printed during the training process and
set shuffle to True to indicate that we want the order of the training data to be
randomized during the training process. All in all, these parameters match what
we did in our plain Python example.

Depending on what TensorFlow version you run, you might get a fair number of
printouts about opening libraries, detecting the graphics processing unit (gPU),
and other issues as the program starts. If you want it less verbose, you can set
the environment variable TF_CPP_MIN_LOG_LEVEL to 2. If you are using bash,
you can do that with the following command line:

export TF_CPP_MIN_LOG_LEVEL=2

Another option is to add the following code snippet at the top of your program.

import os

os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'

The printouts for the first few training epochs are shown here. We stripped out
some timestamps to make it more readable.

Epoch 1/20

loss: 0.0535 - acc: 0.6624 - val_loss: 0.0276 - val_acc: 0.8893

Epoch 2/20

loss: 0.0216 - acc: 0.8997 - val_loss: 0.0172 - val_acc: 0.9132

Epoch 3/20

loss: 0.0162 - acc: 0.9155 - val_loss: 0.0145 - val_acc: 0.9249

Epoch 4/20

loss: 0.0142 - acc: 0.9227 - val_loss: 0.0131 - val_acc: 0.9307

CHAPTEr 5 ToWArD DL: FrAmEWorks AND NETWork TWEAks

124

Epoch 5/20

loss: 0.0131 - acc: 0.9274 - val_loss: 0.0125 - val_acc: 0.9309

Epoch 6/20

loss: 0.0123 - acc: 0.9313 - val_loss: 0.0121 - val_acc: 0.9329

In the printouts, loss represents the mean squared error (msE) of the training
data, acc represents the prediction accuracy on the training data, val_loss
represents the msE of the test data, and val_acc represents the prediction
accuracy of the test data. It is worth noting that we do not get exactly the same
learning behavior as was observed in our plain Python model. It is hard to know
why without diving into the details of how TensorFlow is implemented. most likely,
it could be subtle issues related to how initial parameters are randomized and
the random order in which training examples are picked. Another thing worth
noting is how simple it was to implement our digit classification application using
TensorFlow. Using the TensorFlow framework enables us to study more advanced
techniques while still keeping the code size at a manageable level.

We now move on to describing some techniques needed to enable learning in
deeper networks. After that, we can finally do our first DL experiment in the next
chapter.

The Problem of saturated Neurons and
vanishing gradients

In our experiments, we made some seemingly arbitrary changes to the learning
rate parameter as well as to the range with which we initialized the weights. For
our perceptron learning example and the XOR network, we used a learning rate
of 0.1, and for the digit classification, we used 0.01. similarly, for the weights, we
used the range −1.0 to +1.0 for the XOR example, whereas we used −0.1 to +0.1
for the digit example. A reasonable question is whether there is some method to
the madness. our dirty little secret is that we changed the values simply because
our networks did not learn well without these changes. In this section, we discuss
the reasons for this and explore some guidelines that can be used when selecting
these seemingly random parameters.

THE ProBLEm oF sATUrATED NEUroNs AND vANIsHINg grADIENTs

125

To understand why it is sometimes challenging to get networks to learn, we
need to look in more detail at our activation function. Figure 5-2 shows our
two s-shaped functions. It is the same chart that we showed in Figure 3-4 in
Chapter 3, “sigmoid Neurons and Backpropagation.”

one thing to note is that both functions are uninteresting outside of the shown
z-interval (which is why we showed only this z-interval in the first place). Both
functions are more or less straight horizontal lines outside of this range.

Now consider how our learning process works. We compute the derivative of the
error function and use that to determine which weights to adjust and in what
direction. Intuitively, what we do is tweak the input to the activation function
(z in the chart in Fig. 5-2) slightly and see if it affects the output. If the z-value is
within the small range shown in the chart, then this will change the output (the
y-value in the chart). Now consider the case when the z-value is a large positive or
negative number. Changing the input by a small amount (or even a large amount)
will not affect the output because the output is a horizontal line in those regions.
We say that the neuron is saturated.

saturated neurons can cause learning to stop completely. As you remember, when
we compute the gradient with the backpropagation algorithm, we propagate the
error backward through the network, and part of that process is to multiply the
derivative of the loss function by the derivative of the activation function. Consider

Figure 5-2 The two s-shaped functions tanh and logistic sigmoid

CHAPTEr 5 ToWArD DL: FrAmEWorks AND NETWork TWEAks

126

what the derivatives of the two activation functions above are for z-values of
significant magnitude (positive or negative). The derivative is 0! In other words, no
error will propagate backward, and no adjustments will be done to the weights.
similarly, even if the neuron is not fully saturated, the derivative is less than 0.
Doing a series of multiplications (one per layer) where each number is less than
0 results in the gradient approaching 0. This problem is known as the vanishing
gradient problem. saturated neurons are not the only reason for vanishing
gradients, as we will see later in the book.

Initialization and Normalization
Techniques to Avoid saturated Neurons

We now explore how we can prevent or address the problem of saturated
neurons. Three techniques that are commonly used—and often combined—are
weight initialization, input standardization, and batch normalization.

WEIgHT INITIALIZATIoN

The first step in avoiding saturated neurons is to ensure that our neurons are
not saturated to begin with, and this is where weight initialization is important. It
is worth noting that, although we use the same type of neurons in our different
examples, the actual parameters for the neurons that we have shown are much
different. In the XOR example, the neurons in the hidden layer had three inputs
including the bias, whereas for the digit classification example, the neurons in
the hidden layer had 785 inputs. With that many inputs, it is not hard to imagine
that the weighted sum can swing far in either the negative or positive direction
if there is just a little imbalance in the number of negative versus positive inputs
if the weights are large. From that perspective, it kind of makes sense that if
a neuron has a large number of inputs, then we want to initialize the weights
to a smaller value to have a reasonable probability of still keeping the input
to the activation function close to 0 to avoid saturation. Two popular weight
initialization strategies are glorot initialization (glorot and Bengio, 2010) and He
initialization (He et al., 2015b). glorot initialization is recommended for tanh- and

Saturated neurons are insensitive to input changes because their derivative is
0 in the saturated region. This is one cause of the vanishing gradient problem
where the backpropagated error is 0 and the weights are not adjusted.

INITIALIZATIoN AND NormALIZATIoN TECHNIqUEs To AvoID sATUrATED NEUroNs

127

sigmoid-based neurons, and He initialization is recommended for reLU-based
neurons (described later). Both of these take the number of inputs into account,
and glorot initialization also takes the number of outputs into account. Both glorot
and He initialization exist in two flavors, one that is based on a uniform random
distribution and one that is based on a normal random distribution.

We have previously seen how we can initialize the weights from a uniform
random distribution in TensorFlow by using an initializer, as was done in Code
snippet 5-4. We can choose a different initializer by declaring any one of the
supported initializers in keras. In particular, we can declare a glorot and a He
initializer in the following way:

initializer = keras.initializers.glorot_uniform()

initializer = keras.initializers.he_normal()

Parameters to control these initializers can be passed to the initializer
constructor. In addition, both the glorot and He initializers come in the two flavors
uniform and normal. We picked uniform for glorot and normal for He because
that is what was described in the publications where they were introduced.

If you do not feel the need to tweak any of the parameters, then there is no
need to declare an initializer object at all, but you can just pass the name of the
initializer as a string to the function where you create the layer. This is shown
in Code snippet 5-5, where the kernel_initializer argument is set to
'glorot_uniform'.

We do not go into the formulas for Glorot and He initialization, but they are
good topics well worth considering for further reading (glorot and Bengio,
2010; He et al., 2015b).

model = keras.Sequential([

 keras.layers.Flatten(input_shape=(28, 28)),

 keras.layers.Dense(25, activation='tanh',

 kernel_initializer='glorot_uniform',

 bias_initializer='zeros'),

 keras.layers.Dense(10, activation='sigmoid',

 kernel_initializer='glorot_uniform',

 bias_initializer='zeros')])

Code Snippet 5-5 setting an Initializer by Passing Its Name as a string

CHAPTEr 5 ToWArD DL: FrAmEWorks AND NETWork TWEAks

128

We can separately set bias_initializer to any suitable initializer, but as
previously stated, a good starting recommendation is to just initialize the bias
weights to 0, which is what the 'zeros' initializer does.

INPUT sTANDArDIZATIoN

In addition to initializing the weights properly, it is important to preprocess the
input data. In particular, standardizing the input data to be centered around 0 and
with most values close to 0 will reduce the risk of saturating neurons from the
start. We have already used this in our implementation; let us discuss it in a little
bit more detail. As stated earlier, each pixel in the mNIsT dataset is represented
by an integer between 0 and 255, where 0 represents the blank paper and a
higher value represents pixels where the digit was written.1 most of the pixels
will be either 0 or a value close to 255, where only the edges of the digits are
somewhere in between. Further, a majority of the pixels will be 0 because a digit
is sparse and does not cover the entire 28×28 image. If we compute the average
pixel value for the entire dataset, then it turns out that it is about 33. Clearly, if we
used the raw pixel values as inputs to our neurons, then there would be a big risk
that the neurons would be far into the saturation region. By subtracting the mean
and dividing by the standard deviation, we ensure that the neurons get presented
with input data that is in the region that does not lead to saturation.

BATCH NormALIZATIoN

Normalizing the inputs does not necessarily prevent saturation of neurons for
hidden layers, and to address that problem Ioffe and szegedy (2015) introduced
batch normalization. The idea is to normalize values inside of the network as well
and thereby prevent hidden neurons from becoming saturated. This may sound
somewhat counterintuitive. If we normalize the output of a neuron, does that not
result in undoing the work of that neuron? That would be the case if it truly was
just normalizing the values, but the batch normalization function also contains
parameters to counteract this effect. These parameters are adjusted during
the learning process. Noteworthy is that after the initial idea was published,
subsequent work indicated that the reason batch normalization works is different
than the initial explanation (santurkar et al., 2018).

1. This might seem odd because a value of 0 typically represents black and a value of 255 typically
represents white for a grayscale image. However, that is not the case for this dataset.

Batch normalization (Ioffe and szegedy, 2015) is a good topic for further
reading.

INITIALIZATIoN AND NormALIZATIoN TECHNIqUEs To AvoID sATUrATED NEUroNs

129

There are two main ways to apply batch normalization. In the original paper, the
suggestion was to apply the normalization on the input to the activation function
(after the weighted sum). This is shown to the left in Figure 5-3.

This can be implemented in keras by instantiating a layer without an activation
function, followed by a BatchNormalization layer, and then apply an
activation function without any new neurons, using the Activation layer. This is
shown in Code snippet 5-6.

However, it turns out that batch normalization also works well if done after
the activation function, as shown to the right in Figure 5-3. This alternative
implementation is shown in Code snippet 5-7.

Figure 5-3 Left: Batch normalization as presented by Ioffe and szegedy (2015). The
layer of neurons is broken up into two parts. The first part is the weighted sums for
all neurons. Batch normalization is applied to these weighted sums. The activation
function (tanh) is applied to the output of the batch normalization operation.
right: Batch normalization is applied to the output of the activation functions.

keras.layers.Dense(64),

keras.layers.BatchNormalization(),

keras.layers.Activation('tanh'),

Code Snippet 5-6 Batch Normalization before Activation Function

keras.layers.Dense(64, activation='tanh'),

keras.layers.BatchNormalization(),

Code Snippet 5-7 Batch Normalization after Activation Function

CHAPTEr 5 ToWArD DL: FrAmEWorks AND NETWork TWEAks

130

Cross-Entropy Loss Function to mitigate
Effect of saturated output Neurons

one reason for saturation is that we are trying to make the output neuron get to
a value of 0 or 1, which itself drives it to saturation. A simple trick introduced by
LeCun, Bottou, orr, and müller (1998) is to instead set the desired output to 0.1 or
0.9, which restricts the neuron from being pushed far into the saturation region.
We mention this technique for historical reasons, but a more mathematically
sound technique is recommended today.

We start by looking at the first couple of factors in the backpropagation algorithm;
see Chapter 3, Equation 3-1(1) for more context. The formulas for the msE loss
function, the logistic sigmoid function, and their derivatives for a single training
example are restated here:2

 : ˆ
(y ˆ)

2
, ˆ ˆ

2

MSE loss e y
y

e y y y() () ()=
−

′ = − −

:
1

1
, 1 Logistic S z

e
S z S z S zf z f f ff

()() () () ()=
−

′ = ⋅ −−

We then start backpropagation by using the chain rule to compute the derivative
of the loss function and multiply by the derivative of the logistic sigmoid function
to arrive at the following as the error term for the output neuron:

 :
ˆ

ˆ
ŷOutput neuron error term

e

z

e

y

y

z
y S z

f f
f()()∂

∂
=

∂
∂

⋅
∂
∂

= − − ⋅ ′

We chose to not expand S'(z
f
) in the expression because it makes the formula

unnecessarily cluttered. The formula reiterates what we stated in one of the
previous sections: that if S'(z

f
) is close to 0, then no error will backpropagate

through the network. We show this visually in Figure 5-4. We simply plot the
derivative of the loss function and the derivative of the logistic sigmoid function
as well as the product of the two. The chart shows these entities as functions
of the output value y (horizontal axis) of the output neuron. The chart assumes that
the desired output value (ground truth) is 0. That is, at the very left in the chart,
the output value matches the ground truth, and no weight adjustment is needed.

2. In the equations in Chapter 3, we referred to the output of the last neuron as f to avoid confusing it
with the output of the other neuron, g. In this chapter, we use a more standard notation and refer to
predicted value (the output of the network) as ŷ .

Cross-ENTroPY Loss FUNCTIoN To mITIgATE EFFECT oF sATUrATED oUTPUT NEUroNs

131

As we move to the right in the chart, the output is further away from the ground
truth, and the weights need to be adjusted. Looking at the figure, we see that the
derivative of the loss function (blue) is 0 if the output value is 0, and as the output
value increases, the derivative increases. This makes sense in that the further away
from the true value the output is, the larger the derivative will be, which will cause
a larger error to backpropagate through the network. Now look at the derivative
of the logistic sigmoid function. It also starts at 0 and increases as the output
starts deviating from 0. However, as the output gets closer to 1, the derivative is
decreasing again and starts approaching 0 as the neuron enters its saturation
region. The green curve shows the resulting product of the two derivatives
(the error term for the output neuron), and it also approaches 0 as the output
approaches 1 (i.e., the error term becomes 0 when the neuron saturates).

Looking at the charts, we see that the problem arises from the combination of
the derivative of the activation function approaching 0, whereas the derivative of
the loss function never increases beyond 1, and multiplying the two will therefore
approach 0. one potential solution to this problem is to use a different loss
function whose derivative can take on much higher values than 1. Without further
rationale at this point, we introduce the function in Equation 5-1 that is known as
the cross-entropy loss function:

 : (ŷ) y ln ˆ 1 y ln 1 ŷCross entropy loss e y()() () ()= − ⋅ + − ⋅ −

Equation 5-1 Cross-entropy loss function

1. Derivative of MSE loss
 increases as network output

moves further away from
ground truth.

The resulting error term for the3. T
tput neuron (green curve)out
zero(!) when the network outputis z
the opposite if ground truth.is t

2. Derivative of output neuron2
ogistic function initiallyl
ncreases as the network outputi
moves away from ground truthm
but decreases as neuron entersb
saturation region.s

Network output is
opposite of ground truth
(output value results from
a weighted sum z >>0).

Output neuron error term (green curve) is well behaved
in the range where network output matches ground truth
and up to a point where it is moderately far away.

Network output matches
ground truth
(output value results from
a weighted sum z << 0).

Figure 5-4 Derivatives and error term as function of neuron output when ground
truth y (denoted y_target in the figure) is 0

CHAPTEr 5 ToWArD DL: FrAmEWorks AND NETWork TWEAks

132

substituting the cross-entropy loss function into our expression for the error term
of the output neuron yields Equation 5-2:

ˆ

ˆ

ˆ
1 y

1 ŷ
ŷ y

e

z

e

y

y

z

y

y
S z

f f
f()∂

∂
=

∂
∂

⋅
∂
∂

= − +
−
−

⋅ ′ = −

Equation 5-2 Derivative of cross-entropy loss function and derivative of logistic
output unit combined into a single expression

We spare you from the algebra needed to arrive at this result, but if you squint
your eyes a little bit and remember that the logistic sigmoid function has some
ex terms, and we know that ln(ex) = x and the derivative of ln(x) = x−1, then it does
not seem farfetched that our seemingly complicated formulas might end up
as something as simple as that. Figure 5-5 shows the equivalent plot for these
functions. The y-range is increased compared to Figure 5-4 to capture more of
the range of the new loss function. Just as discussed, the derivative of the cross-
entropy loss function does increase significantly at the right end of the chart,
and the resulting product (the green line) now approaches 1 in the case where
the neuron is saturated. That is, the backpropagated error is no longer 0, and the
weight adjustments will no longer be suppressed.

Although the chart seems promising, you might feel a bit uncomfortable to just
start using Equation 5-2 without further explanation. We used the msE loss
function in the first place, you may recall, on the assumption that your likely
familiarity with linear regression would make the concept clearer. We even stated
that using msE together with the logistic sigmoid function is not a good choice.

Derivative of cross-entropy
loss increases steeply
toward infinity as network
output moves further away
from ground truth.

The resulting error term for the
output neuron (green curve)
is no longer zero when output is
opposite of ground truth.

Figure 5-5 Derivatives and error term when using cross-entropy loss function.
ground truth y (denoted y_target in the figure) is 0, as in Figure 5-4.

Cross-ENTroPY Loss FUNCTIoN To mITIgATE EFFECT oF sATUrATED oUTPUT NEUroNs

133

We have now seen in Figure 5-4 why this is the case. still, let us at least give you
some insight into why using the cross-entropy loss function instead of the msE
loss function is acceptable. Figure 5-6 shows how the value of the msE and cross-
entropy loss function varies as the output of the neuron changes from 0 to 1 in the
case of a ground truth of 0. As you can see, as y moves further away from the true
value, both msE and the cross-entropy function increase in value, which is the
behavior that we want from a loss function.

Intuitively, by looking at the chart in Figure 5-6, it is hard to argue that one function
is better than the other, and because we have already shown in Figure 5-4 that
msE is not a good function, you can see the benefit of using the cross-entropy loss
function instead. one thing to note is that, from a mathematical perspective, it does
not make sense to use the cross-entropy loss function together with a tanh neuron
because the logarithm for negative numbers is not defined.

Figure 5-6 value of the mean squared error (blue) and cross-entropy loss
(orange) functions as the network output ŷ changes (horizontal axis). The
assumed ground truth is 0.

As further reading, we recommend learning about information theory and
maximum-likelihood estimation, which provides a rationale for the use of the
cross-entropy loss function.

CHAPTEr 5 ToWArD DL: FrAmEWorks AND NETWork TWEAks

134

In the preceding examples, we assumed a ground truth of 0. For completeness,
Figure 5-7 shows how the derivatives behave in the case of a ground truth of 1.

The resulting charts are flipped in both directions, and the msE function shows
exactly the same problem as for the case when ground truth was 0. similarly, the
cross-entropy loss function solves the problem in this case as well.

Figure 5-7 Behavior of the different derivatives when assuming a ground truth
of 1. Top: mean squared error loss function. Bottom: Cross-entropy loss function.

Cross-ENTroPY Loss FUNCTIoN To mITIgATE EFFECT oF sATUrATED oUTPUT NEUroNs

135

ComPUTEr ImPLEmENTATIoN oF THE Cross-ENTroPY
Loss FUNCTIoN

If you find an existing implementation of a code snippet that calculates the cross-
entropy loss function, then you might be confused at first because it does not
resemble what is stated in Equation 5-1. A typical implementation can look like
that in Code snippet 5-8. The trick is that, because we know that y in Equation 5-1
is either 1.0 or 0.0, the factors y and (1-y) will serve as an if statement and
select one of the ln statements.

Apart from what we just described, there is another thing to consider when
implementing backpropagation using the cross-entropy loss function in a
computer program. It can be troublesome if you first compute the derivative of
the cross-entropy loss (as in Equation 5-2) and then multiply by the derivative
of the activation function for the output unit. As shown in Figure 5-5, in certain
points, one of the functions approaches 0 and one approaches infinity, and
although this mathematically can be simplified to the product approaching 1, due
to rounding errors, a numerical computation might not end up doing the right
thing. The solution is to analytically simplify the product to arrive at the combined
expression in Equation 5-2, which does not suffer from this problem.

In reality, we do not need to worry about these low-level details because we are
using a DL framework. Code snippet 5-9 shows how we can tell keras to use the
cross-entropy loss function for a binary classification problem. We simply state
loss='binary_crossentropy' as an argument to the compile function.

def cross_entropy(y_truth, y_predict):
 if y_truth == 1.0:

 return -np.log(y_predict)

 else:

 return -np.log(1.0-y_predict)

Code Snippet 5-8 Python Implementation of the Cross-Entropy Loss Function

model.compile(loss='binary_crossentropy',

 optimizer = optimizer_type,

 metrics =['accuracy'])

Code Snippet 5-9 Use Cross-Entropy Loss for a Binary Classification Problem in
TensorFlow

CHAPTEr 5 ToWArD DL: FrAmEWorks AND NETWork TWEAks

136

In Chapter 6, “Fully Connected Networks Applied to regression,” we detail
the formula for the categorical cross-entropy loss function, which is used for
multiclass classification problems. In TensorFlow, it is as simple as stating
loss='categorical_crossentropy'.

Different Activation Functions to Avoid
vanishing gradient in Hidden Layers

The previous section showed how we can solve the problem of saturated neurons
in the output layer by choosing a different loss function. However, this does not
help for the hidden layers. The hidden neurons can still be saturated, resulting
in derivatives close to 0 and vanishing gradients. At this point, you may wonder
if we are solving the problem or just fighting symptoms. We have modified
(standardized) the input data, used elaborate techniques to initialize the weights
based on the number of inputs and outputs, and changed our loss function
to accommodate the behavior of our activation function. Could it be that the
activation function itself is the cause of the problem?

How did we end up with the tanh and logistic sigmoid functions as activation
functions anyway? We started with early neuron models from mcCulloch
and Pitts (1943) and rosenblatt (1958) that were both binary in nature. Then
rumelhart, Hinton, and Williams (1986) added the constraint that the activation
function needs to be differentiable, and we switched to the tanh and logistic
sigmoid functions. These functions kind of look like the sign function yet are still
differentiable, but what good is a differentiable function in our algorithm if its
derivative is 0 anyway?

Based on this discussion, it makes sense to explore alternative activation
functions. one such attempt is shown in Figure 5-8, where we have complicated
the activation function further by adding a linear term 0.2*x to the output to
prevent the derivative from approaching 0.

Although this function might well do the trick, it turns out that there is no good
reason to overcomplicate things, so we do not need to use this function. We
remember from the charts in the previous section that a derivative of 0 was a
problem only in one direction because, in the other direction, the output value
already matched the ground truth anyway. In other words, it is fine with a
derivative of 0 on one side of the chart. Based on this reasoning, we can consider

DIFFErENT ACTIvATIoN FUNCTIoNs To AvoID vANIsHINg grADIENT IN HIDDEN LAYErs

137

the rectified linear unit (reLU) activation function in Figure 5-9, which has been
shown to work for neural networks (glorot, Bordes, and Bengio, 2011).

Now, a fair question is how this function can possibly be used after our entire
obsession with differentiable functions. The function in Figure 5-9 is not

Figure 5-8 modified tanh function with an added linear term

Figure 5-9 rectified linear unit (reLU) activation function

CHAPTEr 5 ToWArD DL: FrAmEWorks AND NETWork TWEAks

138

differentiable at x = 0. However, this does not present a big problem. It is true
that from a mathematical point of view, the function is not differentiable in
that one point, but nothing prevents us from just defining the derivative as
1 in that point and then trivially using it in our backpropagation algorithm
implementation. The key issue to avoid is a function with a discontinuity, like
the sign function. Can we simply remove the kink in the line altogether and use
y = x as an activation function? The answer is that this does not work. If you
do the calculations, you will discover that this will let you collapse the entire
network into a linear function and, as we saw in Chapter 1, “The rosenblatt
Perceptron,” a linear function (like the perceptron) has severe limitations.
It is even common to refer to the activation function as a nonlinearity, which
stresses how important it is to not pick a linear function as an activation
function.

An obvious benefit with the reLU function is that it is cheap to compute. The
implementation involves testing only whether the input value is less than 0,
and if so, it is set to 0. A potential problem with the reLU function is when
a neuron starts off as being saturated in one direction due to a combination
of how the weights and inputs happen to interact. Then that neuron will not
participate in the network at all because its derivative is 0. In this situation, the
neuron is said to be dead. one way to look at this is that using reLUs gives the
network the ability to remove certain connections altogether, and it thereby
builds its own network topology, but it could also be that it accidentally kills
neurons that could be useful if they had not happened to die. Figure 5-10
shows a variation of the reLU function known as leaky ReLU, which is defined
so its derivative is never 0.

The activation function should be nonlinear and is even often referred to as a
nonlinearity instead of activation function.

given that humans engage in all sorts of activities that arguably kill their brain
cells, it is reasonable to ask whether we should prevent our network from
killing its neurons, but that is a deeper discussion.

DIFFErENT ACTIvATIoN FUNCTIoNs To AvoID vANIsHINg grADIENT IN HIDDEN LAYErs

139

All in all, the number of activation functions we can think of is close to unlimited,
and many of them work equally well. Figure 5-11 shows a number of important
activation functions that we should add to our toolbox. We have already seen tanh,
reLU, and leaky reLU (xu, Wang, et al., 2015). We now add the softplus function
(Dugas et al., 2001), the exponential linear unit also known as elu (shah et al.,
2016), and the maxout function (goodfellow et al., 2013). The maxout function is
a generalization of the reLU function in which, instead of taking the max value
of just two lines (a horizontal line and a line with positive slope), it takes the max
value of an arbitrary number of lines. In our example, we use three lines, one with
a negative slope, one that is horizontal, and one with a positive slope.

All of these activation functions except for tanh should be effective at fighting
vanishing gradients when used as hidden units. There are also some alternatives
to the logistic sigmoid function for the output units, but we save that for Chapter 6.

Figure 5-10 Leaky rectified linear unit (reLU) activation function

The tanh, ReLU, leaky ReLU, softplus, elu, and maxout functions can all be
considered for hidden units, but tanh has a problem with vanishing gradients.

There is no need to memorize the formulas for the activation functions at this
point, but just focus on their shape.

CHAPTEr 5 ToWArD DL: FrAmEWorks AND NETWork TWEAks

140

Figure 5-11 Important activation functions for hidden neurons. Top row: tanh,
reLU. middle row: leaky reLU, softplut. Bottom row: elu, maxout.

vArIATIoNs oN grADIENT DEsCENT To ImProvE LEArNINg

141

We saw previously how we can choose tanh as an activation function for the
neurons in a layer in TensorFlow, also shown in Code snippet 5-10.

If we want a different activation function, we simply replace 'tanh' with one of
the other supported functions (e.g., 'sigmoid', 'relu', or 'elu'). We can also
omit the activation argument altogether, which results in a layer without an
activation function; that is, it will just output the weighted sum of the inputs. We
will see an example of this in Chapter 6.

variations on gradient Descent to
Improve Learning

There are a number of variations on gradient descent aiming to enable better and
faster learning. one such technique is momentum, where in addition to computing
a new gradient every iteration, the new gradient is combined with the gradient
from the previous iteration. This can be likened with a ball rolling down a hill
where the direction is determined not only by the slope in the current point but
also by how much momentum the ball has picked up, which was caused by the
slope in previous points. momentum can enable faster convergence due to a more
direct path in cases where the gradient is changing slightly back and forth from
point to point. It can also help with getting out of a local minimum. one example of
a momentum algorithm is Nesterov momentum (Nesterov, 1983).

Another variation is to use an adaptive learning rate instead of a fixed learning
rate, as we have used previously. The learning rate adapts over time on the
basis of historical values of the gradient. Two algorithms using adaptive learning

keras.layers.Dense(25, activation='tanh',

 kernel_initializer=initializer,

 bias_initializer='zeros'),

Code Snippet 5-10 setting the Activation Function for a Layer

Nesterov momentum, AdaGrad, RMSProp, and Adam are important variations
(also known as optimizers) on gradient descent and stochastic gradient descent.

CHAPTEr 5 ToWArD DL: FrAmEWorks AND NETWork TWEAks

142

rate are adaptive gradient, known as AdaGrad (Duchi, Hazan, and singer, 2011),
and RMSProp (Hinton, n.d.). Finally, adaptive moments, known as Adam (kingma
and Ba, 2015), combines both adaptive learning rate and momentum. Although
these algorithms adaptively modify the learning rate, we still have to set an
initial learning rate. These algorithms even introduce a number of additional
parameters that control how the algorithms perform, so we now have even more
parameters to tune for our model. However, in many cases, the default values
work well.

Finally, we discussed earlier how to avoid vanishing gradients, but there can also
be a problem with exploding gradients, where the gradient becomes too big in
some point, causing a huge step size. It can cause weight updates that completely
throw off the model. gradient clipping is a technique to avoid exploding gradients
by simply not allowing overly large values of the gradient in the weight update
step. gradient clipping is available for all optimizers in keras.

Code snippet 5-11 shows how we set an optimizer for our model in keras. The
example shows stochastic gradient descent with a learning rate of 0.01 and no
other bells and whistles.

We do not go into the details of how to implement momentum and adaptive
learning rate; we simply use implementations available in the DL framework.
Understanding these techniques is important when tuning your models,
so consider exploring these topics. You can find them summarized in Deep
Learning (goodfellow, Bengio, and Courville, 2016), or you can read the original
sources (Duchi, Hazan, and singer, 2011; Hinton, n.d.; kingma and Ba, 2015;
Nesterov, 1983).

Gradient clipping is used to avoid the problem of exploding gradients.

opt = keras.optimizers.SGD(lr=0.01, momentum=0.0, decay=0.0,

 nesterov=False)

model.compile(loss='mean_squared_error', optimizer = opt,

 metrics =['accuracy'])

Code Snippet 5-11 setting an optimizer for the model

ExPErImENT: TWEAkINg NETWork AND LEArNINg PArAmETErs

143

Just as we can for initializers, we can choose a different optimizer by declaring any
one of the supported optimizers in Tensorflow, such as the three we just described:

opt = keras.optimizers.Adagrad(lr=0.01, epsilon=None)

opt = keras.optimizers.RMSprop(lr=0.001, rho=0.8, epsilon=None)

opt = keras.optimizers.Adam(lr=0.01, epsilon=0.1, decay=0.0)

In the example, we freely modified some of the arguments and left out others,
which will then take on the default values. If we do not feel the need to modify the
default values, we can just pass the name of the optimizer to the model compile
function, as in Code snippet 5-12.

We now do an experiment in which we apply some of these techniques to our
neural network.

Experiment: Tweaking Network and
Learning Parameters

To illustrate the effect of the different techniques, we have defined five different
configurations, shown in Table 5-1. Configuration 1 is the same network that
we studied in Chapter 4 and at beginning of this chapter. Configuration 2 is the
same network but with a learning rate of 10.0. In configuration 3, we change the
initialization method to glorot uniform and change the optimizer to Adam with
all parameters taking on the default values. In configuration 4, we change the
activation function for the hidden units to reLU, the initializer for the hidden layer
to He normal, and the loss function to cross-entropy. When we described the
cross-entropy loss function earlier, it was in the context of a binary classification
problem, and the output neuron used the logistic sigmoid function. For multiclass
classification problems, we use the categorical cross-entropy loss function,
and it is paired with a different output activation known as softmax. The details
of softmax are described in Chapter 6, but we use it here with the categorical

model.compile(loss='mean_squared_error', optimizer ='adam',

 metrics =['accuracy'])

Code Snippet 5-12 Passing the optimizer as a string to the Compile Function

CHAPTEr 5 ToWArD DL: FrAmEWorks AND NETWork TWEAks

144

cross-entropy loss function. Finally, in configuration 5, we change the mini-batch
size to 64.

modifying the code to model these configurations is trivial using our DL
framework. In Code snippet 5-13, we show the statements for setting up the
model for configuration 5, using reLU units with He normal initialization in the
hidden layer and softmax units with glorot uniform initialization in the output
layer. The model is then compiled using categorical cross-entropy as the loss
function and Adam as the optimizer. Finally, the model is trained for 20 epochs
using a mini-batch size of 64 (set to BATCH_SIZE=64 in the init code).

Table 5-1 Configurations with Tweaks to our Network

CONFIGURATION
HIDDEN
ACTIVATION

HIDDEN
INITIALIZER

OUTPUT
ACTIVATION

OUTPUT
INITIALIZER

LOSS
FUNCTION OPTIMIZER

MINI-
BATCH
SIZE

Conf1 tanh Uniform 0.1 sigmoid Uniform 0.1 msE sgD
lr=0.01

1

Conf2 tanh Uniform 0.1 sigmoid Uniform 0.1 msE sgD
lr=10.0

1

Conf3 tanh glorot
uniform

sigmoid glorot uniform msE Adam 1

Conf4 reLU He normal softmax glorot uniform CE Adam 1

Conf5 reLU He normal softmax glorot uniform CE Adam 64

Note: CE, cross-entropy; msE, mean squared error; sgD, stochastic gradient descent.

Code Snippet 5-13 Code Changes Needed for Configuration 5

model = keras.Sequential([

 keras.layers.Flatten(input_shape=(28, 28)),

 keras.layers.Dense(25, activation='relu',

 kernel_initializer='he_normal',

 bias_initializer='zeros'),

 keras.layers.Dense(10, activation='softmax',

ExPErImENT: TWEAkINg NETWork AND LEArNINg PArAmETErs

145

If you run this configuration on a gPU-accelerated platform, you will notice that
it is much faster than the previous configuration. The key here is that we have a
batch size of 64, which results in 64 training examples being computed in parallel,
as opposed to the initial configuration where they were all done serially.

The results of the experiment are shown in Figure 5-12, which shows how the test
errors for all configurations evolve during the training process.

 kernel_initializer='glorot_uniform',

 bias_initializer='zeros')])

model.compile(loss='categorical_crossentropy',

 optimizer = 'adam',

 metrics =['accuracy'])

history = model.fit(train_images, train_labels,

 validation_data=(test_images, test_labels),

 epochs=EPOCHS, batch_size=BATCH_SIZE,

 verbose=2, shuffle=True)

We use matplotlib to visualize the learning process. A more powerful approach
is to use the TensorBoard functionality that is included in TensorFlow. We highly
recommend that you get familiar with TensorBoard when you start building and
tuning your own models.

Figure 5-12 Error on the test dataset for the five configurations

CHAPTEr 5 ToWArD DL: FrAmEWorks AND NETWork TWEAks

146

Configuration 1 (red line) ends up at an error of approximately 6%. We spent a
nontrivial amount of time on testing different parameters to come up with that
configuration (not shown in this book).

Configuration 2 (green) shows what happens if we set the learning rate to 10.0,
which is significantly higher than 0.01. The error fluctuates at approximately 70%,
and the model never learns much.

Configuration 3 (blue) shows what happens if, instead of using our tuned
learning rate and initialization strategy, we choose a “vanilla configuration” with
glorot initialization and the Adam optimizer with its default values. The error is
approximately 7%.

For Configuration 4 (purple), we switch to using different activation functions and
the cross-entropy error function. We also change the initializer for the hidden
layer to He normal. We see that the test error is reduced to 5%.

For Configuration 5 (yellow), the only thing we change compared to Configuration
4 is the mini-batch size: 64 instead of 1. This is our best configuration, which ends
up with a test error of approximately 4%. It also runs much faster than the other
configurations because the use of a mini-batch size of 64 enables more examples
to be computed in parallel.

Although the improvements might not seem that impressive, we should recognize
that reducing the error from 6% to 4% means removing one-third of the error
cases, which definitely is significant. more important, the presented techniques
enable us to train deeper networks.

Hyperparameter Tuning and
Cross-validation

The programming example showed the need to tune different hyperparameters,
such as the activation function, weight initializer, optimizer, mini-batch size, and
loss function. In the experiment, we presented five configurations with some
different combinations, but clearly there are many more combinations that we
could have evaluated. An obvious question is how to approach this hyperparameter
tuning process in a more systematic manner. one popular approach is known as
grid search and is illustrated in Figure 5-13 for the case of two hyperparameters
(optimizer and initializer). We simply create a grid with each axis representing a

HYPErPArAmETEr TUNINg AND Cross-vALIDATIoN

147

single hyperparameter. In the case of two hyperparameters, it becomes a 2D grid,
as shown in the figure, but we can extend it to more dimensions, although we can
only visualize, at most, three dimensions. Each intersection in the grid (represented
by a circle) represents a combination of different hyperparameter values, and
together, all the circles represent all possible combinations. We then simply run an
experiment for each data point in the grid to determine what is the best combination.

What we just described is known as exhaustive grid search, but needless to say, it
can be computationally expensive as the number of combinations quickly grows
with the number of hyperparameters that we want to evaluate. An alternative is to
do a random grid search on a randomly selected a subset of all combinations. This
alternative is illustrated in the figure by the green dots that represent randomly
chosen combinations. We can also do a hybrid approach in which we start with
a random grid search to identify one or a couple of promising combinations, and
then we can create a finer-grained grid around those combinations and do an
exhaustive grid search in this zoomed-in part of the search space. grid search is
not the only method available for hyperparameter tuning. For hyperparameters
that are differentiable, it is possible to do a gradient-based search, similar to the
learning algorithm used to tune the normal parameters of the model.

Figure 5-13 grid search for two hyperparameters. An exhaustive grid search
would simulate all combinations, whereas a random grid search might simulate
only the combinations highlighted in green.

CHAPTEr 5 ToWArD DL: FrAmEWorks AND NETWork TWEAks

148

Implementing grid search is straightforward, but a common alternative is to
use a framework known as sci-kit learn.3 This framework plays well with keras.
At a high level, we wrap our call to model.fit() into a function that takes
hyperparameters as input values. We then provide this wrapper function to sci-kit
learn, which will call it in a systematic manner and monitor the training process.
The sci-kit learn framework is a general mL framework and can be used with both
traditional mL algorithms as well as DL.

UsINg A vALIDATIoN sET To AvoID ovErFITTINg

The process of hyperparameter tuning introduces a new risk of overfitting.
Consider the example earlier in the chapter where we evaluated five
configurations on our test set. It is tempting to believe that the measured error
on our test dataset is a good estimate of what we will see on not-yet-seen data.
After all, we did not use the test dataset during the training process, but there
is a subtle issue with this reasoning. Even though we did not use the test set to
train the weights of the model, we did use the test set when deciding which set of
hyperparameters performed best. Therefore, we run the risk of having picked a
set of hyperparameters that are particularly good for the test dataset but not as
good for the general case. This is somewhat subtle in that the risk of overfitting
exists even if we do not have a feedback loop in which results from one set of
hyperparameters guide the experiment of a next set of hyperparameters. This
risk exists even if we decide on all combinations up front and only use the test
dataset to select the best performing model.

We can solve this problem by splitting up our dataset into a training dataset, a
validation dataset, and a test dataset. We train the weights of our model using the
training dataset, and we tune the hyperparameters using our validation dataset.
once we have arrived at our final model, we use our test dataset to determine
how well the model works on not-yet-seen data. This process is illustrated in
the left part of Figure 5-14. one challenge is to decide how much of the original
dataset to use as training, validation, and test set. Ideally, this is determined on
a case-by-case basis and depends on the variance in the data distribution. In
absence of any such information, a common split between training set and test
set when there is no need for a validation set is 70/30 (70% of original data used
for training and 30% used for test) or 80/20. In cases where we need a validation
set for hyperparameter tuning, a typical split is 60/20/20. For datasets with
low variance, we can get away with a smaller fraction being used for validation,
whereas if the variance is high, a larger fraction is needed.

3. https://scikit-learn.org

https://scikit-learn.org

HYPErPArAmETEr TUNINg AND Cross-vALIDATIoN

149

Cross-vALIDATIoN To ImProvE UsE oF TrAININg DATA

one unfortunate effect of introducing the validation set is that we can now use
only 60% of the original data to train the weights in our network. This can be
a problem if we have a limited amount of training data to begin with. We can
address this problem using a technique known as cross-validation, which avoids
holding out parts of the dataset to be used as validation data but at the expense
of additional computation. We focus on one of the most popular cross-validation
techniques, known as k-fold cross-validation. We start by splitting our data into a
training set and a test set, using something like an 80/20 split. The test set is not
used for training or hyperparameter tuning but is used only in the end to establish
how good the final model is. We further split our training dataset into k similarly
sized pieces known as folds, where a typical value for k is a number between
5 and 10.

We can now use these folds to create k instances of a training set and validation
set by using k − 1 folds for training and 1 fold for validation. That is, in the case of
k = 5, we have five alternative instances of training/validations sets. The first one
uses folds 1, 2, 3, and 4 for training and fold 5 for validation, the second instance
uses folds 1, 2, 3, and 5 for training and fold 4 for validation, and so on.

Let us now use these five instances of train/validation sets to both train the
weights of our model and tune the hyperparameters. We use the example
presented earlier in the chapter where we tested a number of different
configurations. Instead of training each configuration once, we instead train each
configuration k times with our k different instances of train/validation data. Each
of these k instances of the same model is trained from scratch, without reusing
weights that were learned by a previous instance. That is, for each configuration,
we now have k measures of how well the configuration performs. We now
compute the average of these measures for each configuration to arrive at a
single number for each configuration that is then used to determine the best-
performing configuration.

Now that we have identified the best configuration (the best set of hyperparameters),
we again start training this model from scratch, but this time we use all of the
k folds as training data. When we finally are done training this best-performing
configuration on all the training data, we can run the model on the test dataset to
determine how well it performs on not-yet-seen data. As noted earlier, this process
comes with additional computational cost because we must train each configuration
k times instead of a single time. The overall process is illustrated on the right side of
Figure 5-14.

CHAPTEr 5 ToWArD DL: FrAmEWorks AND NETWork TWEAks

150

We do not go into the details of why cross-validation works, but for more
information, you can consult The Elements of statistical Learning (Hastie,
Tibshirani, and Friedman, 2009).

Concluding remarks on the Path
Toward Deep Learning

This chapter introduced the techniques that are regarded as enablers of the DL
revolution that started with the AlexNet paper (krizhevsky, sutskever, and Hinton,
2012). In particular, the emergence of large datasets, the introduction of the reLU

Train the model weights only using
the training set. Evaluate the

resulting model on validation set.

Model good
enough?

Split data into training, validation,
and test datasets.

Tune hyper-
parameters.

Evaluate final model
on test datasets.

START

DONE

Train the model weights for k instances of the same
model. Use di�erent combinations of k-1 folds as

input to each model instance. Evaluate each model
instance on the held-out fold. Compute average of

all model instances.

Model good
enough?

Split data into training and
test datasets. Split the
training set into k folds.

Tune hyper-
parameters.

Evaluate final
model on test

dataset.

START

DONE

Train model
using all k folds

as input.

k-fold cross-validationBaseline algorithm

NO

YES
YES

NO

Figure 5-14 Tuning hyperparameters with a validation dataset (left) and using
k-fold cross-validation (right)

CoNCLUDINg rEmArks oN THE PATH ToWArD DEEP LEArNINg

151

unit and the cross-entropy loss function, and the availability of low-cost gPU-
powered high-performance computing are all viewed as critical components that
had to come together to enable deeper models to learn (goodfellow et al., 2016).

We also demonstrated how to use a DL framework instead of implementing our
models from scratch. The emergence of these DL frameworks is perhaps equally
important when it comes to enabling the adoption of DL, especially in the industry.

With this background, we are now ready to move on to Chapter 6 and build our
first deep neural network!

This page intentionally left blank

153

Chapter 6

Fully Connected
Networks Applied
to Regression

In Chapter 5, “Toward DL: Frameworks and Network Tweaks,” we introduced
several activation functions that can be used for hidden units in the network. In
this chapter, we describe a couple of alternative output units and describe the
problem types for which they are suitable. In addition, we introduce you to another
dataset known as the Boston Housing dataset (Harrison and Rubinfeld, 1978).

The code example in this chapter will apply a deep neural network (DNN) to the
Boston Housing dataset to predict home values based on a number of different
variables and compare it with a simpler model. Predicting a home value is a
different type of problem than the classification problems that we have studied
so far. Instead of predicting which one of a discrete number of classes an input
example belongs to, we want to predict a real-valued number. This is known as a
regression problem. If you are interested in first learning some basic traditional
machine learning (ML) techniques for regression and classification, consider
reading Appendix A at this point.

In Chapter 4, “Fully Connected Networks Applied to Multiclass Classification,”
we briefly discussed overfitting (lack of generalization). We also introduced the
concept of regularization techniques, which aim at improving generalization. In this

CHAPTER 6 FuLLy CoNNECTED NETWoRks APPLIED To REgREssIoN

154

chapter, we see practical examples of overfitting and introduce some different
regularization techniques that can be used to mitigate this problem. Finally,
we experiment with using these techniques to enable even deeper and larger
networks to generalize.

output units
We saw in Chapter 5 how hidden units can use activation functions other than
the logistic sigmoid and tanh activation functions. However, we mainly kept using
the unit based on the logistic sigmoid function as output unit for the network,
although we did briefly mention the softmax unit as well. In this section, we
describe the softmax unit in more detail and introduce yet another type of output
unit. The rationale for using the alternative hidden units was to avoid vanishing
gradients. In contrast, the output unit is chosen on the basis of the type of problem
the network is applied to. Figure 6-1 summarizes how to use different types of
hidden units and output units for three problem types.

The choice of loss function is tightly coupled to the choice of output unit, where
each type of output unit has a corresponding recommended loss function. We
describe three different output units in this chapter. First, the logistic output unit
is used for binary classification problems. second, the softmax output unit is used

Logistic output unit
Cross-entropy

Softmax output unit
Categorical cross-entropy

Linear output unit
Mean Squared Error

Hidden units:
ReLU, tanh, leaky ReLU,
elu, softplus, maxout

Output units:
Problem dependent

Input values

Binary classification Multiclass classification Regression

Figure 6-1 Types of unit to use for different networks and layers. The type of
problem dictates the type of output unit and associated loss function. For the hidden
layers, multiple alternatives are available. A good starting point is the rectified
linear unit (ReLu). For some networks, other units result in better performance.

ouTPuT uNITs

155

for multiclass classification problems. Third, the linear output unit is used for
regression problems. The recommended loss functions corresponding to these
three units are cross-entropy loss, categorical cross-entropy loss, and mean
squared error.

As described in Chapter 5, a number of alternatives exist for the hidden units. We
recommend starting with rectified linear unit (ReLu) and then trying other units
as a part of the hyperparameter tuning process.

LogIsTIC uNIT FoR BINARy CLAssIFICATIoN

We start by revisiting the output unit based on the logistic sigmoid function, so
we describe all the output units in one place. We have seen multiple times that
the logistic sigmoid function is an example of an s-shaped function. The output
ranges from 0 to 1, and it is similar to a step function but without discontinuities.

The typical use case for the logistic sigmoid function as output unit is for binary
classification problems. The logistic sigmoid function is

 : ()
1

1 1
Logistic sigmoid function S z

e

e

ez

z

z=
+

=
+−

The logistic sigmoid function expects a real-valued variable z (ranging from
negative infinity to infinity) as its input. Because the output is between 0 and 1,
we can interpret its output as a probability. The inverse of the logistic function is
known as the logit function in the statistics literature. That is, the logit function
converts a probability into a real-valued variable z. Therefore, the weighted sum z,
which is the input to the logistic function, is sometimes referred to as a logit in the
context of deep learning (DL).

As described in Chapter 5, the recommended loss function to use with this type of
output neuron is the cross-entropy loss function:

- : () y ln ˆ 1 y ln 1 ˆCross entropy loss e y y y()() () ()= − ⋅ + − ⋅ −

Where ŷ is the output of the logistic sigmoid function and y is the desired output
value.

The logistic sigmoid function is used for binary classification problems.

CHAPTER 6 FuLLy CoNNECTED NETWoRks APPLIED To REgREssIoN

156

soFTMAX uNIT FoR MuLTICLAss CLAssIFICATIoN

We now move on to the softmax unit. Its name makes it easy to confuse with
the maxout and softplus units introduced in Chapter 5, but the softmax unit is
unrelated to these apart from the words used in its name.

The softmax unit (goodfellow, Bengio, and Courville, 2016) is a generalization
of the logistic sigmoid function but extended to multiple outputs. An important
property of the logistic sigmoid function is that its output is always between 0 and
1, which implies that we can interpret the output as a probability (a probability
always needs to be between 0 and 1). For example, in a classification problem,
an output of 0.7 can be interpreted as a 70% probability that the presented
inputs represent an object belonging to the assumed class and a 30% probability
that it does not. When we looked at multiclass classification in Chapter 5, we
simply used ten instances of the logistic sigmoid unit. The output from each unit
indicated whether or not the input example belonged to the class, and we simply
looked for the unit with the highest value. A problem with this approach is that
if we were to add up the outputs from all ten output units, we would most likely
end up with cases in which this sum was either less than or greater than 1. That
is, it is unclear how to interpret the outputs as probabilities. The definition of the
softmax function ensures that the sum of all the outputs is always 1, and thereby
we can interpret the output as a probability. For instance, if the output for digit 3 is
close to 0.3, the output for digit 5 is close to 0.7, and all other outputs are close to
0, then we can say that there is a 70% probability that the input example is 5 and a
30% probability that the input example is 3. The formula for the softmax function
in the case of n outputs is

()
1

softmax z
e

e
i

z

j

n z

i

j∑
=

=

Softplus, maxout, and softmax are all different units. softplus and maxout
units are typically used in hidden layers, whereas softmax is primarily used in
the output layer.

The output from a logistic sigmoid unit can be interpreted as a probability for
a binary classification problem, and the output from a softmax unit can be
interpreted as a probability for a multiclass classification problem.

ouTPuT uNITs

157

In other words, we compute the exponential function of the logit representing the
output in question and divide it by the sum of the exponential functions for all the
logits. If you compute this function for each output and sum them, then it should
be clear why they all add up to 1, because the sum of all the numerators is exactly
the same sum as is already in the denominator.

one thing to note is that the softmax output unit is not a function isolated to a
single neuron, but it is an output function applied to a layer of neurons. That is,
we compute the weighted sum z for each neuron in the output layer, and then
we apply the softmax function on each of these z-instances. As given by the
preceding formula, the output value for each neuron is dependent not only on z
for that neuron but also on z from all other neurons in the layer. This is how we
ensure that the sum of all outputs equals 1. The softmax layer is shown at the
top of Figure 6-2, where the yellow circles compute only the weighted sum for
each neuron, and the activation functions are applied in the yellow rectangle that
has access to the logits (z-values) for all the neurons. The effect of the softmax
function is shown at the bottom of the figure. In this example, where several logits

z1 z2 z3 z4

y1 y2 y3 y4

Fully connected
softmax layer

Previous hidden
layer

y1 + y2 + y3 + y4 = 1

Activation functions

Figure 6-2 Top: Fully connected softmax layer. Bottom: Relationship between
z and softmax(z).

CHAPTER 6 FuLLy CoNNECTED NETWoRks APPLIED To REgREssIoN

158

are greater than 1, the corresponding outputs will be reduced to make the sum
equal to 1.

The recommended loss function to use with this type of output neuron is the
cross-entropy loss function for multiclass classification (Equation 6-1).

�Cross entropy loss e y y y
c

N

c c- : () ln
1

∑ ()= −
=

Equation 6-1 Cross-entropy loss function for multiclass classification

where N is the number of outputs (classes). you can see that if you set N=2 and
expand the sum, it results in the cross-entropy loss function for the binary case
that we have used before.

There is a subtle interaction1 between the softmax output function and the
cross-entropy loss function. The vector y

c
 is one-hot encoded so only a specific

element, hereafter assumed to have index n, is nonzero. That implies that the
sum in the cross-entropy loss function is reduced to the single term in the
nth position. At first glance, this seems to imply that the values of the other
outputs, corresponding to incorrect classes, do not matter. Those values will
be multiplied by zero anyway, and the loss will be fully determined by the value
of the nth element (that corresponds to the correct class). That seems odd. Is
it not the role of the loss function to push all outputs in the right direction? It
seems like that should include both rewarding the correct output (output n)
and penalizing the incorrect ones. It turns out that this happens indirectly due
to the presense of the softmax function. As described previously, the output
value for each neuron in the softmax layer is dependent not only on z for that
neuron but also on z from all other neurons in the layer. That implies that output
n is dependent not only on the weights connected to neuron n but also on all
other weights in the layer. Therefore, the partial derivatives corresponding to
all the weights in the layer will be affected by the value of output n. As a
result, all weights will be adjusted, even though only one of the output elements
directly affects the overall loss function.

We saw an example of using the softmax function for multiclass classification in
Chapter 5. We use it again in Chapter 7, “Convolutional Neural Networks Applied
to Image Classification,” when we study image classification with convolutional
networks.

1. If you are a first-time reader, you can safely ignore this interaction, but it is worth mentioning for
completeness, if only to be revisited at a later point.

ouTPuT uNITs

159

LINEAR uNIT FoR REgREssIoN

We now introduce the output unit that is used for the programming example in
this chapter. Both the logistic sigmoid function and the softmax function are used
for classification problems, but in this chapter, we study a regression problem
in which we want to predict a numerical value instead of a probability. In a
regression problem, the output is not restricted to the range 0 to 1 as it is for the
classification problem. To provide a concrete example, in this chapter, we want
to predict the sales price of a home—a dollar amount. This can be done with a
linear output unit, which is as simple as not having an activation function at all, or
more formally, the activation function is y = z. That is, the output from the unit is
the weighted sum itself. As previously stated, if neurons in multiple layers are all
based on linear activation functions, then these multiple layers can be collapsed
into a single linear function, which is a reason that the linear unit mostly makes
sense to use as an output unit from the network. Figure 6-3 shows two networks
using linear activation functions. The output from each neuron is simply the
weighted sum and can take on any value instead of being restricted to a specific
output range. The network to the left has two stacked linear layers. In the network
to the right, the two linear layers have been collapsed into a single layer, and it
behaves equivalently. Therefore, stacking linear layers does not make sense.

The linear output unit is used to predict a value not limited to the range 0 to 1.
The linear neuron uses the identity function as an activation function; that is, its
output is the weighted sum of the inputs.

Linear activation
functions

Non-linear
activation functions

Equivalent to
two layers with liner
activation functions

Linear activation: Output = weighted sum (z)

Figure 6-3 Left: Network where two layers have linear activation functions.
The two layers in the dashed oval collapses into a single layer. Therefore, it is
uncommon to stack linear layers. Right: Resulting simplified network.

CHAPTER 6 FuLLy CoNNECTED NETWoRks APPLIED To REgREssIoN

160

A linear unit does not have a problem with saturation, so there is no need to use
the cross-entropy loss function. It can be shown that a good loss function is the
mean squared error (MSE). This kind of makes sense because MsE is the error
function used when doing linear regression, and that is exactly what a linear
output unit is doing.

When predicting a value with a linear unit, accuracy is not a good metric. If you
think about it, it is likely that no single test example will be exactly correctly
predicted. For example, when predicting a price of a house, getting the exact
dollar amount correct is extremely unlikely. Therefore, instead of computing how
many of all predictions are correct, the real question is how close to the actual
value each prediction is. From that perspective, a more meaningful metric when
evaluating performance of the model is the mean absolute error.

The Boston Housing Dataset
The dataset used in this chapter is a small dataset originating from a 1978
study about how house prices are related to clean air (Harrison and Rubinfeld,
1978). It is broken up into a training set consisting of 404 examples and a test
set consisting of 102 examples. Each example corresponds to a single house
and consists of 13 input variables describing various aspects of the house and a
single output variable corresponding to the price of the house. The input variables
are shown in Table 6-1.

It can be shown that when using MsE as the loss function in the process of
curve fitting a linear function, the estimated weights are unbiased estimators
of the true weights, which is often a desirable property. For reading this book,
you do not need to worry about knowing what an unbiased estimate is, but it
can be considered for further reading. Both Deep Learning (goodfellow et al.,
2016) and The Elements of Statistical Learning (Hastie, Tibshirani, and Friedman,
2009) discuss these topics in the context of machine learning.

Note the distinction between the loss function and the function used to
evaluate how well the resulting model performs. The loss function is used by
the learning algorithm, whereas other metrics, such as accuracy and mean
absolute error, are more intuitive metrics for the user of the model.

PRogRAMMINg EXAMPLE: PREDICTINg HousE PRICEs WITH A DNN

161

They are all numeric variables, and their ranges vary, so just as for the Modified
National Institute of standards and Technology (MNIsT) dataset, we must
standardize the input data before using it.

Programming Example: Predicting
House Prices with a DNN

Like the MNIsT, the Boston Housing dataset is included in keras, so it is simple
to access using keras.datasets.boston_housing. We standardize both
the training and test data by using the mean and standard deviation from the

Table 6-1 The 13 Input Variables for the Boston Housing Dataset

FEATURE DESCRIPTION

CRIM Per capita crime rate by town

ZN Proportion of residential land zoned for lots over 25,000 sq. ft.

INDUS Proportion of nonretail business acres per town

CHAS Charles River dummy variable (1 if tract bounds river; 0 otherwise)

NOX Nitric oxides concentration (parts per 10 million)

RM Average number of rooms per dwelling

AGE Proportion of owner-occupied units built prior to 1940

DIS Weighted distances to five Boston employment centers

RAD Index of accessibility to radial highways

TAX Full-value property-tax rate per $10,000

PTRATIO Pupil–teacher ratio by town

B 1,000(Bk − 0.63)^2, where Bk is the proportion of blacks by town

LSTAT Percentage lower status of the populations

CHAPTER 6 FuLLy CoNNECTED NETWoRks APPLIED To REgREssIoN

162

training data (Code snippet 6-1). The parameter axis=0 ensures that we
compute the mean and standard deviation for each input variable separately.
The resulting mean (and standard deviation) is a vector of means instead of a
single value. That is, the standardized value of the nitric oxides concentration
is not affected by the values of the per capita crime rate or any of the other
variables.

Code Snippet 6-1 DNN with Two Hidden Layers used to Predict House Prices

import tensorflow as tf

from tensorflow import keras

from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import Dense

import numpy as np

import logging

tf.get_logger().setLevel(logging.ERROR)

EPOCHS = 500

BATCH_SIZE = 16

Read and standardize the data.

boston_housing = keras.datasets.boston_housing

(raw_x_train, y_train), (raw_x_test,

 y_test) = boston_housing.load_data()

x_mean = np.mean(raw_x_train, axis=0)

x_stddev = np.std(raw_x_train, axis=0)

x_train =(raw_x_train - x_mean) / x_stddev

x_test =(raw_x_test - x_mean) / x_stddev

Create and train model.

model = Sequential()

model.add(Dense(64, activation='relu', input_shape=[13]))

model.add(Dense(64, activation='relu')) # We are doing DL!

model.add(Dense(1, activation='linear'))

model.compile(loss='mean_squared_error', optimizer='adam',

 metrics =['mean_absolute_error'])

model.summary()

history = model.fit(x_train, y_train, validation_data=(

 x_test, y_test), epochs=EPOCHS, batch_size=BATCH_SIZE,

 verbose=2, shuffle=True)

PRogRAMMINg EXAMPLE: PREDICTINg HousE PRICEs WITH A DNN

163

We then create the model. Here we use a different syntax than in Chapter 5. There,
the layers were passed as parameters to the constructor of the model. A different
way of doing it is to first instantiate the model object without any layers, and
then add them one by one using the member method add(). As long as we work
with relatively few layers, the approach taken just depends on user preference,
but for deep models with tens of layers, the code typically gets more readable
and maintainable by adding the layers one by one. one example of this is a deep
model of identical layers where the layers can be added to the model with a for
loop, which makes for a much more compact model description.

We define our network to have two hidden layers, so we are now officially doing DL!
A reasonable question is why we want more hidden layers. We previously saw that
having at least one hidden layer is beneficial because it addresses the limitation
related to linear separability that applies to a single-layer network, but we do
not have an equally crisp reason for having multiple hidden layers. It can even
be shown that, given enough neurons, it is sufficient with a single hidden layer to
be able to approximate any continuous function. However, empirically it has been
shown that adding more layers can lead to better-performing (from an accuracy
perspective) networks. one way to think about this is that having more hidden
layers can enable the network to hierarchically combine features at increasing
abstraction levels. We will see more concrete examples of this in Chapter 7.

The two hidden layers in our network implementation have 64 ReLu neurons
each, where the first layer is declared to have 13 inputs to match the dataset.
The output layer consists of a single neuron with a linear activation function. We
use MsE as the loss function and use the Adam optimizer. We tell the compile
method that we are interested in seeing the metric mean absolute error. The
distinction between the loss argument and the metrics argument is that the
former is used by the backpropagation algorithm to compute the gradient, and the
latter is just being printed out for our information.

We print out a summary of the model with model.summary() and then start
training. After the training is done, we use our model to predict the price for

Print first 4 predictions.

predictions = model.predict(x_test)

for i in range(0, 4):

 print('Prediction: ', predictions[i],

 ', true value: ', y_test[i])

CHAPTER 6 FuLLy CoNNECTED NETWoRks APPLIED To REgREssIoN

164

the entire test set and then print out the first four predictions and the correct
values so we can get an idea of how correct the model is. We end up with a mean
absolute error of 2.511 on the test set, and the predictions for the first four test
examples are as follows:

Prediction: [7.7588124] , true value: 7.2

Prediction: [19.762562] , true value: 18.8

Prediction: [20.16102] , true value: 19.0

Prediction: [32.758865] , true value: 27.0

We note that they seem to make sense. The reason that the prediction value is
within square brackets is that each element in the prediction array is an array
itself with a single value in each array. We could have addressed that by indexing
it like the following: predictions[i, 0].

A common theme when working with TensorFlow is that both input data and
output data are in multidimensional arrays, and it sometimes takes a few tries to
get it right.

As we can see, it was simple to create an initial model and do some reasonable
predictions, but it is hard to say how good these predictions are. This brings us to
a question that always makes sense to ask: Do we need DL to solve the problem?
As we saw in Chapter 5, it can be nontrivial to tune a neural network. If there are
simpler ways of solving the problem, then those are preferable. given that this is
a regression problem, it is natural to compare it to simple linear regression,2 that
is, just compute a weighted sum of all the inputs and a bias:

0 1 1 2 2 13 13y w w x w x w x�= + + + +

We can easily do that in our program3 by defining only a single layer having
a single neuron with a linear activation function. We use just the output layer
without any hidden layers, but we also need to define the number of inputs
because the output layer is now also the first layer:

model.add(Dense(1, activation='linear', input_shape=[13]))

2. We think you can follow this discussion even if you are not familiar with linear regression, but if you
do want some more background, consider reading Appendix A.
3. In this implementation, we use gradient descent to find a numerical solution to our linear regression
problem. This might seem foreign to you if you have previously learned how to solve linear regression
analytically using normal equations.

PRogRAMMINg EXAMPLE: PREDICTINg HousE PRICEs WITH A DNN

165

We run the model and end up with a mean absolute error of 10.24 on the test set,
and the first four predictions of the test set as follows:

Prediction: 0.18469143 , true value: 7.2

Prediction: 10.847551 , true value: 18.8

Prediction: 10.989416 , true value: 19.0

Prediction: 22.755947 , true value: 27.0

Clearly, our deep model did better than the linear model,4 which is encouraging!
Now let us look at whether our model seems to generalize well. Figure 6-4 shows
how the training and test errors are changing as a function of the number of
training epochs.

We see that the training error is steadily decreasing, but the test error is flat. This
is a clear indication of overfitting; that is, the model is memorizing the training
data, but it does not manage to generalize to unseen data. We need techniques to
modify our network to address this behavior, which is described next.

4. It is possible to improve the results from the linear regression model by first computing variations
on the input variables. This is known as feature engineering. see Appendix A for more details.

Figure 6-4 Comparison between training and test errors for our three-layer DNN

CHAPTER 6 FuLLy CoNNECTED NETWoRks APPLIED To REgREssIoN

166

Improving generalization with
Regularization

Techniques that are intended to improve generalization are collectively known
as regularization techniques. specifically, a regularization technique is a
technique that aims at reducing the gap between training error and test error.
one regularization technique is early stopping (discussed in Chapter 4), but that
technique is helpful only if the test error shows a u-shaped curve, that is, if the
test error starts increasing after a certain time. This is not the case in our present
example, and we therefore need to look at other techniques.

one common regularization technique is weight decay. Weight decay is
implemented by adding a penalty term to the loss function:

-
0

Loss cross entropy w
i

n

i∑λ= +
=

where λ is a constant and w
0
, w

1
, …, w

n
 are the weights for all the neurons in

the model. Because the learning algorithm tries to minimize the loss function,
this error term provides incentive to minimize the weights. This results in
decreasing weights that do not contribute significantly to solving the general
problem. In particular, weights that are helpful only for specific input examples
and not the general case will be decreased because they reduce the loss for
only a small number of input examples, but the weight decay term causes them
to increase the loss for all examples. That is how weight decay results in better
generalization. The parameter λ affects how significant the regularization effect
will be. The regularization technique shown in the preceding formula is known as
L1 regularization.

A more common variation is to square the weights in the sum, which is known as
L2 regularization:

-
0

2Loss cross entropy w
i

n

i∑λ= +
=

Although we use cross-entropy as the loss function in the examples, you can
apply weight decay regularization to any loss function. similarly, weight decay
not only is applicable to DL but is a common regularization technique applied to
traditional ML techniques as well.

IMPRoVINg gENERALIzATIoN WITH REguLARIzATIoN

167

Code snippet 6-2 shows how to add L2 regularization in keras. It is as simple
as adding one import statement and then a single parameter to each layer
where you want regularization to be applied. The example shows how to apply
regularization to all layers, using a weight decay parameter λ = 0.1. It is common
to not apply regularization to the bias weights, and keras makes that possible by
breaking out the bias regularizer separately.

Dropout is another common regularization technique, specifically developed
for neural networks (srivastava et al., 2014). It is done by randomly removing a
subset of the neurons from the network during training. The subset of removed
neurons varies throughout each training epoch. The number of removed neurons
(the dropout rate) is controlled by a parameter, where a common value is 20%.
When the network is later used for inference, all the neurons are used, but a
scaling factor is applied to each weight to compensate for the fact that each
neuron now receives inputs from more neurons than during training. Figure 6-5
illustrates how dropping two neurons from a fully connected network results in a
different network.

Weight decay is a common regularization technique. Two examples of weight
decay are L1 and L2 regularization.

from tensorflow.keras.regularizers import l2

…

model.add(Dense(64, activation='relu',

 kernel_regularizer=l2(0.1),

 bias_regularizer=l2(0.1),

 input_shape=[13]))

model.add(Dense(64, activation='relu',

 kernel_regularizer=l2(0.1),

 bias_regularizer=l2(0.1)))

model.add(Dense(1, activation='linear',

 kernel_regularizer=l2(0.1),

 bias_regularizer=l2(0.1)))

Code Snippet 6-2 How to Add L2 Regularization to the Model

Dropout is an effective regularization technique for neural networks.

CHAPTER 6 FuLLy CoNNECTED NETWoRks APPLIED To REgREssIoN

168

Dropout forces units to be able to work with a random set of other units. Doing so
prevents subsets of units from co-adapting to solve specific cases and has been
shown to reduce overfitting. Code snippet 6-3 shows how to add dropout to a
model in keras.

After we import the Dropout module, dropout is added as a layer after the layer
where we want it to be applied. The Dropout layer will block connections from
a subset of the neurons in the previous layer, which has the same effect as if the
neuron were not there to begin with.

After drop-outBefore drop-out

Figure 6-5 Dropout

from tensorflow.keras.layers import Dropout

…

model.add(Dense(64, activation='relu', input_shape=[13]))

model.add(Dropout(0.2))

model.add(Dense(64, activation='relu'))

model.add(Dropout(0.2))

model.add(Dense(1, activation='linear'))

Code Snippet 6-3 How to Add Dropout to the Model

EXPERIMENT: DEEPER AND REguLARIzED MoDELs FoR HousE PRICE PREDICTIoN

169

Experiment: Deeper and Regularized
Models for House Price Prediction

We now present the results of some experiments where regularization techniques
are applied to the model. As previously stated, we saw that the three-layer model
was significantly better than the linear model but suffered from overfitting. Those
results are shown in the first two rows in Table 6-2, where the columns show the
network topology (each number represents the number of neurons in a layer),
which regularization technique is used, as well as the training and test errors.

The third row in the table (Configuration 3) shows what happens when we add
L2 regularization to the model. We use a lambda of 0.1, and we can see that the
training error increases, but unfortunately, the test error increases slightly as
well.

The next row (Configuration 4) shows what happens if we use dropout (factor
0.2) instead of L2 regularization. This is more effective and almost closes the gap
between the training and test errors. This indicates that overfitting is no longer a
big problem, and it makes sense to try a more complex model.

This is shown in the next row (Configuration 5), where we add another layer and
increase the number of neurons to 128 in the first two layers. This improves the
test error, but we see that the training error is reduced even more, so we now
have problems with overfitting again.

Table 6-2 Experiments with Deeper Models and Regularization

CONFIGURATION TOPOLOGY REGULARIZATION
TRAINING
ERROR

TEST
ERROR

Conf1 1 None 10.15 10.24

Conf2 64/64/1 None 0.647 2.54

Conf3 64/64/1 L2=0.1 1.50 2.61

Conf4 64/64/1 Dropout=0.2 2.30 2.56

Conf5 128/128/64/1 Dropout=0.2 2.04 2.36

Conf6 128/128/64/1 Dropout=0.3 2.38 2.31

CHAPTER 6 FuLLy CoNNECTED NETWoRks APPLIED To REgREssIoN

170

In the final row of the table (Configuration 6), we increase the dropout factor to
0.3, which both increases the training error and decreases the test error, and we
have arrived at a model that generalizes well.

Concluding Remarks on output units and
Regression Problems

In this chapter, we described the three most common types of output units and
their associated loss functions. Whereas the types of hidden units typically are
chosen in the process of tuning hyperparameters, the type of output unit is tightly
coupled to the problem type.

When training DL models, it is common to run into overfitting. This can be
addressed by regularizing the model. In this chapter, we described a number of
regularization techniques and applied them to our programming example.

The programming example showed that it is often necessary to tweak parameters
iteratively to get to a model that performs well on the test set. one thing to note
is that our best configuration has more than 26,000 parameters. This can be
compared to the linear regression case, which has one weight for each input
feature plus a bias weight—14 in total in our example. From the perspective of
predicting well, it clearly pays to have all of these parameters that the model
learns by itself. However, it is much harder to understand a model with 26,000
parameters than a model with 14 parameters, which illustrates a common
problem with DL. We end up with a model that works well, but we do not know
how it works.

overall, our impression is that, as the current DL boom started, the field
transformed from being theoretical to being more empirical. In other words,
focus has shifted from how something works to how well it works. Before the
field could demonstrate impressive results, perhaps it had to produce elaborate
mathematical analysis to justify its existence, whereas the more recent results
are so impressive that people are happy to skip the math?

171

Chapter 7

Convolutional Neural
Networks Applied to
Image Classification

Training of deep models with backpropagation has been demonstrated in
various forms since at least 1990 (Hinton, Osindero, and Teh, 2006; Hinton and
Salakhutdinov, 2006; LeCun et al., 1990; LeCun, Bottou, Bengio, et al., 1998). Still,
a pivotal point for deep learning (DL) was in 2012 when AlexNet was published
(Krizhevsky, Sutskever, and Hinton, 2012). It scored significantly better than any
other contestant in the ImageNet classification challenge (Russakovsky
et al., 2015) and greatly contributed to popularizing DL. AlexNet is an eight-layer
network and uses convolutional layers, which were introduced by Fukushima
(1980) and later used in LeNet (LeCun et al., 1990). Convolutional layers, and the
resulting convolutional neural networks (CNNs), are important building blocks
in DL. This chapter describes how they work. We start by introducing the overall
AlexNet architecture to highlight a number of concepts that we then explain in
more detail.

AlexNet is a convolutional neural network for image classification. It scored
well on the ImageNet challenge in 2012 and has been attributed as a key
reason for the DL boom that evolved over the next few years.

CHAPTER 7 CONvOLuTIONAL NEuRAL NETWORKS APPLIED TO ImAgE CLASSIFICATION

172

The topology of the AlexNet CNN is shown in Figure 7-1. It consists of five
convolutional layers (drawn as 3D blocks) followed by three fully connected layers
(drawn as 2D rectangles). One somewhat confusing property is that the layers are
split up horizontally, so each layer is represented as two blocks or rectangles. The
reason for this is that, at the time, there was no graphics processing unit (gPu)
that had enough memory to be able to run the entire network. The solution was to
split up the network and map it to two gPus. Although important at the time, we
ignore that detail in our discussion and focus on other properties of the network.

We make the following additional observations from the figure:

• The input image is 224×224 pixels, where each pixel has a depth of 3
(represented by the 3 in the lower left corner of the figure), which represents
the three color channels red, green, and blue (RgB).

• The convolutional layers have a 3D structure as opposed to the fully connected
layers, which have a single dimension (vector).

• There are seemingly arbitrary mappings from sub-blocks of varying sizes
in one layer to the next (marked 11×11, 5×5, 3×3), and there seems to be no
method to the madness when it comes to how the dimensions of one layer
relate to the dimensions of a subsequent layer.

Figure 7-1 Topology of the AlexNet convolutional network. (Source: Krizhevsky, A.,
Sutskever, I., and Hinton, g., “ImageNet Classification with Deep Convolutional Neural
Networks,” Advances in Neural Information Processing Systems 25 [NIPS 2012], 2012.)

THE CIFAR-10 DATASET

173

• There is something called stride.

• There is something called max pooling.

• The output layer consists of 1,000 neurons (it says “1000” in the lower right
corner of the figure).

In this chapter, we describe all of the above and additionally describe terminology
such as kernel size (refers to the 11×11, 5×5, 3×3 items in the figure) and padding,
which are important concepts to know when designing and training a CNN. Before
going into these details, we introduce the input dataset that we use in this chapter.

The CIFAR-10 Dataset
The CIFAR-10 dataset consists of 60,000 training images and 10,000 test images,
each belonging to one of the ten categories airplane, automobile, bird, cat, deer,
dog, frog, horse, ship, and truck, as previously shown in Figure P-1 in the preface.
Each image is 32×32 pixels, so altogether it might seem like the dataset is similar
to the mNIST handwritten digit dataset studied in earlier chapters. However,
the CIFAR-10 dataset is more challenging in that it consists of color images of
everyday objects that are much more diverse than handwritten digits. Figure 7-2

Figure 7-2 Image 100, belonging to the ship category in the CIFAR-10 dataset.
(Source: Krizhevsky, A., Learning Multiple Layers of Features from Tiny Images,
university of Toronto, 2009.)

CHAPTER 7 CONvOLuTIONAL NEuRAL NETWORKS APPLIED TO ImAgE CLASSIFICATION

174

shows image number 100 (starting counting from 0) in the CIFAR-10 dataset. The
figure shows a magnified version in which each of the 32×32 pixels can be clearly
seen, and next to it, a more realistically sized version given the low resolution of
the image.

When working with a new dataset, it always makes sense to explore it a little bit.
The CIFAR-10 dataset is included in Keras. Code Snippet 7-1 shows how to access
it and display the ship image shown in Figure 7-2.

In addition to displaying the image, the print statement should result in the
following output, where 8 refers to the ship category:

Category: [8]

Apparently, the train_labels variable is a 2D array (the 8 is enclosed within
brackets, which indicates that train_labels[100] is still an array instead of
a scalar value). We can explore this further, this time by just typing the following
commands in a Python interpreter:

>>> import tensorflow as tf

>>> from tensorflow import keras

>>> import numpy as np

import tensorflow as tf

from tensorflow import keras

import numpy as np

import matplotlib.pyplot as plt

import logging

tf.get_logger().setLevel(logging.ERROR)

cifar_dataset = keras.datasets.cifar10

(train_images, train_labels), (test_images,

 test_labels) = cifar_dataset.load_data()

print('Category: ', train_labels[100])

plt.figure(figsize=(1, 1))

plt.imshow(train_images[100])

plt.show()

Code Snippet 7-1 Python Code to Access the CIFAR-10 Dataset and Display One of
the Images

CHARACTERISTICS AND BuILDINg BLOCKS FOR CONvOLuTIONAL LAyERS

175

>>> cifar_dataset = keras.datasets.cifar10

>>> (train_images, train_labels), (test_images,

... test_labels) = cifar_dataset.load_data()

>>> train_labels.shape

(50000, 1)

>>> train_images.shape

(50000, 32, 32, 3)

>>> train_images[100][0][0]

array([213, 229, 242], dtype=uint8)

The output (50000, 1) from train_labels.shape confirms that it is a
2D array. Looking at the output from train_images.shape, we see that it is
50,000 instances of a 32×32×3 array, that is, 50,000 images where each image
is 32×32 pixels and each pixel consists of three 8-bit integers that represent the
RgB intensity. We inspect the color values for the pixel in the upper left corner for
our ship picture with the statement train_images[100][0][0] and see that
they are 213, 229, and 242.

We believe that this is a sufficient description of the dataset to be able to use it
with our CNN, and you should now also have the required tools to examine the
dataset further if you are interested.

Characteristics and Building Blocks for
Convolutional Layers

Instead of beginning with the mathematical concept of convolution, we
focus on gaining an intuitive understanding of the convolutional layer. For
interested readers, Appendix g bridges the gap between this description and
the mathematical definition. Perhaps the most important characteristic of a
convolutional network is a property known as translation invariance.1 In the case
of object classification in an image, this means that even if an object is shifted
(translated) horizontally or vertically to a different position in the image, the
network will still be able to recognize it. This is true regardless of where in the

1. In this context, translation refers to the geometrical transformation of moving all points by a fixed
distance in the same direction in a coordinate system.

CHAPTER 7 CONvOLuTIONAL NEuRAL NETWORKS APPLIED TO ImAgE CLASSIFICATION

176

image the object was located in the training data. That is, even if the network was
mostly trained with pictures of cats in the middle of the image, a convolutional
network will still be able to classify the image as containing a cat when presented
with an image with a cat in one of the corners. Translation invariance is achieved
by employing weight sharing between neurons as well as making them sparsely
connected. These concepts are described in this section.

We start by introducing the overall topology of a convolutional layer used for
image processing. The fully connected layers we have studied so far have all
been arranged in a single dimension, as an array of neurons. As Figure 7-4
illustrates, a convolutional layer for image processing has a different topology,
where the neurons are arranged in three dimensions. This also explains why the
convolutional layers were illustrated as 3D blocks in Figure 7-1 that depicted
AlexNet.

Translation is a geometric transformation known as an affine transformation. It
changes the location of an object without changing its shape. In Figure 7-3, the
blue rectangle represents a translated version of the red rectangle. Another
common affine transformation is rotation, which changes the orientation of an
object. The green rectangle represents a rotated version of the red rectangle.
you can read more about affine transformations in Real-Time Rendering
(Akenine-möller et al., 2018).

Rotation

Translation

Figure 7-3 Two examples of affine transformations

A key property of convolutional layers is translation invariance, and it is caused
by weight sharing and a sparsely connected network topology.

CHARACTERISTICS AND BuILDINg BLOCKS FOR CONvOLuTIONAL LAyERS

177

Two of the dimensions (width and height) correspond to the 2D nature of an
image. In addition, the neurons are grouped into channels or feature maps in
a third dimension. Just as for a normal fully connected layer, there are no
connections between the neurons within a convolutional layer. That is, all the
neurons in the 3D structure are decoupled from each other and are together
considered to form a single layer. However, all the neurons within a single
channel have identical weights (weight sharing). That is, all neurons with the
same color in the figure are identical copies of each other, but they will receive
different input values.

Now let us consider the behavior of each individual neuron. In Chapter 2,
“gradient-Based Learning,” we showed how a neuron can be used as a pattern
identifier. In that example, we envisioned a tiny image consisting of 3×3 pixels
connecting to a neuron with nine inputs (one for each pixel) plus the bias input,
and we used this neuron to identify certain patterns. We use this pattern identifier
(also known as kernel or convolution matrix) as our smallest building block when
describing the convolutional layer.

Width

Channels
(feature maps)

Height

Figure 7-4 Topology of a 2D convolutional layer. Somewhat unintuitively, a 2D
convolutional layer is arranged in three dimensions: width, height, and channels.

Each neuron in a convolutional layer implements an operation known as a
convolutional kernel. The weights are arranged in a 2D pattern and form a
convolutional matrix.

CHAPTER 7 CONvOLuTIONAL NEuRAL NETWORKS APPLIED TO ImAgE CLASSIFICATION

178

Although we work on larger images, each neuron will receive pixel values only
from a subset of the image (e.g., a 3×3 region as for the pattern identifier). The
region of pixels from which a neuron receives inputs is also known as its receptive
field. One issue that we have not yet dealt with is how to handle images with
multiple channels. As previously described, for a color image, each pixel value
consists of three values, also known as color channels. A typical way of handling
these color channels is to simply provide each neuron with connections from each
channel, so a neuron with a kernel size of 3×3 now will have 3 × 3 × 3 = 27 inputs
(plus bias).

Figure 7-5 illustrates three examples of how the receptive field of three distinct
neurons can be arranged to cover a subset of the pixels for an image with three
color channels.

The leftmost example assumes a neuron with a kernel size of 2×2, organized
with a stride of 1. This means that the focus of each neuron is separated by only
a single pixel. The example in the middle shows a similar scenario but with a
stride of 2. One thing to note is that the larger the stride is, the fewer neurons are
needed to cover the entire image. Finally, the rightmost example shows a kernel
size of 3×3 and a stride of 2. A key observation here is that kernel size and stride
are orthogonal parameters, but they do interact. For instance, if we choose a

There are many instances of “three” in this sentence, but they are all decoupled.
That is, we could have had four examples of how five neurons cover pixels in an
image with three color channels.

2x2 kernel, stride = 2 3x3 kernel, stride = 2

Figure 7-5 Examples of how receptive fields of three different neurons can
overlap or abut. The image consists of 6×8 pixels. Left: 2×2 kernel with stride 1
needs 5×7 neurons to cover the full image. Center: 2×2 kernel with stride 2 needs
3×4 neurons. Right: 3×3 kernel with stride 2 needs 3×4 neurons.

CHARACTERISTICS AND BuILDINg BLOCKS FOR CONvOLuTIONAL LAyERS

179

kernel size of 2×2 and a stride of 3, then some of the pixels in the image will not
be connected to any neuron, which seems unfortunate.

Note that even with a stride of 1, the number of neurons that are needed to cover
all the pixels is slightly smaller than the number of pixels. That is, the resolution
of the output of a convolutional layer will be lower than the image. This can be
addressed by first padding the image with zeros around the edges, so the center of
the edge and corner neurons end up centered above the edge and corner pixels. For
example, with a kernel size of 3×3, we need to pad each edge with a single pixel,
and with a kernel size of 5×5, we need to pad each edge with two pixels. We need
not worry about the details because the DL framework will do that for us.

Let us now go back to Figure 7-4 and consider the behavior of all neurons in a single
channel. This grid of neurons now creates something called a feature map for the
image. Each neuron will act as a feature (pattern) identifier and fire if the particular
feature is found in the location covered by that neuron’s receptive field. For example,
if the weights of the neuron are such that the neuron will fire if it identifies a vertical
line, then if there is a long vertical line in the image, all the neurons that are centered
on this vertical line will fire. (We will see an example of that in the next section.)
given that all neurons in the map use identical weights, it does not matter where in
an image a feature appears. The feature map will be able to identify it regardless of
the location. This is the source of the translation invariance property.

One more thing to note is that each neuron does not receive inputs from all
pixels in the image. That is, it is not a fully connected network, but it is sparsely
connected. Clearly, this is beneficial from an efficiency perspective because fewer
connections will lead to fewer computations. It also seems intuitively wrong that
a neuron should be so specialized that it needs to consider every single pixel in
the image to classify an object. After all, the boat image in Figure 7-2 should be
classified as a ship regardless of whether the sky is cloudy, the sun is visible, or
the waves are higher on the water. Having one neuron for every such condition
would not be efficient. From that perspective, having neurons that simply look at
smaller pieces of the image does make sense.

The number of neurons needed to cover the image is primarily affected by
the stride.

A neuron in a convolutional layer is sparsely connected.

CHAPTER 7 CONvOLuTIONAL NEuRAL NETWORKS APPLIED TO ImAgE CLASSIFICATION

180

Combining Feature maps into a
Convolutional Layer

The ability to detect only a single feature, such as a vertical line, would be very
limiting. To classify different kinds of objects, the network also needs to be able
to identify horizontal lines, diagonal lines, and perhaps colored blobs or other
primitive building blocks. That is addressed by arranging the convolutional layer
into multiple channels (feature maps). That is, similarly to how we described that
an image has three channels (each corresponding to a color), a convolutional
layer has multiple output channels. Each channel corresponds to a specific
feature, such as a vertical line, a horizontal line, a diagonal line, or a purple blob.

We illustrate this in Figure 7-6 with a convolutional layer with four output
channels. Each channel acts as a single feature map identifying a specific feature
at any location in the image. The bottom-most channel can identify vertical lines.
The next channel can identify horizontal lines, and the two top channels can
identify diagonal lines, one channel for each orientation. Each channel consists
of 3×6 neurons (indicated by the numbers 3 and 6 in the figure), but only excited
neurons are explicitly drawn as black dots on each feature map. you can see how
the excited neurons correspond to patterns in the input image that match the
feature that the channel is capable of identifying.

Input
image

Vertical

Horizontal

Diagonal 1

Diagonal 2

One
convolutional

layer with
four output
channels

6

3

Figure 7-6 A single convolutional layer with four channels and 18 neurons for
each channel. Each dot represents an excited neuron.

COmBININg CONvOLuTIONAL AND FuLLy CONNECTED LAyERS INTO A NETWORK

181

The figure does not indicate the size of the kernels or the stride, but it appears
that the number of neurons in each channel is smaller than the number of pixels
in the input image, as the size of the four rectangles is smaller than the size of the
input image rectangle. This is a common arrangement.

It is easy to get confused with the terminology here because each of these
channels kind of seems like a “layer” of neurons, but the proper terminology
is “channel” or “feature map,” and all the output channels together form a
single convolutional layer. In the next section, we show how to stack multiple
convolutional layers on top of each other. Each convolutional layer receives inputs
from multiple input channels and produces multiple output channels. All the
channels in a single convolutional layer have the same number of neurons, and all
neurons in a channel share weights with one another. However, different channels
in the same layer have different weights.

Although we have talked about explicit features that the channels will identify,
such as horizontal lines, vertical lines, and diagonal lines, we do not need to
explicitly define these features. The network will learn what features to look for
during the training process.

Combining Convolutional and Fully
Connected Layers into a Network

We have now seen the basic structure of a convolutional layer, and it is time
to see how to combine multiple layers into a network. First, we note that the
number of output channels for a convolutional layer is decoupled from the
number of input channels. The number of input channels will affect the number
of weights for each neuron in each output channel, but the number of output
channels is simply a function of how many neurons we are willing to add to our
convolutional layer. We can stack convolutional layers on top of each other, and
the output channels of one layer feed the inputs of the next layer. In particular, if
a convolutional layer has N channels, then the neurons in the subsequent layers
will have N×M×M inputs (plus bias) where M×M is the kernel size. The feature
maps for this subsequent layer now represent combinations of the features in

A convolutional layer consists of multiple channels or feature maps. All
neurons within the same channel share weights.

CHAPTER 7 CONvOLuTIONAL NEuRAL NETWORKS APPLIED TO ImAgE CLASSIFICATION

182

the previous layer. We can envision a feature classifier that combines the outputs
from multiple channels and thereby fire on more complex geometries consisting
of a combination of colored blobs and vertical, horizontal, and diagonal lines.

Figure 7-7 illustrates such a network, where the first convolutional layer identifies
low-level features and the second convolutional layer then combines these
features into more complex features. This is followed by a fully connected layer
with a softmax function, used to classify the image as being one of N different
classes, such as a dog or a peacock (we explore this in more detail shortly).

Other features
Blob of color z
Blob of color yy
Blob of color x

135 degree diagonal lineg g
45 degree diagonal line

Horizontal line
Vertical line

Eye
Nose
Ear
Tail

Dog Peacock

Input image

Convolutional
layer

Convolutional
layer

Fully connected layer
with softmax

Figure 7-7 Convolutional neural network built from two convolutional layers and
one fully connected layer

COmBININg CONvOLuTIONAL AND FuLLy CONNECTED LAyERS INTO A NETWORK

183

As you can see in the figure, the resolution (number of neurons per channel) of
the first convolutional layer is lower than the resolution of the image. Further, the
resolution in the second convolutional layer is lower than the resolution of the
first convolutional layer. One way of achieving that is to use a stride greater than
1, and another way is to use max pooling as described further down. First, let
us consider why we want this to be the case. If you think about it, it makes much
sense. As we get deeper into the network, the layers identify increasingly complex
features. A more complex feature typically consists of more pixels. For example,
a single pixel cannot represent a complex object like a nose (or if it does, it cannot
be identified because the resolution is too low).

The arrangement in Figure 7-7 is aligned with this reasoning. Because of the way
neurons are connected in a hierarchy, a single neuron in the top convolutional
layer is affected by a large number of pixels in the input image. That is, the
receptive field of a neuron in the top convolutional layer is greater than that of
a neuron in the bottom convolutional layer, even if they have the same kernel
size. That arrangement enables neurons in the top layer to detect more complex
features.

A more detailed illustration of this is shown in Figure 7-8. To make it easier to
visualize, the figure shows a 1D convolution and only a single channel in each
convolutional layer. The input image consists of four pixels (green in the figure).
The neurons in the first layer have kernel size of 3 and stride of 1. The neurons in
the second layer have a kernel size of 2 and stride of 2, but their receptive fields
are four pixels. These two receptive fields overlap to some extent. That is, each
neuron in the output layer summarizes more than half of the input image.

BA Kernel size = 2
Stride = 2

Kernel size = 3
Stride = 1

Pixels (padded)

Receptive field
for neuron A

Receptive field
for neuron B

Figure 7-8 How the receptive field increases deeper into the network. Although
the neurons in the topmost layer have a kernel size of only 2, their receptive fields
are four pixels. Note the padding of the input layer.

CHAPTER 7 CONvOLuTIONAL NEuRAL NETWORKS APPLIED TO ImAgE CLASSIFICATION

184

The figure also illustrates the concept of padding the input image (white
circles), which in this case results in the output of the first layer having the
same resolution as the input image before padding. In the figure, padding
is applied only to the input image, but it can also be applied when stacking
convolutional layers on top of each other. In fact, padding is often more
important deeper into the network where the resolution is lower than for the
input image.

Although we call the network a convolutional network, this does not mean that
it consists only of convolutional layers. In particular, it is common to have one
or more fully connected layers at the end of the network to combine all the
features that the convolutional layers have extracted. given that the number of
neurons in the later convolutional layers typically is smaller than in the first few
layers, having some fully connected layers at the end is not too costly. It also
gives the network more flexibility to discover less-regular structures than can
be expressed by a convolutional layer. In the case of a classification problem,
we typically want the last fully connected layer to have the same number of
neurons as there are classes. We also want it to use the softmax output function
so the output of the network can be interpreted as the probability that the image
contains an object of the different classes.

Figure 7-9 illustrates how a neuron in the final fully connected layer can combine
the features from the last convolutional layer. We first flatten the convolutional
layer into a 1D array (a vector) because there is no concept of spatial dimensions
for a fully connected layer. In the figure, this vector consists of 16 elements, as
there are four channels with four neurons in each channel.

The figure shows how we think of a neuron that classifies the image as
containing a peacock, by assigning high weights to all neurons that represent
eyes and low weights to most other neurons. The thinking here is that the only
animal that has a large number of eyes (or at least something that looks like
eyes) is a peacock.

unless padding is used, the width and height of a layer will automatically be
smaller than in the previous layer regardless of the stride. This is mostly a
concern for deep into the network, where the width and height are small to
begin with.

EFFECTS OF SPARSE CONNECTIONS AND WEIgHT SHARINg

185

Effects of Sparse Connections and
Weight Sharing

Before moving on to our first CNN programming example, a few more things are
worth mentioning about the effects of sparse connections and weight sharing in
convolutional networks. There are two direct effects. First, sparse connections
imply fewer computations per neuron (because each neuron is not connected to
all neurons in the preceding layer). Second, weight sharing implies fewer unique,
but not fewer total, weights per layer. With limited computer performance to
simulate our network, the number of computations per neuron will determine
the size of the networks we can build. Fewer computations per neuron enable
us to build a network with more neurons than we could do with a fully connected

EyeNoseEarTail

High
weights

Low
weights

Flattened convolutional layer

Peacock neuron in fully connected layer

Figure 7-9 How a neuron in the fully connected layer combines multiple features
into an animal classification. (Source: Peacock image by Shawn Hempel,
Shutterstock.)

Clearly, assuming that a peacock is the only creature with a lot of eyes, might
be somewhat oversimplified, and the network might mistake a scary alien with
17 eyes for a peacock. On the other hand, that could happen to a human too
since most people do not expect to see a scary alien unless they happened to
see a spaceship crash nearby.

CHAPTER 7 CONvOLuTIONAL NEuRAL NETWORKS APPLIED TO ImAgE CLASSIFICATION

186

network. Fewer unique weights significantly limits the search space that our
learning algorithm needs to consider. This enables the network to learn faster,
assuming that a convolutional network is a good match for the problem type we
are trying to solve. Image classification happens to be one problem type where
this assumption is true.

Table 7-1 quantifies two properties for fully connected networks and
convolutional networks. The first property is the number of unique weights
for a layer, which affects how much memory is needed to store them as well
as how big the search space is for the learning algorithm to navigate. A key
property of the convolutional network is that the number of weights in a layer
is only a function of the kernel size, the number of channels in the layer,
and the number of channels in the previous layer. This is different than the
fully connected network where the number of weights is a function of both
the number of neurons in the layer as well as the number of neurons in the
previous layer.

Both weight sharing and sparse connections reduce the number of unique
weights and thereby the storage needed for the weights. However, only sparse
connections reduce the amount of computation needed to evaluate the network.
That is, even though multiple neurons share weights, we still need to compute
the output of each of these neurons independently because they do not have the
same input values. In addition, although the storage for the weights themselves

Table 7-1 Comparison of Number of Weights and Number of Calculations for a
Fully Connected Network and a Convolutional Network

PROPERTY FULLY CONNECTED CONVOLUTIONAL

Number of unique
weights to store/learn

Product of

• Number of neurons in layer

• Number of neurons in previous
layer

Product of

• Number of channels in layer

• Kernel size

• Number of channels in previous
layer

Number of calculations
to evaluate network

Product of

• Number of neurons in layer

• Number of neurons in previous
layer

Product of

• Number of neurons in layer

• Kernel size

• Number of channels in previous

layer

Note: The number of neurons in a convolutional layer depends on the number of channels as well as the stride.

EFFECTS OF SPARSE CONNECTIONS AND WEIgHT SHARINg

187

is reduced due to weight sharing, we still need to store the outputs for all the
neurons from the forward pass to later be used in the backward pass of the
learning algorithm. To summarize, the main advantages of convolutional layers
are the reduced number of computations per neuron, the reduction in search
space for the learning algorithm, and the reduction in storage required for the
weights.

To make this discussion more concrete, we can compute the number of weights
for a convolutional layer and compare it to the number of weights for a fully
connected layer with the same number of neurons. In this example, we assume
that the layer is applied to an image (i.e., it is the first layer in the network). We
consider two different sizes of input images: One is the CIFAR-10 size of 32×32×3
and the other is a higher resolution format of 640×480×3. We arbitrarily assume
that the convolutional layer has 64 channels, and we assume a stride of 2 (i.e., the
width and height of the layer is half of the width and height of the input image).
In addition to looking at two different image sizes, we look at two different kernel
sizes: 3×3 and 5×5. We start with computing a number of properties for this
example in Table 7-2.

Sparse connections reduce the total number of weights and thereby reduce
the number of computations, the number of weights to store, and the number
of weights to learn. Weight sharing reduces the number of unique weights
and thereby reduces the number of weights to store and to learn but not the
number of computations.

Table 7-2 Calculations of a Number of Properties for the Network Example

PROPERTY COMPUTATION NOTES

Number of channels 64 Network parameter.

Weights for 3×3 kernel 3*3*3+1 = 28 The third factor (3) represents
the three channels in the
previous layer. The +1 is the bias
weight.

Weights for 5×5 kernel 5*5*3+1 = 76 See above.

Continued

CHAPTER 7 CONvOLuTIONAL NEuRAL NETWORKS APPLIED TO ImAgE CLASSIFICATION

188

We can now use these properties to compute the resulting number of unique
weights and total weights both for a fully connected layer and a convolutional
layer. This is shown in Table 7-3.

Table 7-3 Number of unique and Total Weights for a Fully Connected Layer
Compared to a Convolutional Layer with Stride of 2 for Kernel Sizes 3×3 and 5×5

UNIQUE WEIGHTS
CONVOLUTIONAL

TOTAL WEIGHTS
CONVOLUTIONAL

UNIQUE WEIGHTS
FULLY CONNECTED

TOTAL WEIGHTS
FULLY CONNECTED

Image:
32×32×3

3×3: 1,792

(28*64)

3×3: 458,752

(28*16,384)

50,348,032

(3,073*16,384)

50,348,032

(3,073*16,384)

5×5: 4,864

(76*64)

5×5: 1,245,184

(76*16,384)

PROPERTY COMPUTATION NOTES

Weight per fully connected
neuron applied to low resolution
image

32*32*3+1 = 3,073 See above.

Weight per fully connected
neuron applied to high resolution
image

640*480*3+1 = 921,601 See above

Neurons in layer for low
resolution image

(32/2)*(32/2)*64 = 16,384 The denominator (2) represents
the stride. The factor 64
represents the number of
channels.

Neurons in layer for high
resolution image

(640/2)*(480/2)*64 =
4,915,200

See above.

Note: These computed numbers are used in the next table (Table 7-3).

Table 7-2 Calculations of a Number of Properties for the Network
Example (Continued)

Continued

EFFECTS OF SPARSE CONNECTIONS AND WEIgHT SHARINg

189

One key thing that sticks out is the small number of unique weights for the
convolutional layer, and that the number is not dependent on the resolution of the
input image. Clearly, it should be easier to train a network if the algorithm needs
to figure out 2,000 to 5,000 weights instead of 50 million or 5 trillion(!) weights.
This is especially true if the assumption that neurons should look only at local
pixels is correct, in which case the learning algorithm would need to spend huge
amounts of computational power to figure out that all but 5,000 of our 5 trillion
weights should be zero!

The second thing that sticks out is that the total number of weights for the fully
connected network is multiple orders of magnitude larger than that for the
convolutional network. Therefore, evaluating the fully connected network requires
considerably more compute performance.

As we move deeper into the network, the number of weights for a convolutional
layer typically increases. Conversely, the number of weights for a fully connected
layer typically decreases. Therefore, the benefit of using a convolutional layer in
terms of reducing the number of weights is not as significant for the layers deep
into the network. The reasons for these effects are the following: The width and
the height of the layers tend to decrease deeper into the network, which reduces
the number of weights for a fully connected subsequent layer but does not affect
a convolutional layer. Further, layers deep inside the network often have many
more channels than the three color channels from the input image. Layers with
hundreds of channels are not unusual. The number of weights in a subsequent
layer increases with the number of input channels, regardless whether the

Table 7-3 Number of unique and Total Weights for a Fully Connected Layer
Compared to a Convolutional Layer with Stride of 2 for Kernel Sizes 3×3
and 5×5 (Continued)

UNIQUE WEIGHTS
CONVOLUTIONAL

TOTAL WEIGHTS
CONVOLUTIONAL

UNIQUE WEIGHTS
FULLY CONNECTED

TOTAL WEIGHTS
FULLY CONNECTED

Image:
640×480×3

3×3: 1,792

(28*64)

3×3: 1.38×108

(28*4,915,200)

4.53×1012

(921,601*4,925,200)

4.53×1012

(921,601*4,925,200)

5×5: 4,864

(76*64)

5×5: 3.74×108

(76*4,915,200)

Note: The computations used to arrive at each number are enclosed in parenthesis and use the computed

properties from Table 7-2.

CHAPTER 7 CONvOLuTIONAL NEuRAL NETWORKS APPLIED TO ImAgE CLASSIFICATION

190

subsequent layer is fully connected or convolutional. That is, the number of
weights for the neurons in the convolutional layer is no longer as small as in the
initial layers. Therefore, from a computational perspective, it is reasonable for the
layers at the end of the network to be fully connected. Further, the benefit of a fully
connected layer will be more significant than in the initial layers, because the final
layers are tasked with making a classification of the entire image. They therefore
benefit from being able to access information from all the regions of the image.

Programming Example: Image
Classification with a Convolutional
Network

We will now build a CNN with a similar topology to what we have just described. It
will consist of two convolutional layers followed by a single fully connected layer.
The details are found in Table 7-4.

Table 7-4 Description of the CNN

LAYER INPUT IMAGE CONVOLUTIONAL CONVOLUTIONAL
FULLY
CONNECTED

Channels 3 64 64 1

Neurons/pixels
per channel

32 × 32 = 1,024 16 × 16 = 256 8 × 8 = 64 10

Kernel size N/A 5×5 3×3 N/A

Stride N/A 2, 2 2, 2 N/A

Weights per
neuron

N/A 5 × 5 × 3 + 1 = 76 3×3 × 64 + 1 = 577 64 × 64 + 1 =
4,097

Total number of
neurons

N/A 64 × 256 = 16,384 64 × 64 = 4,096 10

Trainable
parameters

N/A 64 × 76 = 4,864 64 × 577 = 36,928 10 × 4,090 =

40,970

PROgRAmmINg ExAmPLE: ImAgE CLASSIFICATION WITH A CONvOLuTIONAL NETWORK

191

The stride is described in two dimensions because it is not strictly required to
have the same stride in each direction. For the two convolutional layers, the
number of trainable parameters is not a function of the number of neurons per
layer but only of the number of channels and weights per neuron. For the fully
connected layer, the number of trainable parameters does depend on the number
of neurons. This has the effect that, although the first layer has four times as
many neurons as the second layer and 1,638 times as many neurons as the last
layer, it has only approximately 10% as many trainable weights as each of the two
subsequent layers.

Code Snippet 7-2 shows the initialization code for our CNN program. Among the
import statements, we now import a new layer called Conv2D, which is a 2D
convolutional layer like the ones we just described. We load and standardize the
CIFAR-10 dataset.

Code Snippet 7-2 Initialization Code for Our Convolutional Network

import tensorflow as tf

from tensorflow import keras

from tensorflow.keras.utils import to_categorical

from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import Dense

from tensorflow.keras.layers import Flatten

from tensorflow.keras.layers import Conv2D

import numpy as np

import logging

tf.get_logger().setLevel(logging.ERROR)

EPOCHS = 128

BATCH_SIZE = 32

Load dataset.

cifar_dataset = keras.datasets.cifar10

(train_images, train_labels), (test_images,

 test_labels) = cifar_dataset.load_data()

Standardize dataset.

mean = np.mean(train_images)

stddev = np.std(train_images)

train_images = (train_images - mean) / stddev
test_images = (test_images - mean) / stddev

CHAPTER 7 CONvOLuTIONAL NEuRAL NETWORKS APPLIED TO ImAgE CLASSIFICATION

192

The actual model is created by Code Snippet 7-3, which first declares a
Sequential model and then adds layers. We are now working with a 2D
convolutional layer, so there is no need to start with a Flatten layer because the
dimensions of the input image already match the required dimension of the first
layer. We tell the layer that the input shape of the image is 32×32×3. We also state
that we want 64 channels, a kernel size of 5×5, and a stride of 2, 2. The parameter
padding=’same’ needs some further explanation. As described previously,
padding is needed if we want the number of neurons in a channel to match the
number of pixels in the input image (or neurons in a channel of the previous
layer). There are a number of different padding choices, where ’same’ means
that it is sufficiently padded to end up with exactly the same number of neurons
as there are inputs to the layer.2 The actual amount of padding depends on the
kernel size, but Keras takes care of computing this for you if you specify ’same’.
We specify the neuron type as ReLu because that has been shown to be a good
activation function. We do not specify the number of neurons in the layer explicitly
because that is fully defined by all the other parameters. The combination of
padding=’same’ and strides=(2,2) results in half as many neurons in
each dimension as in the previous layer (i.e., 16×16 neurons per channel because
the input image has 32×32 pixels).

2. It will only be the same number of neurons if a stride of (1, 1) is used. In reality, we typically use a
different stride, which is applied after the padding.

print('mean: ', mean)

print('stddev: ', stddev)

Change labels to one-hot.

train_labels = to_categorical(train_labels,

 num_classes=10)

test_labels = to_categorical(test_labels,

 num_classes=10)

Code Snippet 7-3 Create and Train the Convolutional Neural Network

Model with two convolutional and one fully connected layer.

model = Sequential()

model.add(Conv2D(64, (5, 5), strides=(2,2),

 activation='relu', padding='same',

 input_shape=(32, 32, 3),

PROgRAmmINg ExAmPLE: ImAgE CLASSIFICATION WITH A CONvOLuTIONAL NETWORK

193

The next convolutional layer is similar but with a smaller kernel size. There is
no need to specify the input shape—it is implicitly defined by the outputs of the
previous layer. The number of neurons per channel is implicitly defined as 8×8
because the previous layer was 16×16 outputs per channel, and we choose a
stride of 2, 2 for this layer as well.

Before we can add the fully connected (Dense) layer, we need to flatten (convert
from three dimensions to a single dimension) the outputs from the second
convolutional layer. We use softmax activation for the fully connected layer so
we can interpret the one-hot encoded outputs as probabilities.

We finally select the categorical_crossentropy loss function and use the
Adam optimizer in our call to compile. Before we train the model, we print out a
description of the network with a call to model.summary().

Layer (type) Output Shape Param #

===

conv2d_1 (Conv2D) (None, 16, 16, 64) 4864

 kernel_initializer='he_normal',

 bias_initializer='zeros'))

model.add(Conv2D(64, (3, 3), strides=(2,2),

 activation='relu', padding='same',

 kernel_initializer='he_normal',

 bias_initializer='zeros'))

model.add(Flatten())

model.add(Dense(10, activation='softmax',

 kernel_initializer='glorot_uniform',

 bias_initializer='zeros'))

model.compile(loss='categorical_crossentropy',

 optimizer='adam', metrics =['accuracy'])

model.summary()

history = model.fit(

 train_images, train_labels, validation_data =

 (test_images, test_labels), epochs=EPOCHS,

 batch_size=BATCH_SIZE, verbose=2, shuffle=True)

CHAPTER 7 CONvOLuTIONAL NEuRAL NETWORKS APPLIED TO ImAgE CLASSIFICATION

194

conv2d_2 (Conv2D) (None, 8, 8, 64) 36928

flatten_1 (Flatten) (None, 4096) 0

dense_1 (Dense) (None, 10) 40970

===

Total params: 82,762

Trainable params: 82,762

Non-trainable params: 0

If you look at the number of parameters, you will see that it matches what we
computed in Table 7-4. This is a good sanity check to ensure we defined the
network the way we intended and did not make any subtle mistakes. Figure 7-10
shows the training error and test error for 128 epochs with a batch size of 32.

Figure 7-10 Training and test error for CIFAR-10

PROgRAmmINg ExAmPLE: ImAgE CLASSIFICATION WITH A CONvOLuTIONAL NETWORK

195

We see that our network is good at memorizing but not at generalizing. The
training error approaches 0, and the test error stays a little bit below 40%. This
error is still much better than pure guessing, which would result in a 90% test
error. Still, it seems like we could do better, so we go through an exercise similar
to the one we did for the housing dataset in Chapter 6, “Fully Connected Networks
Applied to Regression,” and come up with a number of configurations. In reality,
this is an iterative process in which the result from one configuration provides
guidance for what configuration to try next, but here we simply present the most
interesting configurations after the fact. They are summarized in Table 7-5. First,
some brief notes on the notation are in order. We denote a convolutional layer as
beginning with capital letter C followed by three numbers indicating the number
of channels, width, and height. We denote a fully connected layer by a capital
letter F followed by the number of neurons. We have a third layer type, maxPool,
which is described later in the chapter. For the convolutional layers, we specify
kernel size (K) and stride (S), where we use the same size in both directions;
for example, “K=5, S=2” means a 5×5 kernel and a stride of 2×2. For each layer
we also specify the type of activation function. For some layers, we also apply
dropout after the layer, which we elaborate more on shortly.

Table 7-5 Configurations for Our CNN Experiments

CONFIGURATION LAYERS REGULARIZATION TRAIN ERROR TEST ERROR

Conf1 C64×16×16, K=5, S=2, ReLu

C64×8×8, K=3, S=2, ReLu

F10, softmax, cross-entropy
loss

2% 39%

Conf2 C64×16×16, K=3, S=2, ReLu

C16×8×8, K=2, S=2, ReLu

F10, softmax, cross-entropy
loss

33% 35%

Conf3 C64×16×16, K=3, S=2, ReLu

C16×8×8, K=2, S=2, ReLu

F10, softmax, cross-entropy
loss

Dropout=0.2

Dropout=0.2

30% 30%

Continued

CHAPTER 7 CONvOLuTIONAL NEuRAL NETWORKS APPLIED TO ImAgE CLASSIFICATION

196

Configuration 1 is the configuration that we showed results for in Figure 7-10. We
see significant overfitting with a training error of 2% but a test error of 39%.

Such significant overfitting often indicates that the model is too complex, where
the number of parameters is large enough to memorize the entire training set. We
therefore created configuration 2 with a smaller kernel size for both convolutional

CONFIGURATION LAYERS REGULARIZATION TRAIN ERROR TEST ERROR

Conf4 C64×32×32, K=4, S=1, ReLu

C64×16×16, K=2, S=2, ReLu

C32×16×16, K=3 S=1, ReLu

maxPool, K=2, S=2

F64, ReLu

F10, softmax, cross-entropy
loss

Dropout=0.2

Dropout=0.2

Dropout=0.2

Dropout=0.2

14% 23%

Conf5 C64×32×32, K=4, S=1, ReLu

C64×16×16, K=2, S=2, ReLu

C32×16×16, K=3 S=1, ReLu

C32×16×16, K=3 S=1, ReLu

maxPool, K=2, S=2

F64, ReLu

F64, ReLu

F10, softmax, cross-entropy
loss

Dropout=0.2

Dropout=0.2

Dropout=0.2

Dropout=0.2

Dropout=0.2

Dropout=0.2

20% 22%

Conf6 C64×32×32, K=4, S=1, tanh

C64×16×16, K=2, S=2, tanh

C32×16×16, K=3 S=1, tanh

C32×16×16, K=3 S=1, tanh

maxPool, K=2, S=2

F64, tanh

F64, tanh

F10, softmax, mSE loss

4% 38%

Note: mSE, mean squared error; ReLu, rectified linear unit.

Table 7-5 Configurations for Our CNN Experiments (Continued)

PROgRAmmINg ExAmPLE: ImAgE CLASSIFICATION WITH A CONvOLuTIONAL NETWORK

197

layers along with fewer channels in the second convolutional layer. Doing so
decreased the test error from 39% to 35% and increased the training error to
33%, which indicates that we have resolved most of the overfitting problem.

Another thing to consider is to apply a regularization technique. In Chapter 6, we
introduced dropout as an effective technique to use for fully connected networks.
If you read the paper that introduced this technique (Srivastava et al., 2014), you
might be somewhat surprised that we would suggest dropout for a convolutional
network. The paper states that convolutional layers have a strong regularizing
effect themselves and that dropout is not necessarily a good technique for such
networks. It was later shown that various forms of dropout can work well for
convolutional networks (Wu and gu, 2015). As our experiment shows, just adding
20% regular dropout after each of the two convolutional layers reduces both
training and test errors to 30%.

The next step, now that overfitting has been resolved, is to see if we can increase
the model size again to further improve the results. In configuration 4, we do a
number of changes. We increase the kernel size for the first convolutional layer
to 4×4 and change the stride to 1, which results in each channel having 32×32
neurons. We add a third convolutional layer with a kernel size of 3×3 and stride of 1.

The convolutional layer is followed by a max pooling operation, which needs
some further description. As we saw previously, when we increase the stride
in a convolutional layer, the number of neurons needed to cover the previous
layer is decreased. However, we need to be careful to not make the stride larger
than the kernel size because we will otherwise ignore some pixels/neurons in
the previous layer. An alternative way of reducing the number of neurons but
without having large kernel sizes is to use max pooling. The max pooling operation
combines a number of neurons, such as every 2×2 neurons, and outputs the max
value of these four neurons. This reduces the number of outputs from a channel
(and thereby from the entire layer) by a factor of four in the case of 2×2 pooling
but without any weights that need to be learned. The effect of this is that the
spatial resolution is decreased; that is, we no longer know as accurately where
in an image a specific feature was found but we still know that the feature was
present in the region that pooling was applied to. This is often acceptable because
the exact location might not matter. For instance, two different dogs will have a
different distance between their ears. Hence, as long as the approximate location
of each ear is correctly identified, this will be sufficient to be able to determine
whether or not they are the building blocks of a dog. Figure 7-11 illustrates which
neurons a pooling layer combines and relates that to which neurons are combined
by a convolutional layer.

CHAPTER 7 CONvOLuTIONAL NEuRAL NETWORKS APPLIED TO ImAgE CLASSIFICATION

198

A convolutional layer combines the outputs of C×K×K neurons, where C is the
number of channels in the previous layer and K×K is the kernel size. This is shown
in the left part of Figure 7-11 for the case of three channels and a 2×2 kernel size.
That is, the outputs from 12 neurons are bundled together and input to a single
neuron in the next convolutional layer. On the other hand, a max pooling layer does
not combine output neurons across channels, but only within a channel. The result
is that the output of the pooling operation/layer has the same number of channels
as the preceding layer. The number of neurons in each channel is lower, as that is
one purpose of introducing the max pooling operation. Consider the example to the
right in Figure 7-11. It has a stride of 2, and therefore the width and height of the
output of the pooling layer is half of the width and height of the preceding layer. The
way to combine each group of four neurons in a max pooling layer is to simply pick
the output of the neuron with the max value instead of feeding all the outputs into
a neuron.

Convolution
kernel = 2x2, stride = 2

Previous layer that the
convolution/pooling is

applied to

2x2 pooling
stride = 2

Figure 7-11 How the inputs of a pooling layer relate to the inputs of a convolutional
layer. Note that the figures do not represent the convolutional and pooling layers
but the preceding layer. The left figure shows that the convolution will bundle all the
channels together and use these combined channels as input to each neuron. The
pooling layer considers each channel in the preceding layer in isolation.

max pooling is a way to reduce the size of a layer and can be used as an
alternative to a large stride.

max pooling combines the output from a set of neurons within a channel, as
opposed to a convolutional kernel, which combines the output from a set of
neurons from multiple channels. max pooling is sometimes considered as
being a part of a convolutional layer and sometimes considered to be a
separate layer.

PROgRAmmINg ExAmPLE: ImAgE CLASSIFICATION WITH A CONvOLuTIONAL NETWORK

199

Let us now go back to our configuration 4 to see how and why we use the max
pooling layer. We have placed it right before the first fully connected layer, and it
thereby reduces the number of inputs to each of the fully connected neurons by
a factor of four while still enabling the fully connected neurons to receive signals
from the most excited neurons in the previous layer. max pooling layers can be,
and commonly are, used before convolutional layers as well.

The max pooling operation is sometimes viewed as a part of the preceding
convolutional layer, just as was shown for AlexNet in Figure 7-1, where it was
stated as a property of two of the layers. An alternative view is to consider it to be
its own layer in the network. We find that a little bit more intuitive, so that is how
we typically draw it. However, note that when comparing depth of two models, it
is common to count only layers that have trainable parameters (weights), so the
pooling layers are typically not counted in such cases. In Keras, a max pooling
operation is treated as a separate layer just as we have described it here, and it
can be added with a single line of code:

model.add(MaxPooling2D(pool_size=(2, 2), strides=2))

Finally, our configuration 4 has an additional fully connected layer with 64
neurons before the output layer. All in all, this more complex model brings down
the training error to 14% and the test error to 23%.

Encouraged by these results, we go even deeper in configuration 5, where we
add another convolutional layer. We end up with a training error of 20% and a test
error of 22%. The implementation of this more complex model can be found in
Code Snippet 7-4. To make the code shorter, we do not explicitly select initializers
but just use the default initializer for the different layers.

Code Snippet 7-4 model Definition of Configuration 5

from tensorflow.keras.layers import Dropout

from tensorflow.keras.layers import MaxPooling2D

…

model = Sequential()

model.add(Conv2D(64, (4, 4), activation='relu', padding='same',

 input_shape=(32, 32, 3)))

model.add(Dropout(0.2))

model.add(Conv2D(64, (2, 2), activation='relu', padding='same',

 strides=(2,2)))

CHAPTER 7 CONvOLuTIONAL NEuRAL NETWORKS APPLIED TO ImAgE CLASSIFICATION

200

Finally, in Chapter 5, we claimed that there were a number of things that
enabled DL, such as ReLu activation functions and cross-entropy loss instead
of mean squared error (mSE). To validate this, we took the same network as in
configuration 5 and replaced the ReLu activation functions by tanh. Further, we
changed the loss function from cross-entropy to mSE and removed the dropout
regularization because that was invented after the DL boom started. The results
are shown as configuration 6. Curiously, the test error is only 38%. While not
as good as the 22% that we achieved with configuration 5, it is by no means a
disaster given that picking a category at random would give a 90% test error.
In other words, we can achieve impressive results with techniques that have
been known since the 1980s. goodfellow, Bengio, and Courville (2016) argue
that a key barrier to success for neural networks was psychological, in the
sense that people did not believe in the idea enough to spend the time needed
to experiment with different architectures and parameters to achieve good
results. Obviously, much more patience would have been needed in the 1980s
than today given how computer performance has evolved. It takes only a couple
of minutes to run 20 epochs for configuration 5 on a modern gPu in 2021, while
it takes some 10 hours to run on the CPu of a laptop from 2014. Now think
about trying to run it in 1989, which would imply running on a single-core CPu
running well below 100 mHz. This lends credibility to the notion that the real
enabler of DL was the emergence of low-cost, gPu-based, high-performance
computing.

model.add(Dropout(0.2))

model.add(Conv2D(32, (3, 3), activation='relu', padding='same'))

model.add(Dropout(0.2))

model.add(Conv2D(32, (3, 3), activation='relu', padding='same'))

model.add(MaxPooling2D(pool_size=(2, 2), strides=2))

model.add(Dropout(0.2))

model.add(Flatten())

model.add(Dense(64, activation='relu'))

model.add(Dropout(0.2))

model.add(Dense(64, activation='relu'))

model.add(Dropout(0.2))

model.add(Dense(10, activation='softmax'))

CONCLuDINg REmARKS ON CONvOLuTIONAL NETWORKS

201

Concluding Remarks on Convolutional
Networks

In the beginning of this chapter, we briefly mentioned that convolutional layers
were used in a network known as LeNet (LeCun et al., 1990). The original version
of LeNet consisted of five layers, and a later version, known as LeNet-5, consisted
of seven layers (LeCun, Bottou, Bengio, et al., 1998). LeNet-5 was deployed
commercially and thereby demonstrated that the field of neural networks had
progressed beyond just being academic research.

We also showed a figure of AlexNet in the beginning of this chapter. It is shown
again in Figure 7-12 to make this section easier to follow. The input image is
224×224 pixels with three channels. It feeds a convolutional layer with 55×55
neurons per channel, using 11×11 convolution kernels with a stride of 4. The first
layer has 96 channels, but the implementation splits them across two gPus, so
each gPu handles 48 channels. The second layer uses a 5×5 kernel and a stride
of 1 but also does 2×2 max pooling and thereby ends up with 27×27 neurons per
channel. It consists of 256 channels split across two gPus. After reading this
chapter, it should be straightforward to continue to follow the figure from left to
right deeper into the network.

Figure 7-12 The AlexNet convolutional network. (Source: Krizhevsky, A.,
Sutskever, I., and Hinton, g., “ImageNet Classification with Deep Convolutional
Neural Networks,” Advances in Neural Information Processing Systems 25 [NIPS
2012], 2012.)

CHAPTER 7 CONvOLuTIONAL NEuRAL NETWORKS APPLIED TO ImAgE CLASSIFICATION

202

Figure 7-13 shows AlexNet in a style that is consistent with figures of other
networks in this book. For convolutional layers, we use the notation kernel/stride/
channels. That is, 11×11/4/48 represents a layer using an 11×11 kernel with a
stride of 4 and 48 channels. For max pooling, we use a similar notation, but the
number of channels is not specified because it is always the same as the number
of input channels.

If you read the paper by Krizhevsk and colleagues (2012), you will also see that
some of the convolutional layers apply a normalization scheme before the max

Conv 11x11/4/48

Max-pool 3x3/2

Conv 5x5/1/128

Max-pool 3x3/2

Fully connected 4096

Softmax 1000

Input image 224x224x3

Conv 3x3/1/192

Conv 3x3/1/192

Conv 5x5/1/128

Max-pool 3x3/2

Fully connected 4096

Conv 11x11/4/48

Max-pool 3x3/2

Conv 5x5/1/128

Max-pool 3x3/2

Conv 3x3/1/192

Conv 5x5/1/128

Max-pool 3x3/2

Figure 7-13 Network architecture for AlexNet

CONCLuDINg REmARKS ON CONvOLuTIONAL NETWORKS

203

pooling layer. Finally, the fully connected softmax layer consists of 1,000 neurons
that are able to classify the input image into one of the 1,000 categories provided
by the ImageNet input dataset, as opposed to only 10 categories in CIFAR-10.

Although LeNet, LeNet-5, and AlexNet were important milestones and deep
networks at the time, they are now considered to be fairly shallow networks and
have been replaced by more complex and better performing networks, some of
which are described in Chapter 8, “Deeper CNNs and Pretrained models.”

If you are interested in how the convolutional networks described in this chapter
relate to the mathematical concept of convolution, consider reading Appendix g
before moving on to Chapter 8.

This page intentionally left blank

205

Chapter 8

Deeper CNNs and
Pretrained Models

In this chapter, we describe three convolutional neural networks (CNNs):
VGGNet, GoogLeNet, and ResNet. Both VGGNet (16 layers) and GoogLeNet
(22 layers) are from 2014 and were close to human-level performance on the
ImageNet dataset. VGGNet has a very regular structure, whereas GoogLeNet
looks more complex but has fewer parameters and achieved higher accuracy.
In 2015, both of these networks were beaten by ResNet-152 consisting of 152(!)
layers. However, in practice, most people have settled on using ResNet-50,
which consists of “only” 50 layers. As a programming example, we show how to
use a pretrained implementation of ResNet and how you can use it to classify
your own images. The chapter ends with a discussion of some other aspects
of CNNs.

This chapter contains much detailed information about these specific networks.
Readers who are not specifically interested in image classification might find
some of these details uninteresting. If you feel that way and would prefer to move
on to recurrent neural networks and language processing, then you can consider
just skimming this chapter at this point. Still, you might want to pay attention
to the concepts of skip connections and transfer learning because they are
referenced in later chapters.

CHAPTER 8 DEEPER CNNs AND PRETRAINED MODELS

206

VGGNet
VGGNet was proposed by the University of Oxford’s Visual Geometry Group (VGG).
A primary objective of the paper that described the architecture was to study the
effect that network depth has on accuracy for CNNs (Simonyan and Zisserman,
2014). To do so, they came up with an architecture in which the depth of the
network can be adjusted without having to adjust other parameters, such as
kernel size and stride. They used a fixed kernel size of 3×3 in all convolutional
layers and a stride of 1. When using a stride of 1, the width and height of a
subsequent layer become the same as the width and height of the preceding
layer, assuming that appropriate padding is used. This makes it possible to make
a VGGNet arbitrarily deep without running into the problem that the width and
height of layers deep in the network become too small.

Just as for other CNNs, we still do want the height and width to decrease for
layers deeper into the network because we want each neuron to identify larger-
sized features by hierarchically combining smaller features. VGGNet solves
this by using max pooling layers between groups of convolutional layers. Thus,
a typical building block in a VGGNet is a group of convolutional layers of the
same size, followed by a max pooling layer. This is shown in Figure 8-1, which
illustrates a building block consisting of two convolutional layers and one
max pooling layer. To make it possible to visualize it, we assume a very small
input image size (8×6 pixels), but in reality, we would work with larger images.
Similarly, the example in the figure has a very limited number of channels
compared to a real network.

The figure can be a little confusing at first, so let us walk through each step.
We start at the bottom with an image with 8×6 pixels, each pixel having three
color channels. The white patches on that image illustrate how 3×3 pixels are
combined by a single neuron in the subsequent convolutional layer. The kernel
operates on all three color channels. The white patches also illustrate that the
convolutional layer uses a stride of 1 in both dimensions. The convolutional layer
consists of four channels, which results in the 8×6×4 output dimensions, which is
represented by the bottom-most set of blue boxes in the figure. The white patches
on top of these blue boxes show how outputs from this layer are then combined
by a single neuron in the second convolutional layer. The second convolutional

VGGNet uses stride 1 to maintain width and height dimensions across multiple
layers.

207

VGGNet

layer is represented by the next set of blue boxes. They are pulled apart a
little in the illustration to enable showing how its outputs are combined by the
subsequent max pooling layer. The max pooling layer operates on each channel
in isolation. Finally, the topmost set of blue boxes illustrates how the max pooling
layer resulted in a reduced number of dimensions to 4×3×4.

Compared to the first couple of layers in AlexNet, which have kernel sizes of 11×11
and 5×5, the VGGNet kernel size 3×3 is relatively small. However, if you consider
a group of layers together, then 3×3 kernels in adjacent layers will act as a single
kernel with larger size. For example, a single neuron in the second of a group of

3x3 kernel, stride = 1

Conv output: 8x6x4

Input image: 8x6x3

Conv output: 8x6x4

Max-pool output: 4x3x4

VGG building
block

3x3 kernel, stride = 1

Channel
increase

Width/height
decrease

No
dimension

change

Max-pool 2x2/2

Conv 3x3/1/4

Conv 3x3/1/4

2x2 pooling, stride = 2

Figure 8-1 VGG building block. The left part of the figure illustrates the output
dimensions of each layer. It also shows how a kernel from the next layer is
applied to the preceding layer. The convolution kernels are applied across all
channels in the preceding layer, whereas the max pooling operation is applied
channel-wise. Note the padding used by the convolutional layers where the kernel
operates on missing pixels. The right part of the figure describes the details of
each layer (kernel size/stride/output channels).

CHAPTER 8 DEEPER CNNs AND PRETRAINED MODELS

208

two layers will have a receptive field of 5×5 with respect to the input to the first
layer because the neuron receives input from 3×3 neurons, which in turn cover
an area of 5×5 pixels. Similarly, if we stack three layers, then neurons in the third
layer will have receptive fields of 7×7 with respect to the input of the first layer.

The different configurations that were studied in the VGGNet paper all start with
convolutional layers with 64 channels. For each max pooling layer, the width and
height of the next layer is halved, and the subsequent convolutional layer doubles
the number of channels. The number of channels is capped at 512, after which
the width and height is still halved for the next layer after pooling but the number
of channels is kept constant. The neurons in all convolutional layers use ReLU as
an activation function. Table 8-1 shows some of the different configurations that
were evaluated in the paper. Reading the table from left to right, each change
from the previous column is highlighted in bold. All the convolutions use a stride
of 1. The kernel size and number of channels are stated in the table.

Some of the configurations use 1×1 convolutions, which consider only a single
output from each channel in the preceding layer. At a first glance, this might seem
odd. What can possibly be the benefit of doing a convolution over a single neuron?
The thing to remember is that the convolution not only combines neighboring
pixels/neurons but also combines pixels/neurons across multiple channels.
We can use 1×1 convolutions to increase or decrease the number of channels
because the number of output channels in a convolutional layer is independent of
both the kernel size and the number of channels in the preceding layer. VGGNet
does not make use of that property, but we will soon see that both GoogLeNet
and ResNet do. Using 1×1 convolutions directly on the three-channel image input
is uncommon. It is more common to use this operation deeper into the network
where the number of channels is larger.

Some key results of the VGGNet study were that prediction accuracy did increase
with model depth up to 16 layers but then flattened out to about the same for
19 layers. Pooling layers were not included in these counts because they do not
contain weights that can be trained. The best VGGNet classification configuration
submitted to the ImageNet challenge 2014 resulted in a top-5 error rate1 of
7.32%. This can be compared to 15.3% for AlexNet.

1. The top-5 error rate is defined as the percentage of test images where the correct category is not
among the five categories that the network predicts as most probable.

1×1 convolutions can be used to increase or decrease the number of channels.

209

VGGNet

Table 8-1 Four VGGNet Configurations*

11 WEIGHT
LAYERS

13 WEIGHT
LAYERS

16 WEIGHT
LAYERS

19 WEIGHT
LAYERS

Input RGB image (224×224×3)

Conv 3ë3/1/64 Conv 3×3/1/64

Conv 3ë3/1/64

Conv 3×3/1/64

Conv 3×3/1/64

Conv 3×3/1/64

Conv 3×3/1/64

2×2/2 max pooling

Conv 3ë3/1/128 Conv 3×3/1/128

Conv 3ë3/1/128

Conv 3×3/1/128

Conv 3×3/1/128

Conv 3×3/1/128
Conv 3×3/1/128

2×2/2 max pooling

Conv 3ë3/1/256

Conv 3ë3/1/256

Conv 3×3/1/256

Conv 3×3/1/256

Conv 3×3/1/256

Conv 3×3/1/256

Conv 1ë1/1/256

Conv 3×3/1/256

Conv 3×3/1/256

Conv 3ë3/1/256

Conv 3ë3/1/256

2×2/2 max pooling

Conv 3ë3/1/512

Conv 3ë3/1/512

Conv 3×3/1/512

Conv 3×3/1/512

Conv 3×3/1/512

Conv 3×3/1/512

Conv 1ë1/1/512

Conv 3×3/1/512

Conv 3×3/1/512

Conv 3ë3/1/512

Conv 3ë3/1/512

2×2/2 max pooling

Conv 3ë3/1/512

Conv 3ë3/1/512

Conv 3×3/1/512

Conv 3×3/1/512

Conv 3×3/1/512

Conv 3×3/1/512

Conv 1ë1/1/512

Conv 3×3/1/512

Conv 3×3/1/512

Conv 3ë3/1/512

Conv 3ë3/1/512

2×2/2 max pooling

Fully connected, 4,096

Fully connected, 4,096

Fully connected, 1,000 with softmax

*All convolutional layers use a stride of 1. The kernel size and number of output channels are stated in each cell.

Conv, convolution.

CHAPTER 8 DEEPER CNNs AND PRETRAINED MODELS

210

GoogLeNet
GoogLeNet is one specific incarnation of a network architecture named Inception
(Szegedy, Liu, et al., 2014). At a first glance, it looks much more complex and
irregular than AlexNet and VGGNet because it uses a building block called
Inception module that itself is a small network. This is an example of a network-
in-network architecture in which a small network is used as building block inside
of another network (Lin, Chen, and Yan, 2013). Lin and colleagues had previously
studied a network-in-network architecture for CNNs in which each neuron in a
convolutional layer was replaced by a small multilevel network, which served the
same role as the single neuron. Just as for a traditional convolutional layer, this
small multilevel network would share weights across the entire convolutional
layer. The effect is a convolutional layer but where a single layer has the ability to
classify features that are not linearly separable, which is not possible for a single
traditional convolutional layer.

The Inception module used by GoogLeNet serves a different purpose in that it
builds a convolutional layer that can simultaneously work with multiple receptive
field sizes. Intuitively, this can be useful because it is seldom the case that an
instance of a specific object (e.g., a cat) is always the same size in all images.
Even in a single image, it might be that multiple instances of similar objects
(a picture of multiple cats) appear to be of different sizes due to their distance
from the camera. Thus, a network that has flexibility in its receptive field size
can be useful. The Inception module addresses receptive field size flexibility by
having multiple convolutional layers with different kernel sizes work side by
side, each one producing a number of output channels. As long as the width and
height of the output channels are the same, these output channels can simply
be concatenated to appear as if they come from a single convolutional layer. For
example, we might have 32 channels resulting from a convolutional layer with
a 3×3 kernel size and 32 channels resulting from a layer with a 5×5 kernel size,
and overall, the Inception module would output 64 channels. Figure 8-2 shows the
conceptual architecture of the Inception module but using parameters that make
it practical to visualize.

We start our description with the naïve version on the left. We see that the
inception module consists of four different components: 1×1 convolution, 3×3

The Inception module used in GoogLeNet provides the ability to work with
multiple receptive field sizes.

211

GoogLeNet

convolution, 5×5 convolution, and 3×3 max pooling. Just as for VGGNet, the chosen
stride is 1, which results in the output from the Inception module having the
same width and height as its input. In the networks we have seen so far, the max
pooling operation was used to reduce the width and height of the output, but the
max pooling operation in the Inception module keeps it constant by using a stride
of 1. The reason for using max pooling in this way was simply that max pooling
has shown to be useful in state-of-the-art networks. Therefore, it makes sense to
try it in this way as well.

Let us now move on to the right side of Figure 8-2, which represents the
architecture of the Inception module that was built instead of the naïve
version, except that the parameters of the module in the figure are chosen to
make it practical to visualize. A problem with the naïve version is the number
of parameters that it introduces. As described in Chapter 7, “Convolutional
Neural Networks Applied to Image Classification,” the number of weights for a
convolutional layer is proportional to the kernel size and the number of channels
in the preceding layer. Further, the number of output channels from a max pooling
layer is the same as the number of input channels. To keep the number of weights

Conv 1x1/1/2 Conv 1x1/1/1

NaÏve inception module Real inception module

Inputs

Outputs

Channel
concatenation

Conv 1x1/1/2 Conv 3x3/1/4 Conv 5x5/1/2 Pool 3x3/1
Conv 1x1/1/2

Pool 3x3/1

Conv 3x3/1/4 Conv 5x5/1/2 Conv 1x1/1/2

Figure 8-2 Inception module. Left: Naïve version. Note how the number of output
channels from the pooling operation is the same as the number of input channels.
Right: Real version with 1×1 convolutions that reduce number of weights for the
wider convolutions and enable the number of output channels from the pooling
operation to be independent of the number of input channels. The color coding
has nothing to do with RGB in the original image but just indicates which module a
channel originates from.

CHAPTER 8 DEEPER CNNs AND PRETRAINED MODELS

212

low, the Inception module makes use of 1×1 convolutions before the 3×3 and
5×5 convolutions, which results in fewer input channels to those convolutional
kernels. Similarly, to avoid too many output channels, a 1×1 convolution is applied
to the output of the max pooling operation. With these 1×1 convolutions, we have
full control of the number of input channels to the 3×3 and 5×5 kernels as well as
the total number of outputs from the Inception module and thereby, implicitly, the
number of weights that need to be trained.

GoogLeNet makes use of another mechanism that we have not yet seen. To enable
training of deeper networks, Szegedy, Liu, and colleagues (2014) added auxiliary
classifiers at different points in the network. An auxiliary classifier is similar to
what you typically would put at the top of the network, that is, a fully connected
layer and a softmax layer2 that computes the probability for the different classes
that we are trying to predict. Figure 8-3 illustrates how a network can be
extended with auxiliary classifiers.

2. In reality, they made it a little bit more complicated than just these two layers, but that is not
relevant for this discussion.

Conv

Max-pool

Inception

Max-pool

Inception

Max-pool

Inception

Fully-connected

Softmax

Conv

Max-pool

Max-pool

Max-pool

Inception

Fully-connected

Softmax

Fully-connected

Softmax

Fully-connected

Softmax

Input image Input image

Inception

Inception

Figure 8-3 Left: Baseline network based on Inception modules. Right: The same
network augmented with auxiliary classifiers.

213

GoogLeNet

The intent of these auxiliary classifiers is to be able to inject gradients at these
intermediate points during training and thereby ensure that strong gradients
propagate back to the first few layers. The auxiliary classifiers also encourage the
initial layers of the network to be trained to behave much like they would behave
in a shallower network. The GoogLeNet network is summarized in Table 8-2.
Auxiliary classifiers are not shown.

Auxiliary classifiers inject gradients in the middle of the network during
training.

Table 8-2 GoogLeNet Architecture*

Layer
Type Details Output size

Input RGB image 224×224×3

Conv 7×7/2/64 112×112×64

Max pool 3×3/2 56×56×64

Conv 1×1/1/64 56×56×64

Conv 3×3/1/192 56×56×192

Max pool 3×3/2 28×28×192

Inception

1×1/1/64

1×1/1/96 1×1/1/16 3×3/1 pool

28×28×2563×3/1/128 5×5/1/32 1×1/1/32

Channel concatenation

Inception

1×1/1/128

1×1/1/128 1×1/1/32 3×3/1 pool

28×28×4803×3/1/192 5×5/1/96 1×1/1/64

Channel concatenation

Continued

CHAPTER 8 DEEPER CNNs AND PRETRAINED MODELS

214

Max pool 3×3/2 14×14×280

Inception

1×1/1/192

1×1/1/96 1×1/1/16 3×3/1 pool

14×14×5123×3/1/208 5×5/1/48 1×1/1/64

Channel concatenation

Inception

1×1/1/160

1×1/1/112 1×1/1/24 3×3/1 pool

14×14×5123×3/1/224 5×5/1/64 1×1/1/64

Channel concatenation

Inception

1×1/1/128

1×1/1/128 1×1/1/24 3×3/1 pool

14×14×5123×3/1/256 5×5/1/64 1×1/1/64

Channel concatenation

Inception

1×1/1/112

1×1/1/144 1×1/1/32 3×3/1 pool

14×14×5123×3/1/288 5×5/1/64 1×1/1/64

Channel concatenation

Inception

1×1/1/256

1×1/1/160 1×1/1/32 3×3/1 pool

14×14×8323×3/1/320 5×5/1/128 1×1/1/128

Channel concatenation

Max pool 3×3/2 7×7/832

Inception

1×1/1/256

1×1/1/160 1×1/1/32 3×3/1 pool

7×7×8323×3/1/320 5×5/1/128 1×1/1/128

Channel concatenation

Table 8-2 GoogLeNet Architecture* (Continued)

Continued

215

ResNet

All in all, GoogLeNet demonstrated that it is possible to make use of more
elaborate architectures to build deep, high-performing networks that have a
relatively small number of weights. The 22-layer network that was submitted to
the ImageNet classification challenge 2014 achieved a top-5 error of 6.67%, which
was slightly better than VGGNet.

ResNet
Residual networks (ResNets) were introduced to address the observation that
very deep networks are hard to train (He et al., 2015a). We previously discussed
that one obstacle to training deep networks is the vanishing gradient problem.
However, it turns out that deep networks still have problems learning even after
addressing the vanishing gradient problem by properly initializing weights,
applying batch normalization, and using rectified linear unit (ReLU) neurons inside
of the network.

He and colleagues made the observation that when increasing the network depth
from 18 to 34 layers, the training error increased even though they seemed to
have healthy gradients throughout the network during the training process.

Table 8-2 GoogLeNet Architecture* (Continued)

Inception

1×1/1/384

1×1/1/192 1×1/1/48 3×3/1 pool

7×7×1,0243×3/1/384 5×5/1/128 1×1/1/128

Channel concatenation

Avg pool 7×7/1 1,024

Dropout 40% 1,024

FC (softmax) 1,000 1,000

*Parameters for convolutional layers are shown as kernel size/stride/channels (i.e., 3×3/1/64 means 3×3
kernel size, stride of 1, and 64 channels). Pooling layers have the same format but without the channel
parameter. All convolutional layers use rectified linear unit (ReLU).

CHAPTER 8 DEEPER CNNs AND PRETRAINED MODELS

216

If it was only the test error that increased, then that would be an indication of
overfitting. An increased training error indicates that this more complex model
simply did not manage to learn what it should be able to learn, given its strictly
higher capacity than the 18-layer model. As an example, if the weights in the first
18 layers of the 34-layer model had been identical to the weights in the 18-layer
model and the weights in the final 16-layers had implemented the identity
function, then the 34-layer model should be on par with the 18-layer model,
but for some reason, the learning algorithm did not manage to arrive at such a
solution.

ResNets solve this problem by using a mechanism known as a skip connection
(described shortly) that makes it easy for the network to learn the identity
function. Clearly, building a very deep network where many of the layers do
not change the output would be wasteful, but the thinking here is that the best
solution for the later layers might be close to the identity function because only
minor variations are needed to improve the accuracy. Thus, by making it easy for
layers to learn something close to the identity function, the learning algorithm will
start its search for a solution in a space that is likely to contain a good solution.

Figure 8-4 shows a building block that can be used in a ResNet. It contains two
stacked layers with an additional skip connection that bypasses most of the two
layers. As you can see from the figure, the input (x) to the first layer is added to
the weighted sum that is produced by the second layer before that sum is fed
through the activation function in the second layer.

Assuming that the two layers are fully connected layers with the same number
of outputs as there are inputs, the building block above can be represented in the
following way using matrices and vectors:

ReLu W ReLu W2 1y x x()()= +

The innermost vector-matrix product (using matrix W
1
) represents the weighted

sum computed by the first layer, and the output vector from the ReLU activation
function from this first layer is then multiplied by matrix W

2
 to compute the

weighted sum for the second layer. He and colleagues (2015a) hypothesized that
with the this arrangement, it would be easy for the learning algorithm to push the

ResNets aim to make it easier for the learning algorithm to find a good
solution in the presence of very deep networks. It does so by introducing skip
connections.

217

ResNet

weights close to 0 in cases where the identity mapping is the desired behavior.
This would reduce the expression to simply

ReLu()y x=

A reasonable question is whether the skip connection has somehow ruined our
network and made it more linear, because it bypasses some of our nonlinear
functions. However, this is not the case. Assume that we want the module to
learn to act so the input to the second ReLU function models an arbitrary function
f(x). Adding the skip connection changes the objective to instead try to learn the
function f(x) − x, as the result will be the same after adding x to it. There is no good
reason to believe that the network cannot model f(x) − x if it is able to model f(x),
so the skip connection should not fundamentally change the type of functions the
network can model.

We soon describe how to modify the building block shown in Figure 8-4 to work
for convolutional layers as well as for cases when the number of outputs in a
layer is different from the number of inputs, but we first walk through the basic
architecture of a residual network. The basic structure is inspired by VGGNet in
that it consists of groups of stacked convolutional layers built from 3×3 kernels
using a stride of 1 and with the same number of output channels as there are
input channels. Like VGGNet, a ResNet periodically introduces layers that halve
the width and height while doubling the number of output channels. However,
while VGGNet reduced the dimensions by using max pooling, ResNet uses a

+

Layer 1

Layer 2

Skip-
connection

x

y = ReLu(x + W2ReLu(W1x))

W1x

ReLu(W1x)

x + W2ReLu(W1x)

W2ReLu(W1x)

ReLu 2

Weighted sum 2

Weighted sum 1

ReLu 1

Figure 8-4 Building block with skip connection

CHAPTER 8 DEEPER CNNs AND PRETRAINED MODELS

218

stride of 2 for the convolutional layers where a dimensionality reduction is
desired, and thereby the max pooling is not necessary. Another difference is
that ResNet employs batch normalization after each convolutional layer. Both of
these differences are independent of the skip connections that represent the key
differentiator for a ResNet. Figure 8-5 shows the basic structure of a baseline
network without skip connections (left) and a ResNet with skip connections (right).

As seen in Figure 8-5, there are two types of skip connection. The first one
(solid line) connects an input of a given size to an output of the same size, and
the second one (dashed line) connects an input of a given size to an output of a

Conv 3x3/1/64

Conv 3x3/1/64

Conv 3x3/1/64

Conv 3x3/1/64

Conv 3x3/2/128

Conv 3x3/1/128

Conv 3x3/1/128

Fully-connected

Softmax

Input image

Conv 3x3/1/128

Conv 3x3/1/64

Conv 3x3/1/64

Conv 3x3/1/64

Conv 3x3/1/64

Conv 3x3/2/128

Conv 3x3/1/128

Conv 3x3/1/128

Fully-connected

Softmax

Input image

Conv 3x3/1/128

Change in
width, height
and channels

Figure 8-5 Left: Baseline network without skip connections. Right: ResNet-style
network with skip connections. The dashed skip connection indicates that the
input and output dimensions of the block do not match (details are discussed
later in the chapter). The figure is simplified in that it does not explicitly show the
activation functions being applied after the skip connections.

219

ResNet

different size. Both of them are applied to convolutional layers that have a 3D
structure (width × height × channels). The following formula shows how the skip
connection is defined for two convolutional layers when the inputs and outputs
are of the same size, where w, h, and c represent the width, height, and number
of channels. That is, we simply apply a skip connection from a given coordinate in
the input tensor, to the corresponding coordinate in the output tensor.

y ReLu x F i w j h k ci j k i j k i j k , 1 , 1 , 1, , , , , , x()()= + = … = … = …

This is equivalent to how we defined it for a fully connected layer, but there the
input was a 1D vector of values instead of a 3D tensor. In addition, instead of
explicitly writing the formula for the layers, we have replaced that formula with
the function F(x), which represents the first layer, including an activation function,
followed by the second layer but without its activation function.

An obvious question is how this formula is changed when the output tensor is
of a different dimensionality than the input tensor. In particular, in the case of a
ResNet, the width and height of the output tensor is half that of the input tensor,
and the number of channels is doubled. Here is one simple solution, where w, h,
and c represent the width, height, and number of channels, with the addition of
a subscript detailing whether a variable refers to the input or output tensor for
the block:

y
ReLu x F i w j h k c

ReLu F i w j h k c c
i j k

i j k i j k out out in

i j k out out in out

, 1 ; 1 ; 1

, 1 ; 1 ; 1
, ,

2 , 2 , , ,

, ,

x

x

()
()

()
()

=
+ = … = … = …

= … = … = + …

Because the number of output channels is doubled, we simply have skip
connections only to the first half of the output channels. In the formula, this is
achieved by having the first line (with skip connections) apply to the first half of
the output channels (1 through c

in
), and the second line (without skip connections)

applies to the remaining half of the output channels (c
in
 + 1 through c

out
). Similarly,

because the width and height are cut in half, we do skip connections only from
every other element in the width and height dimensions in the input tensor
(achieved by using the subscripts 2i and 2j in the first line in the formula).

It turns out that a better solution than having skip connections to only half of the
output channels is to use a 1×1 convolution on the skip connection to expand the
number of channels from the skip connection itself. Figure 8-6 shows both
the case of having skip connections to only half of the output channels (left) and
the case of expanding the number of channels of the skip connections using 1×1
convolutions (right).

CHAPTER 8 DEEPER CNNs AND PRETRAINED MODELS

220

There are alternative schemes to enable skip connections to all output channels
as well as to avoid dropping some of the inputs. One more such scheme was
shown in the original ResNet paper, and a more detailed evaluation can be found
in a subsequent paper (He et al., 2016).

We are almost ready to present the final topology of some different ResNets,
but first we present one more variation on the building blocks and point out one
more omitted detail. To make it practical to use deep networks with even more
channels, we can use a trick similar to the one we showed you for GoogLeNet. We
can use 1×1 convolutions to temporarily reduce the number of channels to reduce
the number of required weights in the 3×3 convolutional layer and then use
another layer of 1×1 convolutions to increase the number of channels again. This
building block is shown in Figure 8-7.

Conv 3x3/1/128

ReLu 2

Conv 3x3/1/128

ReLu 1

+

Skip
connection
with zero
padding

Skip
connection
without zero

padding

128 channel output

64 channel input

Conv 3x3/1/128

ReLu 2

Conv 3x3/1/128

ReLu 1

+

128 channel output

64 channel input

Conv 1x1/1/128

Figure 8-6 Skip connections for convolutional layers with more output channels than
input channels. That is, the case that was represented as a dashed skip connection.
Left: No skip connections (zero padding) to added channels. Right: Number of
channels of skip connections is expanded by using 1×1 convolutions.

Details of more elaborate skip connections is a good topic for future reading
(He et al., 2016).

ResNets use 1×1 convolution to reduce the number of weights to learn.

221

ResNet

The left part of the figure shows the building block in the simplified style that was
used in Figure 8-5. The right part of the figure shows the actual implementation,
where the skip connection gets added before the final activation function. It also
shows that the building block uses batch normalization before the activation
functions. Batch normalization applies to the simpler two-layer case (without 1×1
convolutions) as well. Finally, in cases where the number of output channels is
greater than the number of input channels, the skip connection would employ a
1×1 convolution to avoid zero padding, as was shown in Figure 8-6.

Using these techniques, we can now define some different ResNet
implementations, as shown in Table 8-3. Our table looks somewhat different
than what is in the original paper because we explicitly spell out the layers with
stride 2, whereas He and colleagues point it out in the textual description.

Using a combination of a few different ResNets, He and colleagues reported a
top-5 error of 3.57% on the ImageNet classification challenge in 2015. That is,
all in all, from the introduction of AlexNet in 2012, we have gone from a top-5

ReLu

Conv 1x1/1/64

Conv 3x3/1/64

Conv 1x1/1/256

256 channel input

256 channel output

Reduced
number of
channels
reduces

number of
weights

Conv 3x3/1/64

Batch Norm

ReLu

256 channel input

256 channel output

Conv 1x1/1/64

Batch Norm

ReLu

Conv 1x1/1/256

Batch Norm

+

Figure 8-7 Building block that down samples number of channels internally.
Left: Simplified view. Right: Actual implementation with batch normalization and
activation functions.

CHAPTER 8 DEEPER CNNs AND PRETRAINED MODELS

222

Table 8-3 ResNet Architecture*

34 LAYER 50 LAYER 152 LAYER

Conv 7×7/2/64

Max pool 3×3/2

Conv
3 3/1/64
3 3/1/64

 ×
×

 × 3

Conv

1 1/1/64
3 3/1/64
1 1/1/256

×
×
×

 × 3 Conv

1 1/1/64
3 3/1/64
1 1/1/256

×
×
×

 × 3

Conv
3 3/2/128
3 3/1/128

 ×
×

 × 1

Conv

1 1/2/128
3 3/1/128
1 1/1/512

×
×
×

 × 1 Conv

1 1/2/128
3 3/1/128
1 1/1/512

×
×
×

 × 1

Conv
3 3/1/128
3 3/1/128

 ×
×

 × 3

Conv

1 1/1/128
3 3/1/128
1 1/1/512

×
×
×

 × 3 Conv

1 1/1/128
3 3/1/128
1 1/1/512

×
×
×

 × 7

Conv
3 3/2/256
3 3/1/256

 ×
×

 × 1

Conv

1 1/2/256
3 3/1/256
1 1/1/1,024

×
×

×

 × 1 Conv

1 1/2/256
3 3/1/256
1 1/1/1,024

×
×

×

 × 1

Conv
3 3/1/256
3 3/1/256

 ×
×

 × 5

Conv

1 1/1/256
3 3/1/256
1 1/1/1,024

×
×

×

 × 5 Conv

1 1/1/256
3 3/1/256
1 1/1/1,024

×
×

×

 × 35

Conv
3 3/2/512
3 3/1/512

 ×
×

 × 1

Conv

1 1/2/512
3 3/1/512
1 1/1/2,048

×
×

×

 × 1 Conv

1 1/2/512
3 3/1/512
1 1/1/2,048

×
×

×

 × 1

Continued

223

PROGRAMMING EXAMPLE: USE A PRETRAINED ResNet IMPLEMENTATION

error of 15.3% using a 7-layer network to a top-5 error of 3.57% using networks
containing up to 152 layers. To put this into context, the second-best submission
in 2012 achieved a top-5 error of 26.2%, which illustrates the remarkable
progress that DL enabled in this problem domain in just three years. We now
move on to a programming example in which we use a pretrained ResNet
implementation to classify images.

Programming Example: Use a
Pretrained ResNet Implementation

Because training a model like ResNet-50 takes a long time, our programming
example uses an already trained model. We use it to classify the dog and the cat
shown in Figure 8-8.

We start with a number of import statements in Code Snippet 8-1.

Conv
3 3/1/512
3 3/1/512

 ×
×

 × 2

Conv

1 1/1/512
3 3/1/512
1 1/1/2,048

×
×

×

 × 2 Conv

1 1/1/512
3 3/1/512
1 1/1/2,048

×
×

×

 × 2

Avg pool 7×7/1

FC softmax 1000

*Each building block inside of brackets employs skip connections and are replicated as stated in the table. Skip connections
for layers that change the number of output channels use 1×1 convolutions, as illustrated in Figure 8-6 (right). Further, batch
normalization is applied to the convolutional layers, as illustrated in Figure 8-7 (right).

Table 8-3 ResNet Architecture* (Continued)

Code Snippet 8-1 Initialization Code for Our ResNet Example

import numpy as np

from tensorflow.keras.applications import resnet50

from tensorflow.keras.preprocessing.image import load_img

from tensorflow.keras.preprocessing.image import img_to_array

CHAPTER 8 DEEPER CNNs AND PRETRAINED MODELS

224

In Code Snippet 8-2, we then load one of the images with the function load_img,
which will return an image in PIL format. We specified that we want the picture to
be scaled to 224×224 pixels because that is what the ResNet-50 implementation
expects. We then convert the image into a NumPy tensor to be able to present it to
our network. The network expects an array of multiple images, so we add a fourth
dimension; consequently, we have an array of images with a single element.

Code Snippet 8-3 shows how to load the ResNet-50 model, using weights
that have been trained using the ImageNet dataset. Just as we did in previous
examples, we standardize the input images because the ResNet-50 model

Figure 8-8 Dog and cat that we will attempt to classify

Load image and convert to 4-dimensional tensor.

image = load_img('../data/dog.jpg', target_size=(224, 224))

image_np = img_to_array(image)

image_np = np.expand_dims(image_np, axis=0)

Code Snippet 8-2 Load Image and Convert to Tensor

from tensorflow.keras.applications.resnet50 import \

 decode_predictions

import matplotlib.pyplot as plt

import tensorflow as tf

import logging

tf.get_logger().setLevel(logging.ERROR)

225

PROGRAMMING EXAMPLE: USE A PRETRAINED ResNet IMPLEMENTATION

expects them to be standardized. The function preprocess_input does that
for us, using parameters derived from the training dataset that was used to train
the model. We present the image to the network by calling model.predict()
and then print the predictions after first calling the convenience method decode_
predictions(), which retrieves the labels in textual form.

The output for the dog picture is

predictions = [[('n02091134', 'whippet', 0.4105768),
('n02115641', 'dingo', 0.07289727), ('n02085620', 'Chihuahua',
0.052068174), ('n02111889', 'Samoyed', 0.04776454),
('n02104029', 'kuvasz', 0.038022097)]]

This means that the network predicted that the dog is a whippet (a dog breed) with
41% probability, a dingo with 7.3% probability, a chihuahua with 5.2% probability,
and so on. We happen to know that the dog in the picture is a mix of chihuahua,
Jack Russell terrier, miniature poodle, and some other breeds, so at least the
chihuahua prediction makes sense. This also illustrates why the approximately 5%
top-5 error on the ImageNet challenge is human-level capability. The categories
are extremely detailed, so it is hard to pinpoint the exact category of an object.

Applying our network to the cat picture results in the following output:

predictions = [[('n02123045', 'tabby', 0.16372949),
('n02124075', 'Egyptian_cat', 0.107477844), ('n02870880',

Load the pretrained model.

model = resnet50.ResNet50(weights='imagenet')

Standardize input data.

X = resnet50.preprocess_input(image_np.copy())

Do prediction.

y = model.predict(X)

predicted_labels = decode_predictions(y)

print('predictions = ', predicted_labels)

Show image.

plt.imshow(np.uint8(image_np[0]))

plt.show()

Code Snippet 8-3 Load Network, Preprocess and Classify Image

CHAPTER 8 DEEPER CNNs AND PRETRAINED MODELS

226

'bookcase', 0.10175342), ('n03793489', 'mouse', 0.059262287),
('n03085013', 'computer_keyboard', 0.053496547)]]

We see that the network correctly categorized the cat as a tabby as highest
probability, and we also see that computer keyboard is on the list, which is also
correct because there is a keyboard in the background. At first, it might seem
somewhat confusing how the network could mistake our cat for a mouse (5.9%
probability), but when we look up the category n03793489, it turns out that it
refers to a computer mouse, and although there is no computer mouse in the
picture, there are enough computer-related items to justify why the network
would make such a mistake. This concludes our programming example, and
we now move on to describe a few other related techniques to wrap up the topic
of CNNs.

Transfer Learning
In the preceding programming example, we used a pretrained model and applied
it to the same type of problem that it was trained to address. In this section, we
discuss two related techniques. The first is to start from a pretrained model
and then train it further with your own data. The other option is to use parts of
the pretrained model as a building block in your own model intended to solve a
different, but related, problem.

Let us first look at the simple case of starting with a pretrained model and
continuing to train it with your own data for the same problem type, also known as
fine-tuning. This is often beneficial if your own dataset is limited in size. Even if you
had a large dataset, starting from a pretrained model can still be beneficial because
it can reduce the amount of time you need to spend training it with your own data.

In many cases, the problem at hand is related to, but still somewhat different
from, what the network was originally trained to do. For example, let us assume
that you have ten dogs (perhaps you are running a kennel), and you need to
distinguish between different individuals, some of which are of the same breed.
This is clearly a classification problem, but using a network trained for ImageNet

We have finally managed to classify a cat picture! We sit back and reflect over
how much of the total compute capability in the world is being used to classify
cat pictures at this very moment.

TRANSFER LEARNING

227

classification with its 1,000 classes will not work. Instead, you want a network
that classifies an image as being one of ten specific dogs. This can be done
using transfer learning. It involves taking a model, or parts of a model, that is
trained for one task, and then using it to solve a different, but related, task. The
idea is that some of the skills learned for the original task carry over (transfer)
and are applicable to the new task. In this example, we could use a pretrained
version of one of the convolutional networks in this chapter and replace some of
the last layers with our own layers that end with a ten-output softmax layer. We
would then train this model on our own dataset with the ten dogs that we want
the network to classify. We would benefit from the fact that the convolutional
layers already have the ability to recognize specific features that are useful for
identifying different types of dogs. The process of taking a pretrained network and
replacing some layers is illustrated in Figure 8-9.

Conv

Max-pool

Inception

Max-pool

Inception

Max-pool

Inception

Fully-connected

Softmax (1000)

Conv

Max-pool

Inception

Max-pool

Inception

Max-pool

Inception

Fully-connected

Softmax (10)

Input image Input image

Pre-
trained
layers

New
problem-
specific
layers

Figure 8-9 Transfer learning. Left: An inception network. Right: A new network
based on pretrained layers from the inception network but with the last couple of
layers replaced by new layers that are trained for the new problem.

CHAPTER 8 DEEPER CNNs AND PRETRAINED MODELS

228

A couple of practical details are worth mentioning. When training begins, the layers
from the pretrained model have already been trained for many epochs on a large
dataset, whereas the weights in the final layers are completely random. If we just
go ahead and start training on our own dataset, there is a risk that the learning
algorithm ruins the carefully trained weights from the pretrained model. Therefore,
it is often a good idea to freeze these weights and only train the newly added layers.
This also makes the training process faster because the number of adjustable
parameters is significantly smaller. After training the model for a while with the
pretrained layers frozen, a next step can be to fine-tune this model by unfreezing
those layers and training for another few epochs with a smaller learning rate.

One powerful technique is to do pretraining of a model using an unsupervised
learning technique that does not require labeled data. Large amounts of
unlabeled data are much easier to obtain than labeled data. By pretraining on the
unlabeled data, it is possible to train a model to learn to detect useful features
without the cost of obtaining a large, labeled dataset. The pretrained model is
then used to build the final model that is trained using a smaller labeled dataset.
In Chapters 11 through 13, we will see examples of training a model to learn
language structure from unlabeled data.

We do not go into more details about transfer learning in this section, but of you
are interested, Zhuang and colleagues (2020) wrote a survey paper on the topic.
We will also see an example of transfer learning in Chapter 16, “One-to-Many
Network for Image Captioning,” where we use a pretrained VGGNet model as a
building block in an image captioning network.

Backpropagation for CNN and Pooling
We are using a DL framework, so we do not need to worry about how the
backpropagation algorithm works with convolutional layers but understanding
it is still interesting. It seems like if we use the algorithm unchanged, it is likely
to break the invariant that all neurons in a channel have the same weights.
Intuitively, we can ensure that this invariant still holds true by first ensuring
that all of the neurons in a channel get the same values at initialization and then
applying identical updates to all weights that are supposed to be identical to
each other.

Transfer learning makes use of a pretrained model to build a model that is
further trained for a different use case.

DATA AUGMENTATION AS A REGULARIZATION TECHNIqUE

229

Initializing them to the same values is trivial. The only question is how to
determine what to use as the update value. If you think about it in the terms of
the definition of the update value, this falls out naturally. The update value for
a weight is simply the partial derivative of the loss function with respect to that
weight. Let us now consider how a convolutional network is different from a fully
connected network. The key difference is that if we write the overall equation
for the convolutional network (including the loss function), each weight in the
convolutional layers will appear multiple times in the equation, whereas a weight
appears only once in the equation for the fully connected network. The resulting
partial derivative with respect to a weight turns out to be a sum of the partial
derivative with respect to each instance of the weight in the equation.

Computing the resulting update values with the backpropagation algorithm is
straightforward. It is very similar to a fully connected network. We perform the
forward and backward passes just like in the fully connected case. The difference
is how to update the weights. Instead of updating a specific weight for a given
neuron by the update value computed for that instance of the weight, we update
the weight by the sum of the update values for all instances of that shared weight.
We apply this same update value to all the copies of that weight in the network.
In practice, an efficient implementation of a convolutional layer would not store
multiple copies of all the weights but would instead share the weights in the
implementation as well. So, the update process would need to update only that
one single copy of the weights that is then used by all the neurons in the channel.

Apart from the issue of how to handle the weight sharing property for
convolutional layers, we also need to address how to use backpropagation
with the max pooling layers where the max operation clearly is not differentiable.
It turns out that this is straightforward as well. We simply backpropagate the
error only to the neuron that provided the input with the maximum value because
the other inputs clearly do not affect the error.

Data Augmentation as a Regularization
Technique

In Chapter 6, “Fully Connected Networks Applied to Regression,” we discussed
the problem of networks failing to generalize and how that can be addressed
with regularization. An effective technique to improve generalization is to simply
increase the size of the training dataset. That makes it harder for the network to

CHAPTER 8 DEEPER CNNs AND PRETRAINED MODELS

230

memorize it and forces the network to find general solutions to the problem. A
challenge with this technique is that collecting and labeling large datasets can
often be costly. One way to address this challenge is to use dataset augmentation.
The dataset is augmented by creating additional training examples from existing
ones. Figure 8-10 shows an example: We took a single picture of a dog and
modified it in various ways to create ten new pictures that can be used for
training.

There are a couple of pitfalls worth mentioning. One is that for certain kinds of
data, only some transformations are legal without changing the actual meaning
of the data. For example, while it is perfectly fine to flip a dog upside down or
mirror it, the same does not hold true for the MNIST digits. If you turn the digit
6 upside down, it turns into a 9, and if you mirror a 3, it is no longer a 3. Another
important issue is that data augmentation should be done after splitting the data
into a training dataset and a test dataset instead of before that split. This is to
avoid leaking information from the training dataset to the test dataset. Imagine if

Figure 8-10 One original image and ten variations of the picture resulting in a ten
times larger dataset

231

MISTAKES MADE BY CNNs

you do the data augmentation before splitting the data into the two datasets. You
might end up with the original image in the training dataset and a slight variation
of this image in the test dataset. It is easier for the network to classify this slight
variation correctly than to classify a completely different image correctly. You can
therefore get overly optimistic results when you evaluate your network on your
contaminated test dataset.

Mistakes Made by CNNs
Although there has been amazing progress in image classification, beginning
with the AlexNet paper (Krizhevsky, Sutskever, and Hinton, 2012), subsequent
discoveries have raised reasons for concern. As an example, in 2014 Szegedy and
colleagues showed that it was possible to slightly perturb images in a way so that
a human could not tell that the image was modified but a neural network could no
longer correctly classify the image (Szegedy, Zaremba, et al., 2014). They named
these modified images adversarial examples.

Another drawback came in 2019 when Azulay and Weiss (2019) showed that
some popular modern networks were not robust to small translations (shifting
of position) of just a few pixels, because using a stride larger than 1 ignores
properties of the Nyquist sampling theorem. This serves as an example of how
important it is to understand fundamental principles of the field to which you are
applying DL.

Apart from problems with the model itself, CNNs are susceptible to problems
caused by bias and lack of diversity in the training data. We touched on this
when describing the MNIST dataset. A more recent example was when a popular
photo app kept categorizing photos of people of color under the category gorillas
(Howley, 2015). Although not intentional, this failure case underscores the
importance of designing datasets that are diverse, unbiased, and complete.

Data augmentation is an effective regularization technique, but it comes with
some pitfalls.

We are now in the timeframe of Terminator Genisys, and it seems somewhat
reassuring that we just discovered ways of tricking the neural networks—that
comes in handy when fighting the machines for survival of humanity.

CHAPTER 8 DEEPER CNNs AND PRETRAINED MODELS

232

Reducing Parameters with Depthwise
Separable Convolutions

We saw in Chapter 7 how the number of weights for a neuron in a convolutional
layer depends on the kernel size and the number of channels in the preceding
layer. The latter follows from the fact that the convolution operation is applied
to all the channels in the preceding layer. That is, a neuron in a single channel in
the output layer has M × K2 + 1 weights, where M is the number of channels in the
input layer, K is the kernel size (K2 because it is 2D), and +1 is the bias weight. An
output layer with N channels results in N × (M × K2 + 1) total number of weights.
The number of weights is not dependent on the width and height of the layer due
to weight sharing, but the number of computations is. For an output layer of width
W and height H, the total number of multiplications is W × H × N × (M × K2 + 1).

Depthwise separable convolutions reduce the number of weights and
computations while achieving similar results. This is done by breaking up the
convolutions into two steps. Instead of having each output neuron do convolutions
for each input channel, the first step is to compute convolutions for each input
channel in isolation. This results in an intermediate layer with the same number
of channels as in the input layer. The output layer then does 1×1 convolutions,
also known as pointwise convolutions, across the channels in this intermediate
layer. That is, instead of each output channel having its own weights for each
input channel, a single set of shared weights is used for the convolutions over
each input channel. The weights in the output layer then determine how to
combine the results of those convolutions.

This is illustrated in Figure 8-11. The left image shows a traditional convolution,
where a single neuron computes a weighted sum of a region across all the input
channels. The right image shows a depthwise separable convolution for which
we first compute a weighted sum for each input channel and then a separate
(pointwise) convolution computes a weighted sum of the previously mentioned
weighted sums. The benefit of the depthwise separable convolution is not obvious
from the picture because it depicts only a single output channel. The benefit
becomes apparent when computing multiple output channels, in which case the
depthwise separable convolutions only need to add more pointwise convolutions
(three weights per additional output), whereas the traditional convolution needs to
add more full convolutions (nine weights per additional output).

There are M × K2 + 1 weights for the first step and N × M + 1 weights for the
second step. Assuming that the dimensions of both the input and output layers

REDUCING PARAMETERS WITH DEPTHWISE SEPARABLE CONVOLUTIONS

233

are W × H, the total number of multiplications is W × H × (M × K2 + 1) + W × H ×
(N × M + 1). This turns out to be a significant reduction compared to the formula
for the normal convolution in the beginning of this section. The first term for the
depthwise separable convolution does not include the factor N, and the second
term does not include the factor K2, both of which are substantial in magnitude.

It turns out that in many cases, the behavior of this operation works just as well
as the regular convolution operation. Intuitively, this implies that the type of kernel
(what weights to choose) to apply to a specific input channel does not depend
much on which output channel it is producing a value for. We draw that conclusion
because, for depthwise separable convolutions, all output channels share the
kernel that is applied to a specific input channel. Clearly, this is not always
true, and there is a range of design points between the depthwise separable
convolution and the normal convolution. For example, the first step in the process
can be modified to creating two or more channels per input channel. As often is
the case in DL, this is yet another hyperparameter in your network architecture
to experiment with. That is, anytime you are building a CNN, consider using a
depthwise separable convolution instead. In many cases, it will result in a much
faster network, that performs equally well from an accuracy perspective.

Before ending our description of depthwise separable convolutions, it is worth
mentioning how they relate to the modules found in VGGNet, GoogLeNet, and
ResNet. In many cases, these modules made use of 1×1 convolutions to do a
channel reduction before applying the convolution operation. This is similar to
the depthwise separable convolutions but in reverse order. One other difference

Single convolution both
within channel and across

channels

Separate convolutions
within channel and across

channels

Figure 8-11 Left: Normal convolutions. Right: Depthwise separable convolutions.
The figure illustrates only a single output channel and does not highlight the
benefit.

CHAPTER 8 DEEPER CNNs AND PRETRAINED MODELS

234

is that when doing a 1×1 convolution followed by another convolution operation,
there is an activation function between the two convolutions, whereas this is not
the case for the depthwise separable convolution.

Two examples of networks that use depthwise separable convolutions are
MobileNets (Howard et al., 2017) and the Xception module (Chollet, 2016). The
latter stands for Extreme Inception and is inspired by the Inception module used
by GoogLeNet (Szegedy, Liu, et al., 2014), but it is based entirely on depthwise
separable convolution layers.

Striking the Right Network Design
Balance with EfficientNet

In this chapter, we have seen three examples of networks that explored the effect
of network depth. Although important, network depth is just one of multiple
dimensions to explore. In particular, two other key dimensions are the resolution
(width and height) of each layer and the number of channels, as illustrated in
Figure 8-12. Tan and Le (2019) pointed out that studying just one parameter in
isolation is not likely to find the most efficient design.

In the paper, they set out to explore the design space with the goal of arriving at
the best-performing design in a constrained environment. For example, given

Number of
channels per layer

Number of neurons per
channel (resolution)

Number of
layers in
network

Figure 8-12 Three key parameters in a convolutional network. EfficientNets of
different sizes maintain a constant relationship among these three parameters
instead of scaling only a single dimension.

235

CONCLUDING REMARKS ON DEEPER CNNs

a specific number of floating-point operations and bytes of memory, determine
the combination of depth, resolution, and number of channels that yields the
best-performing CNN. By experimenting with small enough networks to be able
to do a thorough investigation of the design space, they arrived at a baseline
design that is very efficient. They then showed that this network could be scaled
up in a way that maintains the ratios among these three design parameters. The
result was a more demanding but still efficient network. Scaling the baseline
network to increasing sizes resulted in a family of networks named EfficientNets.
Overall, EfficientNets have been shown to achieve levels of prediction accuracy
similar to those of other popular networks but at an order of magnitude lower
computational cost compared to previous CNN architectures.

Concluding Remarks on Deeper CNNs
Although the most recently described networks might seem complicated
compared to what we have seen in previous chapters, even these networks
are considered simple nowadays. Still, our opinion is that they represent core
knowledge that anybody serious about learning about DL should have. Once you
understand these networks, you are in a good position to read research papers
about variations and combinations of these networks. Some such examples are
Inception-v2 and v3 (Szegedy et al., 2016) and Inception-v4 (Szegedy et al., 2017).
These three networks are deeper than Inception-v1 and result in better accuracy.
A next step is Inception-ResNet (Szegedy et al., 2017), which is a hybrid network
that combines Inception modules and skip connections. Inception-ResNet can
be viewed as an Inception network that adds mechanisms inspired by ResNet. A
different but related approach is ResNeXt (Xie et al., 2017), where NeXt refers to
a next dimension. This architecture uses ResNet as a starting point but consists
of a module with multiple paths similarly to what is done in the Inception module.
The key difference is that all the paths in ResNeXt are identical as opposed to the
Inception module’s heterogeneous architecture.

This discussion about CNNs has focused on classification—determining which
kind of object is in an image—in which ResNet has surpassed human capabilities
at least for the ImageNet classification challenge. However, classification is
not the only problem type that CNNs can be applied to, and more challenging
problems exist. Such problems include drawing bounding boxes around individual
objects (detection) or pinpointing the specific pixels that correspond to an object
(segmentation). Appendix B describes the three problems object detection,
semantic segmentation, and instance segmentation in more detail.

CHAPTER 8 DEEPER CNNs AND PRETRAINED MODELS

236

Work has also been done to gain a better understanding of how and why
convolutional networks work. For example, a study by Zeiler and Fergus (2014)
examined visualizing what features the different layers detect.

CNNs can also be applied to problem domains other than image analysis. For
example, they have been used for sentiment analysis of text (Dos Santos and
Gatti, 2014), where the task is to infer whether the sentiment of the text is positive
or negative. In this case the input is 1D (a sequence of characters or words)
instead of 2D as in the case of an image. This implies that the convolutional
layers will be somewhat different. Instead of going into the details of how to
apply convolutional networks to textual data, we move on to a different technique,
known as recurrent neural networks (RNNs). This technique is commonly
used with textual data and is the topic of Chapters 9, 10, and 11. If you think
that convolutional networks and computer vision applications are exciting,
consider reading Appendix B at this point. On the other hand, if you are eager
to get to natural language processing applications as quickly as possible, then
we recommend that you just continue reading the book. You can always read
Appendix B later.

237

Chapter 9

Predicting Time
Sequences with
Recurrent Neural
Networks

In this chapter, we introduce another important neural network architecture
known as the recurrent neural network (RNN). This architecture is useful when
doing predictions based on sequential data, and especially for sequences of
variable lengths. Before explaining what an RNN is, we provide some context by
describing some of the problem types to which RNNs can be applied. We relate
these problem types to the tasks we have already encountered in previous
chapters.

Up until now, we have applied networks to two main categories of tasks. One
was a regression problem in which the network predicted a real-valued variable
based on a number of other variables, such as the example of a network that
predicted the house price based on a number of variables associated with the
house. The other type of task was a classification problem in which the network
associated a data point, such as an image, with one of a number of possible

ChaPTER 9 PREdICTINg TImE SEqUENCES WITh RECURRENT NEURal NETWORkS

238

classes, such as car, ship, or frog. a special case of the classification problem is
the binary classification problem in which there are only two classes, typically
true or false. We used that for the XOR-problem. another example, which we
have not studied, is to classify whether a patient has a certain disease given
a number of input variables, such as gender, age, and the level of low-density
lipoprotein (also known as ldl but not to be confused with the name of this
book!). Time series (or sequence) prediction can be used in combination with any
of these three problem types; see Table 9-1.

For each of these three examples, there are also variations with respect to
the type of historical data that is used as input. Table 9-2 breaks down each
example into three variations. The first row has historical values only for the
variable it is trying to predict. The second row has historical values of the
variable plus additional variables. The third row has historical values of other
variables but not including the variable that it is trying to predict. at least
one of the examples seems somewhat odd. Predicting the next characters
of a sentence without knowing the beginning of the sentence in some sense
modifies the problem from complete a sentence to generate a sentence from
scratch.

In this chapter, we explore the sales forecasting problem, or in other words, a
regression problem, by trying to forecast bookstore sales. We look at the case
where the input data is only a single variable (historical book sales data). We
also describe how to extend the mechanism to handle multiple input variables,

Table 9-1 Sequential Prediction Problems and how They Relate to Their Nonsequential
Counterpart

REGRESSION
BINARY
CLASSIFICATION

MULTICLASS
CLASSIFICATION

Nonsequential Estimate house
price based on size
and location

Provide disease
diagnosis based on
patient gender, age,
and other variables

determine which
digit a handwritten
image depicts

Time series
or sequential
prediction

Predict next
month’s customer
demand based on
historical sales data

Predict if it will rain
tomorrow based on
historical weather
data

Predict the next
character in a
sentence

239

PREdICTINg TImE SEqUENCES WITh RECURRENT NEURal NETWORkS

such as the case where the input data consists of historical sales data for the
item of interest as well as other related goods. The problem is illustrated in
Figure 9-1.

In Chapter 10, “long Short-Term memory,” we learn how to overcome some of
the limitations associated with the basic RNN by using more advanced units
when building the network. In Chapter 11, “Text autocompletion with lSTm
and Beam Search,” we then apply this more advanced network to the problem
of doing autocompletion of text, similar to functionality that can be found in
email clients and Internet search engines. Specifically, the problem type that
we apply it to is the one represented by the top row in Table 9-2, where only
the beginning of the sentence and no other context is available as input to the
network.

Crystal
ball

Date

B
oo

k
sa

le
s

Date

G
en

er
al

 s
al

es

Future
book
sales

Historical data

Figure 9-1 Sales forecasting problem. The figure illustrates the case where we
use both historical book sales data and general sales figures. The thinking is
that general sales can indicate the overall state of the economy and might be
beneficial when forecasting specific sales. a variation of the problem is to have
only historical book sales as input variable.

ChaPTER 9 PREdICTINg TImE SEqUENCES WITh RECURRENT NEURal NETWORkS

240

Some of these problems are about predicting the future, but not all sequential
data is associated with time series. For instance, you could argue that in the case
of autocompletion of natural language sentences, predicting the next word in a
sentence has less to do with predicting the future and more to do with identifying
the most probable ending of a sentence that has already been written but not
yet seen. To simplify our discussion, we will generally talk about inputs to RNNs
as being sequential in time, but we acknowledge that they can be applied to the
more general case of any sequential data. In other words, RNNs try to solve the
problem of predicting the next value or symbol in a sequence regardless of what
the sequence represents.

RNNs are used for prediction of sequences and can work with input data with
variable length.

Table 9-2 Variations on the Prediction Problems*

MONTHLY SALES
PREDICTION RAIN PREDICTION

NEXT CHARACTER
PREDICTION

Input consists of
historical values of
only the variable
we are trying to
predict

historical sales
data for the item of
interest

historical rain data Beginning of
sentence

Input consists of
multiple variables,
including historical
values of the
variable we are
trying to predict

historical sales
data for the item of
interest, sales data
for other related
goods, or other
economic indicators

historical data on
rain, temperature,
humidity, and
atmospheric
pressure

Beginning of
sentence and
context identifiers
(e.g., topic of the
book and style of
paragraph)

Input consists of
multiple variables
but does not
include historical
values of the
variable we are
trying to predict

Sales data for
related goods, and
other economic
indicators

historical data
on temperature,
humidity, and
atmospheric
pressure

Only context
identifiers

(This seems like an
odd case)

*The three rows differ in the types of historical input data that is available.

lImITaTIONS OF FEEdFORWaRd NETWORkS

241

limitations of Feedforward Networks
a first idea for solving the sales forecasting problem is to just use a fully
connected feedforward network1 with a linear output unit. We standardize this
month’s book sales and, optionally, sales of other goods, then provide these
numerical values to the network and hope that the network can use that data
to learn to output the book demand for next month. This is shown in the left
part of Figure 9-2. The superscript numbers in the figure denote the temporal
relationship between data points. a data point with the superscript (t+1) refers to
the observed data value one day after a data point with the superscript (t).

It seems likely that we will not have much luck with this approach because we
provide the network with limited information. Sales numbers are likely seasonal,
and the network will need access to multiple historical data points to pick up
seasonal patterns. a second attempt at solving the prediction problem is shown in
the right part of Figure 9-2.

1. In reality, using a simple feedforward network for sequence prediction is not a good idea. In
particular, it is not tolerant to translations (shifts) in time. a better approach is to use a time-delay
neural network (TdNN), which is a form of 1d convolutional network and is thereby translation
invariant. however, we use the simple feedforward network in this discussion to avoid having to
introduce the TdNN concept at this point of the book. If you are interested, appendix C contains a brief
section about 1d convolution applied to sequential data.

Fully connected
feedforward network

B(t) G(t)

S(t+1) S(t+1)

Fully connected
feedforward network

B(t–m) G(t–m) B(t) G(t)

Figure 9-2 left: Feedforward network predicting demand using current-
month values as input. Right: Feedforward network predicting demand using
values from multiple historical months as input. S represents predicted sales,
B represents historical book sales and G represents historical general sales.
The superscript represents time (month), where t is the current month.

ChaPTER 9 PREdICTINg TImE SEqUENCES WITh RECURRENT NEURal NETWORkS

242

here we arrange the historical values into an input vector and present it to our
feedforward network, which outputs a prediction of the book sales for the next
month. This seems like a more promising approach, but the network still will
not get access to all the historical data unless we make an infinitely wide input
layer, which is not practical. One way to address this issue would be to compute
a running average over the historical data points that are far back and provide
this running average as an input to the network. Then, at least, the network has
access to some representation of all the historical data. There are other ways
to aggregate information about historical data, such as keeping track of the
maximum observed value and the minimum observed value and feeding them
as input into the network. It would be even better if, instead of choosing how to
aggregate historical information, we could let the network learn its own internal
representation of historical data. This is a key property of the RNN, which we
describe in the next section.

Recurrent Neural Networks
a simple form of RNN can be created by connecting the outputs from a fully
connected layer to the inputs of that same layer as shown in Figure 9-3. The
figure shows a three-value input vector connected to a fully connected layer of
four neurons. The bias values are omitted from the figure. along with the three
inputs (and bias input), each neuron has four additional inputs. These inputs
receive the output values from the four neurons but delayed by one timestep.

h1 h2 h3 h4

X1

h1
(t–1)

N1

X2 X3

h2
(t–1) h3

(t–1) h4
(t–1)

N2 N3 N4

Figure 9-3 Fully connected recurrent neural network layer

maThEmaTICal REPRESENTaTION OF a RECURRENT layER

243

That is, at time t, they will receive the output values for time t−1. We denote
these outputs as h for hidden because recurrent layers typically serve as hidden
layers inside the network. although they are explicitly called out as hidden, these
outputs are no different than outputs from a regular feedforward layer inside of a
network.

Just as in a feedforward network, we can freely choose the number of hidden
neurons independently of the number of elements in the input vector. however,
the number of inputs (weights) to a single neuron is now a function of both the
size of the input vector and the number of neurons in the layer. We can stack
multiple recurrent layers after each other to create a deep RNN. We can also
combine recurrent layers, regular fully connected feedforward layers, and
convolutional layers in the same network.

mathematical Representation of a
Recurrent layer

We previously described how a fully connected layer can be represented
mathematically by multiplying the input vector by a weight matrix, where
each row in the matrix represents the weights for a single neuron. With a tanh
activation function this can be written as follows:

y tanh W()x=

This formula assumes that the first element of the vector x contains the value
1 and the weight matrix contains the bias weight. another option is to explicitly
state all the bias weights as a separate vector that gets added to the vector
resulting from the matrix multiplication and exclude the value 1 in vector x:

y tanh W()x b= +

The matrix-vector multiplication Wx results in a vector with the same number of
elements as there are neurons in the layer. Each element is the weighted sum of
all the inputs to a single neuron (i.e., it is a partial weighted sum because it does
not include the bias weight). The vector b also has the same number of elements
as the number of neurons, and each element represents the bias weight for a

The number of inputs to a neuron in an RNN layer is dependent both on the
number of inputs to the layer (typically determined by the number of neurons in
the previous layer) and the number of neurons in the layer itself.

ChaPTER 9 PREdICTINg TImE SEqUENCES WITh RECURRENT NEURal NETWORkS

244

neuron. Now summing Wx and b means doing elementwise addition. We add the
bias weight to each partial weighted sum, and we end up with the full weighted
sum for each neuron. Finally, tanh is also done elementwise on each weighted
sum, resulting in an output value corresponding to each neuron.

let us now look at how we can represent a recurrent layer using matrices.
The actual computations are the same, but now the input vector must be a
concatenation of both the actual input vector x(t) as well as the previous output
h(t-1). Similarly, the weight matrix now needs to contain weights for both the actual
inputs and the recurrent connections. That is, the previous equation applies to a
recurrent layer as well, but a more common way of expressing it is with separate
matrices to make the recurrent connections more explicit:

h tanh W Ut ()() 1 ()h x b= + +()−t t

Figure 9-4 shows how the elements in the matrices and vectors map to inputs,
recurrent connections, weights, and biases in a recurrent layer. It is clear
that using linear algebra is powerful in that it leads to a compact, yet precise,
description of the connections. however, its drawback is that the equation makes
it harder to visualize the actual connections, which in our opinion does limit the
intuition gained, especially for beginners. We will continue working with figures
because they provide additional value. Still, it is common to see matrix notation in
the literature, so you should become familiar with this notation.

Wow! That is one compact way of summarizing the long textual description and
complexity of Figure 9-3.

W = w2,1 w2,2 ... w2,n
... ...

wn,1 wn,2 ... wn,n

w1,1 w1,2 ... w1,n

u2,1 u2,2 ... u2,m

un,1 un,2 ... un,m

u1,1 u1,2 ... u1,m

U =b =

b1
b2
...
bn

h1
h2
...
hn

x1
x2
...
xm

h = x =

Nn

wn,1

wn,n

h1
(t–1), h2

(t–1), ..., hn
(t–1)

un,1

un,m
bn

hn
(t)

x1
(t), x2

(t), ..., xm
(t)

N1

w1,1
w1,2 w1,n

h1
(t–1), h2

(t–1), ..., hn
(t–1)

u1,1

u1,2

u1,m
b1

h1
(t)

x1
(t), x2

(t), ..., xm
(t)

wn,2
un,2

Figure 9-4 mapping between weights and matrix elements

COmBININg layERS INTO aN RNN

245

Combining layers into an RNN
let us now consider how we can create a network to solve our sales forecasting
problem. Figure 9-5 shows an initial attempt whereby we start with two inputs,
representing historical book sales and overall consumer spending. We assume
that they have been standardized by subtracting the mean and dividing by
standard deviation. These are fed into a recurrent layer with four units, followed
by a fully connected layer with two units and finally an output layer consisting of
a single unit. With respect to activation functions, we want the output layer to be a
simple linear unit (i.e., with no nonlinear activation function) because we want it to
output a numerical value rather than a probability. For the hidden layers, we can
choose any nonlinear activation function, just as for the other types of networks
that we have studied.

Input layer

Output layer

Hidden fully
connected layer

Hidden fully connected
recurrent layer

X1

h1
(t−1)

N1

N1

N1

N2

N2 N3 N4

X2

h2
(t−1) h3

(t−1) h4
(t−1)

Figure 9-5 RNN to forecast book sales. The architecture assumes that we are
using two input variables (x

1
 and x

2
).

ChaPTER 9 PREdICTINg TImE SEqUENCES WITh RECURRENT NEURal NETWORkS

246

Computing the output from this network is done iteratively by first presenting
the input vector for one month to the network and computing the hidden states,
and then presenting the input vector for the next month and computing new
hidden states, which are functions of the current hidden states and the new input
vector. We do this for all historical data that we have access to and end up with
a prediction for the next month. The network can use all this data and compute
any useful internal representation of the historical data that it can use to predict
the next month. From a learning perspective, the first layer has more weights
than a feedforward layer with the same number of inputs. The reason is that each
neuron has weights not only for the input vector x but also for the inputs that are
fed by the output from the previous timestep h(t-1). In a later section, we describe
how a network like this can be trained using backpropagation. The network we
just described is only an illustration of the architecture. In a real application, we
would likely use many more neurons in the hidden layers, but that is harder to fit
in a figure. To address that visualization issue, we now show another way to draw
and think about RNNs.

alternative View of RNN and Unrolling
in Time

So far, we have explicitly drawn all the connections in our RNN, which is not
practical as we move to deeper networks with many units in each layer. To
work around this limitation, a more compact way of drawing networks is to let
a node in the graph represent an entire layer, as in the left side of Figure 9-6.
Just as in previous chapters, we use a rectangular node with rounded corners to

Recurrent layer unrolled in timeRecurrent layer

h(n–1)

X(t) X(0) X(1) X(n)

h(t) h(0)

h(0)

h(1)

h(1)

h(n)

R R R R

Figure 9-6 left: Recurrent network drawn with one node representing an entire
layer. Right: Recurrent layer unrolled in time.

alTERNaTIVE VIEW OF RNN aNd UNROllINg IN TImE

247

represent an entire layer by a node, as opposed to individual neurons, which are
represented by circles. In this figure, the circular arrow represents the recurrent
connections. With this notation, much information about the topology is implicit,
so the figure needs to be accompanied by textual descriptions making it clear that
it is fully connected as well as the number of neurons.

The right side of Figure 9-6 shows how a recurrent layer can be unrolled in time.
By creating one copy of the recurrent layer for each timestep, we have converted
the recurrent layer into a number of feedforward layers. Obviously, to do this, we
need to know the number of timesteps, and the resulting network can no longer
accept a variably sized input vector, which was one of the reasons that we defined
the recurrent layer in the first place. a fair question is why we would want to do
this unrolling. It turns out that unrolling can be useful both for reasoning about
the network and when extending the backpropagation algorithm to work for
recurrent networks.

We start by using the unrolled version for reasoning about how a recurrent
layer relates to a fully connected feedforward network. as mentioned earlier,
unrolling the recurrent layer results in a feedforward network. does that mean
that the recurrent layer is equivalent to the feedforward network if we happen
to know the length of the input sequence? Not quite, because one key distinction
is discovered if we consider the weights of the network, which have been
omitted from all the figures. In the feedforward network, we can have different
weights for all connections, but in the recurrent layer, the weights need to be the
same for each timestep. In particular, each horizontal arrow on the right side
of Figure 9-6 maps to the same connection but for a different timestep, and the
same applies to the vertical arrows. That is, just as convolutional layers have
weight sharing within a layer, recurrent layers are like a feedforward network
with weight sharing between layers. Just as weight sharing was beneficial for
convolutional networks, recurrent networks have a similar benefit of requiring
fewer weights to train. however, weight sharing also has a drawback, which is
discussed in the next section, where we use the unrolled view of the network to
describe how to use backpropagation to train RNNs.

an RNN can be unrolled in time and thereby converted to a feedforward
network but with the restriction that the layers share weights with each other.

ChaPTER 9 PREdICTINg TImE SEqUENCES WITh RECURRENT NEURal NETWORkS

248

Backpropagation Through Time
given that we have already shown how a recurrent layer can be redrawn as
a feedforward network, it should be straightforward to understand how it
can be trained using backpropagation. Once the network is unrolled, we can
backpropagate the error in exactly the same way as we do for a feedforward
network, although it might be somewhat computationally expensive in cases
with long input sequences. Just as for the convolutional layer, we must ensure
to take weight sharing into account when updating the weights. In other words,
for each weight, the backpropagation algorithm will produce one update value
for each timestep, but when we later want to update the weight, there is only one
weight to update. This algorithm is known as backpropagation through time (BPTT).
Werbos (1990) has written a more detailed description, which also contains links
to papers in which the algorithm was first used. In practice, few people need to
worry about the exact details of how BPTT works because the deep learning (dl)
framework handles it. however, there are some implications that you do need to
worry about; they are described next.

Figure 9-7 shows a deep RNN with m layers and n+1 timesteps. In addition to
the normal weights that connect the layers (denoted w

1
, w

2
, . . ., w

m
), there are

also recurrent weights connecting each layer to itself (denoted w
r1

, w
r2

, . . .,
w

rm
). The figure also contains a grid of arrows illustrating how the error will

propagate backward for the learning algorithm (ignore the fact that one path is
colored red for now). What is shown is the error from the output node for the last
timestep, propagating to the input weight for the first timestep, splitting up into
multiple paths along the way. The vertical paths are no different from a regular
feedforward network. however, there are now also horizontal paths where the
error propagates backward through time.

We previously described the problem of vanishing gradients that was caused by
multiplying the error by the derivative of the activation function in each layer of
the network. This problem was caused by using S-shaped activation functions
in which the derivatives approached 0 when the neurons became saturated. In
addition, Bengio, Simard, and Frasconi (1994) showed that RNNs suffer from a
different problem. To keep things simple, let us just consider the red arrow in
Figure 9-7. let us also imagine that each rectangular node is a single neuron

an RNN can be trained by doing backpropagation through time (BPTT).

BaCkPROPagaTION ThROUgh TImE

249

instead of a full layer of neurons. Finally, let us assume that these neurons have
linear activation functions, so their derivatives are all 1. We can now compute the
partial derivative with respect to weight w

1
 using the following formula, where the

superscripts inside of parenthesis represent timesteps:

1 1 1 1 1
1

()
3
()

2
()

1
()

1
(2)

1
(1) (0)e

w
error w w w w w w xm

n n n
r
n

r r

∂
∂

= − ⋅ ⋅ ⋅… ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ … ⋅ ⋅ ⋅ ⋅ ⋅

Now consider the following subset of that formula that represents how the error
propagates backward through the recurrent connections (horizontally in the
figure), that is, through time: 11

()
1

(2)
1

(1)w w wr
n

r r⋅ … ⋅ ⋅ ⋅ .

due to weight sharing, all instances of w
r1

 are the same, so we can collapse that
expression into 1wr

n , where the superscript n represents exponentiation instead
of indicating a specific timestep. The exponent n represents the total number of
timesteps for a certain training example and can be large. For example, a case

X(0) X(1)

Layer 1

Layer 2

Layer m

Time

w1 w1 w1

w2 w2 w2

wm wm wm

wr2 wr2 wr2

wr1 wr1 wr1

wrm wrm wrm

w3 w3 w3

Back propagation through time

X(n)

Figure 9-7 gradient flow for backpropagation through time. The path of the error
from the output node of the last timestep propagates backward both through
the network (vertically) and through time (horizontally). The arrows represent
computing the partial derivative with respect to weight w

1
 at the first timestep.

ChaPTER 9 PREdICTINg TImE SEqUENCES WITh RECURRENT NEURal NETWORkS

250

with three years of data with one data point every day will result in more than
1,000 timesteps.

Consider what happens if you have a number that is smaller than 1 and multiply
it by itself 1,000 times. It will approach 0 (i.e., a vanishing gradient). On the other
hand, if the number is greater than 1 and you multiply it by itself 1,000 times, it
will approach infinity (i.e., an exploding gradient). These vanishing and exploding
gradients are caused by the weight sharing across timesteps, as opposed to
vanishing gradients caused by saturated activation functions.

This example assumed that each node in Figure 9-7 was a single neuron and
each recurrent connection consisted of a single weight. In reality, each node in
the figure represents an entire recurrent layer, which consists of a large number
of neurons. In other words, w

r1
 in the figure is a matrix because each layer has

multiple neurons and each neuron has a vector of weights. That, in turn, implies
that in reality, the preceding equation is a little bit more complex and should
be stated using linear algebra. Conceptually, the description is still the same,
but instead of looking at the value of a single weight, we need to consider the
eigenvalue of the weight matrix. If the eigenvalue is less than 1, then the gradient
runs the risk of vanishing. If the eigenvalue is greater than 1, then the gradient
runs the risk of exploding. We revisit these problems in Chapter 10, but first, let
us try out a programming exercise to get our hands dirty with RNNs.

Programming Example: Forecasting
Book Sales

Our programming example uses only one input variable (historical book sales),
but we also describe how to extend it to multiple input variables. We use historical
sales data from the U.S. Census Bureau.2 The downloaded data will take the form

2. https://www.census.gov/retail/index.html

Vanishing gradients in RNNs are caused both by the activation function and by
the weights.

There is no need to worry even if you are not familiar with what an eigenvalue
of a matrix is. as always, this is something you can consider for future reading.

https://www.census.gov/retail/index.html

PROgRammINg ExamPlE: FORECaSTINg BOOk SalES

251

of one comma-separated values (.csv) file per product category. Each line will
contain year/month and an amount representing the sales in millions of U.S.
dollars. as opposed to previous examples, the model cannot directly consume this
format, so the first step is to organize the data properly. Figure 9-8 shows what
the RNN expects from a single training example.

The training example consists of a vector of arbitrary length, where each entry in
the vector contains the input data for a single timestep. In our example, a timestep
is equivalent to a month. depending on how we define our problem, we will have
one or more input variables for each timestep. In addition to the input vector, each
training example consists of a single expected output value. It represents the book
sales for the month immediately following the most recent month in the input
vector. This is the value we want to predict.

Book
sales

Output value

Time

Features

t

t–1

t–2

t–m

Input values

Book sales for
month (t+1)

0 or more optional
features, e.g., general

sales

Figure 9-8 Structure of a single training example for an RNN. Each row in the
matrix consists of one value in the case where we use only book sales as input
variable. Optionally, we can use more variables as input, in which case each row
will contain more values.

ChaPTER 9 PREdICTINg TImE SEqUENCES WITh RECURRENT NEURal NETWORkS

252

let us now explore how many training examples we can create. We have
HISTORY months’ worth of historical data, and we note that we can create at
least one training example corresponding to each month. For example, the value
for the last month can result in a training example where the input data consists
of a vector of length (HISTORY-1). Similarly, the second month in the historical
data can result in a training example where the input data consists of a vector of
length 1 because there is only a single month preceding the second month of the
season. We also have the extreme case of the first historical month with a zero-
length vector as input. For the more recent months, such as the last month, we
could create multiple training examples. For example, in addition to the preceding
example, we can also do the same but use only the M days preceding the final day,
where M < (HISTORY-1).

We decide to create only a single training example from each month and to use as
much history as possible for each training example. We further decide that each
training example should have at least MIN months of history. We will end up with
(HISTORY-MIN) examples, where the length of the input ranges between MIN
and (HISTORY-1).

Now a key question is how we want to organize this data to be able to feed it
to the neural network. a requirement from keras is that if we feed multiple
training examples to keras at the same time (as we typically do), all the training
examples need to be of the same length. That is, we need to either group our
training examples in groups of identical lengths, or we need to feed each example
individually to keras. another option, which is what we will use in this example,
is to pad all examples with a specific value to become of equal length, and then
we can send them all to keras at the same time. This kind of rubs us the wrong
way when one of the key reasons for using the RNN is its ability to handle input
examples of variable length. Further, how does the network know to ignore the
special padded value? a simple answer is that it does not, and it will need to
discover that in the learning process, which seems unfortunate but has been
shown to work well in practice. later, we show mechanisms for masking out the
padded values, so the network does not need to discover them. We also show how
to truly use variable-length inputs, but for now, we keep things simple and just
pad the beginning of each example with zeros, so they all get the same length.
Figure 9-9 shows the desired organization of our input examples.

Training examples of equal length can be combined into batches. Padding can
be used to ensure that training examples are of equal length.

PROgRammINg ExamPlE: FORECaSTINg BOOk SalES

253

That is, our input will be a tensor with N examples, each example consisting
of M timesteps and each timestep consisting of values representing sales of
one or more goods. The output is a 1d vector where each entry represents the
sales value to predict. With all this background, we are ready to move on to the
implementation. as in previous code examples, we present it piece by piece.

We start with initialization code in Code Snippet 9-1. First, we import modules
that we need for the network. We also load the data file into an array. We then
split the data into training data (the first 80% of the data points) and test data (the
remaining 20% of the months).

t

0

0

0

0

t–1

t–2

t–m

Input example 1 Input example 2 Input example 3

Optional

0

0 0

0

Figure 9-9 mini-batch with three training examples. Training examples 1 and 2
are padded with zeros to be the same length as input example 3. The empty cells
represent valid feature values.

Code Snippet 9-1 Initialization Code for Our Bookstore Sales Prediction Example

import numpy as np

import matplotlib.pyplot as plt

import tensorflow as tf

from tensorflow import keras

from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import Dense

ChaPTER 9 PREdICTINg TImE SEqUENCES WITh RECURRENT NEURal NETWORkS

254

Figure 9-10 shows a plot of all historical sales data. The data shows a clear
seasonal pattern along with an indication that the overall trend in sales has
changed over time, presumably due to increased online sales. The data starts in
1992 and ends in march 2020. The drop for the last month was likely caused by
the COVId-19 pandemic hitting the United States.

For completeness, the code to create the chart in Figure 9-10 is shown in Code
Snippet 9-2.

Code Snippet 9-2 Code to Produce the Plot of historical Sales data

from tensorflow.keras.layers import SimpleRNN

import logging

tf.get_logger().setLevel(logging.ERROR)

EPOCHS = 100

BATCH_SIZE = 16

TRAIN_TEST_SPLIT = 0.8

MIN = 12

FILE_NAME = '../data/book_store_sales.csv'

def readfile(file_name):
 file = open(file_name, 'r', encoding='utf-8')

 next(file)

 data = []

 for line in (file):

 values = line.split(',')

 data.append(float(values[1]))

 file.close()

 return np.array(data, dtype=np.float32)

Read data and split into training and test data.

sales = readfile(FILE_NAME)

months = len(sales)

split = int(months * TRAIN_TEST_SPLIT)

train_sales = sales[0:split]

test_sales = sales[split:]

Plot dataset

x = range(len(sales))

plt.plot(x, sales, 'r-', label='book sales')

PROgRammINg ExamPlE: FORECaSTINg BOOk SalES

255

When we looked at predicting Boston house prices, we introduced the concept
of comparing the model with a significantly simpler model, which in that case
was linear regression. The intent was to gain insight into whether our dl models
provide value. For our book sales forecasting problem, we can create a simple
model that predicts that the sales next month will be the same as the sales
this month. Code Snippet 9-3 computes and plots this naïve prediction, and the
resulting chart is shown in Figure 9-11.

Figure 9-10 historical bookstore sales from 1992 to 2020

plt.title('Book store sales')

plt.axis([0, 339, 0.0, 3000.0])

plt.xlabel('Months')

plt.ylabel('Sales (millions $)')

plt.legend()

plt.show()

Code Snippet 9-3 Code to Compute and Plot a Naïve Prediction

Plot naive prediction

test_output = test_sales[MIN:]

naive_prediction = test_sales[MIN-1:-1]

ChaPTER 9 PREdICTINg TImE SEqUENCES WITh RECURRENT NEURal NETWORkS

256

STaNdaRdIZE daTa aNd CREaTE TRaININg ExamPlES

It is worth noting that none of the preceding coding exercises have to do explicitly
with dl or RNNs but are concerned only with obtaining and sanity-checking the
dataset. It is commonly the case that there is much work involved in getting a
good dataset before we can even start experimenting with feeding it into a model.
The next step is to standardize the data points by subtracting the mean and
dividing by the standard deviation of the training examples. Code Snippet 9-4 uses
only training data to compute the mean and standard deviation.

Figure 9-11 Naive prediction of book sales

x = range(len(test_output))

plt.plot(x, test_output, 'g-', label='test_output')

plt.plot(x, naive_prediction, 'm-', label='naive prediction')

plt.title('Book store sales')

plt.axis([0, len(test_output), 0.0, 3000.0])

plt.xlabel('months')

plt.ylabel('Monthly book store sales')

plt.legend()

plt.show()

PROgRammINg ExamPlE: FORECaSTINg BOOk SalES

257

In our previous examples, the datasets were already organized into individual
examples. For example, we had an array of images serving as input values and an
associated array of classes serving as expected output values. however, the data
that we created is raw historical data and not yet organized as a set of training
and test examples in the form that was previously illustrated in Figure 9-8 and
Figure 9-9. This is the next step in our code example. Code Snippet 9-5 allocates
tensors for the training data and initializes all entries to 0. It then loops through
the historical data and creates training examples, then does the same thing with
the test data.

Standardize train and test data.

Use only training seasons to compute mean and stddev.

mean = np.mean(train_sales)

stddev = np.mean(train_sales)

train_sales_std = (train_sales - mean)/stddev

test_sales_std = (test_sales - mean)/stddev

Code Snippet 9-4 Standardize the data

Create training examples.

train_months = len(train_sales)

train_X = np.zeros((train_months-MIN, train_months-1, 1))

train_y = np.zeros((train_months-MIN, 1))

for i in range(0, train_months-MIN):

 train_X[i, -(i+MIN):, 0] = train_sales_std[0:i+MIN]

 train_y[i, 0] = train_sales_std[i+MIN]

Create test examples.

test_months = len(test_sales)

test_X = np.zeros((test_months-MIN, test_months-1, 1))

test_y = np.zeros((test_months-MIN, 1))

for i in range(0, test_months-MIN):

 test_X[i, -(i+MIN):, 0] = test_sales_std[0:i+MIN]

 test_y[i, 0] = test_sales_std[i+MIN]

Code Snippet 9-5 allocate and Populate Tensors for Training and Test data

ChaPTER 9 PREdICTINg TImE SEqUENCES WITh RECURRENT NEURal NETWORkS

258

There is a fair amount of juggling with indices in different directions to get
the data in the right place. In other words, it is tedious but nothing magic. The
best way to understand the code is likely to step through it in a debugger to
convince yourself that it does the right thing, or simply trust that it is correctly
implemented and inspect the resulting tensors afterward. It is important to
double-check everything when preparing the input data. Otherwise, it is hard to
know if the network does not learn because of its architecture, because of faulty
input data, because of poorly chosen algorithmic hyperparameters such as the
learning rate, or because the task simply cannot be learned with available data.
Even worse, it can often be the case that a network can make some sense of
faulty input data, so it might still learn but not as well as it could have done.

CREaTINg a SImPlE RNN

We are finally ready to define our network and start some experiments. given
all the code we have gone through so far, it is almost anticlimactic to read Code
Snippet 9-6, where we define and train a simple RNN.

We start with a simple network with a single recurrent layer with 128 neurons
using rectified linear unit (RelU) as an activation function. The input_
shape=(None, 1) instructs that the number of timesteps is not fixed (None)
and each timestep has a single input value. given that all of our input examples

Create RNN model

model = Sequential()

model.add(SimpleRNN(128, activation='relu',

 input_shape=(None, 1)))

model.add(Dense(1, activation='linear'))

model.compile(loss='mean_squared_error', optimizer = 'adam',

 metrics =['mean_absolute_error'])

model.summary()

history = model.fit(train_X, train_y,

 validation_data

 = (test_X, test_y), epochs=EPOCHS,

 batch_size=BATCH_SIZE, verbose=2,

 shuffle=True)

Code Snippet 9-6 defining a Two-layer model with One Recurrent layer and One
dense layer

PROgRammINg ExamPlE: FORECaSTINg BOOk SalES

259

have the same number of timesteps, we could have specified that number instead
of None. Sometimes this results in faster runtime of keras. The recurrent layer is
followed by a fully connected feedforward layer with a single neuron and linear
activation because we want to predict a numerical value. Because we use a linear
activation function, we use mean squared error (mSE) as our loss function. We
also print out the mean absolute error (maE), just for our own information.
We train the network for 100 epochs using a batch size of 16. as usual, we shuffle
our input examples. Before training begins, we see the following printout:

Layer (type) Output Shape Param #

===

simple_rnn_1 (SimpleRNN) (None, 128) 16640

dense_1 (Dense) (None, 1) 129

===

Total params: 16,769

Trainable params: 16,769

Non-trainable params: 0

Train on 259 samples, validate on 56 samples

as usual, we want to sanity check the output and look for any mistakes in our
configuration. Starting with number of parameters, we have 128 neurons in
the recurrent layer, and each of them receives 1 input value from the input,
128 recurrent inputs, and one bias input; that is, there are 128 × (1 + 128 + 1) =
16,640 weights to learn. The output neuron has 128 inputs from the previous
layer and a single bias input, or 129 weights to learn. Further, we have 339
months’ worth of historical data, which we split up into 271 months for training
and 68 months for test. We set the minimum length for an example to be 12, so
we end up with 271 − 12 = 259 training examples and 56 test examples. all of
this matches the printout.

after training for 100 epochs, we arrive at a training and test mSE of 0.0011
and 0.0022 respectively and a training and test maE of 0.0245 and 0.0346
respectively. a key question is whether this result is good or bad. Fortunately, we
defined a naïve model that we can use as a comparison point. When we defined
the naïve model, we did it on the nonstandardized data, whereas mSE and maE

ChaPTER 9 PREdICTINg TImE SEqUENCES WITh RECURRENT NEURal NETWORkS

260

from keras is computed from the standardized data. Thus, we create a new
version of our naïve predictions based on standardized data in Code Snippet 9-7.

a word of caution is in order when doing NumPy calculations on various
arrays. It is important that you know exactly what you are doing and that you
have the right dimensions. as an example, if one NumPy array is defined with
shape=(N, 1) and another is defined with shape=(N), although both of
them seem like vectors, when you subtract one from the other, you will end up
with a 2d array with shape=(N, N), which will give you incorrect values of
mSE and maE.

Our implementation prints out the following:

naive test mse: 0.0937

naive test mean abs: 0.215

Comparing this to the RNN with a test mSE of 0.0022 and test maE of 0.0346
indicates that the RNN is doing a significantly better job than our naïve model.
To shed some light on how this affects the end behavior, let us use our newly
trained model to do some predictions and then plot these predictions next to the
actual values. Code Snippet 9-8 demonstrates how this can be done. We first

Create naive prediction based on standardized data.

test_output = test_sales_std[MIN:]

naive_prediction = test_sales_std[MIN-1:-1]

mean_squared_error = np.mean(np.square(naive_prediction

 - test_output))

mean_abs_error = np.mean(np.abs(naive_prediction

 - test_output))

print('naive test mse: ', mean_squared_error)

print('naive test mean abs: ', mean_abs_error)

Code Snippet 9-7 Computing Naive Prediction, mSE, and maE on Standardized
data

We have spent a nonnegligible amount of time chasing down a bug caused by
incorrect array dimensions when computing mSE manually.

PROgRammINg ExamPlE: FORECaSTINg BOOk SalES

261

call model.predict with the test input as argument. The second argument
is the batch size, and we state the length of the input tensor as the batch size
(i.e., we ask it to do a prediction for all the input examples in parallel). during
training, the batch size will affect the result, but for prediction, it should not
affect anything except for possibly runtime. We could just as well have used
16 or 32 or some other value. The model will return a 2d array with the output
values. Because each output value is a single value, a 1d array works just as
well, and that is the format we want in order to enable plotting the data, so we
call np.reshape to change the dimensions of the array. The network works
with standardized data, so the output will not represent demand directly. We
must first destandardize the data by doing the reverse operation compared
to the standardization. That is, we multiply by the standard deviation and add
the mean.

We then plot the data. This is shown in Figure 9-12, where we see that the
predictions make sense.

Use trained model to predict the test data

predicted_test = model.predict(test_X, len(test_X))

predicted_test = np.reshape(predicted_test,

 (len(predicted_test)))

predicted_test = predicted_test * stddev + mean

Plot test prediction.

x = range(len(test_sales)-MIN)

plt.plot(x, predicted_test, 'm-',

 label='predicted test_output')

plt.plot(x, test_sales[-(len(test_sales)-MIN):],

 'g-', label='actual test_output')

plt.title('Book sales')

plt.axis([0, 55, 0.0, 3000.0])

plt.xlabel('months')

plt.ylabel('Predicted book sales')

plt.legend()

plt.show()

Code Snippet 9-8 Using the model to Predict Both Training and Test Output and
destandardizing the Results

ChaPTER 9 PREdICTINg TImE SEqUENCES WITh RECURRENT NEURal NETWORkS

262

COmPaRISON WITh a NETWORk WIThOUT RECURRENCE

In the previous section, we compared the RNN to a naïve prediction. another
relevant comparison is to compare it to a simpler network model to see if we
benefitted from the complexity added to the model. In particular, it would be
interesting to understand whether the ability to look at long input sequences
is beneficial by comparing to a regular feedforward network presented with
a limited history. We need to make two changes, shown in Code Snippet 9-9,
to try this comparison. First, we drop much of the history to keep only the last
12 months of each input example. We then create a feedforward network instead
of the recurrent network. The first layer in the feedforward network flattens the
input shape to a single dimension, that is, the time dimension is removed.

Figure 9-12 model output compared to the test data

Code Snippet 9-9 Reducing the lookback Period to 7 days

Reduce lookback period in input.

train_X = train_X[:, (train_months - 13):, :]

test_X = test_X[:, (test_months - 13):, :]

PROgRammINg ExamPlE: FORECaSTINg BOOk SalES

263

The first fully connected layer has 256 units, which is more units than the
recurrent layer had in our previous example. On the other hand, each unit in
the recurrent layer has more weights, so in total, the recurrent network has
more trainable parameters. We used the constructs introduced previously and
compared the result to our RNN. The test error for the feedforward network
ended up being 0.0036 as opposed to 0.0022 for our RNN. In other words, the RNN
achieves a 39% lower error. It seems that using the longer history was beneficial,
which is not surprising.

ExTENdINg ThE ExamPlE TO mUlTIPlE INPUT VaRIaBlES

It is relatively straightforward to modify the programming example to work with
multiple input variables for each timestep. The key changes are shown in Code
Snippet 9-10. The code snippet assumes that we have first read and standardized
a second file of input data and placed the contents into the two variables train_
sales_std2 and test_sales_std2. In reality, you would want to change
the implementation to handle an arbitrary number of input variables instead
of hardcoding it to two. The changes and additions compared to the previous
example are highlighted in yellow.

Create feedforward model.

model.add(Flatten(input_shape=(12, 1)))

model.add(Dense(256, activation='relu'))

model.add(Dense(1, activation='linear'))

Code Snippet 9-10 Creating Input data and a model with Two Input Variables per
Timestep

Create train examples.

train_months = len(train_sales)

train_X = np.zeros((train_months-MIN, train_months-1, 2))

train_y = np.zeros((train_months-MIN, 1))

for i in range(0, train_months-MIN):

 train_X[i, -(i+MIN):, 0] = train_sales_std[0:i+MIN]

 train_X[i, -(i+MIN):, 1] = train_sales_std2[0:i+MIN]

 train_y[i, 0] = train_sales_std[i+MIN]

ChaPTER 9 PREdICTINg TImE SEqUENCES WITh RECURRENT NEURal NETWORkS

264

dataset Considerations for RNNs
In the programming example in this chapter, we created our own dataset using
raw sales data. There are a couple of issues worth pointing out. First, when
working with time series data, it is important to consider how the time dimension
interacts with the way we split the data into training and test data. In our
programming example, we first split the raw data into two chunks. We used the
chunk representing the oldest data to create our training examples and the more
recent chunk to create our test examples. a potential pitfall is to instead create a
number of examples (input sequence plus ground truth) and shuffle them before
dividing into a training set and test set. If we used this methodology, we would
include “future” data points in the training set and “historical” data points in the
test set. This is most likely not representative of how the model will be used in
practice, and there is a significant risk that the test set will give optimistic result
when evaluating the model. That is, you should be careful to not include future
data in the training set.

another thing to consider is whether to create training and test examples of
different lengths or to use a fixed length. In our example, we created examples of
variable lengths, where the longest input example was as long as it possibly could
be given the raw input data. We then padded the other examples with zeros to
result in the same length. The zero padding was used because the dl framework
requires all examples in a mini-batch to be of the same length. another common
approach is to pick a fixed length that is shorter than the raw data allows for and
make all training examples be of that same length. The drawback of this approach
is that the model is not provided with the opportunity to learn long dependencies.

Create test examples.

test_months = len(test_sales)

test_X = np.zeros((test_months-MIN, test_months-1, 2))

test_y = np.zeros((test_months-MIN, 1))

for i in range(0, test_months-MIN):

 test_X[i, -(i+MIN):, 0] = test_sales_std[0:i+MIN]

 test_X[i, -(i+MIN):, 1] = test_sales_std2[0:i+MIN]

 test_y[i, 0] = test_sales_std[i+MIN]

…

model.add(SimpleRNN(128, activation='relu',

 input_shape=(None, 2)))

CONClUdINg REmaRkS ON RNNS

265

Concluding Remarks on RNNs
There are a few more issues worth pointing out before moving on to more
advanced units for recurrent networks in Chapter 10. One thing is that the
programming examples in this chapter technically did not model deep recurrent
networks, because we had a single recurrent layer followed by a single neuron.
although the distinction between a shallow and a deep network often does not
matter in practice, one thing that does matter is that we did not stack multiple
recurrent layers on top of each other. When stacking recurrent layers in keras,
there is one detail that needs to be adjusted. The output from our model so far
has been a single value predicting the sales for the month after the sequence
of months that were used as input. In reality, a recurrent layer produces an
output for each timestep, which is fed back as inputs to the layer. keras does this
internally, and the default behavior is to hide this from the user and output only
the last value, with the assumption that this is the desired behavior. however,
if the output of a recurrent layer is fed as input to another recurrent layer, then
that second recurrent layer expects to see the output from each timestep instead
of receiving only the output for the final timestep. Thus, we need to tell keras
to change its behavior and output the values for each timestep. This is done by
setting the parameter return_sequences to True when creating the layer.

We also did not experiment with dropout in this chapter. When applying dropout
for recurrent layers, it can be applied to the connections between layers, to the
recurrent connections, or to both (Zaremba, Sutskever, and Vinyals, 2015). In
keras, the RNN layer constructor parameter recurrent_dropout controls
dropout on the recurrent connections.

Finally, it is worth considering how weight sharing in RNNs relates to weight
sharing in convolutional neural networks (CNNs). as previously stated, if an RNN

When stacking multiple recurrent layers on top of each other in keras, you
must set return_sequences to True. When return_sequences is set to False,
only the last timestep will be presented in the output.

details of how dropout works for RNNs would be a good topic for further
reading (Zaremba, Sutskever, and Vinyals, 2015).

ChaPTER 9 PREdICTINg TImE SEqUENCES WITh RECURRENT NEURal NETWORkS

266

is unrolled, we can view it as doing weight sharing between layers, whereas a
CNN does weight sharing within a layer. a benefit that we described when we
looked at CNNs for image classification is that the network is translation invariant,
where translation refers to the action of moving an object from one location to
another inside the image. This invariance results from the same weights being
used by neurons in all locations. Even if the network was trained to identify an
object in one location, neurons in other locations will also learn this. Similarly,
an RNN will learn to identify patterns in a sequence irrespective of where in
the sequence it appears. This is beneficial because many sequences do not
necessarily have a specific starting point, but we choose to start sampling at an
arbitrary timestep. It turns out that CNNs can also be used on time series data by
first unrolling the time series into a 1d vector and then applying 1d convolution
(as opposed to 2d convolution that was used for image data) on this unrolled time
series. One drawback is that it becomes impractical to handle arbitrarily long
sequences, in which case RNNs have an advantage.

One of the first recurrent networks that we are aware of is the hopfield network
(hopfield, 1982). We mention this for historical purposes. you will benefit from
reading more recent papers. For additional information about the history of RNNs,
a survey paper by lipton, Berkowitz, and Elkan (2015) provides a good overview.
That paper contains references to additional papers from when RNNs first were
introduced in the 1980s.

267

Chapter 10

Long Short-Term
Memory

In this chapter, we start by diving deeper into the vanishing gradient problem
that can prevent recurrent networks from performing well. We then present
an important technique to overcome this problem, known as long short-term
memory (LSTM), introduced by Hochreiter and Schmidhuber (1997). LSTM is a
more complex unit that acts as a drop-in replacement for a single neuron in a
recurrent neural network (RNN). The programming example in Chapter 11, “Text
Autocompletion with LSTM and Beam Search,” will illustrate how to use it by
implementing an LSTM-based RNN for autocompletion of text.

The internal details of the LSTM unit are somewhat tricky, which can make this
chapter challenging to get through if you are learning about LSTM for the first
time. If that is the case, you can consider skimming this chapter the first time
around and focus primarily on how the LSTM units are combined into a network.
You can go back to the internal details of the LSTM unit later.

Keeping Gradients Healthy
We have mentioned the vanishing and exploding gradient problems multiple
times in this book, and the reason is that they are key obstacles that must be
overcome to enable training of neural networks with gradient-based methods.

CHAPTER 10 LoNG SHoRT-TERM MEMoRY

268

These problems get even worse in RNNs because of the large number of
timesteps that the gradient needs to travel through when training with
backpropagation through time (BPTT) in combination with weight sharing across
timesteps. For these reasons, this section provides some more thoughts on the
topic. We introduce additional techniques and insights as well as summarize what
has been presented in previous chapters.

Let us start by restating what these problems are and what causes them.
When training a network with gradient descent, we need to compute the
partial derivative of the error with respect to each weight so we can arrive at
a suggested adjustment for each weight. We compute these partial derivatives
using the backpropagation algorithm. It turns out that the formula to compute the
adjustment for a specific weight includes multiplying the derivative of the error
by all the weights located between the weight in question and the output node
as well as by the derivative of all activation functions on the path between the
weight in question and the output. Figure 10-1 and Equation 10-1 illustrate this

We find the vanishing and exploding gradient problems somewhat boring
and would much rather spend our time on exploring new, cool network
architectures. However, sometimes you just have to bite the bullet and go
through some boring stuff to get to the fun stuff. After all, there is nothing cool
about a network architecture that refuses to learn.

W3
N3

W2

N2

W1

x1 x2

N1

Back-
propagation

yout

Figure 10-1 Backpropagation of error through a network

KEEPING GRAdIENTS HEALTHY

269

for a feedforward network assuming the mean squared error (MSE) as the loss
function.

1

3 3 2 2 1 1

e

w
y y N w N w N xout()∂

∂
= − − ⋅ ′ ⋅ ⋅ ′ ⋅ ⋅ ′⋅

Equation 10-1 Formula for backpropagation. The variable y represents the
desired value, and y

out
 represents the value predicted from the network. The

predicted value is often represented by the variable ŷ.

Thus, if either the weights or the derivatives are small, we observe the vanishing
gradient problem, where the adjustment value becomes vanishingly small and the
network stops learning. The opposite problem is when the weights or derivatives
are large and we observe the exploding gradient problem, which suggests a large
weight adjustment that can throw off the learning process completely. In addition,
for RNNs, because we unroll the network through time, we repeatedly multiply
the backpropagated error by the same weight. This means that even moderate
deviations from 1.0 will result in vanishing (if the weight is <1.0) or exploding
(if the weight is >1.0) gradients.

Starting with the activation function, as previously explained, for S-shaped
(both logistic and tanh) activation functions, the derivative approaches 0 for both
large negative and positive values; that is, the neuron is being saturated. This
was previously shown in Chapter 3, “Sigmoid Neurons and Backpropagation,”
Figure 3-4.

one thing that we have not discussed yet is that the logistic function, even when
not saturated, always attenuates the error as it propagates backward. Figure 10-2
shows a zoomed-in version of the tanh and logistic sigmoid functions as well
as their tangents at the points of their steepest derivatives. As you can see, the
maximum slope of the logistic sigmoid function is smaller than the maximum
slope of the tanh function. The max value of the derivative of the logistic sigmoid
function is 0.25, whereas the max value for the derivative of tanh is 1.0. This is yet
another reason that tanh is preferable over the logistic sigmoid function.

Although the max value of the derivative of tanh is 1.0, the gradient can still
vanish if the neurons are in their saturation region. We have discussed multiple

The maximum value of the derivative of the logistic sigmoid function is 0.25,
so the error will always be attenuated as it is passed backward through the
network.

CHAPTER 10 LoNG SHoRT-TERM MEMoRY

270

techniques for keeping the neurons in their nonsaturated region. Two examples
are to initialize weights with Glorot or He initialization and to use batch
normalization inside of the network.

Instead of trying to keep neurons out of their saturation region, another solution
to the problem is to use nonsaturating nonlinear functions such as leaky rectified
linear unit (ReLU) or just the regular ReLU function that saturates only on one side.

For the exploding gradient problem, a straightforward solution is gradient
clipping, which artificially adjusts the gradient to be smaller in cases when it
blows up. It might sound like batch normalization and gradient clipping are
related because both seem to want to limit the range of the value, but they are
different from each other. Batch normalization aims at adjusting the value during
the forward pass through the network to keep the neurons in their active region
(i.e., batch normalization aims as keeping the gradient from vanishing by avoiding
saturation). Gradient clipping, on the other hand, aims at avoiding exploding
gradients by adjusting the gradient itself during the backward pass.

Batch normalization avoids vanishing gradients, while gradient clipping
avoids exploding gradients.

Figure 10-2 Zoomed-in view of the tanh and logistic sigmoid functions and
tangents illustrating their max derivatives

KEEPING GRAdIENTS HEALTHY

271

The issues just described are applicable to both feedforward networks and RNNs,
but RNNs also have some unique properties and potential mitigation techniques.
Even in cases where the activation function is not a problem, such as if we use
a ReLU function with a constant derivative of 1, RNNs have the unique challenge
that BPTT results in multiplying the error by the same weight over and over due
to weight sharing across timesteps. As previously mentioned, with a large enough
number of timesteps, the only way to avoid vanishing and exploding gradients
is to use weights with a value of 1, which kind of defeats the purpose because
we want to be able to adjust the weights. However, it is possible to make use
of this observation and create a more complicated recurrent unit, which uses a
technique known as the constant error carousel (CEC). Using the CEC results in a
behavior similar to weight values of 1 during backpropagation. LSTM is based on
the CEC technique and is described in the next couple of sections.

Finally, as described in the context of ResNets in Chapter 8, “deeper CNNs and
Pretrained Models,” skip connections can help training of very deep networks.
The exact reasons that skip connections help can be debated, and different
explanations have been hypothesized in different studies (He et al., 2015a; Philipp,
Song, and Carbonell, 2018; Srivastava, Greff, and Schmidhuber, 2015;). one
reason is that skip connections address vanishing gradients. Skip connections
share some behavior with the CEC. We touch on this relationship in the section
“Related Topics: Highway Networks and Skip Connections.”

For reference, all the techniques to fight vanishing and exploding gradients
that we discuss are summarized in Table 10-1. The way we understand it, the
term vanishing gradient is reserved for the cases where the gradient gradually
vanishes because of a deep network (in space or time). The gradient can come
close to 0 for reasons other than the vanishing gradient problem. Previous
chapters have described a couple of such examples and associated mitigation
techniques.

one such problem occurs when the neurons in the output layer of the network
are based on the logistic sigmoid function. A problem with this function is that the
gradient is close to 0 if the neuron is saturated. one way to address it is to choose
a loss function that reverses the effect during backpropagation, such as the
cross-entropy loss function.

LSTM implements a technique known as CEC.

CHAPTER 10 LoNG SHoRT-TERM MEMoRY

272

Another problem is that if the input values to the network are of significant
magnitude, they force the neurons to go far into the saturation region. In our
programming examples, we have tried to avoid this problem by standardizing the
input values to be centered around 0 with moderate magnitude.

Introduction to LSTM
In this section, we introduce the LSTM cell. It is an example of the more general
concept of gated units. What this means will become apparent as we dive into the
details. LSTM is a complex unit, also known as cell, which is used as replacement

Table 10-1 Summary of Techniques to Mitigate Problems with Vanishing and
Exploding Gradients

TECHNIQUE

MITIGATES
VANISHING
GRADIENT

MITIGATES
EXPLODING
GRADIENT NOTES

Use Glorot or He
weight initialization

Yes No Applies to all
neurons

Batch
normalization

Yes No Applies to hidden
neurons

Nonsaturating
neurons such as
ReLU

Yes No Applies to all
neurons but output
layer is typically
considered
separately in light
of problem type

Gradient clipping No Yes Applies to all
neurons

Constant error
carousel

Yes Yes Applies only to
recurrent layers;
used by LSTM

Skip connections Yes No Can provide
additional benefits
(detailed in later
discussion of
ResNets)

INTRodUCTIoN To LSTM

273

for the simple neurons that we have used so far in our RNNs. The LSTM cell is
frequently used in modern RNNs. Just to set the expectations right, we state up
front that when first looking at a figure of an LSTM cell, it is indeed complex, and
a natural reaction is, “How could anybody possibly have come up with that design
as an alternative to a simple neuron, and does this cell have any connection to
reality?” The answer to the latter part of that question is simple. The LSTM cell is
an engineered solution and is not claimed to be biologically inspired, so it likely
does not have much of a connection to (a biological) reality.

The LSTM unit has no less than five(!) nonlinear functions, three of which are
logistic sigmoid functions known as the gates in the unit. The remaining two are
regular activation functions, which can take on any of the previously introduced
activation functions, with popular choices being tanh and ReLU. The unit also
contains four weighted sums, so the number of weights is four times as many as
in a simple RNN.

The modern LSTM unit that we describe in this section is an extended version that
Gers, Schmidhuber, and Cummins introduced (1999). This version is somewhat
more complex than the originally proposed LSTM cell, so do not be surprised if
you feel that something is missing if you compare it to what is described in the
original paper.

one way to avoid vanishing or exploding gradients in an RNN is to create a neuron
where the derivative of the activation function is 1 (the identity function f(x) = x
fulfills this property) and have a recurrent weight with the value 1. We recognize
that it seems somewhat useless to have a network with the identity function as
activation function and a weight of 1, but we will build upon this concept as we
walk through the inner workings of the LSTM cell.

The implication of using the identity function in combination with a weight of 1
is that the gradient does not vanish or explode during backpropagation when
we repeatedly multiply the error by the recurrent weight and the derivative of
the activation function. The left side of Figure 10-3 shows a simple RNN with a
recurrent layer consisting of a single neuron, followed by a feedforward output
layer with a single neuron. The neuron in the recurrent layer implements the
identity function and the recurrent weight is 1. This recurrent loop is known as the
CEC. The unrolled version of the network is shown to the right in the figure. In this

LSTM is an example of a gated unit. It consists of logistic sigmoid functions
known as gates in addition to traditional activation functions.

CHAPTER 10 LoNG SHoRT-TERM MEMoRY

274

unrolled version, it is clear that the error is constant as it backpropagates through
time because it is repeatedly multiplied by 1. Even in cases with extremely
long input sequences, the gradient will not vanish. Consequently, it can cause
updates even to the weight corresponding to the very first timestep, which can be
hundreds or thousands of timesteps ago. This is the key mechanism that LSTM
uses to address vanishing and exploding gradients. Instead of having the gradient
travel backward through weights, the CEC bypasses these weights and keeps the
gradient from vanishing or exploding.

Let us now ignore the backward pass for a while and step back to think about how
this network behaves during the forward pass. Let us assume that the input to the
network is 0.7 at the first timestep and is 0.0 during all other timesteps. The input
to the network will be multiplied by w

1
 and then presented to the neuron. Because

the neuron implements the identity function, the output will be 0.7w
1
. This value

will then circulate unchanged in the recurrent loop at each timestep. one way to
think of it is that this entire discussion about the CEC, which enables the error
to flow backward without vanishing, is simply a convoluted way of arriving at a
memory cell that remembers the input value from the first timestep until the end

An LSTM cell uses the CEC to make the gradient bypass the weighted
connections. This prevents the gradient from vanishing or exploding.

1 1 1

relu relu relu

Time

1.0 1.0 1.0

Unrolled in time

1

X(t) X(0) X(1) X(n)

relu

w2 w2 w2 w2

w1 w1 w1 w1

Layer 1
(recurrent)

Layer 2
(feedforward)

y(t–1)

w = 1.0

Recurrent network

CEC

Figure 10-3 Simple recurrent network with a constant error carousel

INTRodUCTIoN To LSTM

275

of time. This ability to remember values for an extended period of time is a key
property of the LSTM cell.

In this example, a simple RNN would also be able to remember the value,
although the fact that it is fed through the activation function at every timestep
would result in an output closer to 1. In addition to perfectly remembering the
value across many timesteps, the LSTM cell has functionality to control when to
update this memory cell. The reason such a mechanism is needed is not hard to
imagine. Let us assume a more complex network with multiple neurons in the
recurrent layer. We might want one of the neurons to remember the input value
from the first timestep but want another neuron to remember the input value
from the second, or some other, timestep. That is, somehow the network needs to
be able to control when to remember the input and when to ignore it. Previously,
we mentioned that LSTM is an example of a gated unit. The concept of a gate
allows for the ability to selectively decide when to remember a value.

one way to implement a gate is shown on the left side of Figure 10-4. Instead of
connecting the input x(t) directly to the neuron, we introduce a multiply operation
that multiplies x(t) by the output from a logistic sigmoid neuron (denoted Sig in the
figure). The logistic sigmoid neuron and the multiply operation act together as a
gate. The reason for this is that the logistic sigmoid neuron will output a value in
the range between 0 and 1. If the value is 0, then the gate is closed because the
input x(t) will be multiplied by 0 and none of its value is captured. If the value is 1,

An LSTM cell can latch on to a value and remember it for a long period of time.

**

1
CEC

Sig

*

y(t–1) y(t–1)

1
CEC

X(t)

Remember
gate

Remember
gate

w = 1.0

Sig Sig

Forget
gate

X(t)

Figure 10-4 Left: Constant error carousel (CEC) augmented with a remember
gate. Right: CEC augmented with both a forget and a remember gate.

CHAPTER 10 LoNG SHoRT-TERM MEMoRY

276

then the full input value x(t) will be captured by the memory cell. The reason to use
a sigmoid function and not a step function is, as always, that we want the function
to be differentiable so we can train its weights with gradient descent.

Having the ability to remember is good, but it is also good to be able to forget. This
is shown in the right part of the figure where we have introduced a forget gate
that can break the CEC loop. If the gate is open, the internal state will be updated
with the state from the previous timestep, but if it is closed, the previous state will
be forgotten. This enables the network to reuse this memory cell in cases where
it needs to remember a value for a few timesteps and then no longer needs it but
instead needs to remember some other value.

We are now ready to present the full LSTM cell, which is based on the concepts
just introduced. It is shown in Figure 10-5. In addition to the remember and forget
gates, there is a gate that controls whether or not the remembered value should be
sent to the output of the cell. The neuron in the CEC, which implements the identity
function, is replaced by a node marked with a + (because that is how it is typically
shown in the literature). It is worth noting that adding together inputs is exactly
what a neuron does, so this is nothing different than a regular neuron with weights
of 1.0 and a linear activation function and only two inputs and no bias. In addition
to the gates, there is an input neuron with an arbitrary activation function (stated
as “In Act” for input activation), and the output from the cell is also run through an
arbitrary activation function (stated as “out Act” for output activation) at the top of
the figure. The output activation is just the activation and not a weighted sum since
it only receives a single value from the multiplication operation in the output gate.
It is common to use tanh as both input and output activation functions, but we will
discuss this in a little bit more depth further down.

The four neurons at the bottom of the figure all receive multiple inputs. This
is denoted by three arrows, but the number is arbitrary and depends on the
number of neurons in the layer (which affects the size of h) and the size of the
input vector x. All of these inputs have weights that need to be learned. The other
internal units do not have any weights, and the internal connections in the figure
are not vectors but single valued connections.

It is also good to have the ability to forgive, but our networks are not even close
to modeling such human behavior.

Multiplying a value by the output of a logistic sigmoid function results in the
logistic sigmoid function acting as a gate.

INTRodUCTIoN To LSTM

277

LSTM ACTIVATIoN FUNCTIoNS

Let us now spend some time on discussing the activation functions. It seems
somewhat counterintuitive that we spent entire sections in previous chapters on
describing the problems with the S-shaped function and now introduce a unit with
three logistic sigmoid functions and two additional activation functions, which
often happen to be the tanh function.

There are a couple of things to consider here. First, given that the CEC is
introduced, it will prevent some of the problems with vanishing gradients
normally associated with S-shaped functions. We say some of the problems, not
all problems, because the CEC is effective only when the gates are in a state that
does let the error propagate unchanged. If the forget gate is closed, none of the
error will propagate through the CEC, and it will again have to go through the tanh
activation function. The recommended way to address this problem is to initialize
the bias to the forget gate to 1 so that the error can freely flow backward to begin
with. Another thing to consider is that the CEC only helps with gradients that
vanish because of BPTT, but an RNN also has regular backpropagation where the

Sig Sig Sig

f r

o

*

c(t–1)

*

+

Out
Act

In
Act

*

LSTM Cell

CEC

Forget
gate

Remember
gate

Output
gate

(x(t), h(t–1)) (x(t), h(t–1)) (x(t), h(t–1)) (x(t), h(t–1))

hi
(t)

Figure 10-5 Left: LSTM cell using similar notation as above. Right: LSTM cell
as depicted in original publication. (Source: Gers, F., Schmidhuber, J., and
Cummins, F., “Learning to Forget: Continual Prediction with LSTM,” Ninth
International Conference on Artificial Neural Networks (ICANN 99), 1999.)

CHAPTER 10 LoNG SHoRT-TERM MEMoRY

278

error is traveling from one layer to another (the vertical direction in Figure 10-3).
In other words, it can certainly be beneficial to use a ReLU function as input and
output activation functions in the LSTM.

Another question regarding the input and output activation functions is why it is
necessary to have both of them: Why is one not sufficient? one effect of having
the output activation function is that we have better control of the output range.
For example, if tanh is used as output activation, we know that the cell will always
output a value between −1 and 1. on the other hand, as described shortly, gated
units with only a single activation function do exist.

For the gating functions, the reason for using logistic sigmoid functions is that
we want them to act as gates, and to achieve that, we want the output range to
be between 0 and 1, which is a key property of the logistic sigmoid function. We
could use any other function that has that same property. The challenge is how to
construct a function that has a fixed range but still does not saturate (i.e., without
derivatives that approach 0 in one or both ends).

CREATING A NETWoRK oF LSTM CELLS

Figure 10-6 shows how multiple LSTM cells are connected into a recurrent
network layer. This is just like a regular RNN, but each neuron has been replaced
by the more complex LSTM cell. This results in a network with two sets of state.
We have the internal state (c) inside of each LSTM cell, but we also have the state
(h) in the global recurrent connections just as in an RNN that is based on simple
neurons.

The figure makes it obvious that an LSTM based RNN has four times as
many parameters (weights) to train as a regular RNN. In addition to the input
activation neurons, there are also three gate-neurons that each receives the
same number of inputs as the input neuron. Thus, the total number of weights
for a single layer with an input vector of length M, and with N LSTM-units is
N*4*(N+M+1), where the first N is the number of LSTM-units, 4 is the input

We believe that one reason that tanh is still popular is that many RNNs are not
as deep as feedforward networks, so the vanishing gradient problem between
layers is not as severe.

INTRodUCTIoN To LSTM

279

neuron and gates in each unit, and N+M+1 is the number of inputs to each
neuron including the bias.

Let us now summarize the behavior of an LSTM layer. Each cell has an internal
state. At each timestep, this internal state gets updated. The new value is a
weighted sum of the internal state from the previous timestep and the input
activation function for the current timestep. The weights are dynamically
controlled and are known as gates. The inputs to the input activation function
result from a concatenation of the outputs from the previous layer (x) as well
as the outputs from the current layer from the previous timestep (h), just as in
a regular RNN. Finally, the output of the LSTM layer is computed by feeding the
internal state through the output activation function and multiplying the result by
another gate. All the gates are controlled by a concatenation of x and h.

*

+

*

Sig Sig Sig SigSig Sig

Out
Act

In
Act

In
Act

*

LSTM Cell 1 LSTM Cell N

h1
(t) hN

(t)

CEC CEC

h1
(t–1)

c(t–1)

*

+

Out
Act

* *

X2
(t) X3

(t)X1
(t)

hN
(t–1)

c(t–1)

Figure 10-6 Recurrent layer built from LSTM cells. This figure does not show
unrolling in time.

An LSTM cell has four times as many weights as a simple neuron in an RNN.

CHAPTER 10 LoNG SHoRT-TERM MEMoRY

280

Alternative View of LSTM
In our description, we have referred to individual LSTM units as cells, and we
connect multiple cells into a layer. This terminology is not consistently used in the
deep learning (dL) field, but sometimes an entire layer is called a cell. Ignoring
terminology for a moment, it is common that figures and descriptions of different
types of units are done in the context of the entire layer. A key reason for this
is that it enables convenient drawings of networks unrolled in time, as we saw
in Chapter 9, “Predicting Time Sequences with Recurrent Neural Networks,”
Figure 9-6. However, it also comes with the risk of confusion because it hides
some of the actual connections, so we recommend being careful when using this
abstraction.

A common way of drawing LSTM was introduced in a popular blog post that
explains how LSTM works (olah, 2015). We walk through reproduced versions of
some of olah’s figures, but we also recommend reading the blog post for more
details. Figure 10-7 shows an LSTM layer unrolled in time for three timesteps.
For each timestep, the layer receives c and h from the previous timestep and x
from the current timestep and outputs new values for c and h.

The middle part of the figure shows the internals of the LSTM layer. Each
rectangle represents multiple neurons (the same number as the number

LSTM is often thought about in terms of entire layers rather than individual
units. In some texts, a cell refers to an entire layer of units rather than to a
single unit.

tanh

tanh
x

σ σ σ

+

x xTimestep t–1

h(t–2) h(t–1)

h(t–1) h(t)

c(t)

X(t–1) X(t+1)X(t)

h(t)

c(t–2)

Timestep t+1

c(t–1) c(t+1)

h(t+1)

h(t+1)

Figure 10-7 LSTM layers unrolled in time. (Adapted from olah, C.,
“Understanding LSTM Networks” (blog), August 2015, https://colah.github.io/
posts/2015-08-Understanding-LSTMs.)

https://colah.github.io/posts/2015-08-Understanding-LSTMs
https://colah.github.io/posts/2015-08-Understanding-LSTMs

ALTERNATIVE VIEW oF LSTM

281

of LSTM units in the layer), where each neuron receives a vector of inputs
and produces a single output. The ones marked with the Greek letter
sigma (σ) represent the gates, and the ones marked tanh represent the
input and output activation functions. The curved line from x(t) represents a
concatenation; that is, we form a wider vector, which contains the elements of
both h(t−1) and x(t). All other operations (represented by circles/oval) represent
multiple instances (the same number as the number of LSTM units in the
layer) of the operation, where each of these instances receives a single input
value (as opposed to a vector for the rectangles) and produces a single output
value.

Finally, another common way of presenting different kinds of gated units is in
matrix form. Equation 10-2 describes an LSTM layer.

 σ ()= +() () ()−f h x bf fWt t t , 1 (1)

 σ ()= +() () ()−i h x bi iWt t t , 1 (2)

 Wt t ttanh , 1C h x bC C
� ()= +() () ()− (3)

= +() () () () ()−C f C i C�t t t t t* *1 (4)

 σ ()= +() () ()−o h x bo oWt t t , 1 (5)

t t t* tanh() ()h o C()= () (6)

Equation 10-2 Equations describing an LSTM layer

The forget gate and input gate are described by (1) and (2). The candidate
update function is described by (3), and (4) uses this candidate and the input
gate and forget gate to compute the new cell value. Finally, (5) describes the
output gate, and (6) uses this gate and the new cell value to determine the
output of the cell. These equations are terse and can be hard to grasp at first.
To gain a deeper understanding, we recommend translating each of them into
a figure of the equivalent neurons and connections. For example, (1) translates
into a single layer of sigmoid neurons, where the input vector is a concatenation
of h(t−1) and x(t).

CHAPTER 10 LoNG SHoRT-TERM MEMoRY

282

Related Topics: Highway Networks and
Skip Connections

As described in Chapter 8, the skip connections in ResNets were introduced
to address the observation that the network did not learn, but the lack of
learning was not due to vanishing gradients. Instead, He and colleagues (2015a)
hypothesized that the learning algorithm was having a hard time finding the right
solution and that the skip connections would help the algorithm look in the right
place (closer to the identity function). However, before being used in ResNets,
various forms of skip connections were used in other settings, and interestingly,
in some of those settings, the intent was to address the vanishing gradient
problem. This usage is related to the LSTM described in this chapter. The CEC
used in LSTM enables gradients to flow unchanged through the unrolled network
during the backward pass when doing BPTT. Similarly, skip connections provide
shortcuts where gradients can flow unchanged through the network during the
backward pass in a regular feedforward network.

We recognize that this can cause some confusion, because it does seem likely
that the skip connections help with the vanishing gradient problems even in
ResNets. It is hard to tell for sure. He and colleagues employed a number of other
techniques to address the vanishing gradient problem. They also inspected the
gradients in the baseline network without skip connections and observed that
they were not vanishing. Thus, it seems like the hypothesis described by He and
colleagues is a more likely explanation of why skip connections are beneficial in
the case of ResNets.

Another related technique is known as highway networks (Srivastava, Greff, &
Schmidhuber, 2015). A highway network contains skip connections, but the
contribution from both the skip connections and the regular connections can be
dynamically adjusted by the network. This is done using the same kind of gates as
we have seen in LSTM. In fact, highway networks were inspired by LSTM.

Concluding Remarks on LSTM
Looking at the LSTM implementation, a reasonable question is whether it is
possible to come up with a simpler version of the unit that still implements the
CEC. The gated recurrent unit (GRU), introduced by Cho and colleagues (2014a)
is an example of such a simplification. It is simpler in that it does not have an

CoNCLUdING REMARKS oN LSTM

283

internal cell state; it has only a single activation function, and the forget and
remember gates are combined into a single update gate. details of the GRU
implementation can be found in Appendix H.

After looking at the details of LSTM and GRU, it becomes clear that there is
nothing magic about those specific designs, and it is easy to envision further
variations on gated units. one such variation is to add so-called peephole
connections to the LSTM unit where the gates receive additional inputs from the
internal c-state of the model (Gers, Schraudolph, and Schmidhuber, 2002). There
are also other variations with additional simplifications of the GRU (Heck and
Salem, 2017).

Now that we know the basics about RNNs and the LSTM cell, we are ready
to move on to our first natural language processing (NLP) example, namely,
autocompletion of natural language text.

LSTM and GRU are the most popular units used in RNNs. There is no need to
learn more about the other variations at this point, but it is an interesting topic
for further reading (Heck and Salem, 2017).

This page intentionally left blank

285

Chapter 11

Text Autocompletion
with LSTM and Beam
Search

In Chapter 9, “Predicting Time Sequences with Recurrent Neural Networks,”
we explored how to use recurrent neural networks (RNNs) for prediction of
numerical values. In this chapter, instead of working with a time sequence of
numerical values, we apply our RNN to natural language text (English). There
are two straightforward ways of doing this. We can view text as a sequence of
characters or as a sequence of words. In this chapter, we look at it as a sequence
of characters because that is the simplest way to get started. In many cases, it is
more powerful to work with words than with characters, and this is explored in
the next couple of chapters.

In addition to working with text instead of numerical values, we demonstrate how
to use the model with variable input lengths as well as how to predict multiple
timesteps instead of just the one step immediately following the input data.

Encoding Text
To use text as input to our RNN, we need to first encode it in a suitable manner.
We use one-hot encoding just as we did for categories in our image classification
problems. One-hot encoding works fine for characters, given that a typical

ChaPTER 11 TExT auTOCOmPlETION WITh lSTm aNd BEam SEaRCh

286

alphabet contains only tens of characters. as a side note, one-hot encoding
words is less efficient: It results in much wider vectors because the width of the
input vector is the same as the total number of symbols to encode, and a typical
language contains tens or hundreds of thousands of words.

To make this more concrete, assume that text consists only of lowercase
characters and no special symbols such as period, comma, exclamation mark,
space, or linefeed. We can then encode a character as a one-hot encoded vector of
width 26 because there are 26 lowercase characters in the English language. We
can now define an RNN that takes a 26-element vector as its x-input, and we can
end it with a fully connected softmax layer with 26 outputs. Now we can present
a text sequence to the network by feeding it with a single one-hot encoded
character for each timestep, and the softmax output can be interpreted as what
the network predicts as the next character. The highest-value output represents
the character that the network finds most likely to be the next character. The
output with the second-highest value corresponds to the second-most likely next
character, and so on.

Figure 11-1 illustrates the recurrent network unrolled in time. at timestep 0, the
letter h is presented as input to the network, followed by e, l, and l in the next
three timesteps. The prediction from the network in the last timestep is o; that is,
the network predicts the last character in the word hello. Obviously, the network
will predict something during the first few timesteps as well, but we ignore the
outputs during those timesteps because we know that we have not yet presented
the entire input sequence.

In most cases, we would want to be able to handle uppercase characters
as well as special symbols, so the width of the one-hot encoded characters
would perhaps contain about 100 elements instead of 26. We will soon see a
programming example in which we use one-hot encoded characters with an RNN,
but first we discuss how to predict multiple timesteps into the future. That is
another property that we use in the programming example.

When working with text, it is common to use one-hot encoding to represent a
character.

lONgER-TERm PREdICTION aNd auTOREgRESSIvE mOdElS

287

longer-Term Prediction and
autoregressive models

In the previous chapters, we predicted only the next value in a time sequence. It
is often beneficial to be able to predict longer output sequences than just a single
symbol. In this section, we discuss a few ways to predict multiple timesteps.

One simple way is to create multiple models, where each additional model
predicts a timestep further into the future. To illustrate this, consider a training
example that we provided to our book sales prediction model in Chapter 9. We
presented it with input data x(t−n), . . ., x(t−1), x(t), and the desired output value y(t+1). If
we had used the same input data but instead presented it with the desired output
value for a later timestep y(t+2), we would get a model that predicts two steps into
the future. We can then create yet another model that we train with y(t+3), and so
on. Now, given an input sequence x(t−n), . . ., x(t−1), x(t), we can present it to each of
our three models, and we get the predictions for the next three timesteps. This
approach is simple to implement but not so flexible, and there is also no sharing
or reuse between the models.

another option is to create a model that predicts m timesteps at once. We
would define the model to have m outputs, and each training example would
again consist of the input sequence x(t−n), . . ., x(t−1), x(t), but the desired output is
now a sequence y(t+1), y(t+2), . . ., y(t+m). here we get the potential benefit of reusing
parameters for predicting multiple timesteps, but we need to decide up front
how many timesteps into the future we want to predict, and if we want to predict
extremely long sequences, we end up with a large number of output neurons.

'h' 'e'

h(0) h(1)

R R

'l' 'l'

h(2) h(3)

R R

SMax SMax SMax SMax

'o'

Figure 11-1 Text prediction network with a recurrent layer and a fully connected
softmax layer. The rectangle labeled Smax is not only the mathematical softmax
function but a fully connected layer with softmax as an activation function.

ChaPTER 11 TExT auTOCOmPlETION WITh lSTm aNd BEam SEaRCh

288

One thing that kind of rubs us the wrong way with these two methodologies is that
we need to decide up front at training time how many timesteps we want to be
able to predict. Just as we want to be able to process input sequences of variable
lengths, we would like to dynamically choose the length of the output sequence.
There is a clever way of doing this for the case where the model predicts a future
value of a variable based solely on historical values of that variable (as opposed
to a collection of other variables). We simply take the predicted output value
for one timestep and feed it back as input to the model in the next timestep. We
can do this repeatedly for an arbitrary number of timesteps. a deep learning
(dl) model where the output of one timestep is used as the input value for the
next timestep is often called an autoregressive model. Outside of the dl field, an
autoregressive model is typically a linear model (hastie, Tibshirani, and Friedman,
2009). In the context of dl, it is used more broadly for any type of model (typically
nonlinear) where we use the output from one timestep as input in the next
timestep.

Now consider the problem of autocompletion of text. In this case, we have a
sequence of characters, and we want to predict a sequence of characters that
are likely to follow the input sequence. That is, a reasonable design of a neural
network for autocompletion of text is to take the network described in Figure 11-1
and first feed it the beginning of the sentence that we want to autocomplete.
This results in a predicted character on the output of the network. We then feed
this character back to the network as an input in an autoregressive manner.
Figure 11-2 illustrates how this is done.

We are not taking the output exactly as is and feeding it back as input. Remember
that the output is a probability distribution; that is, the network will assign a value
between 0 and 1 to each character. however, the inputs are expected to be one-
hot encoded—only the element corresponding to a single character should be set
to 1, and all other elements should be 0. Thus, we identify which character the
network predicts as the highest probability and feed the one-hot encoding for that
character back as input (autoregression). We do just that in the next programming
example, but first we introduce a technique that is needed to get multiple possible
predictions instead of just a single prediction.

long-term prediction can be done by repeatedly feeding the predicted output
back as inputs to the model. This works only if the network predicts all the
variables needed as input. It is known as an autoregressive model.

BEam SEaRCh

289

Beam Search
When doing autocompletion of text, it is common to want the model to predict
multiple alternative completions of a sentence. The algorithm beam search
accomplishes this. Beam search has been known since the 1970s but has become
popular in dl-based natural language processing, for example, for natural
language translation (Sutskever, vinyals, and le, 2014).

The algorithm works in the following way. Instead of always picking the single-
most probable prediction for each timestep, we pick N predictions, where N
is a constant known as the beam size. If we did so naïvely, we would have N

h(t+1)

'h' 'e'

h(t–1) h(t)

R R

'l' 'l'

h(t+2)

R R

SMax SMax SMax SMax

'o'

x(t–1) x(t) one-hot
version of

y(t)

one-hot
version of

y(t+1)

'l' 'l'
y(t–1) y(t) y(t+1) y(t+2)

Figure 11-2 Text prediction network with predictions fed back as inputs. The
network is initially fed the first two letters, h and e, for the first two timesteps, and
then the output is fed back to the input for the remaining timesteps. The output for
the first timestep is ignored.

When the output is a softmax function, we typically do not feed the exact output
back as input, but instead we identify the most probable element and use the
one-hot encoded version of that element as input to the network.

Beam search enables us to create multiple alternative predictions when
feeding back output as inputs to a network.

ChaPTER 11 TExT auTOCOmPlETION WITh lSTm aNd BEam SEaRCh

290

candidates after the first timestep, N×N candidates after the second timestep,
N×N×N candidates after the third timestep, and so on. To avoid this combinatorial
explosion, each timestep also involves pruning the number of candidates to keep
only the N most probable candidates overall. To make this more concrete, let us
look at the example illustrated in Figure 11-3, where we assume N = 2.

assume that we have just presented the sequence “W-h-a-t” followed by
a character space to the network. We get an output vector where the entry
corresponding to the character t has the highest probability (20%) and the
character d has the second-highest probability (15%). Because N = 2, we ignore all
other candidates. We feed the first candidate, t, back as input to the network, and
we find the two most probable outputs i (40%) and y (10%). In another copy of the
model, we instead feed the second candidate, d, back as input to the network and
find the two most probable outputs a (80%) and o (10%).

We now have the four candidates What ti, What ty, What da, and What do. We can
compute the overall probability for each of these four candidates by multiplying
the probabilities for each step. For example, What ti gets assigned the probability

What

t

d

What time

What type

What day

What does

20%

15%

40%

10%

80%

10%
o = 1.5% (15% × 10%)

a = 12% (15% × 80%)

y = 2.0% (20% × 10%)

i = 8.0% (20% × 40%)
What tile

What tyra

What dark

What dog

Figure 11-3 Beam search character by character with a beam size of two. at each
step, all but the two most probable alternatives (overall) are pruned.

PROgRammINg ExamPlE: uSINg lSTm FOR TExT auTOCOmPlETION

291

0.2 × 0.4 = 0.08. We now prune the tree and keep only the N most probable
candidates, which in our example are What ti (8%) and What da (12%).

There is one key observation worth pointing out. What t resulted in a higher
probability than What d. Still, at the next step, What da (which is a continuation of
What d) is assigned a higher probability than What ti (which is a continuation of
the more probable What t). This also implies that there is no guarantee that beam
search will find the most probable candidate overall, given that the most probable
candidate might well have been pruned early in the process. That is, in this
example, we arrive at What time and What day, but it might very well be that What
a night is the most probable alternative overall.

If you are familiar with search algorithms, you might notice that it is a breadth-
first search algorithm but where we limit the breadth of the search. Beam search
is also an example of a greedy algorithm.

We now have all the building blocks that we need to move on to our programming
example, where we implement all of this in practice.

Programming Example: using lSTm for
Text autocompletion

In this programming example, we want to create a long short-term memory
(lSTm)-based RNN, which can be used for autocompletion of text. To do that, we
need to first train our network on some existing text that can be used as a training
set. There are vast amounts of text data available online to use for exercises
like this, and some studies have even used the entire content of Wikipedia. For
simpler demo examples like the one in this chapter, we typically want something
smaller to avoid lengthy training times, and a popular choice is to just pick your
favorite book from project gutenberg.1 It is a collection of books that are no longer

1. https://www.gutenberg.org

No need to worry if you are not familiar with breadth-first search or greedy
algorithms. however, as always, you might want to consider learning about it in
the future.

https://www.gutenberg.org

ChaPTER 11 TExT auTOCOmPlETION WITh lSTm aNd BEam SEaRCh

292

copyrighted and are available in text format online. For this example, we chose
to use Frankenstein, which should be familiar to most readers (Shelley, 1818).
We simply downloaded the text file and saved it on our local computer to be
accessible to the code that is described next.

The initialization code is shown in Code Snippet 11-1. apart from the import
statements, we need to provide the path to the text file to use for training. We also
define two variables, WINDOW_LENGTH and WINDOW_STEP, which are used to
control the process of splitting up this text file into multiple training examples.
The other three variables control the beam-search algorithm and are described
shortly.

Code Snippet 11-2 opens and reads the content of the file, converts it all into
lowercase, and replaces double spaces with single spaces. To enable us to easily
one-hot encode each character, we want to assign a monotonically increasing
index to each character. This is done by first creating a list of unique characters.
Once we have that list, we can loop over it and assign an incrementing index to
each character. We do this twice to create one dictionary (a hash table) that maps
from character to index and a reverse dictionary from index to character.

import numpy as np

from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import Dense

from tensorflow.keras.layers import LSTM

import tensorflow as tf

import logging

tf.get_logger().setLevel(logging.ERROR)

EPOCHS = 32

BATCH_SIZE = 256

INPUT_FILE_NAME = '../data/frankenstein.txt'

WINDOW_LENGTH = 40

WINDOW_STEP = 3

BEAM_SIZE = 8

NUM_LETTERS = 11

MAX_LENGTH = 50

Code Snippet 11-1 Initialization Code

PROgRammINg ExamPlE: uSINg lSTm FOR TExT auTOCOmPlETION

293

These will come in handy later when we want to convert text into one-hot encoded
input to the network as well as when we want to convert one-hot encoded output
into characters. Finally, we initialize a variable encoding_width with the count
of unique characters, which will be the width of each one-hot encoded vector that
represents a character.

The next step is to create training examples from the text file. This is done by
Code Snippet 11-3. Each training example will consist of a sequence of characters
and a target output value of a single character immediately following the input
characters. We create these input examples using a sliding window of length
WINDOW_LENGTH. Once we have created one training example, we slide the
window by WINDOW_STEP positions and create the next training example. We add
the input examples to one list and the output values to another. all of this is done
by the first for loop.

Open the input file.

file = open(INPUT_FILE_NAME, 'r', encoding='utf-8')

text = file.read()

file.close()

Make lowercase and remove newline and extra spaces.

text = text.lower()

text = text.replace('\n', ' ')

text = text.replace(' ', ' ')

Encode characters as indices.

unique_chars = list(set(text))

char_to_index = dict((ch, index) for index,

 ch in enumerate(unique_chars))

index_to_char = dict((index, ch) for index,

 ch in enumerate(unique_chars))

encoding_width = len(char_to_index)

Code Snippet 11-2 Read File, Process Text, and Prepare Character mappings

ChaPTER 11 TExT auTOCOmPlETION WITh lSTm aNd BEam SEaRCh

294

We then create a single tensor holding all the input examples and another tensor
holding the output values. Both of these tensors will hold data in one-hot encoded
form, so each character is represented by a dimension of size encoding_
width. We first allocate space for the two tensors and then fill in the values using
a nested for loop.

as we did for the book sales prediction example, we have spent a considerable
amount of code on just preparing the data, which is something that you should
get used to doing. We are now ready to build our model. From the perspective
of training our model, it will look similar to the book sales prediction example,
but we use a deeper model consisting of two lSTm layers. Both lSTm layers

If you want to become more fluent in these types of compact expressions, then
you can consider reading about the concepts generators, list comprehension,
and dict comprehension on python.org.

Create training examples.

fragments = []

targets = []

for i in range(0, len(text) - WINDOW_LENGTH, WINDOW_STEP):

 fragments.append(text[i: i + WINDOW_LENGTH])

 targets.append(text[i + WINDOW_LENGTH])

Convert to one-hot encoded training data.

X = np.zeros((len(fragments), WINDOW_LENGTH, encoding_width))

y = np.zeros((len(fragments), encoding_width))

for i, fragment in enumerate(fragments):

 for j, char in enumerate(fragment):

 X[i, j, char_to_index[char]] = 1

 target_char = targets[i]

 y[i, char_to_index[target_char]] = 1

Code Snippet 11-3 Prepare One-hot Encoded Training data

The code lines that create the dictionaries are “Pythonic” in that they squeeze
much functionality into a single line of code, which makes it virtually impossible
to understand if you are a beginner in Python. We generally try to avoid writing
such code lines, but they do come with the benefit of being very compact.

http://python.org

PROgRammINg ExamPlE: uSINg lSTm FOR TExT auTOCOmPlETION

295

use a dropout value of 0.2 on the connections between layers as well as on the
recurrent connections. Note how we pass return_sequences=True to the
constructor of the first layer because the second layer needs to see the output
values for all timesteps from the first layer. The second lSTm layer is followed
by a fully connected layer, but this time the output layer consists of multiple
neurons using a softmax function instead of a single linear neuron because we
will be predicting probabilities for discrete entities (characters) instead of a single
numerical value. We use categorical cross-entropy as our loss function, which is
the recommended loss function for multicategory classification.

One thing to note is that when we prepared the data, we did not split the dataset
into a training set and a test set. Instead, we provide a parameter validation_
split=0.05 to the fit() function. Keras will then automatically split our
training data into a training set and a test set, where the parameter 0.05 indicates
that 5% of the data will be used as a test set. For the case of autocompletion of
text, we could have left out this parameter as well and simply trained using all
the data and not done any validation. Instead, we could have manually sanity
checked the output by using our own judgment, since the “correct” result for
autocompletion of text is somewhat subjective. In Code Snippet 11-4, we have
chosen to use a 5% validation set but will also inspect the predictions to get an
idea of whether the network is doing what we would like it to do. Finally, we train
the model for 32 epochs with a mini-batch size of 256.

Build and train model.

model = Sequential()

model.add(LSTM(128, return_sequences=True,

 dropout=0.2, recurrent_dropout=0.2,

 input_shape=(None, encoding_width)))

model.add(LSTM(128, dropout=0.2,

 recurrent_dropout=0.2))

model.add(Dense(encoding_width, activation='softmax'))

model.compile(loss='categorical_crossentropy',

 optimizer='adam')

model.summary()

history = model.fit(X, y, validation_split=0.05,

 batch_size=BATCH_SIZE,

 epochs=EPOCHS, verbose=2,

 shuffle=True)

Code Snippet 11-4 Build and Train model

ChaPTER 11 TExT auTOCOmPlETION WITh lSTm aNd BEam SEaRCh

296

This results in a training loss of 1.85, and the loss on the test data is 2.14. We
likely could tweak the network to produce better loss values, but we are more
interested in trying to use our model to predict text. We do that using the beam-
search algorithm described previously.

In our implementation, each beam is represented by a tuple with three elements.
The first element is the logarithm of the cumulative probability for the current
sequence of characters. We describe later why we use the logarithm. The second
element is the string of characters. The third element is a one-hot encoded
version of the string of characters. The implementation is shown in Code
Snippet 11-5.

Code Snippet 11-5 use the model and do Beam Search to Come up with multiple
Text Completions

Create initial single beam represented by triplet

(probability , string , one-hot encoded string).

letters = 'the body '

one_hots = []

for i, char in enumerate(letters):

 x = np.zeros(encoding_width)

 x[char_to_index[char]] = 1

 one_hots.append(x)

beams = [(np.log(1.0), letters, one_hots)]

Predict NUM_LETTERS into the future.

for i in range(NUM_LETTERS):

 minibatch_list = []

 # Create minibatch from one-hot encodings, and predict.

 for triple in beams:

 minibatch_list.append(triple[2])

 minibatch = np.array(minibatch_list)

 y_predict = model.predict(minibatch, verbose=0)

 new_beams = []

 for j, softmax_vec in enumerate(y_predict):

 triple = beams[j]

 # Create BEAM_SIZE new beams from each existing beam.

 for k in range(BEAM_SIZE):

PROgRammINg ExamPlE: uSINg lSTm FOR TExT auTOCOmPlETION

297

We start by creating a single beam with an initial sequence of characters ('the
body ') and set the initial probability to 1.0. The one-hot encoded version of the
string is created by the first loop. We add this beam to a list named beams.

This is followed by a nested loop that uses the trained model to do predictions
according to the beam-search algorithm. We extract the one-hot encoding
representation of each beam and create a NumPy array with multiple input
examples. There is one input example per beam. during the first iteration, there is
only a single input example. during the remaining iterations, there will be BEAM_
SIZE number of examples.

We call model.predict(), which results in one softmax vector per beam. The
softmax vector contains one probability per word in the vocabulary. For each
beam, we create BEAM_SIZE new beams, each beam consisting of the words
from the original beam concatenated with one more word. We choose the most
probable words when creating the beams. The probability for each beam can be
computed by multiplying the current probability of the beam by the probability for
the added word. however, given that these probabilities are small, there is a risk
that the limited precision of computer arithmetic results in underflow. This can
be addressed by instead computing the logarithm of the probability, in which case
the multiplication is converted to an addition. For a small number of words, this is
not necessary, but we do it anyway for good practice.

 char_index = np.argmax(softmax_vec)

 new_prob = triple[0] + np.log(

 softmax_vec[char_index])

 new_letters = triple[1] + index_to_char[char_index]

 x = np.zeros(encoding_width)

 x[char_index] = 1

 new_one_hots = triple[2].copy()

 new_one_hots.append(x)

 new_beams.append((new_prob, new_letters,

 new_one_hots))

 softmax_vec[char_index] = 0

 # Prune tree to only keep BEAM_SIZE most probable beams.

 new_beams.sort(key=lambda tup: tup[0], reverse=True)

 beams = new_beams[0:BEAM_SIZE]

for item in beams:

 print(item[1])

ChaPTER 11 TExT auTOCOmPlETION WITh lSTm aNd BEam SEaRCh

298

Once we have created BEAM_SIZE beams for each existing beam, we sort the
list of new beams according to their probabilities. We then discard all but the top
BEAM_SIZE beams. This represents the pruning step. For the first iteration, this
does not result in any pruning because we started with a single beam, and this
beam resulted in just BEAM_SIZE beams. For all remaining iterations, we will
end up with BEAM_SIZE * BEAM_SIZE beams and discard most of them.

It is worth pointing out that our implementation does not take the predicted
output and feed it back to the input, character by character. Instead, each iteration
of the loop results in a completely new mini-batch that contains the entire
sequence of characters, and we feed this sequence through the network. That is,
the result is the same, but we do many redundant computations. In Chapter 12,
“Neural language models and Word Embeddings,” we present an example of
an alternative implementation that does feed the output back to the input, one
symbol at a time.

The loop runs for a fixed number of iterations followed by printing out the
generated predictions:

the body which the m

the body which the s

the body of the most

the body which i hav

the body which the d

the body with the mo

Note that the predictions generated by the network both use correctly spelled
words and have grammatical structures that look reasonable. This completes
our programming example, but we encourage you to experiment further using
different training data and different partial phrases used as starting points.

Bidirectional RNNs
When working with text sequences, it can often be beneficial to look at both
previous and future words. as an example, when writing a paragraph, it is often
the case that we write one sentence, then another, and then go back and edit the
previous sentence to better fit together with the subsequent sentence. another
example is when we are parsing what somebody is saying. Suppose we hear the

BIdIRECTIONal RNNS

299

beginning of a sentence, “I saw the b. . .,” but did not fully hear the last word. We
did, however, hear that it was a one-syllable word starting with a b. We would
likely need to ask the person to repeat what they said because it is not obvious
what the word could be—it might be ball or boy or bill or any of a number words
starting with b. Suppose instead that we heard the entire sentence: “I saw the
b. . . sky.” With the b sound and sky as context, we would likely not ask the person
to repeat but just assume that the word is blue. In other words, looking at future
words enables us to predict the missing word, and a typical application for this is
speech recognition.

a bidirectional RNN (Schuster and Paliwal, 1997) is a network architecture that
has the ability to look at future words. a bidirectional RNN layer consists of two
layers operating in parallel, but they receive the input data in different directions.
For this to work, the full input sequence needs to be available up front, so it
cannot be used in an online setting where the sequence is created dynamically.
To make it simple, consider a regular RNN layer consisting of a single unit. If we
wanted to create a bidirectional version of this RNN layer, we would add another
unit. If we then wanted to feed the characters h, e, l, l, o to the network, we would
feed h to one of the units and o to the other at the first timestep. at timestep 2, we
would feed them e and l; at timestep 3, l and l; at timestep 4, l and e; and finally, at
timestep 5, o and h. during each timestep, each of the two units would produce an
output value. at the end of the sequence, we would combine the two outputs for
each input value. That is, the output value for timestep 0 for the first unit and the
output value for timestep 4 for the second unit would be combined because those
timesteps represent when the units received h as input. There are multiple ways
to combine the output of two units, such as addition, multiplication, or average.

In Keras, a bidirectional layer is implemented as a wrapper that can be used with
any RNN layer. Code Snippet 11-6 shows how it can be used to change a regular
lSTm layer into a bidirectional lSTm layer.

Bidirectional RNNs predict an element from both the past and the future.

from tensorflow.keras.layers import Bidirectional

…

model.add(Bidirectional(LSTM(16, activation='relu')))

Code Snippet 11-6 how to declare a Bidirectional layer in Keras

ChaPTER 11 TExT auTOCOmPlETION WITh lSTm aNd BEam SEaRCh

300

do not worry too much if you find bidirectional layers confusing. We mention them
here primarily because you are likely to encounter them as you read about more
complex networks. We do not make use of bidirectional layers in the programming
examples in this book.

different Combinations of Input and
Output Sequences

Our initial book sales prediction took a sequence of values as input and returned a
single output value. Our text autocompletion model took a sequence of characters
as input and produced a sequence of characters as output. In a popular blog post,
Karpathy (2015) discusses other combinations of inputs and outputs. These are
illustrated in Figure 11-4.

Starting from the left, a one-to-one network is not a recurrent network but simply
a feedforward network that takes one input and produces a single output. These
inputs and outputs may well be vectors, but they are not presented as a variable-
length sequence but as a single timestep. The second combination is the one-to-
many case, which receives input during the first timestep and produces multiple
outputs over subsequent timesteps. a typical use case is where an image is
presented as input and the network produces a textual description of what is in
the image. The third example is a many-to-one model, which is exactly what we

one-to-one one-to-many many-to-one many-to-many many-to-many
synchronized

Figure 11-4 Input/output combinations for RNN unrolled in time. gray represents
input, blue represents the network, and green represents outputs. (Source:
adapted from Karpathy, a., "The unreasonable Effectiveness of Recurrent Neural
Networks," may 2015, http://karpathy.github.io/2015/05/21/rnn-effectiveness/.)

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

dIFFERENT COmBINaTIONS OF INPuT aNd OuTPuT SEquENCES

301

did in the book sales forecasting example. It is followed by a many-to-many case.
although the length of the input sequence is the same as the output sequence
in the figure, this is not a requirement. For example, in our text autocompletion
example, we implemented a many-to-many network in which the input sequence
and output sequence could have different number of steps. Finally, the rightmost
example in the figure shows a synchronized many-to-many network in which the
input for each timestep has a corresponding output. a typical example of this is a
network that classifies each frame of a video to determine whether or not there is
a cat in the frame.

a reasonable question is how the different types of network are implemented in
practice. First, note that we should not restrict the discussion to “pure” recurrent
networks, but the concepts just described can be applied to more complex hybrid
architectures.

Now let us consider the one-to-many case. looking at the figure, it might not
look that complicated, but the first question that comes to mind when trying to
implement the model is what to do with the inputs for all timesteps after the
first timestep. Remember that the figure represents the abstraction of unrolling
the network in time, and if the network has inputs during the first timestep, then
those inputs are still there for the subsequent timesteps and must be fed with
something. Two obvious and common solutions to this are to either just feed the
network with the same input value during every timestep or feed the network with
the real input value during the first timestep and for each subsequent timestep
feed it some kind of special value that does not naturally occur in the input data,
and then just rely on the network learning to ignore that value.

Similarly, the many-to-one network will produce an output during each timestep,
but we can choose to simply ignore the output for all timesteps but the last. In
our book sales prediction example, we told Keras to do just that by implicitly
setting the return_values parameter to False (its default value) for the last
recurrent layer.

The rightmost synchronized many-to-many architecture is trivial. We feed the
network an input during each timestep, and we look at the output during each
timestep. The other many-to-many architecture in the figure is different in that it
can have a different number of output steps than input steps. Our programming
example with autocompletion of text was an example of this architecture. One
design choice for such a network is how to communicate to the network that the
input sequence is done and how the network communicates when the output
sequence is done. In our programming example, this was done implicitly by the
user by starting to look at the output (and feeding it back to the input) after a

ChaPTER 11 TExT auTOCOmPlETION WITh lSTm aNd BEam SEaRCh

302

specific number of characters and then stopping the process after the network
had predicted a fixed number of characters. There are other ways of doing this
as well (e.g., by teaching the network to work with STaRT and STOP tokens). We
will see an example of this in Chapter 14, “Sequence-to-Sequence Networks
and Natural language Translation,” where we implement a natural language
translation network.

Concluding Remarks on Text
autocompletion with lSTm

In this chapter, we concluded our presentation of recurrent networks with a
programming example illustrating how an lSTm-based RNN can be used for
autocompletion of text. This was also our first example of a network applied to
natural language processing (NlP), as opposed to image data and numerical
data. another interesting aspect of this programming example, as well as of
the bookstore sales prediction example, was that we created training examples
without explicit labeling. The sequential nature of the data itself was such that the
ground truth could be automatically created for each training example.

For the text autocompletion example, we chose to encode individual characters
and feed them into the network. a more powerful approach is to work at a
granularity of individual words and with a more expressive encoding scheme than
one-hot encoding. We discuss this topic in the next couple of chapters.

303

Chapter 12

Neural Language
Models and Word
Embeddings

In Chapter 11, “Text Autocompletion with LSTM and Beam Search,” we built a
network that predicts the continuation of a sentence. One remarkable property
of that model is that it learns both words and sentence structure. We did nothing
to prevent the model from producing random, nonexistent words or producing
sentences that make no sense grammatically, but somehow, this did not happen.
Still, it seems like we made it unnecessarily hard for the model by giving it
individual characters instead of words as the smallest building blocks. After
all, humans do not actually communicate with characters—they use characters
primarily as tools to describe, in writing, words they are communicating.

In this chapter, we describe two major concepts. We begin with a brief introduction
to statistical language models. The focus is on neural language models, which
involve a task similar to the text autocompletion task from Chapter 11 but using
words instead of characters as building blocks. Statistical language models have
traditionally played a key part in automatic natural language translation, which is
explored in Chapter 14, “Sequence-to-Sequence Networks and Natural Language
Translation.” The second concept that we introduce in this chapter is a class of
alternative encodings of words that can be used instead of one-hot encoding. The
terms word embeddings, word vectors, and distributed representations are used

ChAPTEr 12 NEurAL LANguAgE MOdELS ANd WOrd EMBEddINgS

304

interchangeably for this class of alternative encodings., but we primarily use word
embeddings. A key property of many word embeddings is that they are not simply
encodings of words, but they also capture some of the properties of the words,
such as semantics and grammatical features.

Neural language models and word embeddings are somewhat intertwined in
the literature because some of the important early discoveries about word
embeddings fell out as an unexpected byproduct from work on neural language
models. We therefore describe them jointly while still trying to keep them
separate and describe how they relate to each other.

As a programming example, we build our own word-based neural language model
and explore the word embeddings that it produces as a byproduct. Then, before
moving on to Chapter 13, “Word Embeddings from word2vec and gloVe,” which
describes more advanced algorithms for creating word embeddings, we briefly
discuss sentiment analysis of text (i.e., automatically classifying documents based
on whether the content is positive or negative).

Introduction to Language Models and
Their use Cases

A statistical language model describes how likely a sequence of words is in the
language that it models. It does so by assigning a probability to each possible
word sequence. A correct and common sequence of words is assigned a high
probability, and an incorrect or uncommon sequence of words is assigned a low
probability.

The terms word embeddings, word vectors, and distributed representations
of words are all different names for a type of encoding of words. This type of
encoding often captures key properties of the words.

A statistical language model provides a measure of how likely it is that a
sequence of words would occur in the given language.

INTrOduCTION TO LANguAgE MOdELS ANd ThEIr uSE CASES

305

To make this more concrete, we note that this is what our text autocompletion
network from Chapter 11 did, but using characters as building blocks, whereas
a language model typically uses words as building blocks. Thus, if we feed a
language model a sequence of words, its output is a probability for each word
in the vocabulary telling how likely it is that this word is the next word in the
sequence.

Figure 12-1 illustrates what beam search for a word-based language model
might look like. In this example, we start by feeding the word Deep into the
network. The model might assign a high probability to the two words learning
and dish. Obviously, there are many other words in the vocabulary that will also

A statistical language model is typically formulated in terms of conditional
probabilities, where the probability of the next word in a sequence is
conditioned on all previous words in the sequence. We do not go into details
about conditional probabilities in our description, but it is a good topic for
further reading and more or less required if you want to understand papers
about language models. goodfellow, Bengio, and Courville (2016) and hastie,
Tibshirani, and Friedman (2009) can be consulted for more details and
additional references.

Deep

learning

book

in

dish

pizza

rims

Deep learning book

Deep learning in

Deep dish pizza

Deep dish rims

Figure 12-1 Beam search for word-based language model using a beam size of 2

ChAPTEr 12 NEurAL LANguAgE MOdELS ANd WOrd EMBEddINgS

306

be assigned a high probability (e.g., water, thoughts, space). Other words, (e.g.,
heaven, bicycle, talked) will be assigned a low probability. The thinking here is
that, although deep heaven and deep bicycle are plausible sentences, they seem
unlikely due to the meanings of the words, and the reason that deep talked is
assigned a low probability is that, in most cases, it would form a sentence that is
grammatically incorrect. It is worth noting that we can build multiple language
models for a given language, depending on the setting in which it is to be used.
For example, if we are in a setting where we are discussing machine learning
topics, the probability of the sequence deep learning is higher than the probability
of deep dish, whereas the opposite is true if we are at a food convention in
Chicago. In general, the properties of the language model depend on the text
corpus that it is derived from.

Now that we have spent a couple of paragraphs on describing what a language
model is, a fair question is what it can be used for, apart from autocompletion of
text. We give two examples of many use cases within the field of natural language
processing.

The first example is from speech recognition. In Chapter 11, in the context of
bidirectional recurrent neural network (rNNs), we briefly mentioned how it
can be useful to look at both historical and future words in a sentence when
doing speech recognition. The given example was that when not fully capturing
all words in the phrase “I saw the b. . . sky,” we could still give a reasonable
prediction that the missing word is blue. A different example that does not involve
missing words is to do speech recognition on the phrase “recognize speech using
common sense.” using an automatic system that identifies only the phonemes in
the phrase, if things go well, the system will output the correct phrase. however,
the automatic system might instead output the similar sounding phrase “wreck
a nice beach you sing calm incense,” which humorously was used in the title of
a paper by Lieberman and colleagues (2005). Or we could end up with a mixture
of the two phrases or yet another alternative. In other words, the system could
produce several candidate sentences based only on the phonemes of the phrase.
We could then apply a language model to select the one that is the most probable
phrase and thereby drastically improve the quality of speech recognition.

The second example is from the field of automatic natural language translation
where the language model traditionally has played a big role. First, several
candidate translations are produced using one of various existing techniques. One
such technique is to first do a word-by-word translation and then create different
permutations of how the words are ordered (different languages often have
different word orderings). A language model can then be used to identify the most

ExAMPLES OF dIFFErENT LANguAgE MOdELS

307

probable candidate translation. As a side note, the field of machine translation is
rapidly evolving, and in Chapter 14, we show how a neural network can generate
the candidate translations in the first place instead of relying on word-by-word
translation as the initial step.

In these two examples, we talked about assigning a probability to an entire
sentence, but for the purposes of this book, we consider only the case of having
an initial sequence of words and assigning a probability to each possible
continuation; that is, given a sequence of words, we assign a single numerical
value to each word in the vocabulary where the sum of all values equals 1.0.

Examples of different Language Models
This section briefly describes a few important classical language models as well
as a neural language model and relates them to each other. Concepts from both
the classical and neural language models are later used in the context of creating
word embeddings.

n-grAM MOdEL

The n-gram model is a simple statistical language model. As previously
mentioned, a language model tries to solve the problem of providing a probability
for each word in a vocabulary given a sequence of historical words. The n-gram
model approximates this by considering only the (n−1) most recent words instead
of the full history. These (n−1) historical words plus the predicted next word
form a sequence of n words, known as an n-gram, which has given the model its
name. The parameter n is chosen up front when we train the model. We start our
description with n = 2, which is also known as a bigram model. The model is built
by simply counting all different bigrams in the training corpus and then basing
the prediction on how frequently each bigram appears. Let us consider the word
sequence “The more I read, the more I learn, and I like it more than anything
else.” To make things simple, we ignore punctuation and convert all characters to
lowercase. We can construct the following list of bigrams: /the more/ /more i/ /i
read/ /read the/ /the more/ /more i/ /i learn/ /learn and/ /and i/ /i like/ /like it/ /it
more/ /more than/ /than anything/ /anything else/.

There are a couple of things to note. We see that some bigrams, such as /the
more/ and /more i/, appear multiple times. Further, a number of nonidentical

ChAPTEr 12 NEurAL LANguAgE MOdELS ANd WOrd EMBEddINgS

308

bigrams, such as /i read/ /i learn/ /i like/ and /more i/ /more than/, have the same
starting word. Finally, one bigram, /more i/, both appears multiple times and
shares the starting word with a different bigram, /more than/. The bigrams are
summarized in Table 12-1, which is sorted alphabetically.

given a starting word, we can now use this table to predict the next word. For
instance, if we are given the word and, our bigram model predicts that the
probability of the next word being i is 100% and the probability for all other words
is 0%. If the first word is more, then the model predicts a probability of 67% for
the word i but 33% for the word than because, of the three bigrams starting with
more, two of them are /more i/ and only one is /more than/.

Table 12-1 Summary of Bigrams

FIRST WORD PREDICTED WORD
NUMBER OF
OCCURRENCES

PROBABILITY GIVEN
STARTING WORD

and i 1 100%

anything else 1 100%

i learn 1 33%

like 1 33%

read 1 33%

it more 1 100%

learn and 1 100%

like it 1 100%

more i 2 67%

than 1 33%

read the 1 100%

than anything 1 100%

the more 2 100%

ExAMPLES OF dIFFErENT LANguAgE MOdELS

309

Clearly, the bigram model is limited in that it cannot capture any longer-term
dependencies. For example, if we train the model on the sentences “the boy
reads,” “the girl reads,” and “the boy and girl read,” and then present “the boy and
girl” as a starting sequence, the bigram model will ignore “the boy and” and only
predict the next word based on the word girl. Its probability for reads is 50%, and
its probability for read is 50%, although the longer context makes it clear that the
word read should be more probable. The obvious solution is to increase the value
of n. We can create a 5-gram model in which the first few 5-grams become /the
more i read the more/ /more i read the more i/ and /i read the more i learn/. This
enables the model to capture more complex dependencies, but it comes with the
drawback that much more training data is needed to capture enough 5-grams
to make the model useful. If the starting sequence cannot be found in the table,
then the model predicts 0%, which is a significant limitation of the basic n-gram
model. This is aggravated by the fact that the longer the n-grams are, the lower
the probability is that an arbitrarily chosen sequence of (n−1) words existed in
the training corpus. For example, the training corpus might have contained the
sequence “the boys and girls read,” but the model still cannot predict anything
when presented with the input sequence “the boy and girl” because boy and girl
are now in singular form. Still, the basic n-gram model has been shown to be
useful, and there are various extensions that address some of its shortcomings.

SKIP-grAM MOdEL

A skip-gram model is an extension of the n-gram model but where all words
do not need to appear sequentially in the training corpus. Instead, some words
can be skipped. A k-skip-n-gram model is defined by the two parameters k and
n, where k determines how many words can be skipped and n determines how
many words each skip-gram contains. For instance, a 1-skip-2-gram model will
contain all the bigrams (2-grams) that we discussed previous, but also contain
nonconsecutive word pairs that are separated by, at most, one word. If we again
consider the word sequence “The more I read, . . .” in addition to /the more/ /more
i/, and so on, the 1-skip-2-gram model will contain /the i/ /more read/, and so on.

NEurAL LANguAgE MOdEL

given the background about language models presented in this chapter and
the character-based text autocompletion example in Chapter 11, it should
now be straightforward to envision a word-based neural language model. An
obvious question is how to encode words. To keep things simple, we start with
the assumption that words are one-hot encoded, and we reason about what

ChAPTEr 12 NEurAL LANguAgE MOdELS ANd WOrd EMBEddINgS

310

challenges and drawbacks that presents. This naturally leads us to the subject
of word embeddings. The way and order in which we describe these concepts
do not necessarily match the chronological order in which they were discovered.
distributed representations of words (hinton, McClelland, and rumelhart, 1986)
have been discussed since at least the 1980s, although, as far as we know, the
paper that described the first neural language model was published in 2003
(Bengio et al., 2003).

Figure 12-2 shows three high-level architectures of neural language models. The
leftmost version is a simple feedforward network that takes a single previous
word as an input and ends with a fully connected softmax layer, which predicts
the next word. relating to the nonneural language models, this is similar to a
bigram model in that the training set consists of all possible pairs of consecutive
words. Obviously, a neural model that considers only the most recent word will
result in limited accuracy, just like a bigram model.

An obvious improvement over this simple neural language model is illustrated
by the middle model in the figure. Instead of providing only a single word as
input, we input multiple words to the model, which is still a simple feedforward
network with a fully connected softmax output layer. The difference here is that
the number of inputs is sized to be able to accept a fixed number of words; that
is, this model is similar to an n-gram model where n is a fixed parameter chosen
when creating the network.

Hidden layer(s)

Word N

Softmax layer

Hidden layer(s)

Word N-2

Softmax layer

Word NWord N-1

Hidden recurrent layer(s)

Word Seq.
up to N

Softmax layer

Probability of word
N+1

Probability of word
N+1

Probability of word
N+1

History length = 1 History length = 3 Variable history length

Figure 12-2 Three neural language models. The leftmost model predicts the next
word based on a single preceding word, similar to a bigram model. The middle
model predicts the next word based on the three preceding words. The rightmost
model can handle a variable number of words as input. All input words are
assumed to be one-hot encoded.

ExAMPLES OF dIFFErENT LANguAgE MOdELS

311

As discussed in the past few chapters, a limitation of feedforward networks
is their inability to be able to accept variably sized inputs. This leads us to the
rightmost model in the figure, which illustrates a neural language model based
on an rNN. This results in something similar to an n-gram model but where
n can take on any value and can be different for different training and test
examples.

This discussion makes it appear as if a neural language model is no different from
an n-gram model, but that is not true. One obvious difference is that an n-gram
model is exact, whereas a neural language model is approximate. The n-gram
model simply records the exact probabilities of observed data (the training set),
whereas the neural language model learns weights to try to mimic the training
set. A more important difference is the ability to generalize. If an n-gram model
is presented with a word sequence that was not present in the training data, its
output probability will be 0 (by definition), whereas the neural language model will
output whatever probability falls out from the trained weights. Clearly, this does
not guarantee that the neural language model provides any useful information
for a previously unseen case, but given our experience with neural networks and
their ability to generalize, it is reasonable to believe that the neural model could
provide benefit in this case.

Let us consider this with an example that is based on examples given by
Bengio and colleagues (2003). Assume that the phrase “the cat is walking in the
bedroom” was in the training dataset. After training, we present the previously
unseen phrase “the dog is walking in the” as input to our language model, and
we want to know the probability that the phrase ends with the word bedroom.
As previously described, an n-gram model with n=7 will report 0 (because the
test example was not in the training set). The neural language model, on the
other hand, will likely produce a probability that is somewhat similar to what
was produced for the training example about the cat. To understand why, let us
look at the inputs to a model based on a feedforward network, which accepts six
one-hot encoded words as input, with a vocabulary size of 10,000. The model

using neural networks is not the only way of improving over a basic n-gram
model, and many other more advanced nonneural language models have been
explored. given that the focus of this book is neural networks, we do not explore
nonneural language models in more detail, but this is a topic that makes sense
to explore further if you want to focus on neural language models.

ChAPTEr 12 NEurAL LANguAgE MOdELS ANd WOrd EMBEddINgS

312

receives 6 × 10,000 values, where only 6 of these 60,000 values will be hot (set
to 1). Changing the word cat to dog has the effect that one of the hot values will
be set to 0 and one of the values previously being 0 will be set to 1. All other
values will be the same.

To illustrate this, consider the example of a model that takes three words as an
input and predicts the next words. Assume the one-hot encodings in Table 12-2.
The beginning of the sentence results in the following encoding:

“the cat is” = 0001 0100 1000

Changing the word cat to dog results in the following encoding that is similar to
the previous encoding:

“the dog is” = 0001 0010 1000

Thus, it is reasonable to believe that the model could still output walking as
the next word even if it was trained only on the sentence about the cat that was
walking.

This example illustrates why a neural language model can be robust to minor
changes in the inputs by not requiring an exact match, but ideally, we would
want our model to have even more powerful properties. rather than just being
able to tolerate minor changes, we would want the model to still make use of the
word that has changed only slightly. To make this happen, we need a better word
encoding than one-hot encoding, which is discussed next.

Table 12-2 One-hot Encoding of Words

WORD ONE-HOT ENCODING

the 0001

dog 0010

cat 0100

is 1000

BENEFIT OF WOrd EMBEddINgS ANd INSIghT INTO hOW ThEy WOrK

313

Benefit of Word Embeddings and Insight
into how They Work

Let us again consider the phrase “the cat is walking in the bedroom” but this
time consider what happens if the beginning of the phrase seen after training is
“a dog was running in a.” Word by word, this is a completely different sentence
except for the word in. however, the words in the two different sentences have
similar semantics and grammar. Both a and the are articles. Both cat and dog are
nouns that also happen to be pets. The words is and was are different tenses of
the word be, and so on. given this knowledge of how the different words relate
to each other, it is not too much of a stretch to assume that the second phrase
should end with the word bedroom. That is, the phrase “a dog was running in a
bedroom” should be assigned a high probability given our knowledge that the first
phrase is assigned a high probability. We want the model to be able to generalize
and learn the probability of the second phrase when being trained on the first
phrase. Intuitively, this can be done by choosing a word-encoding scheme with the
property that two words that have similar semantics or grammar are assigned
similar encodings. Before describing in more detail how this can be done, let us
consider another couple of examples to further highlight the need for good word
encodings.

Consider the case of natural language translation and suppose we have learned
the French translation of the English phrase “that is precisely what I mean.”
Now let us assume that our automatic translation model is asked to translate
the previously unseen phrase “that is exactly what I mean.” If the encoding for
the word exactly is similar to the encoding for the word precisely, then the model
can assume that its learned translation is valid. Similarly, if it has been trained
on the phrase “that is awesome” and later is asked to translate “that is awful,”
then ideally, the encodings of awesome and awful should be chosen such that the
model does not assume that the two phrases are equivalent. The encoding should
somehow provide the information that awesome and awful are opposites of each
other.

These encoding properties can be achieved by using word embeddings (or word
vectors or distributed representations of words, as stated earlier). We have
now used those terms several times without describing what they are, so let us
address that. A word embedding is a dense representation of a word in a vector
space with a smaller number of dimensions than the number of words in the
vocabulary. This somewhat cryptic description might not be very helpful, so let us
decode what it means. Starting with dense representation, this simply says that

ChAPTEr 12 NEurAL LANguAgE MOdELS ANd WOrd EMBEddINgS

314

it is not a “sparse” representation like one-hot encoding—that is, the vector that
represents a word will have multiple nonzero elements. Typically, all elements
will be nonzero. A vector space with a smaller number of dimensions than the
number of words in the vocabulary is simply a word embedding (or word vector)
that has fewer elements than a one-hot encoded vector because the number of
elements in a one-hot encoded vector is the same as the number of words in the
vocabulary. This is illustrated in Table 12-3, where each word is encoded as a 2d
vector.

Figure 12-3 plots the words in a 2d space, which leads us to where the term
embedding originates from: The words are embedded in an n-dimensional space
(where n = 2 in this example). Similarly, a point in a coordinate system can be
represented by a vector, which explains why a different name is word vector.
Finally, as opposed to one-hot encoding, where the representation is localized to a
single variable in a vector, in the encoding shown in Table 12-3, the representation
of a word is distributed across multiple variables, which is where the third name,
distributed representations, originates from.

As you can see from the figure, the chosen encodings communicate something
about each word. The word type (part of speech) for a given word can be deduced
from the quadrant in which the word is located.1 For example, all words in the
first quadrant are nouns. you can also see that within each quadrant, words that

1. This is a simplified example and works only if the number of word classes is limited. given that
there are more than four parts of speech in the English language, it is not possible to encode them in a
2d space and end up with one word class per quadrant.

Table 12-3 A Small Vocabulary Embedded in 2d Space

NOUN VERB ARTICLE PREPOSITION

Word Encoding Word Encoding Word Encoding Word Encoding

cat 0.9; 0.8 is 0.9; −0.7 the −0.5; 0.5 in −0.5;
−0.5

dog 0.8; 0.9 was 0.8; −0.8 a −0.4; 0.4

bedroom 0.3; 0.4 running 0.5; −0.3

walking 0.4; −0.4

WOrd EMBEddINgS CrEATEd By NEurAL LANguAgE MOdELS

315

are similar are located close to each other. Let us now consider what happens
when we use this encoding to encode the two discussed phrases so we get two
numerical sequences that can be used as inputs to a neural network:

“the cat is walking in the” -0.5; 0.5; 0.9; 0.9; 0.9; -0.7; 0.4; -0.4; -0.5; -0.5;
-0.5; 0.5

“a dog was running in a” -0.4; 0.4; 0.8; 0.9; 0.8; -0.8; 0.5; -0.3; -0.5; -0.5;
-0.4; 0.4

Looking at the two numerical sequences, it should be clear that they are similar
to each other, and it would not be surprising if a neural network that has been
trained on the cat phrase would produce a similar output when presented with the
dog phrase, even if it had never seen it before. In other words, the network would
be able to generalize.

Word Embeddings Created by Neural
Language Models

The way the field of word embeddings has evolved is noteworthy. As previously
mentioned, word embeddings have a longer history than neural language models.
In the paper where the neural language model was introduced, Bengio and
colleagues (2003) used embeddings as the representation of words to achieve the
properties described in the previous section. however, rather than engineering
the embeddings before training the model, they decided to let the model learn the

Figure 12-3 Word embeddings in a 2d coordinate system

ChAPTEr 12 NEurAL LANguAgE MOdELS ANd WOrd EMBEddINgS

316

embeddings together with the language model, which turned out to be successful.
Mikolov and colleagues (2009) later explored how to pretrain the embeddings
with a simple language model and then reuse the learned embeddings in a more
complex language model. Later, Mikolov and a second team (2010) investigated
using an rNN-based language model. All this work was aiming at producing good
language models. Collobert and Weston (2008) had a different objective in that
they were trying to train a model to predict a number of linguistic properties,
including identifying whether words are semantically similar. They showed that
the embeddings produced when training a neural language model express the
property that embeddings corresponding to semantically similar word are located
close to each other in vector space (the Euclidean distance between the vectors
is small). Mikolov, yih, and Zweig (2013) investigated the resulting embeddings
further and discovered that they had some key and, to some extent, unexpected
properties in that we can use vector arithmetic to determine how different words
relate to each other. We soon describe this in more detail, but we first provide
some insight into why good embeddings can result from training a language
model.

We start by describing how to incorporate the word embeddings into the neural
network so the embeddings can be learned during the training process. Assuming
a single word as input to a model, a naïve way of doing this is to let the input
layer represent the word in one-hot encoded form and let the first hidden layer
be a fully connected layer with N neurons with linear activation functions. This
is also known as a projection layer because it projects the input from a specific
dimension onto an output of a different dimension. The output of this hidden layer
will now be an N-dimensional word embedding. The word vector corresponding to
word K in the vocabulary is now simply the weights for the set of connections that
connect input node K to the hidden layer. Figure 12-4 illustrates this for a case
with a vocabulary with five words and an embedding width of three dimensions.
The figure highlights the weights that correspond to the word embeddings for
word 0 and word 4.

Expanding each word to a one-hot encoded form and then doing a large number
of multiplications, most of which use 0 as one of the factors, is inefficient. A
more efficient way of implementing this is simply to represent each word by
an integer-valued index and use this to index into a lookup table that stores the
corresponding embeddings. As is usually the case, we do not need to worry
about the most efficient way of implementing things but will rely on our deep
learning (dL) framework. In TensorFlow with the Keras API, we create a mapping
from each word to a unique integer, and we present this integer as input to an
Embedding layer, which converts the integer to an embedding. Keras also trains

WOrd EMBEddINgS CrEATEd By NEurAL LANguAgE MOdELS

317

the weights in an efficient way using backpropagation. The programming example
in the next sections goes over the Keras mechanics in more detail.

Clearly, the language model we just described will result in some form of word
embeddings. After all, the embeddings are defined by whatever weights the
model learns. however, a fair question is why we would think that the resulting
word embeddings will present the properties that we discussed, such as similar
words having similar embeddings. As far as we understand it, this was more of
an unexpected discovery that fell out as a byproduct as opposed to an intentional
outcome when Bengio and colleagues started to experiment with neural based
language models. That is, their intent was to produce a good language model. Their
intent was not explicitly to create good embeddings. however, in hindsight, we can
reason about why this is not totally unexpected. To keep it simple, consider a simple
language model that consists of a single word as input, and the goal of the model
is to predict the next word (i.e., it is the neural equivalent to a bigram model). The
model architecture consists of an embedding layer on the input, followed by a single
hidden layer, and then a fully connected softmax layer on the output that predicts
the probability of the next word. The architecture is shown in Figure 12-5.

Now let us reason about what happens when we train on various input sequences
that we have used previously as examples. For automatic translation, we
noted that it would be beneficial if exactly and precisely had similar encodings
given that they are synonyms to each other. Let us now assume that we trained
a model based on bigrams of the two phrases “that is exactly what I mean” and
“that is precisely what I mean.” The two relevant bigrams are /exactly what/ and

Lin

Wd0 Wd1 Wd2 Wd3 Wd4

Lin Lin

WE00

WE01

WE02 WE40

WE41

WE42

Embedding for
word 0

Embedding for
word 4

Embedding layer output

One-hot encoded
input layer

Figure 12-4 Embedding layer that converts from one-hot encoded representation
to word embeddings. The weights are named WE

xy
, where WE signifies word

embedding, x represents the word, and y represents the vector element. Lin in the
neurons represents linear (i.e., no activation function).

ChAPTEr 12 NEurAL LANguAgE MOdELS ANd WOrd EMBEddINgS

318

/precisely what/; that is, we are asking the model to learn to output the word
what both when the input word is exactly and when the input word is precisely.
Clearly, there are many ways to choose weights to make this happen. One
simple way is for the model to adjust the weights in the embedding layer so the
weights for both exactly and precisely are similar to each other. do not worry if
you find this explanation hand-wavy. As previously mentioned, the finding that
training a language model produces useful word embeddings as a byproduct
was somewhat unexpected to begin with. On the other hand, one can argue that
it would be surprising if training a good language model resulted in unstructured
word embeddings, given that we have already convinced ourselves that good
embeddings will help making a language model perform well.

This discussion assumed a simple model with a single input word. given that
experiments with classical language models have shown that more history is
beneficial, it makes sense to extend the model to use more words as input, either
a fixed number, as in the left of Figure 12-6, or a variable number, as in the right

Hidden layer(s)

Word N

Softmax layer

Probability of word
N+1

History length = 1

Embedding layer

Figure 12-5 Neural language model with history length = 1 (i.e., it predicts the
next word based on a single input word)

PrOgrAMMINg ExAMPLE: NEurAL LANguAgE MOdEL ANd rESuLTINg EMBEddINgS

319

of the figure. Although it seems like there are multiple separate embedding layers
in the left part of the figure, they all share the same weights.

We now move on to a practical example in which we implement and train an rNN-
based language model, including training the word embeddings. We then explore
whether the resulting embeddings demonstrate any notable properties.

Programming Example: Neural Language
Model and resulting Embeddings

Most of the program is similar to the character-based autocompletion example
from Chapter 11. The initialization code in Code Snippet 12-1 contains a couple of
additional imports and defines two new constants MAX_WORDS and EMBEDDING_
WIDTH that define the max size of our vocabulary and the dimensionality of the
word vectors.

Hidden layer(s)

Softmax layer

Hidden recurrent layer(s)

Word Seq.
up to N

Softmax layer

Probability of word
N+1

Probability of word
N+1

Variable history length

Embedding
layer

Embedding
layer

Word
N-2

Word
N

Word
N-1

History length = 3

Embedding
layer

Embedding
layer

Figure 12-6 Language models with three-word fixed history (left) and variable
length history (right), where the model creates word embeddings. The three
embedding layers in the left figure share weights.

ChAPTEr 12 NEurAL LANguAgE MOdELS ANd WOrd EMBEddINgS

320

Code Snippet 12-2 first reads the input file and splits the text into a list of
individual words. The latter is done by using the imported function text_to_
word_sequence(), which also removes punctuation and converts the text
to lowercase, so we do not need to do that manually in this example. We then
create input fragments and associated target words just as in the character-
based example. Because we are working at the granularity of words, these
training sentences will be longer from a human perspective, but from the network
perspective, they still contain the same number of symbols. however, it will result
in fewer training examples than for the character-based example, given that we
slide the window forward by a fixed number of words instead of a fixed number
of characters for each example. Combined with the fact that the number of unique
symbols (the vocabulary) is larger for a word-based system (10,000 words in our
case vs. 26 characters), this generally results in a need for a larger text corpus for
training a word-based language model than for training a character-based model,
but we will still stick with using Frankenstein for this example.

import numpy as np

from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import Dense

from tensorflow.keras.layers import LSTM

from tensorflow.keras.layers import Embedding

from tensorflow.keras.preprocessing.text import Tokenizer

from tensorflow.keras.preprocessing.text \

 import text_to_word_sequence

import tensorflow as tf

import logging

tf.get_logger().setLevel(logging.ERROR)

EPOCHS = 32

BATCH_SIZE = 256

INPUT_FILE_NAME = '../data/frankenstein.txt'

WINDOW_LENGTH = 40

WINDOW_STEP = 3

PREDICT_LENGTH = 3

MAX_WORDS = 10000

EMBEDDING_WIDTH = 100

Code Snippet 12-1 Initialization Code for the Word-Based Language Model

PrOgrAMMINg ExAMPLE: NEurAL LANguAgE MOdEL ANd rESuLTINg EMBEddINgS

321

The next step is to convert the training examples into the correct format. This is
somewhat different than in the character-based example because we want to use
word embeddings. Thus, each input word needs to be encoded to a corresponding
word index (an integer) instead of one-hot encoding. This index will then be
converted into an embedding by the Embedding layer. The target (output) word
should still be one-hot encoded. To simplify how to interpret the output, we want
the one-hot encoding to be done in such a way that bit N is hot when the network
outputs the word corresponding to index N in the input encoding.

Code Snippet 12-3 shows how this is done. We make use of the Keras
Tokenizer class. When we construct our tokenizer, we provide an argument
num_words = MAX_WORDS that caps the size of the vocabulary. The tokenizer
object reserves index 0 to use as a special padding value and index 1 for unknown
words. The remaining 9,998 indices (MAX_WORDS was set to 10,000) are used to
represent words in the vocabulary.

The padding value (index 0) can be used to make all training examples within the
same batch have the same length. The Embedding layer can be instructed to
ignore this value, so the network does not train on the padding values.

Index 1 is reserved for uNKnown (UNK) words because we have declared UNK
as an out-of-vocabulary (oov) token. When using the tokenizer to convert text to

Open and read file.

file = open(INPUT_FILE_NAME, 'r', encoding='utf-8')

text = file.read()

file.close()

Make lower case and split into individual words.

text = text_to_word_sequence(text)

Create training examples.

fragments = []

targets = []

for i in range(0, len(text) - WINDOW_LENGTH, WINDOW_STEP):

 fragments.append(text[i: i + WINDOW_LENGTH])

 targets.append(text[i + WINDOW_LENGTH])

Code Snippet 12-2 read Input File and Create Training Examples

ChAPTEr 12 NEurAL LANguAgE MOdELS ANd WOrd EMBEddINgS

322

tokens, any word that is not in the vocabulary will be replaced by the word UNK.
Similarly, if we try to convert an index that is not assigned to a word, the tokenizer
will return UNK. If we do not set the oov_token parameter, it will simply ignore
such words/indices.

After instantiating our tokenizer, we call fit_on_texts() with our entire text
corpus, which will result in the tokenizer assigning indices to words. We can then
use the function texts_to_sequences to convert a text string into a list of
indices, where unknown words will be assigned the index 1.

We are now ready to build and train the model. Code Snippet 12-4 creates a
model with an Embedding layer followed by two long short-term memory
(LSTM) layers, followed by one fully connected layer with reLu activation, and
finally a fully connected layer with softmax as output. When we declare the
Embedding layer, we provide it with its input dimensions (vocabulary size) and
output dimensions (embedding width) and tell it to mask inputs using index 0. This
masking is not necessary for our programming example given that we created the
training input such that all input examples have the same length, but we might as
well get into the habit of doing this because we might want to use it later. We state
input_length=None so that we can feed training examples of any length to the
network.

Convert to indices.

tokenizer = Tokenizer(num_words=MAX_WORDS, oov_token='UNK')

tokenizer.fit_on_texts(text)

fragments_indexed = tokenizer.texts_to_sequences(fragments)

targets_indexed = tokenizer.texts_to_sequences(targets)

Convert to appropriate input and output formats.

X = np.array(fragments_indexed, dtype=np.int)

y = np.zeros((len(targets_indexed), MAX_WORDS))

for i, target_index in enumerate(targets_indexed):

 y[i, target_index] = 1

Code Snippet 12-3 Convert Training Input to Word Indices and Output to One-hot
Encoding

PrOgrAMMINg ExAMPLE: NEurAL LANguAgE MOdEL ANd rESuLTINg EMBEddINgS

323

In this code snippet, we trained the model for 32 epochs, and during the training
process, we saw (not shown) the loss value continuously decrease while the test
loss increased in the beginning and then stayed fairly constant. As we have seen
in previous chapters, this is an indication of overfitting, but for this application,
we do not worry too much about that. It is somewhat dubious to believe that our
model should be able to predict the plot for Frankenstein, given that we would
not necessarily even expect this from a human reader the first time they read
the book. Therefore, a more commonly used metric when evaluating statistical
language models is called perplexity (Bengio et al., 2003). It is a statistical metric
of how well a sample matches a probability distribution. however, given that we
are mainly interested in the word embeddings resulting from the language model
training process, we do not need to worry about defining a good metric of the
language model itself.

Build and train model.

training_model = Sequential()

training_model.add(Embedding(

 output_dim=EMBEDDING_WIDTH, input_dim=MAX_WORDS,

 mask_zero=True, input_length=None))

training_model.add(LSTM(128, return_sequences=True,

 dropout=0.2, recurrent_dropout=0.2))

training_model.add(LSTM(128, dropout=0.2,

 recurrent_dropout=0.2))

training_model.add(Dense(128, activation='relu'))

training_model.add(Dense(MAX_WORDS, activation='softmax'))

training_model.compile(loss='categorical_crossentropy',

 optimizer='adam')

training_model.summary()

history = training_model.fit(X, y, validation_split=0.05,

 batch_size=BATCH_SIZE,

 epochs=EPOCHS, verbose=2,

 shuffle=True)

Code Snippet 12-4 Building and Training the Model

Perplexity is a good concept to learn about if you want to dive deeper into
language models. Starting points can be found in papers about language
models, such as the work by Bengio and colleagues (2003).

ChAPTEr 12 NEurAL LANguAgE MOdELS ANd WOrd EMBEddINgS

324

After training the model, we are ready to use it to do predictions. We do this a
little bit differently than in the previous chapters. Instead of feeding a string of
symbols as input to the model, we feed it only a single symbol at a time. This is an
alternative implementation compared to the implementation in Chapter 11, where
we repeatedly fed the model a growing sequence of characters. To clarify, in Code
Snippet 11-6, we first fed the model the sequence 'the body ', which resulted
in the character ‘w’ as output. In the next step, we fed it 'the body w', followed
by 'the body wh', and so on. That is, for every prediction, we started over
from the beginning. had we instead used the implementation from this chapter,
we would have fed it 't', 'h', 'e', ' ', 'b', 'o', 'd', 'y', ' ', which would
have resulted in an output 'w', and we would then just feed that character back
as input.

The scheme used in this chapter has a subtle implication, which has to do with
dependencies between multiple consecutive calls to model.predict(). In
Chapter 11, we did not have an expectation that the inputs to the first prediction
should impact the second prediction. We probably would have found it odd if
they had because that would mean that the output value we would get from a
call to model.predict() could be different for two consecutive calls that had
identical input values. Thus, the way we have initialized the model in the past
makes sure that the output of multiple calls to the predict() function will
be the same if the input parameters are the same for each call. This is done by
having a call to predict() implicitly reset the internal state (c and h for LSTM
cells) before doing the prediction.

In this chapter, we do not want this behavior. We want the LSTM layers to retain
their c and h states from one call to another so that the outputs of subsequent
calls to predict() will depend on the prior calls to predict(). This can be
done by giving the parameter stateful=True to the LSTM layers. A side effect
of this is that we manually need to call reset_states() on the model before
our first prediction.

Code Snippet 12-5 creates a model that is identical to the training model except
that we declare the LSTM layers with stateful=True as well as specify a fixed
batch size (required when declaring the LSTM layer as stateful) of size 1 using
the batch_input_shape argument. Instead of creating this separate inference
model, we could have created the training model as a stateful model, but the
training model would then assume that consecutive batches of training examples
were dependent on each other. In other words, we would need to modify either
our input dataset or the way we send training examples to the model so that we
could call reset_states() at appropriate times. For now, we want to keep the

PrOgrAMMINg ExAMPLE: NEurAL LANguAgE MOdEL ANd rESuLTINg EMBEddINgS

325

training process simple as well as illustrate how to transfer weights from one
model to another. Clearly, we cannot train just one model and then use a separate
untrained model for inference. The solution is shown in the two last lines in the
code snippet. There, we first read out the weights from the trained model and
then initialize it into our inference model. For this to work, the models must have
identical topology.

Code Snippet 12-6 implements logic of presenting a word to the model and
retrieving the word with the highest probability from the output. This word
is then fed back as input to the model in the next timestep. To simplify the
implementation, we do not do beam search this time around but simply predict
the most probable word at each timestep.

Build stateful model used for prediction.

inference_model = Sequential()

inference_model.add(Embedding(

 output_dim=EMBEDDING_WIDTH, input_dim=MAX_WORDS,

 mask_zero=True, batch_input_shape=(1, 1)))

inference_model.add(LSTM(128, return_sequences=True,

 dropout=0.2, recurrent_dropout=0.2,

 stateful=True))

inference_model.add(LSTM(128, dropout=0.2,

 recurrent_dropout=0.2, stateful=True))

inference_model.add(Dense(128, activation='relu'))

inference_model.add(Dense(MAX_WORDS, activation='softmax'))

weights = training_model.get_weights()

inference_model.set_weights(weights)

Code Snippet 12-5 Building the Inference Model

Code Snippet 12-6 Feeding the Predicted Output Back as Input, One Word at
a Time

Provide beginning of sentence and

predict next words in a greedy manner

first_words = ['i', 'saw']

ChAPTEr 12 NEurAL LANguAgE MOdELS ANd WOrd EMBEddINgS

326

All of the preceding code had to do with building and using a language model.
Code Snippet 12-7 adds some functionality to explore the learned embeddings.
We first read out the word embeddings from the Embedding layer by calling
get_weights() on layer 0, which represents the Embedding layer. We then
declare a list of a number of arbitrary lookup words. This is followed by a loop
that does one iteration per lookup word. The loop uses the Tokenizer to convert
the lookup word to a word index, which is then used to retrieve the corresponding
word embedding. The Tokenizer functions are generally assumed to work
on lists. Therefore, although we work with a single word at a time, we need to
provide it as a list of size 1, and then we need to retrieve element zero ([0]) from
the output.

first_words_indexed = tokenizer.texts_to_sequences(

 first_words)

inference_model.reset_states()

predicted_string = ''

Feed initial words to the model.

for i, word_index in enumerate(first_words_indexed):

 x = np.zeros((1, 1), dtype=np.int)

 x[0][0] = word_index[0]

 predicted_string += first_words[i]

 predicted_string += ' '

 y_predict = inference_model.predict(x, verbose=0)[0]

Predict PREDICT_LENGTH words.

for i in range(PREDICT_LENGTH):

 new_word_index = np.argmax(y_predict)

 word = tokenizer.sequences_to_texts(

 [[new_word_index]])

 x[0][0] = new_word_index

 predicted_string += word[0]

 predicted_string += ' '

 y_predict = inference_model.predict(x, verbose=0)[0]

print(predicted_string)

PrOgrAMMINg ExAMPLE: NEurAL LANguAgE MOdEL ANd rESuLTINg EMBEddINgS

327

Once we have retrieved the corresponding word embedding, we loop through all
the other embeddings and calculate the Euclidean distance to the embedding for
the lookup word using the NumPy function norm(). We add the distance and the
corresponding word to the dictionary word_indices. Once we have calculated
the distance to each word, we simply sort the distances and retrieve the five word
indices that correspond to the word embeddings that are closest in vector space.
We use the Tokenizer to convert these indices back to words and print them
and their corresponding distances.

Explore embedding similarities.

embeddings = training_model.layers[0].get_weights()[0]

lookup_words = ['the', 'saw', 'see', 'of', 'and',

 'monster', 'frankenstein', 'read', 'eat']

for lookup_word in lookup_words:

 lookup_word_indexed = tokenizer.texts_to_sequences(

 [lookup_word])

 print('words close to:', lookup_word)

 lookup_embedding = embeddings[lookup_word_indexed[0]]

 word_indices = {}

 # Calculate distances.

 for i, embedding in enumerate(embeddings):

 distance = np.linalg.norm(

 embedding - lookup_embedding)

 word_indices[distance] = i

 # Print sorted by distance.

 for distance in sorted(word_indices.keys())[:5]:

 word_index = word_indices[distance]

 word = tokenizer.sequences_to_texts([[word_index]])[0]

 print(word + ': ', distance)

 print('')

Code Snippet 12-7 Take a Number of Arbitrary Words and, for Each Word, Print
the Five Words That Are Closest in Vector Space

ChAPTEr 12 NEurAL LANguAgE MOdELS ANd WOrd EMBEddINgS

328

running the program, we first get2 the following predicted sentence:

i saw the same time

This looks reasonable and demonstrates that we successfully built a language
model at the granularity of words and using an Embedding layer. Let us now
move on to the resulting word embeddings. Table 12-4 lists some of the words
that express noteworthy relationships. The leftmost cell in each row contains
the lookup word, and the three cells to the right contain the three words that are
located closest in vector space.

Looking at the first row, we see that our preprocessing of the text could likely
have been better because two words that are identified are labour-the and “the
(with a misplaced quotation mark). Still, it is noteworthy that the model managed
to recognize that these two words are closely related to the. It is unclear to us how
the third word tardily fits in.

Moving on to the next row with the lookup word see, it seems like the language
model has produced embeddings that group verbs together.

Thereafter, we see that the row with the lookup word of consists solely of
prepositions, such as with, in, and by.

The row after that groups the lookup word monster together with the words
slothful, chains, and devoting.

2. given the stochastic nature of this process, your model will likely produce a quite different output,
but there should be a high probability that your model produces a correct sentence. Note that because
we replaced rare words with UNK (for uNKnown) in the training set, the model may well produce an
output sentence that includes UNK as a word.

Table 12-4 Words with Noteworthy relationships

LOOKUP WORD WORDS CLOSE IN VECTOR SPACE

the labour-the “the tardily

see visit adorns induce

of with in by

monster slothful chains devoting

read travelled hamlet away

KINg − MAN + WOMAN! = QuEEN

329

It does not seem too farfetched to believe that at least slothful and chains are used
closely together with the word monster in the book, which gives some idea of why
they are perceived as related.

Similarly, the words read and hamlet in the last row make some sense to
associate with each other.

Although the empirical observations presented here do not prove anything,
they still seem to indicate that the word embeddings produced by training them
together with a language model do capture some kinds of similarities or other
relationships between words. That leads us to the next section, where we discuss
these kinds of relationships further.

King − Man + Woman! = Queen
Earlier in this chapter, we made up our own embedding space in two dimensions
and grouped different parts of speech into different quadrants. We did so because
it is easy to visualize (and draw) things in two dimensions, but in reality, it is likely
that the grouping would not be in quadrants but in multiple dimensions. One
dimension (one of the variables in the word vector) might indicate if the word is
a noun, a different one might indicate if it is a verb, and so on. A benefit of this
approach is that we can divide words into more than the four categories allowable
using four quadrants. In our example, we kind of glossed over the issue that we
did not even assign any word encodings to our adjectives awful and awesome,
and the same is true for the adverbs exactly and precisely. Further, it would be
useful to distinguish between the singular and the plural form of nouns while
still keeping them similar to each other, just as it would be useful to distinguish
between different tenses of verbs, such as run and ran while still keeping their
encodings close to each other.

All of these examples are for different grammatical aspects of words, but you can
also envision semantic differences that can be used to classify words. Consider

In the programming example, we analytically identified words that are close
in vector space. Another approach is to visualize the embeddings. This can be
done with TensorBoard, which is a part of the TensorFlow framework.

ChAPTEr 12 NEurAL LANguAgE MOdELS ANd WOrd EMBEddINgS

330

the four words boy, girl, man, and woman. There are at least two obvious ways of
classifying these four words into two groups:

• Female = [girl, woman]; Male = [boy, man]

• Child = [girl, boy]; Adult = [man, woman]

Ignoring parts of speech for a moment, let us now assume that we want to devise
word encodings in two dimensions that capture both these classifications at the
same time. We can do that by letting the x-dimension distinguish between male
and female (gender) and the y-dimension distinguish between adult and child
(age), which results in word vectors, as shown in Figure 12-7.

given these embeddings, we can now do vector arithmetic on these word vectors
in a way that at a first glance seems close to magical, as shown in the following
equation and illustrated by the dashed arrows in Figure 12-7:

 0.9
0.9

0.9
0.9

0.9
0.9

0.9
0.9

V V V Vgirl woman man boy− + =

−
−

+ −
−

= −

=

Intuitively, by subtracting woman and adding man, the age dimension is kept
constant while the gender dimension has changed from female to male. That is,
if we would apply this transformation to the meaning of the word girl, we would
end up with the meaning of boy. That is exactly what happens in our equation.
Although this might seem magical at first, if you think about it (or experiment
with it), it is hard to simultaneously classify a group of words according to

Figure 12-7 Word vectors (solid) that distinguish between female and male and
between adult and child. The dashed vectors illustrate how vector arithmetic can be
used to modify the gender property of the word girl and end up with the word boy.

KINg − MAN + WOMAN ! = QuEEN

331

different degrees of similarity (such as gender and age) without ending up with
embeddings where this kind of vector arithmetic can be used.

This now leads us to the exciting discovery by Mikolov, yih, and Zweig (2013) when
they analyzed the word embeddings that were the result of training an rNN-
based language model. They discovered that by using vector arithmetic on the
vectors, they could show the following relationship that is likely the most famous
example of the power of word embeddings:

 V V V Vking man woman queen− + ≈

The way we presented this topic was aimed at providing intuition and understanding,
which somewhat demystifies the subject, but as we understand things, the way
these relationships originally were uncovered through a truly unexpected discovery.
Mikolov and colleagues state, “We find that these representations are surprisingly
good at capturing syntactic and semantic regularities in language, and that each
relationship is characterized by a relation-specific vector offset” (Mikolov, yih,
and Zweig, 2013) and “Somewhat surprisingly, many of these patterns can be
represented as linear translations” (Mikolov, Sutskever, et al., 2013). Even after this
discussion, it still feels a little bit like magic that we can apply a neural network that
knows nothing about a language to a random text (with no explicit labeling) and the
network can discover enough structure to know that the words King and Man have
the same relationship to each other as Queen and Woman!

Although it might not have been obvious to begin with, based on what we have seen
so far, it makes much sense to represent a word as a multidimensional vector. In
a sense, a word is just a label that serves as a shorthand notation of an object (or
concept) that is associated with a number of properties. For instance, if we asked
you to identify a word that is associated with the properties royal, male, adult,
singular, it is likely that you would identify the word king. If we changed the property
singular to plural, you would likely say kings. Similarly, replace male with female
and you get queen, or replace adult with child and you get with prince. So, the true
surprise is that the neural network trained using stochastic gradient descent can
manage to identify all of these different dimensions from unlabeled text.

King − Man + Woman ! = Queen
Before moving on to the next topic, there are a few misunderstandings that
we think are worth pointing out because what we presented previously is not
fully correct. First, the vector produced by King − Man + Woman is obviously
not exactly the same as the vector for Queen given that we are working with

ChAPTEr 12 NEurAL LANguAgE MOdELS ANd WOrd EMBEddINgS

332

continuous variables in a multidimensional space. This is likely not surprising, and
a reasonable interpretation is to look for a word vector that is closest to the given
vector. Even so, for many embeddings, including the one that first reported the
King/Queen relationship, it is not the case that the word vector for Queen is closest
to the vector that results from King − Man + Woman. It turns out that the vector
that is closest to that vector is typically the vector for King itself! In other words,

V V V Vking man woman king− + ≈

The common way of doing these comparisons is to exclude the original word
when looking for the closest vector. hopefully, we did not just ruin all the magic
about this subject; we make it all more concrete in the programming example in
Chapter 13. Another thing worth mentioning is that, although we used Euclidean
distance when analyzing the embeddings in our programming example, another
common metric is the cosine similarity, which we describe and use in practice in
the next programming example.

Another common misunderstanding is that the King/Queen property is the result
of an algorithm known as word2vec, which was published as a research paper
together with an associated C implementation. It is true that word2vec does show
this property, and the authors of word2vec are the same authors who discovered
the King/Queen property. however, they first described it in a paper that analyzed
the word embeddings resulting from an rNN-based language model, as opposed
to embeddings resulting from the word2vec algorithm. having said that, the
word2vec algorithm does produce higher-quality word embeddings from the
perspective of capturing semantics and other language structure. We also think
that making a C implementation of the algorithm available resulted in awareness
of the power of word embeddings not only in the neural network crowd but also
among people focusing on traditional language modeling. We study the word2vec
algorithm in detail in Chapter 13.

Language Models, Word Embeddings,
and human Biases

A model trained to identify structure in natural text runs a clear risk of picking
up biases from the humans who wrote the text in the first place. To illustrate this,
consider the following equation:

V V V Vdoctor man woman ?− + ≈

LANguAgE MOdELS, WOrd EMBEddINgS, ANd huMAN BIASES

333

If the word embeddings do not contain any gender bias, then one would expect
that the resulting vector would also represent doctor given that both men and
women can be doctors. We could imagine that a model that is gender biased
(sexist) would return nurse if it has picked up on the sexist notion that men are
doctors and women are nurses.

Interestingly, one study (Bolukbasi et al., 2016) reported results indicating a
biased model.3 however, consider what we described in the previous section.
The typical way of doing this vector arithmetic is to exclude the original word
from the results. That is, the model was not allowed to return the word doctor
(it would be discarded if it did), so how could it possibly return an unbiased
result to the equation? Nissim, Noord, and goot (2020) pointed this out and
analyzed other similar studies. They concluded that while word embeddings
have picked up human biases in some cases, some of the reported findings
in previous studies were likely caused by human biases in the questions
themselves!

These studies illustrate how difficult it is to get these things right even when
actively thinking about it. This is further complicated by the fact that what is
considered acceptable and what is considered controversial evolves over time
and depends on context and cultural region.

Not surprisingly, language models often do pick up human biases expressed
in the training data. Sheng and colleagues (2019) studied this issue by
comparing the generated text resulting from two similar input sequences
in which they modified key variables such as gender and ethnicity. For
example, the input sequence “The man worked as” resulted in the continuation
“a car salesman at the local Wal-Mart,” whereas the input sequence “The
woman worked as” resulted in the continuation “a prostitute under the name of
hariya.”

On a positive note, word embeddings have also been shown to be useful in
fighting malicious human behavior. We have seen how related words end
up with similar embeddings. Liu, Srikanth, and colleagues (2019) used this
property to detect harassing and offensive social media posts. They looked
for words that are similar to keywords that are already used in a malicious
context.

3. In their model, he and she were used instead of man and woman.

ChAPTEr 12 NEurAL LANguAgE MOdELS ANd WOrd EMBEddINgS

334

related Topic: Sentiment Analysis of Text
Before diving into the details of the word2vec algorithm, we take a detour and
introduce a topic that you are likely to run into if you continue to explore how to
apply dL to textual input data. This topic is known as sentiment analysis and aims
at classifying documents based on their content. The definition of document in this
context can range from individual sentences to multi-paragraph documents. Two
common examples found in books such as Chollet’s (2018) and online tutorials
(TensorFlow, n.d.) are classifications of movie reviews and Twitter messages.
This is not surprising given easily available datasets such as the sentiment 140
dataset (sentiment140 dataset) containing 1,600,000 labeled tweets and the IMdb
Movie reviews dataset (n.d.) containing 50,000 labeled movie reviews. We do
not dive into details of sentiment analysis in this book and only outline a couple
of approaches instead of providing a detailed programming example. Thus, this
section should be viewed primarily as suggestions for future reading, although we
build upon some of the concepts in Chapter 13.

Let us assume that we have a number of labeled movie reviews, and each review
consists of a text sequence of arbitrary length as well as a label that states if
the review was positive or negative. The task at hand is to create a model that
will predict whether an unlabeled movie review is positive or negative. given the
techniques that we have studied in the last few chapters, we think that the model
shown in Figure 12-8 seems like a reasonable approach.

We feed the review word by word into an embedding layer that is connected to
a couple of recurrent layers followed by fully connected layers ending with a
single logistic sigmoid neuron that does binary classification. This is a perfectly
fine model but may be a little bit complex to use as a starting point. As previously
described, it is often good to start with a simple model to get an idea of what
is a good and what is a bad result. In this section, we start by describing some
more traditional techniques based on a concept known as bag-of-words (BoW)
and then describe how that can be combined with dL. you will also note that these
techniques have connection points both to n-grams and word embeddings.

BAg-OF-WOrdS ANd BAg-OF-N-grAMS

BoW is a simple technique to summarize a text. It is simply a list of all
words contained in the document, and each word has an associated number
representing how many times that word appears in the document. One use case
for BoW is to compare how similar two documents are, which we explore in the

rELATEd TOPIC: SENTIMENT ANALySIS OF TExT

335

next section. Let us begin by creating a BoW for the sentence that we used when
discussing n-grams: “The more I read, the more I learn, and I like it more than
anything else.” The corresponding BoW is found in Table 12-5.

One thing to note is that the information captured in the table is similar to a
couple of the columns of Table 12-1, which listed the bigrams for the sentence.
In some sense, we can view a BoW model as a special case of an n-gram model
with n = 1, in that we are counting the number of occurrences of text sequences
with n words, but for BoW, the sequence length is 1. Looking at a BoW for a single
document in isolation can provide some insight, but a more interesting use case
is to compare BoW for multiple documents. As an example, assuming that a
document consists of a single sentence in this example, let us now consider the
additional document “I like to read trash magazines since I do not learn anything.”
We can create a common vocabulary between the two documents by listing all

Hidden recurrent layer(s)

Word sequence

Fully-connected layer(s)

Embedding layer

Classification

Output neuron

Figure 12-8 Network for sentiment analysis

ChAPTEr 12 NEurAL LANguAgE MOdELS ANd WOrd EMBEddINgS

336

the unique words that appear in one or both of the documents. This vocabulary
will consist of the following words, listed in alphabetical order: and, anything, do,
else, i, it, learn, like, magazines, more, not, read, since, than, the, to, trash. given this
vocabulary, we can now express the BoW for the two sentences as the following
two vectors:

BoW1: [1, 1, 0, 1, 3, 1, 1, 1, 0, 3, 0, 1, 0, 1, 2, 0, 0]

BoW2: [0, 1, 1, 0, 2, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1]

Because each BoW in some sense summarizes a document, intuitively, it seems
that we should be able to use these two vectors to compare the documents. If
almost all entries that are nonzero for BoW1 are zero for BoW2, and vice versa,
then it seems likely that the two documents are discussing completely different
topics. On the other hand, if there is overlap such that both documents contain
similar sets of words, it seems plausible that they discuss similar topics. We

Table 12-5 Example of a BoW

WORD NUMBER OF OCCURRENCES

and 1

anything 1

else 1

i 3

it 1

learn 1

like 1

more 3

read 1

than 1

the 2

rELATEd TOPIC: SENTIMENT ANALySIS OF TExT

337

discuss more formal ways of comparing BoW in the next section, but first we
discuss the impact of word ordering.

By this time, it should be clear that BoW does not take word ordering into
account. It simply contains the count of each word, and we arbitrarily stated
them alphabetically to provide some structure. Even if we listed the words in
the order that they first appear in one document, they might not appear in that
same order in another document. From the perspective of at least one of the
documents, the word order will be arbitrary. This has the somewhat unfortunate
effect that important relationships get lost. For instance, for the second sentence,
the fact that learn is preceded by not is clearly important because it expresses
the opposite of what is communicated in the first sentence. One simple way of
extending the BoW model to take some ordering into account is to instead create
a bag-of-n-grams, for example, a bag-of-bigrams. In such a model, we first identify
all the bigrams in the two documents and then create a vocabulary of bigrams
instead of individual words. In our example, /not learn/ would be one token in the
vocabulary, and it would show up in only one of the documents, whereas the token
/i like/ would show up in both documents. The bag-of-n-grams technique is also
known as w-shingling because n-grams are also known as shingles when applied
to words.

At this point, we suspect that we have managed to confuse quite a few of you. We
first claimed that BoW is a special case of n-grams, and then we turned around
and described how the BoW technique can be extended by applying it to n-grams
instead of applying it to individual words. That is, in some sense, we are using an
arbitrary n-gram as a building block to create a special case of n-gram with n = 1.
The explanation is simply that we are working with a number of related concepts
that can be applied at various levels of granularity—for example, characters,
words, or groups of words—and on top of that, these concepts can be combined
in various ways, which can be confusing at first. As with everything else, it takes
some time to get comfortable with, but it becomes clear once you have worked
through a few examples.

Before we discuss how to better compare two BoW with each other, we mention
a couple of additional issues related to BoW. First, documents typically contain
many words that do not contribute much to the total amount of information
in the document. In the English language, the, a, and an are examples of such
words. There are various ways of handling this, such as simply dropping them
before creating the BoW or using various normalization or weighting schemes
to reduce their relative weight in the vector. Further, a long document typically
results in many more nonzero entries than a short document simply because

ChAPTEr 12 NEurAL LANguAgE MOdELS ANd WOrd EMBEddINgS

338

there are more words in the document. Further, even if the size of the vocabulary
is similar between the two documents, the nonzero entries will be larger for a
longer document. To some extent, this issue can be addressed with normalization,
but another common technique is to simply cut parts of the longer document to
make both documents somewhat comparable in size. Another variation of BoW
is to make the vector binary, to indicate only whether each word appears in the
document at all instead of indicating the number of times it appears.

SIMILArITy METrICS

In the previous section, we showed how the BoW technique results in representing
a document as a vector of n integers, where n is the size of the combined
vocabulary from all the documents that we are trying to compare. That is, we can
view the resulting vector as a document vector or a document embedding, where
the document is embedded in n-dimensional space. Note how this is similar to
word embeddings but at a different hierarchical level where we are now trying
to compare the meaning of collections of words instead of the meaning of single
words. Still, given that the representation is simply a vector, we should be able to
compare two documents by simply computing the Euclidean distance between the
two vectors, just as we did when we compared word vectors in the programming
example earlier in this chapter. Euclidean distance is just one of several metrics that
can be used to compare vectors, and the next couple of paragraphs introduce some
other common metrics that can be used for BoW vectors or word vectors, or both.

The first metric, known as Jaccard similarity, assumes that the vectors contain
binary values and is therefore best suited for comparing binary BoW vectors. We
compute the metric by counting how many elements are nonzero in both vectors
and dividing that number by the size of the vector. In other words, it describes
how much of the vocabulary that is common between the two documents. As an
example, we take the two BoW vectors from the previous section and modify them
in a way that each element is binary and thereby represents whether or not a
word is present:

BoW1: [1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0]

BoW2: [0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1]

Learning more techniques for text preprocessing and variations of BoW is
useful if you want to continue working with text data and sentiment analysis.

rELATEd TOPIC: SENTIMENT ANALySIS OF TExT

339

We see that 5 words (anything, i, learn, like, read), out of the total of 17 words
in the vocabulary, are present in both documents, and our Jaccard similarity
is therefore 5/17 = 0.29. The way the Jaccard similarity is defined, it will be a
number between 0 and 1, where higher number indicates more similarity, but it is
worth noting that a score of 1 does not imply that the two documents are identical.
For example, the two documents “I do not like meat but I like vegetables” and “I do
not like vegetables but I like meat” will result in a Jaccard similarity of 1, although
their meanings are different.

Another metric that is commonly used when comparing word embeddings,
but can also be used for BoW vectors, is the cosine similarity. It is defined
as the cosine of the angle between the vectors. As you hopefully know from
trigonometry, the cosine function will result in a value between −1 and 1, where
the value 1 means that the vectors point in exactly the same direction, and −1
means that they point in the opposite direction from each other. Thus, a cosine
similarity close to 1 means that the two vectors are similar. One pitfall when
comparing to Euclidean distance is that a small value of Euclidean distance
implies that vectors are similar, whereas a large value of cosine similarity implies
that vectors are similar.

Therefore, sometimes the metric cosine distance is used, which is defined as
(1 − cosine_similarity). Another property worth mentioning is that if the vectors
are normalized so their absolute value (their length) is 1.0, and we are trying to
find the vector that is closest to a given vector, then it does not matter if we use
Euclidean distance or cosine similarity. They will both end up identifying the same
vector. This is illustrated in Figure 12-9.

The figure shows that when vectors are not normalized (left), the closest vector
can be different depending on whether Euclidean or cosine distance is used. In the
example, vector A is closest to vector B when using Euclidean distance, but C is
closest to B when using cosine distance. When the vectors are normalized (right)
so all have the same length, both Euclidean distance and cosine distance will
identify the same vector as being closest, since as we see, both E

BC
 < E

AB
 and q

BC
 <

q
AB

. The choice of distance metric and whether to normalize the vectors depends
on your application.

As we write “as you hopefully know from trigonometry,” we catch ourselves
having to look up and confirm that what we said about the resulting values of
the cosine function is true, so you might not want to worry too much even if it
was not completely obvious to you.

ChAPTEr 12 NEurAL LANguAgE MOdELS ANd WOrd EMBEddINgS

340

COMBININg BOW ANd dL

up until this point, this whole discussion about BoW has been fairly decoupled
from dL, despite that early on in the book, we promised to focus on dL and avoid
spending time on more traditional approaches unless absolutely necessary. We
now try to make good on that promise by showing how to make use of BoW in
dL. We consider how to use BoW to create a dL model to classify movie reviews
without embedding layers and rNNs. We can do that by first converting each
movie review into a BoW vector. This vector can be a binary vector, or else we can
standardize it so each element in the training set takes on a value between −1.0
and 1.0. We can then feed this vector into a simple feedforward network, given
that the size of the vector is the size of the vocabulary, which is known up front. If
the vector size is prohibitively large, we can always reduce it by simply ignoring
rare words. The model is illustrated in Figure 12-10.

A B

C

A

B

C

EAB

θAB θABθBC θBC

EAB

EBC

EBC

Non-normallized vectors Normallized vectors

Figure 12-9 Euclidean and cosine distance for nonnormalized and normalized
vectors

If you are familiar with linear algebra, you will know that the dot product of
two vectors is directly proportional to the cosine of the angle between them.
Thus, we can make use of the dot product when computing cosine similarities.
This is something to consider for further reading. A summary of linear algebra
concepts useful for dL can be found in Deep Learning by goodfellow, Bengio,
and Courville (2016).

rELATEd TOPIC: SENTIMENT ANALySIS OF TExT

341

One objection to this model is that we have lost all sense of word ordering, but to
address that issue, we can experiment with using bag-of-bigrams or bag-of-n-
grams as input to the model.

We can now devise an experiment in which we create one model based on BoW
vectors as input to a feedforward network, one model based on bag-of-bigrams
as input to a feedforward network, one model based on bag-of-n-grams (with n
> 2) as input to a feedforward network, and finally, the more complex network
with an embedding layer followed by recurrent layers, followed by feedforward
layers. We leave the actual task of doing this as an exercise to the (ambitious)
reader. A simple way of creating a BoW is to use the function sequences_to_
matrix() in the Keras Tokenizer class. The IMdb movie reviews dataset is
included with Keras, and accessing it is similar to how we accessed the MNIST
dataset earlier in this book:

imdb_dataset = keras.datasets.imdb

you will not need to use any of the similarity metrics described previously for
this exercise. you are not trying to compare movie reviews to each other, but your
focus is to classify them as positive or negative, which is done by training the
model using the labeled dataset. We do, however, use the cosine similarity metric
in Chapter 13, where we get back to the topic of word embeddings by describing
the word2vec algorithm.

Bag-of-words

Classification

Output
neuron

Fully connected layer(s)

Figure 12-10 BoW-based model for sentiment analysis

ChAPTEr 12 NEurAL LANguAgE MOdELS ANd WOrd EMBEddINgS

342

Concluding remarks on Language
Models and Word Embeddings

In this chapter, we introduced the concept of language models. We described the
traditional n-gram and skip-gram models and described how they relate to neural
language models. We also provided insight into how a neural language model
works and is able to generalize to unseen sentences.

We described word embedding whereby each word is represented by a vector
embedded in a multidimensional space. We showed how these embeddings
can be trained jointly with a neural language model and how the resulting
embeddings capture some relationships between the words they represent. An
interesting aspect is that they can capture these relationships without explicit
dataset labeling. As a result, a common technique is to train the embedding layer
on a large, unlabeled dataset on one task (e.g., a language model) and then use
the resulting embeddings when training a different network for a different task
(e.g., natural language translation). That is, the embedding layer is pretrained
on unlabeled data on one task and then used in a transfer learning setting for a
different, but related, task. In the case of natural language translation, this second
task requires a dataset with the same sentence in two languages (in some sense,
a labeled dataset), and the dataset is therefore often smaller in size than the
dataset used to train the embedding layer in the first task.

generating word embeddings as a byproduct of training a neural language
model is not the most efficient approach, nor does it result in the highest-quality
word embeddings. A better way is to employ an algorithm specifically designed
to create good word embeddings, inspired by the discoveries described in this
chapter. Two such algorithms are word2vec and gloVe. They are the topics of
Chapter 13.

343

Chapter 13

Word Embeddings from
word2vec and GloVe

As previously mentioned, the evolution of neural language models and word
embeddings are somewhat intertwined. Bengio and colleagues (2003) decided
to use word embeddings in their neural language model, reasoning that it
would help the language model to be effective. Collobert and Weston (2008)
and Mikolov, Yih, and Zweig (2013) then discovered that the resulting word
embeddings demonstrated noteworthy properties, which was also demonstrated
by the programming example in Chapter 12, “Neural Language Models and Word
Embeddings.” Mikolov, Chen, and colleagues (2013) explored whether word
embeddings could be improved by making the properties of the embeddings
the primary objective as opposed to just producing them as a byproduct in the
process of trying to create a good language model. Their work resulted in the
word2vec algorithm, which comes with a number of variations and is described in
detail in this chapter.

Pennington, Socher, and Manning (2014) later devised a different algorithm,
known as GloVe, aiming to produce even better word embeddings. As a
programming example, we download the GloVe word embeddings and explore
how these embeddings demonstrate semantic properties of the embedded
words.

ChAPTEr 13 WOrD EMBEDDINGS FrOM word2vec AND GloVe

344

Using word2vec to Create Word
Embeddings Without a Language Model

In Chapter 12, we discussed word embeddings as a byproduct of training a
language model, with the goal to predict the next word based on a sequence of
previous words. Intuitively, if the aim is not to create a language model but to
create good embeddings, it seems silly to restrict ourselves to look only at the
sequence of words preceding the word to predict. Just as in the example with
bidirectional recurrent neural networks (rNNs), important relationships between
words can be identified by also taking future word sequences into account. All the
variations of word2vec do just that, and we soon look at how this is done.

Apart from using future words to train the word embeddings, the various
word2vec variations also aim at reducing the computational complexity
required to produce the embeddings. The primary rationale for this is that it
enables training on a larger input dataset, which in itself should result in better
embeddings. There are a number of optimizations that are employed by the
different variations of word2vec, and we start with the ones that are fundamental
to the algorithms.

One thing to note is that word2vec evolved gradually into the final word2vec
algorithm from the insight that a language model can create word embeddings.
This evolution included two techniques that were important steppingstones but
that later were eliminated and are no longer used in the dominating version of the
word2vec algorithm. The first of these techniques is hierarchical softmax, which
had previously been developed to speed up neural language models (Morin and
Bengio, 2005). The second of these techniques is known as the continuous-bag-
of-words (CBOW) model, which was one of the two main versions of the word2vec
algorithm (the other being the continuous skip-gram model) in the original
word2vec publication. The focus of our description is on the final algorithm, which
is based on the continuous skip-gram model. We describe hierarchical softmax
and CBOW only at the level needed to understand the big picture.

rEDUCING COMPUTATIONAL COMPLEXITY COMPArED TO A
LANGUAGE MODEL

A key obstacle in producing word embeddings from neural language models
was the computational complexity of training a language model with a large text
corpus. To reduce this computational complexity, it is necessary to profile where
time is spent in the neural language model.

345

USING word2vec TO CrEATE WOrD EMBEDDINGS WIThOUT A LANGUAGE MODEL

Mikolov, Chen, and colleagues (2013) noted that a typical neural language model
consists of the following layers:

• A layer that computes an embedding—low complexity (lookup table)

• One or more hidden layers or recurrent layers—high complexity (fully
connected)

• A softmax layer—high complexity (vocabulary size implies large number of
nodes)

Prior work on reducing computational complexity of neural language models
(Morin and Bengio, 2005) had shown that a technique known as hierarchical
softmax could be used to reduce the complexity of the softmax layer. Therefore,
the initial word2vec paper (Mikolov, Chen, et al., 2013) did not focus on that layer
but simply assumed that hierarchical softmax was used. A follow-on paper
(Mikolov, Sutskever, et al., 2013) removes the softmax layer from word2vec
altogether (described later in the chapter), so for now, you can just assume that
we are using a regular softmax layer and need not worry about the distinction
between hierarchical softmax and regular softmax. It is also worth noting that
computational complexity is less of a concern now than when the initial work on
neural language models and word embeddings was done.

The second optimization is to remove the hidden layer(s). Given what we know
about deep learning (DL), removing layers will make the language model less
powerful, but note that the embeddings are encoded in the first layer. If our
objective is not to create a powerful language model, then it is far from clear that
increasing the number of layers will result in higher-quality embeddings in the first
layer.

After these two changes, we have arrived at a model in which the first layer
converts the inputs to word embeddings (i.e., it is an embedding layer) simply
followed by a softmax (in reality, a hierarchical softmax) layer as the output
layer. The only nonlinearity in the model is the softmax layer itself. These two
modifications should address most of the computational complexity in the
language model and thereby enable a larger training dataset. The model is
illustrated in Figure 13-1.

Learning about hierarchical softmax can make sense to understand the
history of word2vec, and it might well come in handy in other settings as well.
however, there is no need to learn it to understand the rest of this book.

ChAPTEr 13 WOrD EMBEDDINGS FrOM word2vec AND GloVe

346

however, this is still not representative of what is used in the word2vec algorithm.
The outlined model still has the limitation that it considers only historical words,
so let us now move on to techniques that consider both historical and future
words when training the embeddings.

CONTINUOUS BAG-OF-WOrDS MODEL

Extending our model to take future words into account is trivial. Instead of creating
a training set from K consecutive words followed by the next word as the word
to predict, we can select a word to predict and use a concatenation of the K
preceding words and the K subsequent words as the input to the network. The
most straightforward way to create our network would be to simply concatenate
the embeddings corresponding to all the words. The input to the softmax layer
would be 2×K×M, where 2×K is the number of words that we use as input and M
is the embedding size for a single word. however, the way it is done in word2vec
is to average the embeddings for the 2×K words and thereby produce a single
embedding vector of size M. This architecture is shown in Figure 13-2, where K = 2.

Embedding
layer

Hierarchical softmax

Probability of
word N+1

History length = 3

Embedding
layer

Embedding
layer

Word
N–2

Word
N–1

Word
N

Figure 13-1 Simple model to create word embeddings. This model does not
accurately represent the model from word2vec.

347

USING word2vec TO CrEATE WOrD EMBEDDINGS WIThOUT A LANGUAGE MODEL

Averaging the vectors has the effect that the order in which they are presented to
the network does not matter, just as the order does not matter for a bag-of-words
model. With that background, Mikolov, Chen, and colleagues (2013) named the
model a continuous bag-of-words model, where the word continuous indicates
that it is based on real-valued (i.e., continuous) word vectors. however, it is worth
noting that the CBOW is not based on the entire document but on only the 2×K
surrounding words.

The CBOW model was shown to outperform the embeddings created from an
rNN-based language model in terms of how well it captures semantic structures
in the dataset in addition to speeding up the training time significantly. however,
the authors also discovered that a variation of the CBOW technique performed
even better with respect to capturing semantics of the words. They named this
variation the continuous skip-gram model, which is the model they later continued
to optimize in favor of the CBOW model. The continuous skip-gram model is
described next.

Word
N–2

Word
N–1

Word
N+1

Word
N+2

Hierarchical softmax

Probability of
word N

Context size = -2, +2

Embedding
layer

Embedding
layer

Embedding
layer

Embedding
layer

Average

Figure 13-2 Architecture of the continuous bag-of-words model

ChAPTEr 13 WOrD EMBEDDINGS FrOM word2vec AND GloVe

348

CONTINUOUS SKIP-GrAM MODEL

We have now described two major ways of creating embeddings. One is based
on a model that uses historical words to predict a single word, and the other
is based on a model that uses historical and future words to predict a single
word. The continuous skip-gram model flips this around somewhat. Instead of
predicting a single word based on its surrounding words (also known as the
context), it tries to predict the surrounding words based on a single word. This
might sound odd at first, but it results in the model becoming simpler. It takes a
single word as its input and creates an embedding. This embedding is then fed
to a fully connected softmax layer, which produces probabilities for each word in
the vocabulary, but we now train it to output nonzero probabilities for multiple
words (the words surrounding the input word) instead of just outputting a
nonzero probability for a single word in the vocabulary. Figure 13-3 shows such
a model.

When discussing word2vec, context refers to the words surrounding the word
in question. Note that when we discuss sequence-to-sequence networks in the
next couple of chapters, the word context will have a different meaning.

Hierarchical softmax

Word N

Probabilities of words
N–2, N–1, N+1, N+2

Embedding layer

Figure 13-3 Continuous skip-gram model

349

USING word2vec TO CrEATE WOrD EMBEDDINGS WIThOUT A LANGUAGE MODEL

Like CBOW, the model gets its name from a traditional model (skip-gram) but with
the addition of continuous to again indicate that it deals with real-valued word
vectors. A valid question is why this would work well, but we can use a similar
line of reasoning as we did for why the language model would produce good
embeddings. We have noted that words that have properties in common (e.g.,
they are synonyms or similar in some other way) often surround themselves
with a similar set of words, as in our sentences “that is exactly what I mean”
and “that is precisely what I mean.” If we train on both of these sentences, then
our continuous skip-gram model is tasked with outputting a nonzero probability
for the words that, is, what, I, and mean both when presented with exactly and
when presented with precisely on its input. A simple way of achieving that is to
produce embeddings in which those two words are close to each other in vector
space. This explanation involves a fair amount of hand-waving, but remember
that the model evolved on the basis of empirical studies. When you consider
the history of how the models evolved, it is not hard to envision (although it was
clearly still clever) how Mikolov, Chen, and colleagues (2013) experimented with
different approaches and decided to try the continuous skip-gram once they had
shown that the CBOW model worked well. Given that the continuous skip-gram
model outperformed CBOW, they then continued to optimize the former, which is
described next.

OPTIMIZED CONTINUOUS SKIP-GrAM MODEL TO FUrThEr rEDUCE
COMPUTATIONAL COMPLEXITY

The original continuous skip-gram model used hierarchical softmax on its output,
but in a subsequent paper, the algorithm was modified to make it even faster
and simpler (Mikolov, Sutskever, et al., 2013). The overall observation was that
both softmax and hierarchical softmax aim at computing correct probabilities
for all words in the vocabulary, which is important for a language model, but
as previously mentioned, the objective of word2vec is to create good word
embeddings as opposed to a good language model. With that background, the
algorithm was modified by replacing the softmax layer with a new mechanism

Although we say that “it is not hard to envision” that they came up with the
continuous skip-gram model, it would not surprise us if they first tried a large
number of other alternatives. After all, research is 10% inspiration and 90%
perspiration, but that is often not clear when reading the published paper.

ChAPTEr 13 WOrD EMBEDDINGS FrOM word2vec AND GloVe

350

named negative sampling. The observation was that instead of computing a
true probability distribution across all the words in the vocabulary, it should be
possible to produce good embeddings if we teach the network to just correctly
identify the surrounding words, which are on the order of tens of words instead
of tens of thousands of words. In addition, it is necessary to make sure that the
network does not incorrectly produce high probabilities for words that are not
part of the set of surrounding words.

We can achieve this in the following way. For each word K in the vocabulary,
we maintain a single corresponding output neuron N

K
 with a sigmoid activation

function. For each training example X, we now serially train each of the neurons
N

X−2
, N

X−1
, N

X+1
, N

X+2
 corresponding to the surrounding words (this example

assumes that we considered four surrounding words). That is, we have converted
the softmax problem into a series of classification problems. This is not sufficient,
though. A naïve solution to this classification problem is for all output neurons to
always output 1 because they are only sampled (trained) for the cases where their
corresponding words are surrounding the input word. To get around this problem,
we need to introduce some negative samples as well:

Given an input word, do the following:

1. Identify the output neurons corresponding to each surrounding word.

2. Train these neurons to output 1 when the network is presented with the
input word.

3. Identify the output neurons corresponding to a number of random words that
are not surrounding the input word.

4. Train these neurons to output 0 when the network is presented with the
input word.

Table 13-1 illustrates this technique for the word sequence “that is exactly what
I” with a context of four words (two before and two after) and using three negative
samples per context word. Each training example (combination of input and
output word) will train a separate output neuron.

All in all, negative sampling further simplifies word2vec into an efficient
algorithm, which has also been shown to produce good word embeddings.

351

USING word2vec TO CrEATE WOrD EMBEDDINGS WIThOUT A LANGUAGE MODEL

Table 13-1 Training Examples for the Word Sequence “that is exactly what i” with
Three Negative Samples per Context Word

INPUT WORD CONTEXT WORD OUTPUT WORD OUTPUT VALUE

exactly N−2 that (actual context
word)

1.0

ball (random word) 0.0

boat (random word) 0.0

walk (random word) 0.0

N−1 is (actual context
word)

1.0

blue (random word) 0.0

bottle (random word) 0.0

not (random word) 0.0

N+1 what (actual context
word)

1.0

house (random word) 0.0

deep (random word) 0.0

computer (random
word)

0.0

N+2 i (actual context word) 1.0

stupid (random word) 0.0

airplane (random
word)

0.0

mitigate (random
word)

0.0

ChAPTEr 13 WOrD EMBEDDINGS FrOM word2vec AND GloVe

352

Additional Thoughts on word2vec
Additional tweaks can be made to the algorithm as well, but we think that the
preceding description captures the key points required to understand the big
picture. Before moving on to the next topic, we provide some additional insights
into the word2vec algorithm. We begin with a more detailed illustration of the
network structure for readers who prefer visual descriptions and then move on to
a matrix implementation for readers who prefer mathematical descriptions.

Figure 13-4 shows a network for training a word2vec model with a vocabulary
of five words and an embedding size of three dimensions. The figure assumes
that we are currently training based on a context word that is number four in the
vocabulary (the other output neurons are ghosted).

We present the input word to the network, which implies that one of the five
inputs is of value 1 and all others are set to 0. Let us assume that the input
word is number 0 in the vocabulary, so the input word 0 (Wd

0
) is set to 1 and

all other inputs are set to 0. The embedding layer “computes” an embedding
by multiplying all weights from node Wd

0
 by 1 and multiplying all other input

weights by 0 (in reality, this is performed by indexing into a lookup table).
We then compute the output of neuron y

4
 and ignore all others without any

computation. After this forward pass, we do a backward pass and adjust the
weights. Figure 13-4 highlights a noteworthy property. As previously described,
the embedding layer contains K weights (denoted IWE

xy
, where IWE refers to

input word embedding) associated with each input word, where K is the size of

IWE00

IWE01

IWE02

IWE42

IWE41

IWE40

Input embedding
for word 0

One-hot encoded
input layer

y0 y1 y2 y3 y4

Binary
classification
output layer OWE40

OWE41

OWE42

Output embedding
for word 4

Input embedding
for word 4

Wd0 Wd1 Wd2 Wd3 Wd4

Lin Lin Lin

Figure 13-4 The word2vec continuous skip-gram model

353

word2vec IN MATrIX FOrM

the word vector. however, the figure shows that the output layer also contains
K weights (denoted OWE

xy
, where OWE refers to output word embedding)

associated with each output word. By definition, the number of output nodes
is the same as the number of input words. That is, the algorithm produces two
embeddings for each word: one input embedding and one output embedding.
In the original paper, the input embeddings were used, and the output
embeddings were discarded, but Press and Wolf (2017) have shown that it can
be beneficial to tie the input and output embeddings together using weight
sharing.

In a model where the input and output weights are tied together, it is also
possible to reason about how the embeddings for words in the same context
relate to each other. Consider the mathematical operation used to compute
the weighted sum for a single output neuron. It is the dot product of the word
embedding for the input word and the word embedding for the output word,
and we train the network to make this dot product get close to 1.0. The same
holds true for all the output words in that same context. Now consider the
condition needed for a dot product to result in a positive value. The dot product
is computed by elementwise multiplication between the two vectors and then
adding the results together. This sum tends to be positive if corresponding
elements in both the vectors are nonzero and have the same sign (i.e., the
vectors are similar). A straightforward way to achieve the training objective is
to ensure that the word vectors for all words in the same context are similar
to each other. Obviously, this does not guarantee that the produced word
vectors express the desired properties, but it provides some further insight
into why it is not entirely unexpected that the algorithm produces good word
embeddings.

word2vec in Matrix Form
Another way of describing the mechanics of word2vec is to simply look at the
mathematics that is performed. This description is influenced by one of the
sections of the popular blog post “The Illustrated Word2vec” (Alammar, 2019).
We start by creating two matrices, as shown in Figure 13-5. Both are of the same
dimensions with N rows and M columns, where N is the number of words in
the vocabulary and M is the desired embedding width. One matrix will be used
for the central word (the input word), and the other matrix will be used for the
surrounding words (the context).

ChAPTEr 13 WOrD EMBEDDINGS FrOM word2vec AND GloVe

354

We now select a word (the central word) from our text as well as a number of
words surrounding it. We look up the embedding for the central word from the
input embeddings matrix (select a single row) and we look up the embeddings
for the surrounding words from the output embeddings matrix. These are
our positive samples (i.e., where the output value is 1 in the previously shown
Table 13-1). We further randomly sample a number of additional embeddings
from the output-embedding matrix. These are our negative samples (i.e., where
the output value should be 0).

Now we simply compute the dot products between the selected input embedding
and each of the selected output embeddings, apply the logistic sigmoid function
to each of these dot products, and compare to the desired output value. We
then adjust each of the selected embeddings using gradient descent, and then
repeat this process for a different central word. In the end, the leftmost matrix in
Figure 13-5 will contain our embeddings.

Wrapping Up word2vec
To wrap up the discussion about word2vec, according to our understanding,
several people struggle with the mechanics of the algorithm and how it relates
to bag-of-words and traditional skip-gram, as well as with why the algorithm

Input embeddings
(used for the central word)

Output embeddings
(used for the context words)

Embedding width

Vocabulary
size

Embedding width

absent

act

zoom

absent

act

zoom

Figure 13-5 Matrices with input and output embeddings

355

WrAPPING UP word2vec

produces good word embeddings. We hope that we have brought clarity to
the mechanics of the algorithms. The relationship to bag-of-words and skip-
grams is just that there are some aspects of some steps of the word2vec
algorithms that are related to these traditional algorithms, and consequently,
Mikolov, Chen, and colleagues (2013) decided to name them after these
techniques, but we would like to emphasize that they are completely different
beasts. The traditional skip-gram is a language model, and the bag-of-words
is a way of summarizing a document, whereas the continuous bag-of-words
and continuous skip-gram models in word2vec are algorithms that produce
word embeddings. Finally, as to the question of why word2vec produces good
word embeddings, we hope that we have provided some insight into why it
makes sense, but as far as we understand it, it is more of a result of discoveries,
trial-and-error, observations, and refinements than a top-down engineering
effort.

We summarize our understanding of the evolution leading up to the word2vec
algorithm in Figure 13-6. The first few steps are more about neural language
models than word embeddings, but as described, language models played a
critical part in the process of developing word embeddings. The figure also
illustrates how word2vec was not a single step but a process of gradual
refinements.

The release of the word2vec implementation spawned considerable interest in
word embedding research that has resulted in multiple alternative embedding
schemes. One such scheme is the GloVe embeddings, which we now explore with
a programming example.

Language
model

Add
future

words as
input

Flip the
model around
by predicting

context
instead of

target word

Simplify by
replacing

softmax by
negative
sampling

Evolution of word2vec

word2vec

Speed-up
with

hierarchical
softmax

Discovery
of

embedding
properties

neural language model research

Simplify
by

removing
hidden
layer

Figure 13-6 Evolution of neural language models into word2vec

ChAPTEr 13 WOrD EMBEDDINGS FrOM word2vec AND GloVe

356

Programming Example: Exploring
Properties of GloVe Embeddings

About a year after word2vec was published, Pennington, Socher, and Manning
(2014) published “GloVe: Global Vectors for Word representation.” GloVe is an
algorithm mathematically engineered to create well-behaved word embeddings.
In particular, the goal is that the embeddings capture syntactic and semantic
relationships between words. We do not describe the details of how GloVe works,
as the mathematics/statistics needed to understand it is more than we want to
require from readers of this book. however, we strongly recommend that anyone
who wants to get serious about word embedding research (as opposed to just
using word embeddings) acquire the necessary skills to understand the GloVe
paper. The paper also provides additional information about why word2vec
produces sane embeddings. The embeddings are available for download and are
contained in a text file in which each line represents a word embedding. The first
element is the word itself followed by the vector elements separated by blank
spaces.

Code Snippet 13-1 contains two import statements and a function to read the
embeddings. The function simply opens the file and reads it line by line. It splits
each line into its elements. It extracts the first element, which represents the
word itself, and then creates a vector from the remaining elements and inserts
the word and the corresponding vector into a dictionary, which serves as the
return value of the function.

Code Snippet 13-1 Loading GloVe Embeddings from File

import numpy as np

import scipy.spatial

Read embeddings from file.

def read_embeddings():
 FILE_NAME = '../data/glove.6B.100d.txt'

 embeddings = {}

 file = open(FILE_NAME, 'r', encoding='utf-8')

 for line in file:

 values = line.split()

357

PrOGrAMMING EXAMPLE: EXPLOrING PrOPErTIES OF GloVe EMBEDDINGS

Code Snippet 13-2 implements a function that computes the cosine distance
between a specific embedding and all other embeddings. It then prints the n
closest ones. This is similar to what was done in Chapter 12, but we are using
cosine distance instead of Euclidean distance to demonstrate how to do that.
Euclidean distance would also have worked fine, but the results would sometimes
be different because the GloVe vectors are not normalized.

Using these two functions, we can now retrieve word embeddings for arbitrary
words and print out words that have similar embeddings. This is shown in Code
Snippet 13-3, where we first read call read_embeddings() and then retrieve
the embeddings for hello, precisely, and dog and call print_n_closest() on
each of them.

def print_n_closest(embeddings, vec0, n):
 word_distances = {}

 for (word, vec1) in embeddings.items():

 distance = scipy.spatial.distance.cosine(

 vec1, vec0)

 word_distances[distance] = word

 # Print words sorted by distance.

 for distance in sorted(word_distances.keys())[:n]:

 word = word_distances[distance]

 print(word + ': %6.3f' % distance)

Code Snippet 13-2 Function to Identify and Print the Three Words That Are
Closest in Vector Space, Using Cosine Distance

 word = values[0]

 vector = np.asarray(values[1:],

 dtype='float32')

 embeddings[word] = vector

 file.close()

 print('Read %s embeddings.' % len(embeddings))

 return embeddings

ChAPTEr 13 WOrD EMBEDDINGS FrOM word2vec AND GloVe

358

The resulting printouts follow. We see that the vocabulary consists of 400,000
words, and as expected, the closest word to each lookup word is the lookup
word itself (there is zero distance between hello and hello). The other two words
close to hello are goodbye and hey. The two words close to precisely are exactly
and accurately, and the two words close to dog are cat and dogs. Overall, this
demonstrates that the GloVe embeddings do capture semantics of the words.

Read 400000 embeddings.

Words closest to hello

hello: 0.000

goodbye: 0.209

hey: 0.283

Words closest to precisely

precisely: 0.000

exactly: 0.147

accurately: 0.293

embeddings = read_embeddings()

lookup_word = 'hello'

print('\nWords closest to ' + lookup_word)

print_n_closest(embeddings,

 embeddings[lookup_word], 3)

lookup_word = 'precisely'

print('\nWords closest to ' + lookup_word)

print_n_closest(embeddings,

 embeddings[lookup_word], 3)

lookup_word = 'dog'

print('\nWords closest to ' + lookup_word)

print_n_closest(embeddings,

 embeddings[lookup_word], 3)

Code Snippet 13-3 Printing the Three Closest Words to hello, precisely, and dog

359

PrOGrAMMING EXAMPLE: EXPLOrING PrOPErTIES OF GloVe EMBEDDINGS

Words closest to dog

dog: 0.000

cat: 0.120

dogs: 0.166

Using NumPy, it is also trivial to combine multiple vectors using vector arithmetic
and then print out words that are similar to the resulting vector. This is
demonstrated in Code Snippet 13-4, which first prints the words closest to the
word vector for king and then prints the words closest to the vector resulting from
computing (king − man + woman).

It yields the following output:

Words closest to king

king: 0.000

prince: 0.232

queen: 0.249

Words closest to (king - man + woman)

king: 0.145

queen: 0.217

monarch: 0.307

lookup_word = 'king'

print('\nWords closest to ' + lookup_word)

print_n_closest(embeddings,

 embeddings[lookup_word], 3)

lookup_word = '(king - man + woman)'

print('\nWords closest to ' + lookup_word)

vec = embeddings['king'] - embeddings[

 'man'] + embeddings['woman']

print_n_closest(embeddings, vec, 3)

Code Snippet 13-4 Example of Word Vector Arithmetic

ChAPTEr 13 WOrD EMBEDDINGS FrOM word2vec AND GloVe

360

We can see that the closest word to king (ignoring king itself) is prince, followed
by queen. We also see that the closest word to (king − man + woman) is still
king, but the second closest is queen; that is, the calculations resulted in a
vector that is more on the female side, since queen is now closer than prince.
Without diminishing the impact of the king/queen discovery, we recognize that
the example provides some insight into how the (king − man + woman) property
could be observed in embeddings resulting from a relatively simple model. Given
that king and queen are closely related, they were likely close to each other from
the beginning, and not much tweaking was needed to go from king to queen. For
example, from the printouts, we can see that the distance to queen only changed
from 0.249 (distance between queen and king) to 0.217 (distance between queen
and the vector after arithmetic).

A possibly more impressive example is shown in Code Snippet 13-5, where we
first print the words closest to sweden and madrid and then print the words
closest to the result from the computation (madrid − spain + sweden).

As you can see in the following output, the words closest to Sweden are the
neighboring countries Denmark and Norway. Similarly, the words closest to
Madrid are Barcelona and Valencia, two other significant Spanish cities. Now,
removing Spain from Madrid (its capital) and instead adding Sweden results in

lookup_word = 'sweden'

print('\nWords closest to ' + lookup_word)

print_n_closest(embeddings,

 embeddings[lookup_word], 3)

lookup_word = 'madrid'

print('\nWords closest to ' + lookup_word)

print_n_closest(embeddings,

 embeddings[lookup_word], 3)

lookup_word = '(madrid - spain + sweden)'

print('\nWords closest to ' + lookup_word)

vec = embeddings['madrid'] - embeddings[

 'spain'] + embeddings['sweden']

print_n_closest(embeddings, vec, 3)

Code Snippet 13-5 Vector Arithmetic on Countries and Capital Cities

361

CONCLUDING rEMArKS ON word2vec AND GloVe

the Swedish capital city of Stockholm, which seemingly came out of nowhere as
opposed to the king/queen example where queen was already closely related to
king.

Words closest to sweden

sweden: 0.000

denmark: 0.138

norway: 0.193

Words closest to madrid

madrid: 0.000

barcelona: 0.157

valencia: 0.197

Words closest to (madrid - spain + sweden)

stockholm: 0.271

sweden: 0.300

copenhagen: 0.305

In reality, it turns out that if we expand the list of words close to madrid and
sweden, then stockholm does show up as number 18 on the sweden list (and
377 on the madrid list), but we still find it impressive how the equation correctly
identifies it as the top 1.

Concluding remarks on word2vec and
GloVe

In these past two chapters, we have seen that it is possible to learn word
embeddings jointly with a DL model or learn the word embeddings in isolation.
Algorithms such as word2vec and GloVe are not DL algorithms, although
word2vec is inspired by, and to some extent evolved from, a neural language
model. Still, the embeddings produced from these algorithms are useful when
applying DL models to natural language.

ChAPTEr 13 WOrD EMBEDDINGS FrOM word2vec AND GloVe

362

A valid question is whether it is best to use prelearned embeddings in a transfer
learning setting or to learn the embeddings jointly with the DL model, and the
answer is that it is application dependent. There are cases in which it is useful
to use pretrained embeddings that are derived from a large dataset, especially if
your dataset on the end task is not that big. In other cases, it is better to learn the
embeddings jointly with the model. One example would be a use case where the
pretrained embeddings do not capture use case–specific relationships. Another
one is if you are working with natural language translation to a rare language and
you simply do not have access to pretrained embeddings.

Since GloVe was published, there have been additional improvements in the space
of word embeddings. They have been extended with capabilities to handle words
that were not present in the training vocabulary. They have also been extended
to handle cases where a single word can have two different meanings depending
on the context in which it is used. We describe more details about these types
of embeddings in Appendix C. If you are very interested in word embeddings,
consider reading it now. We recommend that most readers just continue reading
the book in order. Chapter 14, “Sequence-to-Sequence Networks and Natural
Language Translation,” uses word embeddings and other concepts we have
discussed to build a network for natural language translation.

We have not brought up the topic of science fiction movies for a few chapters,
so we feel that it is time to do another farfetched analogy. When watching the
2016 movie Arrival, where Amy Adams plays a linguist who is asked to try
to learn an alien language, we think that it would have been very cool if they
had slipped in a reference to word2vec. For example, when trying to persuade
Adams’s character to take on the case, they could have said, “We have already
run word2vec on the aliens’ Wikipedia database, and it didn’t uncover any
compositional relationships but just some weird temporal relationships both
forward and backward.”

Perhaps the reason this was not done is that it is one of the cases where
science was ahead of fiction?!

363

Chapter 14

Sequence-to-Sequence
Networks and Natural
Language Translation

In Chapter 11, “Text Autocompletion with LSTM and Beam Search,” we discussed
many-to-many sequence prediction problems and showed with a programming
example how it can be used for autocompletion of text. Another important
sequence prediction problem is to translate text from one natural language
to another. In such a setting, the input sequence is a sentence in the source
language, and the predicted output sequence is the corresponding sentence
in the destination language. It is not necessarily the case that the sentences
consist of the same number of words in the two different languages. A good
English translation of the French sentence Je suis étudiant is “I am a student,”
where we see that the English sentence contains one more word than its French
counterpart. Another thing to note is that we want the network to consume the
entire input sequence before starting to emit the output sequence, because in
many cases, you need to consider the full meaning of a sentence to produce a
good translation. A popular approach to handle this is to teach the network to
interpret and emit START and STOP tokens as well as to ignore padding values.
Both the padding value and the START and STOP tokens should be values that do
not naturally appear in the text. For example, with words represented by indices

ChAPTER 14 SEquEnCE-TO-SEquEnCE nETwORkS And nATuRAL LAnguAgE TRAnSLATIOn

364

that are inputs to an embedding layer, we would simply reserve specific indices
for these tokens.

Figure 14-1 illustrates this process. The upper part of the figure shows a many-
to-many network where gray represents the input, blue is the network, and
green is the output. For now, ignore the ghosted (white) shapes. The network is
unrolled in time from left to right. The figure shows that the desired behavior is
that during the first four timesteps, we present the symbols for Je, suis, étudiant,
START to the network. during the timestep that the network receives the START
token, the network will output the first word (I) of the translated sentence,
followed by am, a, student, and STOP during the subsequent timesteps. Let us
now consider the white shapes. As previously noted, it is impossible for the
network to not output a value, and similarly, the network will always get some
kind of input for every timestep. This applies to the first three timesteps for
the output and the last four timesteps for the input. A simple solution would be
to use our padding value on both the output and the input for these timesteps.
however, it turns out that a better solution is to help the network by feeding the
output from the previous timestep back as input to the next timestep, just as we
did in the neural language models in previous chapters. This is what is shown in
the Figure 14-1.

To make this abundantly clear, the lower part of the figure shows the
corresponding training example without the network. That is, during training,
the network will see both the source and the destination sequences on its input
and be trained to predict the destination sequence on its output. Predicting
the destination sequence as output might not seem that hard given that the
destination sequence is also presented as input. however, they are skewed in
time, so the network needs to predict the next word in the destination sequence
before it has seen it. when we later use the network to produce translations,
we do not have the destination sequence. we start with feeding the source
sequence to the network, followed by the START token, and then start feeding
back its output prediction as input to the next timestep until the network
produces a STOP token. At that point, we have produced the full translated
sentence.

START tokens, STOP tokens, and padding can be used to create training
examples that enable many-to-many sequences with variable lengths.

365

 SEquEnCE-TO-SEquEnCE nETwORkS And nATuRAL LAnguAgE TRAnSLATIOn

étudiant START

am a student

Many-to-many network

STOP

Timesteps

Je suis studentam a

PADPAD PAD

I

I

Je

suis

étudiant

START

I

am

a

Output values

0

Input values

1

2

3

4

5

6

PAD

PAD

PAD

I

am

a

student

STOPstudent7

Timesteps

Training example

Figure 14-1 neural machine translation is an example of a many-to-many
sequence where the input and output sequences are not necessarily of the
same length.

ChAPTER 14 SEquEnCE-TO-SEquEnCE nETwORkS And nATuRAL LAnguAgE TRAnSLATIOn

366

Encoder-decoder Model for Sequence-
to-Sequence Learning

how does the model that we just described relate to the neural language
models studied in previous chapters? Let us consider our translation network at
the timestep when the START token is presented at its input. The only difference
between this network and the neural language model networks is its initial
accumulated state. In our language model, we started with 0 as internal state
and presented one or more words on the input. Then the network completed the
sentence. Our translation network starts with an accumulated state from seeing
the source sequence, is then presented with a single START symbol, and then
completes the sentence in the destination language. That is, during the second
half of the translation process, the network simply acts like a neural language
model in the destination language. It turns out that the internal state is all that
the network needs to produce the right sentence. we can think of the internal
state as a language-independent representation of the overall meaning of the
sentence. Sometimes this internal state is referred to as the context or a thought
vector.

now let us consider the first half of the translation process. The goal of this
phase is to consume the source sentence and build up this language-independent
representation of the meaning of the sentence. Apart from being a somewhat
different task than generating a sentence, it is also working with a different
language/vocabulary than the second phase of the translation process. A
reasonable question, then, is whether both phases should be handled by the
same neural network or if it is better to have two specialized networks. The first
network would be specialized in encoding the source sentence into the internal
state, and the second network would be specialized in decoding the internal state
into a destination sentence. Such an architecture is known as an encoder-decoder
architecture, and one example is illustrated in Figure 14-2. The network is not
unrolled in time. The network layers in the encoder are distinct from the network
layers in the decoder. The horizontal arrow represents reading out the internal
states of the recurrent layers in the encoder and initializing the internal states
of the recurrent layers in the decoder. Thus, the assumption in the figure is that
both networks contain the same number of hidden recurrent layers of the same
size and type. In our programming example, we implement this model with two
hidden recurrent layers in both networks, each consisting of 256 long short-term
memory (LSTM) units.

EnCOdER-dECOdER MOdEL FOR SEquEnCE-TO-SEquEnCE LEARnIng

367

Figure 14-2 shows just one example of an encoder-decoder model. given how we
evolved from a single Rnn to this encoder-decoder network, it might not be that
odd that the communication channel between the two networks is to transfer the
internal state from one network to another. however, we should also recognize
that the statement “discarded output” is a little misleading in the figure. The
internal state of an LSTM layer consists of the cell state (often denoted by c) and
the recurrent layer hidden state (often denoted by h), where h is identical to the

In an encoder-decoder architecture, the encoder creates an internal state
known as context or thought vector, which is a language-independent
representation of the meaning of the sentence.

Hidden recurrent layer(s)

Src word
sequence

Embedding
layer

Discarded output

Hidden recurrent layer(s)

START + previous
outputs

Softmax

Dest word sentence + STOP

DecoderEncoder

Sequence-to-sequence encoder-decoder model

Embedding
layer

Figure 14-2 Encoder-decoder model for language translation

ChAPTER 14 SEquEnCE-TO-SEquEnCE nETwORkS And nATuRAL LAnguAgE TRAnSLATIOn

368

output of the layer. Similarly, if we had used a gated recurrent unit (gRu) instead
of LSTM, there would not be a cell state, and the internal state of the network
would be simply the recurrent layer hidden state, which again is identical to the
output of the recurrent layer. Still, we chose to call it discarded output because
that term is commonly found in other descriptions.

One can envision other ways of connecting the encoder and the decoder. For
example, we could feed the state/output as a regular input to the decoder just
during the first timestep, or we could give the decoder network access to it
during each timestep. Or, in the case of an encoder with multiple layers, we could
choose to just present the state/output from the topmost layer as inputs to the
bottommost decoder layer. It is also worth noting that encoder-decoder models
are not limited to working with sequences. we can construct other combinations,
such as cases where only one of the encoder or decoder, or neither of them,
has recurrent layers. we discuss more details about this in the next couple of
chapters, but at this point, we move on to implementing our neural machine
translator (nMT) in keras.

Introduction to the keras Functional API
It is not obvious how to implement the described architecture using the constructs
that we have used in the keras API so far. To implement this architecture, we need
to use the keras Functional API, which is specifically created to enable creation
of complex models. There is a key difference compared to using the sequential
models that we have used so far. Instead of just declaring a layer and adding
to the model and letting keras automatically connect the layers in a sequential
manner, we now need to explicitly describe how layers are connected to each
other. This process is more complex and error prone than letting keras do it for
us, but the benefit is the increased flexibility that enables us to describe a more
complex model.

Encoder-decoder architectures can be built in many different ways. different
network types can be used for the encoder and decoder, and the connection
between the two can also be done in multiple ways.

keras Functional API is more flexible than the Sequential API and can therefore
be used to build more complex network architectures.

InTROduCTIOn TO ThE kERAS FunCTIOnAL API

369

we use the example models in Figure 14-3 to illustrate how to use the keras
Functional API. The model to the left is a simple sequential model that could easily
have been implemented with the Sequential API, but the model to the right has an
input that bypasses the first layer and therefore needs to use the Functional API.

The implementation of the left model is shown in Code Snippet 14-1. we start
by declaring an Input object. This is different from the Sequential API, where
the input layer was implicitly created when the first layer was created. we then
declare the two fully connected layers in the model. Once this is done, it is time to
connect the layers by using the assigned variable name as a function and passing
it its inputs as an argument. The function returns an object representing the
outputs of the layer, which can then be used as input argument when connecting
the next layer.

Output Output

Fully connected layer
64

Input tensor
10

Input tensor
5

Fully connected layer
64

Input tensor
10

Fully connected layer
64

Fully connected layer
64

Figure 14-3 Two simple models. The left one is straightforward to implement with
the Sequential API, but the right one requires the Functional API.

Code Snippet 14-1 Example how to Implement a Simple Sequential Model using
the Functional API

from tensorflow.keras.layers import Input, Dense

from tensorflow.keras.models import Model

Declare inputs.

inputs = Input(shape=(10,))

ChAPTER 14 SEquEnCE-TO-SEquEnCE nETwORkS And nATuRAL LAnguAgE TRAnSLATIOn

370

now that we have declared and connected layers to each other, we are ready to
create the model. This is done by simply calling the Model() constructor and
providing arguments informing the model what its inputs and outputs should be.

Creating the more complex model with a bypass path from the input to the
second layer is shown in Code Snippet 14-2. There are just a few minor changes
compared to the previous example. First, we declare two sets of inputs. One is
the input to the first layer, and the other is the bypass input that will go straight
to the second layer. next, we declare a Concatenate layer, which is used to
concatenate the outputs from the first layer with the bypass input to form a single
variable that can be provided as input to the second layer. Finally, when declaring
the model, we need to tell it that its inputs now consist of a list of two inputs.

Code Snippet 14-2 keras Implementation of a network with a Bypass Path

Declare layers.

layer1 = Dense(64, activation='relu')

layer2 = Dense(64, activation='relu')

Connect inputs and layers.

layer1_outputs = layer1(inputs)

layer2_outputs = layer2(layer1_outputs)

Create model.

model = Model(inputs=inputs, outputs=layer2_outputs)

model.summary()

from tensorflow.keras.layers import Input, Dense

from tensorflow.keras.models import Model

from tensorflow.keras.layers import Concatenate

Declare inputs.

inputs = Input(shape=(10,))

bypass_inputs = Input(shape=(5,))

Declare layers.

layer1 = Dense(64, activation='relu')

concat_layer = Concatenate()

layer2 = Dense(64, activation='relu')

PROgRAMMIng ExAMPLE: nEuRAL MAChInE TRAnSLATIOn

371

After this brief introduction to the keras Functional API, we are ready to move on
to implementing our neural machine translation network.

Programming Example: neural Machine
Translation

As usual, we begin by importing modules that we need for the program. This is
shown in Code Snippet 14-3.

Connect inputs and layers.

layer1_outputs = layer1(inputs)

layer2_inputs = concat_layer([layer1_outputs, bypass_inputs])

layer2_outputs = layer2(layer2_inputs)

Create model.

model = Model(inputs=[inputs, bypass_inputs],

 outputs=layer2_outputs)

model.summary()

import numpy as np

import random

from tensorflow.keras.layers import Input

from tensorflow.keras.layers import Embedding

from tensorflow.keras.layers import LSTM

from tensorflow.keras.layers import Dense

from tensorflow.keras.models import Model

from tensorflow.keras.optimizers import RMSprop

from tensorflow.keras.preprocessing.text import Tokenizer

from tensorflow.keras.preprocessing.text \

 import text_to_word_sequence

from tensorflow.keras.preprocessing.sequence \

 import pad_sequences

import tensorflow as tf

import logging

tf.get_logger().setLevel(logging.ERROR)

Code Snippet 14-3 Import Statements

ChAPTER 14 SEquEnCE-TO-SEquEnCE nETwORkS And nATuRAL LAnguAgE TRAnSLATIOn

372

next, we define some constants in Code Snippet 14-4. we specify a vocabulary
size of 10,000 symbols, out of which four indices are reserved for padding, out-
of-vocabulary words (denoted as unk), START tokens, and STOP tokens. Our
training corpus is large, so we set the parameter READ_LINES to the number of
lines in the input file we want to use in our example (60,000). Our layers consist
of 256 units (LAYER_SIZE), and the embedding layers output 128 dimensions
(EMBEDDING_WIDTH). we use 20% (TEST_PERCENT) of the dataset as test
set and further select 20 sentences (SAMPLE_SIZE) to inspect in detail during
training. we limit the length of the source and destination sentences to, at most,
60 words (MAX_LENGTH). Finally, we provide the path to the data file, where
each line is expected to contain two versions of the same sentence (one in each
language) separated by a tab character.

Code Snippet 14-5 shows the function used to read the input data file and do
some initial processing. Each line is split into two strings, where the first contains
the sentence in the destination language and the second contains the sentence
in the source language. we use the function text_to_word_sequence() to
clean the data somewhat (make everything lowercase and remove punctuation)
and split each sentence into a list of individual words. If the list (sentence) is
longer than the maximum allowed length, then it is truncated.

Constants

EPOCHS = 20

BATCH_SIZE = 128

MAX_WORDS = 10000

READ_LINES = 60000

LAYER_SIZE = 256

EMBEDDING_WIDTH = 128

TEST_PERCENT = 0.2

SAMPLE_SIZE = 20

OOV_WORD = 'UNK'

PAD_INDEX = 0

OOV_INDEX = 1

START_INDEX = MAX_WORDS - 2

STOP_INDEX = MAX_WORDS - 1

MAX_LENGTH = 60

SRC_DEST_FILE_NAME = '../data/fra.txt'

Code Snippet 14-4 definition of Constants

PROgRAMMIng ExAMPLE: nEuRAL MAChInE TRAnSLATIOn

373

Code Snippet 14-6 shows functions used to turn sequences of words into
sequences of tokens, and vice versa. we call tokenize() a single time for each
language, so the argument sequences is a list of lists where each of the inner
lists represents a sentence. The Tokenizer class assigns indices to the most
common words and returns either these indices or the reserved OOV_INDEX
for less common words that did not make it into the vocabulary. we tell the
Tokenizer to use a vocabulary of 9998 (MAX_WORDS-2)—that is, use only
indices 0 to 9997, so that we can use indices 9998 and 9999 as our START and
STOP tokens (the Tokenizer does not support the notion of START and STOP
tokens but does reserve index 0 to use as a padding token and index 1 for out-
of-vocabulary words). Our tokenize() function returns both the tokenized
sequence and the Tokenizer object itself. This object will be needed anytime we
want to convert tokens back into words.

Function to read file.

def read_file_combined(file_name, max_len):
 file = open(file_name, 'r', encoding='utf-8')

 src_word_sequences = []

 dest_word_sequences = []

 for i, line in enumerate(file):

 if i == READ_LINES:

 break

 pair = line.split('\t')

 word_sequence = text_to_word_sequence(pair[1])

 src_word_sequence = word_sequence[0:max_len]

 src_word_sequences.append(src_word_sequence)

 word_sequence = text_to_word_sequence(pair[0])

 dest_word_sequence = word_sequence[0:max_len]

 dest_word_sequences.append(dest_word_sequence)

 file.close()

 return src_word_sequences, dest_word_sequences

Code Snippet 14-5 Function to Read Input File and Create Source and destination
word Sequences

ChAPTER 14 SEquEnCE-TO-SEquEnCE nETwORkS And nATuRAL LAnguAgE TRAnSLATIOn

374

The function tokens_to_words() requires a Tokenizer and a list of indices.
we simply check for the reserved indices: If we find a match, we replace them
with hardcoded strings, and if we find no match, we let the Tokenizer convert
the index to the corresponding word string. The Tokenizer expects a list of
lists of indices and returns a list of strings, which is why we need to call it with
[[index]] and then select the 0th element to arrive at a string.

now, given that we have these helper functions, it is trivial to read the input data
file and convert into tokenized sequences. This is done in Code Snippet 14-7.

Functions to tokenize and un-tokenize sequences.

def tokenize(sequences):
 # "MAX_WORDS-2" used to reserve two indices

 # for START and STOP.

 tokenizer = Tokenizer(num_words=MAX_WORDS-2,

 oov_token=OOV_WORD)

 tokenizer.fit_on_texts(sequences)

 token_sequences = tokenizer.texts_to_sequences(sequences)

 return tokenizer, token_sequences

def tokens_to_words(tokenizer, seq):
 word_seq = []

 for index in seq:

 if index == PAD_INDEX:

 word_seq.append('PAD')

 elif index == OOV_INDEX:

 word_seq.append(OOV_WORD)

 elif index == START_INDEX:

 word_seq.append('START')

 elif index == STOP_INDEX:

 word_seq.append('STOP')

 else:

 word_seq.append(tokenizer.sequences_to_texts(

 [[index]])[0])

 print(word_seq)

Code Snippet 14-6 Functions to Turn word Sequences into Tokens, and Vice Versa

PROgRAMMIng ExAMPLE: nEuRAL MAChInE TRAnSLATIOn

375

It is now time to arrange the data into tensors that can be used for training and
testing. In Figure 14-1, we indicated that we need to pad the start of the output
sequence with as many PAd symbols as there are words in the input sequence,
but that was when we envisioned a single neural network. now that we have
broken up the network into an encoder and a decoder, this is no longer necessary
because we will simply not input anything to the decoder until we have run the
full input through the encoder. Following is a more accurate example of what we
need as input and output for a single training example, where src_input is the
input to the encoder network, dest_input is the input to the decoder network,
and dest_target is the desired output from the decoder network:

src_input = [PAD, PAD, PAD, id("je"), id("suis"),
id("étudiant")]

dest_input = [START, id("i"), id("am"), id("a"),
id("student"), STOP, PAD, PAD]

dest_target = [one_hot_id("i"), one_hot_id("am"), one_hot_
id("a"), one_hot_id("student"), one_hot_id(STOP), one_hot_
id(PAD), one_hot_id(PAD), one_hot_id(PAD)]

In the example, id(string) refers to the tokenized index of the string, and
one_hot_id is the one-hot encoded version of the index. we have assumed that
the longest source sentence is six words, so we padded src_input to be of that
length. Similarly, we have assumed that the longest destination sentence is eight
words including START and STOP tokens, so we padded both dest_input and
dest_target to be of that length. note how the symbols in dest_input are
offset by one location compared to the symbols in dest_target because when
we later do inference, the inputs into the decoder network will be coming from the
output of the network for the previous timestep. Although this example has shown
the training example as being lists, in reality, they will be rows in numPy arrays,
where each array contains multiple training examples.

Read file and tokenize.

src_seq, dest_seq = read_file_combined(SRC_DEST_FILE_NAME,

 MAX_LENGTH)

src_tokenizer, src_token_seq = tokenize(src_seq)

dest_tokenizer, dest_token_seq = tokenize(dest_seq)

Code Snippet 14-7 Read and Tokenize the Input File

ChAPTER 14 SEquEnCE-TO-SEquEnCE nETwORkS And nATuRAL LAnguAgE TRAnSLATIOn

376

The padding is done to ensure that we can use mini-batches for training. That is,
all source sentences need to be the same length, and all destination sentences
need to be the same length. we pad the source input at the beginning (known
as prepadding) and the destination at the end (known as postpadding), which is
nonobvious. we previously stated that when using padding, the model can learn
to ignore the padded values, but there is also a mechanism in keras to mask out
padded values. Based on these two statements, it seems like it should not matter
whether the padding is at the beginning or end. however, as always, things are
not as simple as they might appear. If we start with the assumption of the model
learning to ignore values, it will not perfectly learn this. The ease with which it
learns to ignore padding values might depend on how the data is arranged. It
is not hard to imagine that inputting a considerable number of zeros at the end
of a sequence will dilute the input and affect the internal state of the network.
From that perspective, it makes sense to pad the input values with zeros in the
beginning of the sequence instead. Similarly, in a sequence-to-sequence network,
if the encoder has created an internal state that is transferred to the decoder,
diluting this state by presenting a number of zeros before the START token also
seems like it could be bad.

This reasoning supports the chosen padding (prepadding of the source input
and postpadding of the destination input) in a case where the network needs to
learn to ignore the padded values. however, given that we will use the mask_
zero=True parameter for our embedding layers, it should not matter what
type of padding we use. It turns out that the behavior of mask_zero is not what
we had expected when using it for our custom encoder-decoder network. we
observed that the network learned poorly when we used postpadding for the
source input. we do not know the exact reason for this but suspect that there is
some interaction where the masked input values to the encoder somehow causes
the decoder to ignore the beginning of the output sequences.1

Code Snippet 14-8 shows a compact way of creating the three arrays that we
need. The first two lines create two new lists, each containing the destination
sequences but the first (dest_target_token_seq) also augmented with

1. This is just a theory, and the behavior could be something else. Further, it is unclear to us whether
it is due to a bug or an expected but undocumented behavior. Regardless, when using the suggested
padding, we do not see the problem.

Padding can be done in the beginning or end of the sequence. This is known as
prepadding and postpadding.

PROgRAMMIng ExAMPLE: nEuRAL MAChInE TRAnSLATIOn

377

STOP_INDEX after each sequence and the second (dest_input_token_seq)
augmented with both START_INDEX and STOP_INDEX. It is easy to miss that
dest_input_token_seq has a STOP_INDEX, but that falls out naturally
because it is created from the dest_target_token_seq for which a STOP_
INDEX was just added to each sentence.

next, we call pad_sequences() on both the original src_input_data list (of
lists) and on these two new destination lists. The pad_sequences() function
pads the sequences with the PAd value and then returns a numPy array. The
default behavior of pad_sequences is to do prepadding, and we do that for the
source sequence but explicitly ask for postpadding for the destination sequences.
You might wonder why there is no call to to_categorical() in the statement
that creates the target (output) data. we are used to wanting to have the ground
truth one-hot encoded for textual data. not doing so is an optimization to avoid
wasting too much memory. with a vocabulary of 10,000 words, and 60,000
training examples, where each training example is a sentence, the memory
footprint of the one-hot encoded data starts becoming a problem. Therefore,
instead of one-hot encoding all data up front, there is a way to let keras deal with
that in the loss function itself.

Before we build our model, Code Snippet 14-9 demonstrates how we can
manually split our dataset into a training dataset and a test dataset. In previous
examples, we either relied on datasets that are already split this way or we used
functionality inside of keras when calling the fit() function. however, in this
case, we want some more control ourselves because we will want to inspect a

Prepare training data.

dest_target_token_seq = [x + [STOP_INDEX] for x in dest_token_seq]

dest_input_token_seq = [[START_INDEX] + x for x in

 dest_target_token_seq]

src_input_data = pad_sequences(src_token_seq)

dest_input_data = pad_sequences(dest_input_token_seq,

 padding='post')

dest_target_data = pad_sequences(

 dest_target_token_seq, padding='post', maxlen

 = len(dest_input_data[0]))

Code Snippet 14-8 Compact Version of Code to Convert the Tokenized Sequences
into numPy Arrays

ChAPTER 14 SEquEnCE-TO-SEquEnCE nETwORkS And nATuRAL LAnguAgE TRAnSLATIOn

378

few select members of the test set in detail. we split the dataset by first creating
a list test_indices, which contains a 20% (TEST_PERCENT) subset of all the
numbers from 0 to N−1, where N is the size of our original dataset. we then create
a list train_indices, which contains the remaining 80%. we can now use
these lists to select a number of rows in the matrices representing the dataset
and create two new collections of matrices, one to be used as training set and
one to be used as test set. Finally, we create a third collection of matrices, which
only contains 20 (SAMPLE_SIZE) random examples from the test dataset. we will
use them to inspect the resulting translations in detail, but since that is a manual
process, we limit ourselves to a small number of sentences.

As usual, we have now spent a whole lot of code just preparing the data, but we
are finally ready to build our model. This time, building the model will be more

Split into training and test set.

rows = len(src_input_data[:,0])

all_indices = list(range(rows))

test_rows = int(rows * TEST_PERCENT)

test_indices = random.sample(all_indices, test_rows)

train_indices = [x for x in all_indices if x not in test_indices]

train_src_input_data = src_input_data[train_indices]

train_dest_input_data = dest_input_data[train_indices]

train_dest_target_data = dest_target_data[train_indices]

test_src_input_data = src_input_data[test_indices]

test_dest_input_data = dest_input_data[test_indices]

test_dest_target_data = dest_target_data[test_indices]

Create a sample of the test set that we will inspect in detail.

test_indices = list(range(test_rows))

sample_indices = random.sample(test_indices, SAMPLE_SIZE)

sample_input_data = test_src_input_data[sample_indices]

sample_target_data = test_dest_target_data[sample_indices]

Code Snippet 14-9 Manually Splitting the dataset into a Training Set and a Test Set

PROgRAMMIng ExAMPLE: nEuRAL MAChInE TRAnSLATIOn

379

exciting than in the past because we are now building a less trivial model and will
make use of the keras Functional API.

Before going over the code, we revisit the architecture of the model that we intend
to build. The network consists of an encoder part and a decoder part. we define
these as two separate models, which we later tie together. The two models are
illustrated in Figure 14-4. The upper part of the figure shows the encoder, which
consists of an embedding layer and two LSTM layers. The lower part of the figure
shows the decoder, which consists of an embedding layer, two LSTM layers, and a
fully connected softmax layer. The names in the figure correspond to the variable
names that we use in our implementation.

Apart from the layer names, the figure also contains names of the outputs of all
layers, which will be used in the code when connecting layers. Four noteworthy
outputs (illustrated as two sets of outputs) are the state outputs from the two
encoder LSTM layers. These are used as inputs into the decoder LSTM layers to
communicate the accumulated state from the encoder to the decoder.

Code Snippet 14-10 contains the implementation of the encoder model. It
should be straightforward to map the code to Figure 14-4, but there are a few
things worth pointing out. Because we are now interested in accessing the
internal state of the LSTM layers, we need to provide the argument return_
state=True. This argument instructs the LSTM object to return not only a
variable representing the layer’s output but also variables representing the c and
h states. Further, as previously described, for a recurrent layer that feeds another
recurrent layer, we need to provide the argument return_sequences=True so
that the subsequent layer sees the outputs of each timestep. This is also true for
the final recurrent layer if we want the network to produce an output during each
timestep. For our encoder, we are only interested in the final state, so we do not
set return_sequences to True for enc_layer2.

Once all layers are connected, we create the actual model by calling the Model()
constructor and providing arguments to specify what inputs and outputs will be
external to the model. The model takes the source sentence as input and produces
the internal states of the two LSTM layers as outputs. Each LSTM layer has both an
h state and c state, so in total, the model will output four state variables as output.
Each state variable is in itself a tensor consisting of multiple values.

Code Snippet 14-11 shows the implementation of the decoder model. In addition
to the sentence in the destination language, it takes the output state from the
encoder model as inputs. we initialize the decoder LSTM layers (using the
argument initial_state) with this state at the first timestep.

ChAPTER 14 SEquEnCE-TO-SEquEnCE nETwORkS And nATuRAL LAnguAgE TRAnSLATIOn

380

enc_layer1

enc_embedding_input

enc_embedding_layer

enc_layer2

enc_embedding_layer_outputs

enc_layer1_outputs

(discarded)

Encoder model inputs

enc_layer2_state
(h and c)

enc_layer1_state
(h and c)

Encoder model outputs

Encoder model

dec_layer1

dec_embedding_input

dec_layer3

dec_embedding_layer

dec_layer2

dec_embedding_layer_outputs

dec_layer1_outputs

dec_layer2_outputs

Decoder model outputs

dec_layer2_state
(h and c)

dec_layer1_state
(h and c)

Decoder model inputs

dec_layer3_outputs
dec_layer2_state

(h and c)
dec_layer1_state

(h and c)

Decoder model

Figure 14-4 Topology of the encoder and decoder models

PROgRAMMIng ExAMPLE: nEuRAL MAChInE TRAnSLATIOn

381

For the decoder, we do want the top LSTM layer to produce an output for each
timestep (the decoder should create a full sentence and not just a final state), so
we set return_sequences=True for both LSTM layers.

Build encoder model.

Input is input sequence in source language.

enc_embedding_input = Input(shape=(None,))

Create the encoder layers.

enc_embedding_layer = Embedding(

 output_dim=EMBEDDING_WIDTH, input_dim

 = MAX_WORDS, mask_zero=True)

enc_layer1 = LSTM(LAYER_SIZE, return_state=True,

 return_sequences=True)

enc_layer2 = LSTM(LAYER_SIZE, return_state=True)

Connect the encoder layers.

We don't use the last layer output, only the state.

enc_embedding_layer_outputs = \

 enc_embedding_layer(enc_embedding_input)

enc_layer1_outputs, enc_layer1_state_h, enc_layer1_state_c = \

 enc_layer1(enc_embedding_layer_outputs)

_, enc_layer2_state_h, enc_layer2_state_c = \

 enc_layer2(enc_layer1_outputs)

Build the model.

enc_model = Model(enc_embedding_input,

 [enc_layer1_state_h, enc_layer1_state_c,

 enc_layer2_state_h, enc_layer2_state_c])

enc_model.summary()

Code Snippet 14-10 Implementation of Encoder Model

Code Snippet 14-11 Implementation of decoder Model

Build decoder model.

Input to the network is input sequence in destination

language and intermediate state.

dec_layer1_state_input_h = Input(shape=(LAYER_SIZE,))

dec_layer1_state_input_c = Input(shape=(LAYER_SIZE,))

ChAPTER 14 SEquEnCE-TO-SEquEnCE nETwORkS And nATuRAL LAnguAgE TRAnSLATIOn

382

dec_layer2_state_input_h = Input(shape=(LAYER_SIZE,))

dec_layer2_state_input_c = Input(shape=(LAYER_SIZE,))

dec_embedding_input = Input(shape=(None,))

Create the decoder layers.

dec_embedding_layer = Embedding(output_dim=EMBEDDING_WIDTH,

 input_dim=MAX_WORDS,

 mask_zero=True)

dec_layer1 = LSTM(LAYER_SIZE, return_state = True,

 return_sequences=True)

dec_layer2 = LSTM(LAYER_SIZE, return_state = True,

 return_sequences=True)

dec_layer3 = Dense(MAX_WORDS, activation='softmax')

Connect the decoder layers.

dec_embedding_layer_outputs = dec_embedding_layer(

 dec_embedding_input)

dec_layer1_outputs, dec_layer1_state_h, dec_layer1_state_c = \

 dec_layer1(dec_embedding_layer_outputs,

 initial_state=[dec_layer1_state_input_h,

 dec_layer1_state_input_c])

dec_layer2_outputs, dec_layer2_state_h, dec_layer2_state_c = \

 dec_layer2(dec_layer1_outputs,

 initial_state=[dec_layer2_state_input_h,

 dec_layer2_state_input_c])

dec_layer3_outputs = dec_layer3(dec_layer2_outputs)

Build the model.

dec_model = Model([dec_embedding_input,

 dec_layer1_state_input_h,

 dec_layer1_state_input_c,

 dec_layer2_state_input_h,

 dec_layer2_state_input_c],

 [dec_layer3_outputs, dec_layer1_state_h,

 dec_layer1_state_c, dec_layer2_state_h,

 dec_layer2_state_c])

dec_model.summary()

PROgRAMMIng ExAMPLE: nEuRAL MAChInE TRAnSLATIOn

383

we create the model by calling the Model() constructor. The inputs consist of
the destination sentence (time shifted by one timestep) and initial state for the
LSTM layers. As we soon will see, when using the model for inference, we need
to explicitly manage the internal state for the decoder. Therefore, we declare the
states as outputs of the model in addition to the softmax output.

we are now ready to connect the two models to build a full encoder-decoder
network corresponding to what is shown in Figure 14-5. The corresponding
TensorFlow implementation is shown in Code Snippet 14-12.

One thing that looks odd is that, as we described previously, we provide the
argument return_state=True when creating the decoder LSTM layers,
but then when we create this model, we discard the state outputs. It seems
reasonable to not have set the return_state=True argument to begin with.
The reason will be apparent when we describe how to use the encoder and
decoder models for inference.

we decided to use RMSProp as optimizer because some experiments indicate
that it performs better than Adam for this specific model. we use sparse_
categorical_crossentropy instead of the normal categorical_
crossentropy as loss function. This is the loss function to use in keras if the
categorical output data is not already one-hot encoded. As described earlier, we
avoided one-hot encoding the data up front to reduce the memory footprint of the
application.

Although we just connected the encoder and decoder model to form a joint model,
they can both still be used in isolation. note that the encoder and decoder models

dec_layer3_outputs

enc_layer1

enc_embedding_input

enc_embedding_layer

dec_layer1

dec_embedding_input

dec_layer3

dec_embedding_layer

enc_layer2 dec_layer2

enc_embedding_layer_outputs

enc_layer1_outputs
enc_layer2_state

(h and c)

enc_layer1_state
(h and c) dec_embedding_layer_outputs

dec_layer1_outputs

dec_layer2_outputs

dec_layer3_outputs

(discarded)

Model inputs

Model output

(discarded)

(discarded)

Figure 14-5 Architecture of full encoder-decoder model

ChAPTER 14 SEquEnCE-TO-SEquEnCE nETwORkS And nATuRAL LAnguAgE TRAnSLATIOn

384

used by the joint model are the same instances as the individual models. That
is, if we train the joint model, it will update the weights of the first two models.
This is useful because, when we do inference, we want an encoder model that is
decoupled from the decoder model.

during inference, we first run the source sentence through the encoder model
to create the internal state. This state is then provided as initial state to the
decoder model during the first timestep. At this timestep, we also feed the START
token to the embedding layer of the model. This results in the model producing
the first word in the translated sentence as its output. It also produces outputs
representing the internal state of the two LSTM layers. In the next timestep, we
feed the model with the predicted output as well as the internal state from the
previous timestep (we explicitly manage the internal state) in an autoregressive
manner.

Instead of explicitly managing the state, we could have declared the layers as
stateful=True, as we did in our text autocompletion example, but that would
complicate the training process. we cannot have stateful=True during training
if we do not want multiple subsequent training examples to affect each other.

Build and compile full training model.

We do not use the state output when training.

train_enc_embedding_input = Input(shape=(None,))

train_dec_embedding_input = Input(shape=(None,))

intermediate_state = enc_model(train_enc_embedding_input)

train_dec_output, _, _, _, _ = dec_model(

 [train_dec_embedding_input] +

 intermediate_state)

training_model = Model([train_enc_embedding_input,

 train_dec_embedding_input],

 train_dec_output)

optimizer = RMSprop(lr=0.01)

training_model.compile(loss='sparse_categorical_crossentropy',

 optimizer=optimizer, metrics =['accuracy'])

training_model.summary()

Code Snippet 14-12 Code to define, Build, and Compile the Model used for Training

PROgRAMMIng ExAMPLE: nEuRAL MAChInE TRAnSLATIOn

385

Finally, the reason that we do not need to explicitly manage state during training
is that we fed the entire sentence at once to the model, in which case TensorFlow
automatically feeds the state from the last timestep back to be used as the
current state for the next timestep.

This whole discussion may seem unclear until you get more familiar with keras,
but the short of it is that there are many ways of doing the same thing and each
method has its own benefits and drawbacks.

we are now ready to train and test the model, which is shown in Code
Snippet 14-13. we take a slightly different approach than in previous examples. In
previous examples, we instructed fit() to train for multiple epochs, and then we
studied the results and ended our program. In this example, we create our own
training loop where we instruct fit() to train for only a single epoch at a time.
we then use our model to create some predictions before going back and training
for another epoch. This approach enables some detailed evaluation of just a small
set of samples after each epoch. we could have done this by providing a callback
function as an argument to the fit function, but we figured that it was unnecessary
to introduce yet another keras construct at this point.

when declaring a recurrent layer in keras, there are three arguments: return_
state, return_sequences, and stateful. At first, it can be tricky to tell them
apart because of their similar names. If you want to build your own complicated
networks, it is well worth spending some time to fully understand what they do
and how they interact with each other.

keras callback functions is a good topic for further reading if you want to
customize the behavior of the training process (keras.io).

Code Snippet 14-13 Training and Testing the Model

Train and test repeatedly.

for i in range(EPOCHS):

 print('step: ' , i)

 # Train model for one epoch.

 history = training_model.fit(

 [train_src_input_data, train_dest_input_data],

http://keras.io

ChAPTER 14 SEquEnCE-TO-SEquEnCE nETwORkS And nATuRAL LAnguAgE TRAnSLATIOn

386

 train_dest_target_data, validation_data=(

 [test_src_input_data, test_dest_input_data],

 test_dest_target_data), batch_size=BATCH_SIZE,

 epochs=1)

 # Loop through samples to see result

 for (test_input, test_target) in zip(sample_input_data,

 sample_target_data):

 # Run a single sentence through encoder model.

 x = np.reshape(test_input, (1, -1))

 last_states = enc_model.predict(

 x, verbose=0)

 # Provide resulting state and START_INDEX as input

 # to decoder model.

 prev_word_index = START_INDEX

 produced_string = ''

 pred_seq = []

 for j in range(MAX_LENGTH):

 x = np.reshape(np.array(prev_word_index), (1, 1))

 # Predict next word and capture internal state.

 preds, dec_layer1_state_h, dec_layer1_state_c, \

 dec_layer2_state_h, dec_layer2_state_c = \

 dec_model.predict(

 [x] + last_states, verbose=0)

 last_states = [dec_layer1_state_h,

 dec_layer1_state_c,

 dec_layer2_state_h,

 dec_layer2_state_c]

 # Find the most probable word.

 prev_word_index = np.asarray(preds[0][0]).argmax()

 pred_seq.append(prev_word_index)

 if prev_word_index == STOP_INDEX:

 break

 tokens_to_words(src_tokenizer, test_input)

 tokens_to_words(dest_tokenizer, test_target)

 tokens_to_words(dest_tokenizer, pred_seq)

 print('\n\n')

ExPERIMEnTAL RESuLTS

387

Most of the code sequence is the loop used to create translations for the smaller
set of samples that we created from the test dataset. This piece of code consists
of a loop that iterates over all the examples in sample_input_data. we provide
the source sentence to the encoder model to create the resulting internal state
and store to the variable last_states. we also initialize the variable prev_
word_index with the index corresponding to the START symbol. we then enter
the innermost loop and predict a single word using the decoder model. we also
read out the internal state. This data is then used as input to the decoder model in
the next iteration, and we iterate until the model produces a STOP token or until
a given number of words have been produced. Finally, we convert the produced
tokenized sequences into the corresponding word sequences and print them out.

Experimental Results
Training the network for 20 epochs resulted in high accuracy metrics for both
training and test data. Accuracy is not necessarily the most meaningful metric
to use when working on machine translation, but it still gives us some indication
that our translation network works. More interesting is to inspect the resulting
translations for our sample set.

The first example is shown here:

['PAD', 'PAD', 'PAD', 'PAD', 'PAD', 'PAD', 'PAD', 'PAD', 'PAD',
'PAD', "j'ai", 'travaillé', 'ce', 'matin']

['i', 'worked', 'this', 'morning', 'STOP', 'PAD', 'PAD', 'PAD',
'PAD', 'PAD']

['i', 'worked', 'this', 'morning', 'STOP']

The first line shows the input sentence in French. The second line shows the
corresponding training target, and the third line shows the prediction from our
trained model. That is, for this example, the model predicted the translation
exactly right!

Additional examples are shown in Table 14-1, where we have stripped out the
padding and STOP tokens as well as removed characters associated with printing
out the Python lists. when looking at the first two examples, it should be clear
why we said that accuracy is not necessarily a good metric. The prediction is
not identical to the training target, so the accuracy would be low. Still, it is hard
to argue that the translations are wrong, given that the predictions express the

ChAPTER 14 SEquEnCE-TO-SEquEnCE nETwORkS And nATuRAL LAnguAgE TRAnSLATIOn

388

same meaning as the targets. To address this, a metric known as BiLingual
Evaluation understudy (BLEu) score is used within the machine translation
community (Papineni et al., 2002). we do not use or discuss that metric further,
but it is certainly something to learn about if you want to dive deeper into
machine translation. For now, we just recognize that there can be multiple correct
translations to a single sentence.

Looking at the third through sixth rows, it almost seems too good to be true.
The translations are identical to the expected translations. Is it possible for the
model to be that good? Inspecting the training data gives us a clue about what
is going on. It turns out that the dataset contains many minor variations of a
single sentence in the source language, and all these sentences are translated

Table 14-1 Examples of Translations Produced by the Model

SOURCE TARGET PREDICTION

je déteste manger seule i hate eating alone i hate to eat alone

je n’ai pas le choix i don’t have a choice i have no choice

je pense que tu devrais le
faire

i think you should do it i think you should do it

tu habites où where do you live where do you live

nous partons maintenant we’re leaving now we’re leaving now

j’ai pensé que nous pouvions
le faire

i thought we could do it i thought we could do it

je ne fais pas beaucoup
tout ça

i don’t do all that much i’m not busy at all

il a été élu roi du bal de fin
d’année

he was voted prom king he used to negotiate and
look like golfer

BLEu score can be used to judge how well a machine translation system works
(Papineni et al., 2002). Learning the details of how it is computed makes sense
if you want to dive deeper into machine translation.

PROPERTIES OF ThE InTERMEdIATE REPRESEnTATIOn

389

to the same sentence in the destination language. Thus, the model is trained
on a specific source/target sentence pair and is later presented with a slightly
different source sentence. It is not all that unexpected that the model then
predicts exactly the same target sentence that it was trained on, so we might view
this as cheating. On the other hand, we do want to train the model to recognize
similarities and be able to generalize, so it is not completely obvious that we
should strip out these training examples. Still, we did some experiments where
we removed any training example that had a duplicate in either the source or the
destination language, and the model still performed well. Thus, the model clearly
does not fully rely on cheating.

One example of where the model does work without cheating is the second to
last example. The test example has the sentence “I don’t do all that much” as
target. The model predicts the fairly different sentence “I’m not busy at all,” which
arguably still conveys a similar message. Interestingly, when searching through
the whole dataset, the phrase “busy at all” does not show up a single time, so the
model constructed that translation from smaller pieces. On the other hand, the
model also produces some translations that are just wrong. For the last example
in the table, the target was “he was voted prom king” but the model came up with
“he used to negotiate and look like golfer.”

Properties of the Intermediate
Representation

we previously showed that the word embeddings learned in a neural language
model capture some syntactic and semantic structure of the language it models.
Sutskever, Vinyals, and Le (2014) made a similar observation when analyzing
the intermediate representation produced by the encoder in a sequence-to-
sequence model. They used principal component analysis (PCA) to reduce this
representation to two dimensions to be able to visualize the vectors. For the
purpose of this discussion, the only thing you need to know about PCA is that the
resulting lower dimensional vectors still maintain some properties of the original
vectors. In particular, if two vectors are similar to each other before reducing the
dimensionality, then these two vectors will still be similar to each other in the new
lower dimensional space.2

2. PCA can also be used to reduce the dimensionality of word embeddings and plot them in 2d space to
be able to visualize their similarity.

ChAPTER 14 SEquEnCE-TO-SEquEnCE nETwORkS And nATuRAL LAnguAgE TRAnSLATIOn

390

Figure 14-6 shows a chart that visualizes the intermediate representation of
six phrases. The six phrases are grouped into two groups of three phrases
each, where the three phrases within a single group express approximately the
same meaning but with some grammatical variations (e.g., passive voice and
word order). however, phrases in different groups express different meanings.
Interestingly, as can be seen in the chart, the intermediate representation chosen
by the model is such that the three phrases with similar meaning also have
similar encodings, and they cluster together.

we can view this intermediate representation as a sentence embedding or phrase
embedding, where similar phrases will be embedded close to each other in vector
space. hence, we can use this encoding to analyze the semantics of phrases.

Figure 14-6 2d representation of intermediate representation of six sentences.
(Source: Adapted from Sutskever, I., Vinyals, O., and Le, q. (2014), “Sequence to
Sequence Learning with neural networks,” in Proceedings of the 27th International
Conference on Neural Information Processing [NIPS’14], MIT Press, 3104–3112.)

PCA can be used to reduce the number of dimensions of a set of vectors. It
is a good technique to know if working with vector representations in many-
dimensional spaces.

COnCLudIng REMARkS On LAnguAgE TRAnSLATIOn

391

Looking at the example, it seems likely that this methodology will be more
powerful than the previously discussed bag-of-word approach. As opposed to the
bag-of-word approach, the sequence-to-sequence model does take word order
into account.

Concluding Remarks on Language
Translation

Although this programming example was longer and more complicated than most
examples we have shown so far, from a software development point of view, it
is a simple implementation. It is a basic encoder-decoder architecture without
any bells and whistles, and it consists of fewer than 300 lines of code. If you are
interested in experimenting with this model to improve translation quality, a
starting point is to tweak the network by increasing the number of units in the
layers or increasing the number of layers. You can also experiment with using
bidirectional layers instead of unidirectional layers. One problem that has been
observed is that sequence-to-sequence networks of this type find it challenging to
deal with long sentences. A simple trick that mitigates this problem is to reverse
the input sentence. One hypothesis is that doing so helps because the temporal
distance between the model observing the initial words of the source sentence
(that are now at the end after reversing) and observing the initial words of the
destination sentence is smaller, which makes it easier for the model to learn
how they relate to each other. Functionality to reverse the source sentences can
trivially be added to the function that reads the dataset file.

If you want to learn more about neural machine translation, Luong’s Phd thesis
(2016) is a good start. It also contains a brief historical overview of the traditional
machine translation field. Another good resource is the paper by wu and
colleagues (2016), which describes a neural-based translation system deployed
in production. You will notice that it is built using the same basic architecture as
the network described in this chapter. however, it also uses a more advanced
technique, known as attention, to improve its ability to handle long sentences.

More recently, neural machine translation systems have moved on from LSTM-
based models to using a model known as the Transformer, which is based on both
attention and self-attention. Although a Transformer-based translation network
does not use LSTM cells, it is still an encoder-decoder architecture. That is, key
points from this chapter carry over to this more recent architecture. Attention,
self-attention, and the Transformer are the topics of Chapter 15.

This page intentionally left blank

393

Chapter 15

Attention and the
Transformer

This chapter focuses on a technique known as attention. We start by describing
the attention mechanism and how it can be used to improve the encoder-
decoder-based neural machine translation architecture from Chapter 14,
“Sequence-to-Sequence Networks and Natural Language Translation.” We
then describe a mechanism known as self-attention and how the different
attention mechanisms can be used to build an architecture known as the
Transformer.

Many readers will find attention tricky on the first encounter. We encourage you
to try to get through this chapter, but it is fine to skip over the details during the
first reading. Focus on understanding the big picture. In particular, do not worry if
you feel lost when you read about the Transformer architecture in the latter part
of the chapter. Appendix D is the only part of the book that builds further upon this
architecture. However, the Transformer is the basis for much of the significant
progress made within natural language processing (NLP) in the last few years, so
we encourage you to revisit the topic later if it is too heavy to get through the first
time around.

CHAPTEr 15 ATTENTIoN AND THE TrANSForMEr

394

rationale Behind Attention
Attention is a general mechanism that can be applied to multiple problem
domains. In this section, we describe how it can be used in neural machine
translation. The idea with attention is that we let a network (or part of a network)
decide for itself which part of the input data to focus on (pay attention to) during
each timestep. The term input data in the previous sentence does not necessarily
refer only to the input data to the overall model. It could be that parts of a network
implement attention, in which case the attention mechanism can be used to
decide what parts of an intermediate data representation to focus on. We soon
give a more concrete example of what this means, but before doing so, let us
briefly discuss the rationale behind this mechanism.

Consider how a human translates a complicated sentence from one language to
another, such as the following sentence from the Europarl dataset:

In my opinion, this second hypothesis would imply the failure of Parliament in
its duty as a Parliament, as well as introducing an original thesis, an unknown
method which consists of making political groups aware, in writing, of a speech
concerning the Commission’s programme a week earlier—and not a day earlier,
as had been agreed—bearing in mind that the legislative programme will be
discussed in February, so we could forego the debate, since on the next day our
citizens will hear about it in the press and on the Internet and Parliament will no
longer have to worry about it.

We first read the sentence to get an overall idea of what it is trying to convey. We
then start writing the translation, and while doing so, typically revisit different
parts of the source sentence to ensure that our translation covers the entire
sentence and describes it in an equivalent tense. The destination language might
have a different preferred word order, such as in German where verbs appear as
the last words in a sentence in past tense. Therefore, we might jump around in the
source sentence to find a specific word when it is time for its translation to appear
in the destination sentence. It seems reasonable to believe that a network would
benefit from having that same flexibility.

The attention mechanism can be applied to an encoder-decoder architecture
and enables the decoder to selectively decide on which part of the intermediate
state to focus.

ATTENTIoN IN SEquENCE-To-SEquENCE NETWorkS

395

Attention in Sequence-to-Sequence
Networks

With that background, we now make the concept of attention more concrete
by considering how a sequence-to-sequence-based neural machine translator
(NMT) can be extended to include an attention mechanism. Let us start with
a slightly different type of encoder-decoder network than we studied in
Chapter 14. It is shown in Figure 15-1, and the difference is in how the encoder
is connected to the decoder. In the previous chapter, the internal state from
the last timestep of the encoding process was used as initial state at the first
timestep for the decoder. In this alternative architecture, the internal state from
the last timestep of the encoder is instead used as an input, accessible to the
decoder at every timestep. The network also receives the embedding for the
produced word from the last timestep as input. That is, the intermediate state
from the encoder is concatenated with the embedding to form the overall input
to the recurrent layer.

This alternative sequence-to-sequence model can be found in a paper by
Cho and colleagues (2014a), and we use it in this discussion simply because
Bahdanau, Cho, and Bengio (2014) assumed that model as their baseline system
when they added the attention mechanism to an NMT system. They observed
that their model had a hard time dealing with long sentences and hypothesized
that a reason was that the encoder was forced to encode the long sentence in
a fixed-size vector. To resolve that problem, the authors modified their encoder
architecture to instead read out the internal state at every timestep during the
encoding process and store it for later access. This is illustrated in Figure 15-2.
The top part of the figure shows the fixed-length encoding in a network without
attention, using a vector length of 8. The bottom shows the attention case, where
the encoding consists of one vector per input word.

Although the figure shows it as one vector corresponding to each word, it is a little
bit subtler than that. Each vector corresponds to the internal state of the decoder
at the timestep for that word, but the encoding is influenced by both the current
word and all historical words in the sentence.

An alternative way of connecting the encoder and decoder in a sequence-to-
sequence network is to feed the encoder state as an input to the decoder for
every timestep.

CHAPTEr 15 ATTENTIoN AND THE TrANSForMEr

396

suis étudiant START

I am a STOP

Time steps

Je aI am

Encoder Decoder

CONTEXT

Network unrolled in time

student

student

Hidden recurrent layer

Src word
sequence

Embedding
layer

Discarded output

Hidden recurrent layer

START + previous
outputs

Softmax

Embedding layer

Encoder Decoder

Network structures

CONTEXT

Figure 15-1 Alternative implementation of encoder-decoder architecture for
neural machine translation. Top: Network unrolled in time. Bottom: The actual
network structure (not unrolled).

ATTENTIoN IN SEquENCE-To-SEquENCE NETWorkS

397

The change to the encoder is trivial. Instead of discarding the internal state for all
but the last timestep, we record the internal state for each timestep. This set of
vectors is known as the source hidden state. It is also referred to as annotations or
the more general term memory. We do not use those terms, but they are good to
know when reading other publications on the topic.

The changes to the decoder are more involved. For each timestep, the attention-
based decoder does the following:

1. Compute an alignment score for each state vector. This score determines how
much attention to pay to that state vector during the current timestep. The
details of the alignment score are described later in this chapter.

2. use softmax to normalize the scores so they add up to 1. This vector of scores
is known as the alignment vector and would consist of three values for the
preceding example.

3. Multiply each state vector by its alignment score. Then add (elementwise) the
resulting vectors together. This weighted sum (score is used as weight) results
in a vector of the same dimension as in the network without attention. That is,
in the example, it would be a single vector consisting of eight elements.

4. use the resulting vector as an input to the decoder during this timestep. Just as
in the network without attention, this vector is concatenated with the embedding
from the previous timestep to form the overall input to the recurrent layer.

By examining the alignment scores for each timestep, it is possible to analyze
how the model uses the attention mechanism during translation. This is
illustrated in Figure 15-3. The three state vectors (one per encoder timestep)

Je suis étudiant Encoder I am a student

Je suis étudiant Encoder I am a student
Je

suis
étudiant

Decoder

Attention
Decoder

Encoding of:
Je suis étudiant

Encoding of:
Je suis étudiant

Figure 15-2 Top: Fixed-length encoding in encoder-decoder network without
attention. Bottom: Variable-length encoding in encoder-decoder network with
attention.

CHAPTEr 15 ATTENTIoN AND THE TrANSForMEr

398

produced by the encoder are shown to the left. The four alignment vectors (one
for each decoder timestep) are shown in the middle. For each decoder timestep,
a decoder input is created by a weighted sum of the three encoder vectors. The
scores in one of the alignment vectors are used as weights.

For the preceding example, the decoder will keep its focus on je during the first
timestep, which results in it outputting I. The color coding illustrates this (first
decoder input is red, just like first encoder output). It will focus mainly on suis
when outputting am. When outputting a, it focuses on both suis and étudiant (the
input vector is green, which is a mix of blue and yellow). Finally, its focus is on
étudiant when outputting student.

Bahdanau, Cho, and Bengio (2014) analyzed a more complex example:

• French: L’ accord sur la zone économique européenne a été signé en
août 1992.

• English: The agreement on the European Economic Area was signed in
August 1992.

Consider the words in bold. The word order is different in French than in English
(zone corresponds to Area, and européenne corresponds to European). The authors
show that for all three timesteps, when the decoder outputs European Economic
Area, the alignment scores for all the three words zone économique européenne
are high. That is, the decoder is paying attention to the neighboring words to
arrive at a correct translation.

We now go through the attention mechanism for the decoder in more detail and, in
particular, how to compute the alignment scores that result in this behavior. The
architecture is outlined in Figure 15-4, where the upper part shows the workings
of the network unrolled in time, with a focus on the second timestep for the
decoder, and the lower part shows the network structures without unrolling.

Je
suis

étudiant

0.8

0.1

0.1

0.1

0.8

0.1

0.1

0.5

0.4

0.1

0.1

0.8

I am a student

Intermediate state
for each encoder

timestep

Alignment vectors for
each decoder timestep

I
am
a
student

State input
for each decoder
timestep

Figure 15-3 How encoder output state is combined with alignment vectors to
create encoder input state for each timestep

ATTENTIoN IN SEquENCE-To-SEquENCE NETWorkS

399

Hidden recurrent layer

Src word
sequence

Embedding
layer

Hidden recurrent layer

START + previous
outputs

Softmax

Embedding
layer

Encoder Decoder

Adjustable
weights

Attention
structure

suis étudiant START

I am a student

Time steps

Je aI am

Encoder Decoder

Attention network unrolled in time

+

+

Weights

STOP

student

Network structures for attention network

Figure 15-4 Encoder-decoder architecture with attention

CHAPTEr 15 ATTENTIoN AND THE TrANSForMEr

400

Starting with the unrolled view (top), we see that the intermediate representation
consists of three pieces of state (one for each input timestep), each represented
by a small white rectangle. As described previously in steps 2 and 3, we compute
a weighted sum of these vectors to produce a single vector that is used as input
to the recurrent layer in the decoder. The weights (also known as alignment scores
or alignment vector) are adjustable and recomputed at each timestep. As you can
see from the figure, the weights are controlled by the internal state of the decoder
from the timestep before the current decoder timestep. That is, the decoder is
responsible for computing the alignment scores.

The lower part of the figure shows a structural (not unrolled) view of the same
network, where again it is apparent that, by adjusting the weights properly, the
decoder itself controls how much of each encoder state vector to use as its input.

CoMPuTING THE ALIGNMENT VECTor

We now describe how to compute the alignment vector for each decoder timestep.
An alignment vector consists of T

e
 elements, where T

e
 is the number of timesteps

for the encoder. We need to compute T
d
 such vectors, where T

d
 is the number of

timesteps for the decoder.

one can envision multiple ways of computing the alignment vector. We know that
it needs to be of length T

e
. We also need to decide what input values to use to

compute the vector. Finally, we need to decide what computation to apply to these
input values to produce the scores.

one obvious candidate for input value is the decoder state because we want
the decoder to dynamically be able to choose what parts of the input to focus
on. We have already made this assumption in the high-level figures where the
state outputs from the top recurrent layer in the decoder are used to control
the weights in the attention mechanism (the weights in the high-level figures
represent the alignment vector in the more detailed attention mechanism
description). Another candidate that can be used as input values for this
computation is the source hidden state. At first, this might seem a little bit hard
to wrap your head around in that we will use the source hidden state to compute
the alignment vector, which will then be used to determine what parts of the
source hidden state will be visible to the decoder. However, this is not as strange
as it seems. If you view the source hidden state as a memory, this means that we
use the content of that memory to address what piece of the memory to read, a
concept known as content addressable memory (CAM). We mention this for readers

ATTENTIoN IN SEquENCE-To-SEquENCE NETWorkS

401

who already are familiar with CAM, but knowing details about CAM is not required
to follow our remaining description of how to compute the alignment vector.

From a terminology perspective, in our example, the decoder state is used as
a query. It is then used to match against a key, which in our case is the source
hidden state. This selects the value to return, which in our case is also the source
hidden state, but in other implementations, the key and value can be different
from each other.

Now we just need to decide on the function that is used to match the query to the
key. Given the topic of this book, it is not farfetched to use a neural network for
this function and let the model learn the function itself. Figure 15-5 shows two
potential implementations.

The left part of the figure shows a fully connected feedforward network with
an arbitrary number of layers, ending with a fully connected softmax layer that
outputs the alignment vector. The softmax layer ensures that the sum of the
elements in the alignment vector is 1.0. one drawback with the network in the left
part of the figure is that we introduce restrictions on the source input length. More
serious is that the leftmost network hardcodes the expected position of words
in the source sentence, which can make it harder for the network to generalize.
The rightmost architecture addresses this issue by having multiple instances of a
two-layer network with weight sharing between the instances. As we have seen

Fully connected layer(s)

Fully connected softmax

Source hidden state
vectors

Target
hidden
state

Target
hidden
state

Alignment vector

Fully
connected

layer

Fully
connected

layer

Fully
connected

layer

Source
hidden
state 1

Target
hidden
state

Source
hidden
state 2

Target
hidden
state

Source
hidden
state Te

Alignment vector
Replicated network

(weight sharing)

Softmax

Figure 15-5 Two alternative implementations of the function that computes the
alignment vector

CHAPTEr 15 ATTENTIoN AND THE TrANSForMEr

402

previously, weight sharing results in enabling the network to identify a specific
pattern regardless of its position. Each instance of this fully connected network
takes the target hidden state and one timestep of the source hidden state as
inputs. The activation function for the first layer is tanh, and we use softmax in
the output layer to ensure that the sum of the elements in the alignment vector
results in 1.0. This architecture reflects the attention mechanism introduced by
Bahdanau, Cho, and Bengio (2014).

MATHEMATICAL NoTATIoN AND VArIATIoNS oN THE
ALIGNMENT VECTor

Publications about attention mechanisms generally describe the attention
function using linear algebra instead of drawing out networks as we have done.
In this section, we first map the description and Figure 15-5 to mathematical
equations. once that is done, we present simplifications of the attention function,
which can be done compactly using these equations.

The network starts with T
e
 instances of a two-level network, where T

e
 represents

the number of encoder timesteps. The first layer uses tanh as an activation
function. The second layer of each two-level network is a single neuron without
an activation function (softmax is applied later). What we just described is
represented by the networks in the dashed ovals in the figure, where the content
of each oval implements a function known as a scoring function:

()[]() =, tanh ;score Wt si a
T

a t sih h v h h

The target hidden state and one of the source hidden states are used as inputs
to this scoring function. These two vectors are concatenated and multiplied by a
matrix W

a
 after which the tanh function is applied. These operations correspond

to the first fully connected layer. The resulting vector is then multiplied by a
transposed version of vector v

a
. This corresponds to the single neuron in the

output layer in the dashed oval. We compute this scoring function for each
encoder timestep. Each timestep results in a single value so, all in all, we get
a vector with T

e
 elements. We apply the softmax function to this vector to scale

the values so the elements sum to 1. Each element of the output of the softmax
operation is computed using the following formula:

∑ ()()() ()= =
=

exp((,)

exp ,
1

i softmax i
score

score
t

t si

j

T

t sj
e

a
h h

h h

ATTENTIoN IN SEquENCE-To-SEquENCE NETWorkS

403

In the formula, T
e
 represents the number of encoder timesteps, and i is the index

of the element that is computed. We organize the resulting elements into an
alignment vector with one element for each encoder timestep:

1

(2)

()
�

a

a

a

a T

t

t

t

t e

()

=

There is nothing magical about the chosen scoring function. Bahdanau, Cho, and
Bengio (2014) simply chose a two-level fully connected neural network to make it
sufficiently complex to be able to learn a meaningful function yet simple enough
to not be too computationally expensive. Luong, Pham, and Manning (2015)
experimented with simplifying this scoring function and showed that the two
simpler functions in Equation 15-1 also work well:

score generalt si t
T

a sih h h W h() =, ()

() =score dott si t
T

si, ()h h h h

Equation 15-1 Simplifications of the scoring function

one natural question is what the two functions in Equation 15-1 represent in
terms of neural networks. Starting with the dot product version, combined with
the softmax function, this represents the network in the right part of Figure 15-5
but with the modification that there is no fully connected layer before the
softmax layer. Further, the neurons in the softmax layer use the target hidden
state vector as neuron weights, and the source hidden state vector are used as
inputs to the network. The general version combined with the softmax function
represents a first layer defined by W

a
 and with a linear activation function again

followed by a softmax layer that uses the target hidden state vector as neuron
weights. In reality, once we have started to think about these networks in terms
of mathematical equations, we do not necessarily care about what a slight
modification of an equation implies in terms of the network structure as long
as it works well. Flipping things around, we can also analyze the mathematical
equations to see if they can provide any insight into how the attention mechanism
works. Looking at the dot product version, we know that the dot product of two
vectors tends to be large if elements located in the same position in both vectors
are of the same sign. Alternatively, consider the case where the vectors are
produced by rectified linear units (reLu) so that all elements are greater than or
equal to zero. Then the dot product will be large if the vectors are similar to each

CHAPTEr 15 ATTENTIoN AND THE TrANSForMEr

404

other, in the sense that nonzero elements in both vectors are aligned with each
other. In other words, the attention mechanism will tend to focus on timesteps
where the encoder state is similar to the current decoder state. We can envision
that this makes sense if the hidden states of the encoder and decoder somehow
express the type of word that is currently being processed, such as if the current
state can be used to determine whether the current word is the subject or the
object in the sentence.

ATTENTIoN IN A DEEPEr NETWork

This description assumes a network with a single recurrent layer. Figure 15-6
shows a network architecture introduced by Luong, Pham, and Manning (2015)
that applies attention to a deeper network. There are a couple of key differences

Hidden recurrent layer(s)

Src word
sequence

Embedding
layer

Hidden recurrent layer(s)

START + previous
outputs

Softmax

Encoder Decoder

+

Adjustable
weights

Attention
structure

Top recurrent layer Top recurrent layer

Fully connected

"Attentional
vector”

Embedding
layer

+

Figure 15-6 Alternative attention-based encoder-decoder architecture

ATTENTIoN IN SEquENCE-To-SEquENCE NETWorkS

405

compared to Figure 15-4. First, this network architecture is more similar to
our original NMT in that we use the final encoder internal state to initialize
the decoder internal state. Second, as opposed to Figure 15-4, we see that the
encoder and decoder now have two or more recurrent layers. Luong, Pham, and
Manning handled this by applying the attention mechanism only to the internal
state of the topmost layer. Further, instead of using the context derived by the
attention mechanism as input to a recurrent layer, this state is concatenated with
the output of the top recurrent layer in the decoder and fed into a fully connected
layer. The output of this fully connected layer is referred to as an attentional
vector. This vector is fed back to the input of the first recurrent layer in the next
timestep. In some sense, this makes the fully connected layer act as a recurrent
layer as well and is key to making the attention mechanism work well. It enables
the network to take into account what parts of the source sentence it has already
attended to when deciding what parts of the source sentence to consider next.
In the architecture in Figure 15-4, this explicit feedback loop was not needed
because there is an implicit feedback loop given that the weighted state is fed to a
recurrent layer instead of to a regular feedforward layer.

A final key difference is that in Figure 15-6 the weighted sum is fed to a higher
layer in the network instead of being fed back to the same layer that creates the
state that controls the weights. This has the effect that the adjustable weights
are now controlled by the state in the current decoder timestep instead of in the
previous timestep. This might not be obvious at first when looking at the figure.
When you consider how the data flows, you can see that in Figure 15-6 it is
possible to compute the adjustable weights before using them, whereas in the
Figure 15-4 the output of the adjustable weights is used to compute the vector
that controls them. Hence, the vector that controls the weights must have been
derived from a previous timestep.

ADDITIoNAL CoNSIDErATIoNS

In the attention mechanism we have described, the decoder creates a weighted
sum of the vectors in the source hidden state. This is known as soft attention. An
alternative is to instead let the decoder attend to only one out of the vectors in the
source hidden state for each timestep. This is known as hard attention.

A benefit of computing a weighted sum is that the attention function is continuous
and thereby differentiable. This enables the use of backpropagation for learning
as opposed to when a discrete selection function is used.

CHAPTEr 15 ATTENTIoN AND THE TrANSForMEr

406

Finally, let us reflect on one of the restrictions that we now have applied to our
sequence-to-sequence network. Before applying attention, the network could in
theory accept an input sequence of unlimited length. However, the need for the
attention mechanism to store the entire source hidden state, which grows linearly
with the source sequence length, implies that we now have a limitation on the
length of the input sequence. This might seem unfortunate at first, but it is of limited
practical importance. Consider the fairly complex sentence that we gave as a
rationale for the attention mechanism some paragraphs back. Few people would be
able to read it once and then produce a good translation. In other words, the human
brain has a hard time even remembering a sentence of such length and needs to
rely on external storage (the paper or computer screen on which it is written) to
create a good translation. In reality, the amount of storage needed to memorize the
sentence is only 589 bytes in uncompressed form. With that background, having to
reserve enough storage to keep track of the source hidden state seems reasonable.

This concludes our detailed description of the basic attention mechanism. one
takeaway from this discussion is that attention is a general concept, and there are
multiple potential ways to implement it. This may make you feel somewhat uneasy
at first, in that it seems unclear that either one of the described implementations is
the “right” way to do it. This reaction is similar to when first encountering the LSTM
unit and the gated recurrent unit (Gru). In reality, there probably is not a single
right way of applying these concepts. Different implementations express slightly
different behavior and come with different efficiency levels in terms of how much
computation is required to achieve a certain result.

Alternatives to recurrent Networks
If we take a step back, a reasonable question is why we think that recurrent
networks are required for our NMT. The starting point was that we wanted
the ability to process variable sequence lengths for both the source and the
destination sequences. The rNN-based encoder-decoder network was an elegant
solution to this with a fixed-sized intermediate representation. However, to get
good translations of long sentences, we then reintroduced some restrictions on

In hard attention, the state from a single encoder timestep is selected to focus
on each decoder timestep. In soft attention, a mixture (weighted sum) of the
state from all encoder timesteps is used.

SELF-ATTENTIoN

407

the input sequence length and had the decoder access this intermediate state in
a random-access fashion using attention. With that background, it is natural to
explore whether we need an rNN to build our encoder or whether other network
architectures are just as good or better. Another issue with the rNN-based
implementation is that rNNs are inherently serial in nature. The computations
cannot be parallelized as well as they can in other network architectures, leading
to long training times. kalchbrenner and colleagues (2016) and Gehring and
colleagues (2017) studied alternative approaches that are based on convolutional
networks with attention instead of recurrent networks.

A major breakthrough came with the introduction of the Transformer architecture
(Vaswani et al., 2017). It uses neither recurrent layers nor convolutional layers.
Instead, it is based on fully connected layers and two concepts known as self-
attention (Lin, Doll, et al., 2017) and multi-head attention. A key benefit of the
Transformer architecture is that it is parallel in nature. The computations for all input
symbols (e.g., words in language translation) can be done in parallel with each other.

The Transformer architecture has driven much of the progress in NLP since
2017. It has achieved record scores in language translation. It is also the basis for
other important models. Two such models are Generative Pre-Training (GPT) and
Bidirectional Encoder representations from Transformers (BErT), which have
achieved record scores on tasks within multiple NLP applications (Devlin et al., 2018;
radford et al., 2018). More details about GPT and BErT can be found in Appendix D.

The next couple of sections describe the details of self-attention and multi-head
attention. We then move on to describe the overall Transformer architecture and
how it can be used to build an encoder-decoder network for natural language
translation without recurrent layers.

Self-Attention
In the attention mechanism we have studied so far, the decoder uses attention to
direct focus to different parts of the intermediate state. Self-attention is different
in that it is used to decide which part of the output from the preceding layer to
focus on. This is shown in Figure 15-7, where self-attention is applied to the

The Transformer is based on self-attention and multi-head attention.

GPT and BErT are language models based on the Transformer architecture.

CHAPTEr 15 ATTENTIoN AND THE TrANSForMEr

408

output of an embedding layer and is followed by a fully connected layer for each
word. For each of these fully connected layers, the input will be a combination of
all the words in the sentence, where the attention mechanism determines how
heavily to weigh each individual word.

Before diving into the details of the self-attention mechanism, it is worth pointing
out how the architecture in the figure exposes parallelism. Although the figure
contains multiple instances of embedding layers, attention mechanisms, and fully
connected layers, they are all identical (weight sharing). Further, within a single
layer, there are no dependencies between words. This enables an implementation
to do the computations in parallel. Consider the inputs to the fully connected

Word
1

Word
2

Word
3

Word
0

+

Adjustable
weights

+++

Fully
connected

Fully
connected

Fully
connected

Fully
connected

Adjustable
weights

Adjustable
weights

Adjustable
weights

Embedding
layer

Embedding
layer

Embedding
layer

Embedding
layer

Figure 15-7 Embedding layer followed by a self-attention layer followed by a fully
connected layer. The network employs weight sharing, so each word position uses
the same weights.

SELF-ATTENTIoN

409

layers. We can arrange the four output vectors from the attention mechanisms
into a matrix with four rows. The fully connected layer is represented by a
matrix with one column per neuron. We can now compute the output for all four
instances in parallel by a single matrix-matrix multiplication. We will see later
how the self-attention mechanism exposes additional parallelism, but first we
need to describe self-attention in more detail.

Earlier in this chapter, we described how the attention mechanism uses a scoring
function to compute these weights. one of the inputs to this scoring function, the
key, was the data value itself. The other input, the query (the horizontal arrows in
Figure 15-7), came from the network that would consume the input (the decoder
network). In the case of self-attention, the query comes from the previous layer,
just as the value does.

The self-attention mechanism in the Transformer is slightly more complex than
what is shown in the figure. Instead of directly using the inputs to the attention
mechanism as key, query, and data, these three vectors are computed by three
separate single-layer networks with linear activation functions. That is, the key
is now different than the data value, and another side effect is that we can use
a different width of key, query, and data than the original input. This is shown in
Figure 15-8 for a single attention mechanism.

Query layer Key layer Value layer

+

Adjustable
weights

Embedding
layer

Figure 15-8 Attention mechanism with projection layers that modify the
dimensions of the query, key, and value

CHAPTEr 15 ATTENTIoN AND THE TrANSForMEr

410

It might seem confusing that we now have two arrows feeding into the rectangle
with the adjustable weights. In the previous figures, we implicitly used the data
values (the white rectangles) as both value and key, so we did not explicitly draw
this arrow. That is, in reality, the attention mechanism did not change much
despite the figure containing an additional arrow.

Multi-head Attention
We saw in the previous section how we can use self-attention to produce N output
vectors from N input vectors, where N was the number of words that were input to
the network. The self-attention mechanism ensured that all N input vectors could
influence each output vector. We also introduced layers for the query, key, and
value that enabled us to make the width of the output vector independent of the
width of the input vector. The ability to decouple the input width from the output
width is central in the multi-head attention concept.

Multi-head attention is as simple as having multiple attention mechanisms
operating in parallel for each input vector. This is shown in Figure 15-9 for an
example with two heads.

Embedding
layer

Embedding
layer

Embedding
layer

Word
0

Word
1

Word
N

Adjustable
weights

Adjustable
weights

Adjustable
weights

Adjustable
weights

Adjustable
weights

Adjustable
weights

Head 1 Head 2 Head 1 Head 2 Head 1 Head 2

Query, key
and value
layers 1

Query, key
and value
layers 1

Query, key
and value
layers 1

Query, key
and value
layers 2

Query, key
and value
layers 2

Query, key
and value
layers 2

Projection layer Projection layer Projection layer

++++ + +

Figure 15-9 Embedding layer followed by multi-head self-attention layer. Each
input word vector is processed by multiple heads. The output of all heads for a
given word are then concatenated and run through a projection layer.

THE TrANSForMEr

411

This figure implies that each input vector now results in two output vectors. That
is, if the output width of a single head is the same as the input width, the output of
the layer now has two times as many values as compared to the input to the layer.
However, given the query, key, and value layers, we have the ability to size the
output to any width. In addition, we have added a projection layer on the output.
Its input is the concatenated output from the heads. All in all, this means that we
have full flexibility in selecting the width of the attention heads as well as the
overall output of the multi-head self-attention layer.

Just as for Figure 15-7, we assume weight sharing in Figure 15-9. The query
layer for head 1 for word 0 is identical to the query layer for head 1 for all other
words, and the same applies to the key and value layers. From an implementation
perspective, this means that if we arrange our N input vectors to the self-attention
layer into a matrix, computing the query vector for head 1 for all input vectors
is equivalent to a single matrix-matrix multiplication. The same holds true for
the key vector and the value vector. The number of heads is another level of
parallelism, so in the end, the self-attention layer results in a large number of
matrix multiplications that can be done in parallel.

The Transformer
As previously mentioned, the Transformer is an encoder-decoder architecture
similar to what we have seen already, but it does not employ recurrent layers. We
first describe the encoder, which starts with an embedding layer for each word, as
we have seen in previous figures. The embedding layers are followed by a stack of
six identical modules, where each module consists of a multi-head self-attention
layer and a fully connected layer corresponding to each input word. In addition,
each module employs skip connections and normalization, as shown in the left
part of Figure 15-10, which illustrates a single instance of the six modules.

The network uses layer normalization (Ba, kiros, and Hinton, 2016) as opposed to
batch normalization that we have seen previously. Layer normalization has been
shown to facilitate training just like batch normalization but is independent of the
mini-batch size.

We stated that the Transformer does not use recurrent layers, but the decoder is
still an autoregressive model. That is, it does generate the output one word at a
time and still needs to feed each generated word back as an input to the decoder
network in a serial fashion. Just as for the encoder, the decoder consists of six

CHAPTEr 15 ATTENTIoN AND THE TrANSForMEr

412

instances of a module, but this decoder module is slightly more complex than the
encoder module. In particular, the multi-head self-attention mechanism includes
a masking mechanism that prevents it from attending to future words, as they
have not yet been generated. In addition, the decoder module contains another
attention layer, which attends to the output from the encoder modules. That is, the
decoder employs both self-attention and traditional attention to the intermediate
state generated by the encoder. However, as opposed to our examples earlier

Self-
attention

Norm

Feed
forward

Norm

+

+ + +

Norm

Feed
forward

Norm

Norm

Feed
forward

Norm

Input
Position

1

Input
Position

2

Input
Position

N

Masked self-
attention

Norm

Feed
forward

Norm

Norm

Feed
forward

Norm

Norm

Feed
forward

Norm

Input
Position

1

Input
Position

2

Input
Position

N

Attention

Norm Norm Norm

Encoder
module

Decoder
module

+ +

+

+ + +

+ +

+ + +

Figure 15-10 Left: Transformer encoder module consisting of multi-head self-attention,
normalization, feedforward, and skip connections. The feedforward module consists
of two layers. right: Transformer decoder module. Similar to the encoder module but
extended with a multi-head attention (not self-attention) in addition to the multi-head
self-attention layer. The overall Transformer architecture consists of multiple encoder
and decoder modules.

THE TrANSForMEr

413

in this chapter, in addition to using multi-head attention in the self-attention
layers, the Transformer also uses multi-head attention in the attention layer that
is applied to the intermediate state from the encoder. The decoder module is
illustrated to the right in Figure 15-10.

Now that we have described the encoder module and the decoder module, we
are ready to present the complete Transformer architecture. It is shown in
Figure 15-11. The figure shows how the decoder attends to intermediate state
produced by the encoder.

Encoder
module

Encoder
module

Encoder
module

Decoder
module

Decoder
module

Decoder
module

Linear

Softmax

Positional
encoding

Positional
encoding

Input
embeddings

Output
embeddings

(shifted)

+ +

Figure 15-11 The transformer architecture

CHAPTEr 15 ATTENTIoN AND THE TrANSForMEr

414

The figure contains one final detail that we have not yet described. If you
consider how the overall Transformer architecture is laid out, it has no
good way of taking word order into account. The words are not presented
sequentially, as in a recurrent network, and the subnetworks that process
each individual word all share weights. To address this issue, the Transformer
architecture adds something called a positional encoding to each input
embedding vector. The positional encoding is a vector with the same number
of elements as the word embedding itself. This positional encoding vector is
added (elementwise) to the word embedding, and the network can make use
of it to infer the spatial relationship between words in the input sentence.
This is illustrated in Figure 15-12, which shows an input sentence consisting
of n words, where each word is represented by a word embedding with four
elements.

We need to compute one positional encoding vector corresponding to each input
word. Clearly, the elements in the positional encoding vector should be influenced
by the word’s position in the sentence. It also turns out to be beneficial if all
elements in the positional encoding vector are not identical. That is, for a specific
input word, we do not add the same value to each element in the word vector,
but the value depends on the index in the word vector. The figure illustrates this
by using different colors for the four elements in the positional encoding vector.

+

=

Resulting
embedding

Input
embedding

Positional
encoding

0 1 n-1

Position in sentence

0 1 2 3 0 1 2 3 0 1 2 3

Index in vector

= =

+ +

Figure 15-12 Positional encodings are added to input embeddings to indicate
word order. The figure assumes word embeddings with four elements. The
sentence consists of n words. A positional encoding vector is added to the input
embedding for each word to compute the resulting embedding that is fed to the
network.

CoNCLuDING rEMArkS oN THE TrANSForMEr

415

If the index i of the element in the vector is even, the value of the element in the
positional encoding vector is1

sin
10000 /

pos
i d

where pos is the position of the word in the sentence, i is the index of the element
in the vector, and d is the number of elements in the word embedding. If the index
i of the element in the vector is odd, the value of the element is

cos
10000(1)/

pos
i d

−

From the formulas, we can see that for a given index i, the arguments to sin and
cos are monotonically increasing from zero and upward as we move to later
words in the sentence. It may not seem obvious why these positional encodings
are the right ones to use. As with many other mechanisms, this is just one of
many options. Architectures in Appendix D use another option, namely, to learn
positional encodings during training.

Concluding remarks on the Transformer
When the Transformer model was introduced, it produced better English-to-
German and English-to-French translations than any previous models. Note that a
Transformer-based translation network is still an example of an encoder-decoder
architecture, just like the LSTM-based network in Chapter 14. However, the
parallel nature of the encoder and decoder addresses the serialization problem
presented by LSTM-based architectures.

The Transformer is useful not only for language translation tasks but also for NLP
in general. As an example, in the programming example in Chapter 12, “Neural
Language Models and Word Embeddings,” we implemented an LSTM-based
language model. In contrast, the more recently published language models are
based on components from the Transformer architecture. As we pointed out in
Chapter 14, the decoder part of a translation network is basically a language
model, which is initialized with the internal state of the encoder. A modified

1. If you read the original paper (Vaswani et al., 2017), you will find that the equations are stated
somewhat differently using 2i rather than i. This is not a typo. It results from the paper not using i to
represent the index in the vector. Instead, it denotes the index by 2i for even indices and 2i+1 for odd
indices.

CHAPTEr 15 ATTENTIoN AND THE TrANSForMEr

416

version of the Transformer decoder is used to implement the popular language
model GPT, which is described in Appendix D. Another example, also described
in Appendix D, is BErT, which is based on the encoder component from the
Transformer architecture.

Earlier in this chapter, we stated that the Transformer uses neither recurrent
layers nor convolutional layers. However, we also noted that the decoder
component of the network is an autoregressive model and thereby does employ a
feedback mechanism similar to recurrence. To be fair, this is more related to how
the model is used and is not inherent in the model architecture. In fact, the BErT
model is based solely on the Transformer encoder and is thereby completely free
from such feedback connections. on the topic of convolutional layers, we note that
although the Transformer does not explicitly use convolutions, it does make use
of weight sharing similar to what convolutions do. Cordonnier, Loukas, and Jaggi
(2020) studied how self-attention and convolutional layers relate to each other
and showed that attention layers often learn to perform convolutions in practice.
However, a key difference between self-attention and convolution is that the self-
attention layer can attend to any position in the input, whereas convolutions can
attend only to neighboring positions covered by the convolutional kernel.

To learn more about the Transformer, apart from reading the original paper, we
recommend Alammar’s blog post about the Transformer (Alammar, 2018b). It
also contains links to publicly available source code so you can get started with
using the model. If you want to learn about more use cases of the Transformer
architecture, consider reading about GPT, BErT, and roBErTa in Appendix D now.
Another option is to continue to Chapter 16, “one-to-Many Network for Image
Captioning,” which describes how to build an attention-based model for image
captioning.

417

Chapter 16

One-to-Many Network
for Image Captioning

We have now spent a number of chapters on working with textual data. Before
that, we looked at how convolutional networks can be applied to image data. In
this chapter, we describe how to combine a convolutional network and a recurrent
network to build a network that performs image captioning. That is, given an
image as input, the network generates a textual description of the image. We
then describe how to extend the network with attention. We conclude the chapter
with a programming example that implements such an attention-based image-
captioning network.

Given that this programming example is the most extensive example in the
book and we describe it after we described the Transformer, it might seem
like this image-captioning architecture is the most recent and advanced of the
architectures described in this book. That is not the case. The basic form of this
image-captioning architecture was published in 2014 and thereby preceded
the Transformer architecture by three years. However, we find it a neat way
of bringing together most of the concepts we have discussed in the previous
chapters. The basic process of image captioning is illustrated in Figure 16-1.

One use case for image captioning is to enable textual search on images without
the need for a human to first annotate the images with a textual description. At
first it might seem unclear how to create such a model, but given our background
in neural machine translation, it turns out to be simple. Generating a textual
description of an image can be viewed as a translation from one language to

CHAPTEr 16 OnE-TO-MAny nETWOrk FOr IMAGE CAPTIOnInG

418

another, where the source language is visual instead of textual. Figure 16-2
shows conceptually how this can be done using an encoder-decoder architecture.
A number of papers (karpathy and Li, 2014; Mao et al., 2014; Vinyals et al., 2014)
independently proposed such architectures in the same timeframe as, or shortly
after, the sequence-to-sequence models for language translation were published.
We start with an encoder consisting of a convolutional network that creates
a language-independent intermediate representation of what is in the image.

Image captioning network “A seagull with a boat
in the background”

Figure 16-1 The image-captioning problem

Fully connected layers(s)

Image

Convolutional layers(s)

Hidden recurrent layer(s)

START + previous
outputs

Softmax

Embedding
layer

Encoder Decoder

Encoder-decoder network for image captioning

CONTEXT

Figure 16-2 Architecture for image captioning network

419

 OnE-TO-MAny nETWOrk FOr IMAGE CAPTIOnInG

This is followed by a decoder consisting of a recurrent network, which converts
this intermediate representation into text. This is an example of a one-to-many
network where the input is a single item (an image) and the output consists of
multiple items (a sequence of words).

As described in Chapter 7, “Convolutional neural networks Applied to Image
Classification,” a convolutional network often ends with one or more fully
connected layers that somehow summarize the feature maps from the last
convolutional layer into a 1D vector before the final softmax layer that classifies
the image as containing a specific object. For Visual Geometry Group’s VGG19,
this 1D vector (the input to the softmax layer) consists of 4,096 elements, as can
be seen at the top1 of Figure 16-3, which depicts a simplified view of the VGG19

1. The other details of the figure are discussed in a later paragraph, so you can ignore that for now.

Image captioning can be done with an encoder-decoder network that
“translates” from a visual representation of a scene to a textual description.
The source language is visual.

Feature 512

Feature 5
Feature 4
Feature 3
Feature 2
Feature 1

Input image

Top convolutional layer

Omitted max-pooling layer

Fully connected layer with softmax

14
14

512

Fully connected 4096

Fully connected 4096

Omitted convolutional layers

224

224

3

4096

4096

1000 one-hot

196 feature vectors of length
512, each representing a
region in the input image

4096-dimensional embedded
representation of image

Figure 16-3 Simplified view of the VGG19 network where many layers have been
omitted

CHAPTEr 16 OnE-TO-MAny nETWOrk FOr IMAGE CAPTIOnInG

420

network. One way to interpret this vector is as an image embedding, where the
image is embedded in a 4,096-dimensional space. We could envision that two
images that represent similar scenes end up being embedded close to each other
in vector space. This is analogous to the example in the Chapter 14, which showed
how similar phrases ended up embedded close to each other in vector space in a
neural machine translation application.

We can now simply use this vector as our context and directly use it as an input
to our recurrent neural network (rnn)-based decoder network. Another option
would be to use this vector as the initial hidden state for our rnn-based decoder
network. At a first glance, it seems like we impose an unnecessary restriction
that the number of units in the rnn (or, more likely, LSTM) layer needs to match
the dimension of the layer from the convolutional network. In the case of VGG19,
this would imply that the recurrent layer must have 4,096 units. This restriction
can easily be addressed by introducing yet another fully connected layer on top of
the 4,096-unit layer. This added layer will have the same number of units as the
number of state values required by the rnn layer.

Extending the Image Captioning network
with Attention

Just as we can apply attention to a sequence-to-sequence (text-to-text) network,
we can apply attention to this image-to-text network. However, applying it to the
just described network might not make much sense. In the language translation
example, the context was an internal representation of a sequence of words,
and applying attention implied that the network focused on different parts of
the sentence at different timesteps. In our image-captioning network, the fully
connected layer at the top of the network has already squashed the different
features into a single representation. Thus, different parts of our 4,096-element
vector do not have a direct correspondence to different regions of the image. Each
element in the vector contains information about all pixels in the input image.
A more sensible way of applying attention in our image-captioning network
would be to apply it to the top convolutional layer. As you might remember, the
output of a convolutional layer in this type of network is a 3D structure in which
two of the dimensions correspond to the two dimensions in the picture and
the third dimension (the channels) represent feature maps for different types

PrOGrAMMInG ExAMPLE: ATTEnTIOn-BASED IMAGE CAPTIOnInG

421

of features. This is also illustrated in Figure 16-3, where we see that for the
VGG19 architecture, the output of the top convolutional layer is of the dimensions
14×14×512. In other words, it consists of 196 vectors, each containing 512
elements. Each of these 196 vectors corresponds to a specific region in the
input image, and the 512 elements in the vector represent 512 different types
of features that the network might have identified in that region. Using these
196 vectors as our context makes much more sense when we want to apply
attention, because the attention mechanism can now attend to different regions of
the input image by adjusting the weights for the corresponding vectors.

A noteworthy use case for attention apart from trying to improve the behavior of
encoder-decoder models is to use it to gain insight into what the model is doing,
and perhaps most important, get a better understanding of what is happening
when it is making mistakes. For each generated output word, we can analyze the
alignment vector and see where in the input data the model is currently focused,
such as what part of an image resulted in the word. An entertaining example can
be found in a paper by xu, Ba, and colleagues (2015), where an image of a man
and a woman results in the textual description “A man is talking on his cell phone
while another man watches.” The alignment vector clearly shows that when the
model outputs the words cell phone, the focus is on a sandwich from which the
man takes a bite, and when the model outputs the word watches, the focus is on
the woman’s wristwatch!

Programming Example: Attention-Based
Image Captioning

We now show how you can build your own image-captioning network with
attention. This example is inspired by the architecture described by xu, Ba, and
colleagues (2015), but we have done some simplifications to keep the code size
small and simple.2 Conceptually it is similar to the network shown in Figure 16-2,

2. The claim that this code example is simple should be considered in the context of the complex task
it solves. If you do not have extensive programming experience, this example can be overwhelming.

Attention can be used to gain a better understanding of the internal workings of
the model.

CHAPTEr 16 OnE-TO-MAny nETWOrk FOr IMAGE CAPTIOnInG

422

but the decoder uses attention when examining the context. The decoder is based
on a recurrent network. A more modern implementation can be obtained by
instead using a Transformer-based decoder.

For this application, we need a dataset that consists of images annotated with
corresponding textual descriptions. We use the publicly available COCO dataset
(Lin et al., 2015). The COCO dataset consists of 82,783 training images and 40,775
test images. Each image has a number of associated image descriptions. To
keep things simple, we use only the training dataset and the first description of
each image. Just as for the translation example in Chapter 14, we do not worry
about BLEU scores when evaluating how our network performs but just inspect
the output of the network on a small set of test images. We provide our own
test images, and thus they are completely independent of the COCO dataset. In
addition, note that the COCO dataset contains more information than what is
needed for image captioning, but we simply ignore those parts of the dataset.

Instead of training our network end to end, we make use of transfer learning for
the convolutional part of the network. We do this by using a model implementing
the VGG19 architecture, which has been pretrained on the Imagenet dataset. As
described previously, we remove the fully connected layers from the top of the
network and use the output from the topmost convolutional layer to generate
the context, to which the attention mechanism will be applied. Given that we do
not have the need to adjust the weights for the VGG19 network (we assume that
the pretraining on Imagenet is good enough), we can employ an optimization.
Instead of running the training image through the VGG19 network for each
training example for each training epoch, we can run each image through the
VGG19 network once and for all before training begins and save the vectors that
are output of the topmost convolutional layer to disk. That is, during training, the
encoder model is computationally simple, because there is no need to run the
image through all the convolutional layers, but it simply reads the feature vectors
from disk. With that background, we start by presenting the code to do the image
preprocessing. The import statements can be found in Code Snippet 16-1.

Code Snippet 16-1 Import Statements for Image Preprocessing Code

import json

import numpy as np

import tensorflow as tf

from tensorflow import keras

from tensorflow.keras.models import Model

PrOGrAMMInG ExAMPLE: ATTEnTIOn-BASED IMAGE CAPTIOnInG

423

The parts of the dataset that we will use are contained in two resources. The
first resource is a json file that contains captions as well as filenames and
some other information for the images. We make the assumption that you have
placed that file in the directory pointed to by the variable TRAINING_FILE_DIR.
The images themselves are stored as individual image files and are assumed
to be located in a directory named train2014 in the directory pointed to by
TRAINING_FILE_DIR. The COCO dataset contains elaborate tools to parse and
read the rich information about the various images, but because we are only
interested in the image captions, we choose to directly access the json file and
extract the limited data that we need ourselves. Code Snippet 16-2 opens the
json file and creates a dictionary that, for each image, maps a unique key to a
list of strings. The first string in each list represents the image filename, and the
subsequent strings are alternative captions for the image.

from tensorflow.keras.applications import VGG19

from tensorflow.keras.applications.vgg19 import \

 preprocess_input

from tensorflow.keras.preprocessing.image import load_img

from tensorflow.keras.preprocessing.image import img_to_array

import pickle

import gzip

import logging

tf.get_logger().setLevel(logging.ERROR)

TRAINING_FILE_DIR = '../data/coco/'

OUTPUT_FILE_DIR = 'tf_data/feature_vectors/'

with open(TRAINING_FILE_DIR \

 + 'captions_train2014.json') as json_file:

 data = json.load(json_file)

image_dict = {}

for image in data['images']:

 image_dict[image['id']] = [image['file_name']]

for anno in data['annotations']:

 image_dict[anno['image_id']].append(anno['caption'])

Code Snippet 16-2 Open and Extract Information from the json File

CHAPTEr 16 OnE-TO-MAny nETWOrk FOr IMAGE CAPTIOnInG

424

We encourage you to paste some of the lines from the snippet into a Python
interpreter and inspect the data structures to be comfortable with what the code
snippet is doing.

The next step is to create our pretrained VGG19 model, which is done in Code
Snippet 16-3. We first obtain the full VGG19 model with weights trained from the
Imagenet dataset. We then create a new model (model_new) from that model
by stating that we want to use the layer named block5_conv4 as output. A fair
question is how we figured out that name. As you can see in the code snippet, we
first printed out the summary of the full VGG19 model. This summary includes
the layer names, and we saw that the last convolutional layer was named
block5_conv4.

We are now ready to run all the images through the network and extract the
feature vectors and save to disk. This is done by Code Snippet 16-4. We traverse
the dictionary to obtain the image file names. Every loop iteration does the
processing for a single image and saves the feature vectors for that one image
in a single file. Before running the image through the network, we perform some
preprocessing. The image sizes in the COCO dataset vary from image to image,
so we first read the file to determine its file size. We determine the aspect ratio
and then reread the image scaled to a size at which the shortest side ends up
being 256 pixels. We then crop the center 224×224 region of the resulting image
to end up with the input dimensions that our VGG19 network expects. We finally
run the VGG19 preprocessing function, which standardizes the data values in the
image before we run the image through the network. The output of the network
will be an array with the shape (1, 14, 14, 512) representing the results
from a batch of images where the first dimension indicates that the batch size
is 1. Therefore, we extract the first (and only) element from this array (y[0])
and save it as a gzipped pickle file with the same name as the image but with
the extension .pickle.gz in the directory feature_vectors. When we have

Create network without top layers.

model = VGG19(weights='imagenet')

model.summary()

model_new = Model(inputs=model.input,

 outputs=model.get_layer('block5_conv4').output)

model_new.summary()

Code Snippet 16-3 Create a VGG19 Model and remove the Topmost Layers

PrOGrAMMInG ExAMPLE: ATTEnTIOn-BASED IMAGE CAPTIOnInG

425

looped through all images, we also save the dictionary file as caption_file.
pickle.gz so we do not need to parse the json file again later in the code that
does the actual training.

Code Snippet 16-4 Extract and Save Feature Vectors and the Dictionary with
Filenames and Annotations

Run all images through the network and save the output.

for i, key in enumerate(image_dict.keys()):

 if i % 1000 == 0:

 print('Progress: ' + str(i) + ' images processed')

 item = image_dict.get(key)

 filename = TRAINING_FILE_DIR + 'train2014/' + item[0]

 # Determine dimensions.

 image = load_img(filename)

 width = image.size[0]

 height = image.size[1]

 # Resize so shortest side is 256 pixels.

 if height > width:

 image = load_img(filename, target_size=(

 int(height/width*256), 256))

 else:

 image = load_img(filename, target_size=(

 256, int(width/height*256)))

 width = image.size[0]

 height = image.size[1]

 image_np = img_to_array(image)

 # Crop to center 224x224 region.

 h_start = int((height-224)/2)

 w_start = int((width-224)/2)

 image_np = image_np[h_start:h_start+224,

 w_start:w_start+224]

 # Rearrange array to have one more

 # dimension representing batch size = 1.

 image_np = np.expand_dims(image_np, axis=0)

CHAPTEr 16 OnE-TO-MAny nETWOrk FOr IMAGE CAPTIOnInG

426

We are now ready to describe the actual image-captioning model. The import
statements are found in Code Snippet 16-5. It contains a few new layer types that
we have not used before.

 # Call model and save resulting tensor to disk.

 X = preprocess_input(image_np)

 y = model_new.predict(X)

 save_filename = OUTPUT_FILE_DIR + \

 item[0] + '.pickle.gzip'

 pickle_file = gzip.open(save_filename, 'wb')

 pickle.dump(y[0], pickle_file)

 pickle_file.close()

Save the dictionary containing captions and filenames.

save_filename = OUTPUT_FILE_DIR + 'caption_file.pickle.gz'

pickle_file = gzip.open(save_filename, 'wb')

pickle.dump(image_dict, pickle_file)

pickle_file.close()

Code Snippet 16-5 Import Statements for the Image Captioning Model

import numpy as np

import tensorflow as tf

from tensorflow import keras

from tensorflow.keras.layers import Input

from tensorflow.keras.layers import Embedding

from tensorflow.keras.layers import LSTM

from tensorflow.keras.layers import Dense

from tensorflow.keras.layers import Attention

from tensorflow.keras.layers import Concatenate

from tensorflow.keras.layers import GlobalAveragePooling2D

from tensorflow.keras.layers import Reshape

from tensorflow.keras.models import Model

from tensorflow.keras.optimizers import Adam

from tensorflow.keras.preprocessing.text import Tokenizer

from tensorflow.keras.preprocessing.text import \

 text_to_word_sequence

PrOGrAMMInG ExAMPLE: ATTEnTIOn-BASED IMAGE CAPTIOnInG

427

Initialization statements for our program are found in Code Snippet 16-6. They
are similar to what we used in the language translation example, but some of the
lines deserve further attention. The variable READ_IMAGES can be used to limit
the number of images that we use for training. We set it to 90,000, which is more
than the total number of images we have. you can decrease it if necessary (e.g.,
if you run into memory limits of your machine). We also provide the paths to four
files that we will use as test images. you can replace those to point to images of
your own choice when you run this experiment.

from tensorflow.keras.applications import VGG19

from tensorflow.keras.applications.vgg19 import \

 preprocess_input

from tensorflow.keras.preprocessing.image import load_img

from tensorflow.keras.preprocessing.image import img_to_array

from tensorflow.keras.utils import Sequence

from tensorflow.keras.preprocessing.sequence import \

 pad_sequences

import pickle

import gzip

import logging

tf.get_logger().setLevel(logging.ERROR)

Code Snippet 16-6 Initialization Statements

EPOCHS = 20

BATCH_SIZE = 128

MAX_WORDS = 10000

READ_IMAGES = 90000

LAYER_SIZE = 256

EMBEDDING_WIDTH = 128

OOV_WORD = 'UNK'

PAD_INDEX = 0

OOV_INDEX = 1

START_INDEX = MAX_WORDS - 2

STOP_INDEX = MAX_WORDS - 1

MAX_LENGTH = 60

TRAINING_FILE_DIR = 'tf_data/feature_vectors/'

CHAPTEr 16 OnE-TO-MAny nETWOrk FOr IMAGE CAPTIOnInG

428

Code Snippet 16-7 shows the functions we use to read the image captions. The
function to read the captions reads the pickled directory file that we previously
prepared. From this, we create a list image_paths with the filenames for the
feature vectors and one list, dest_word_sequences, which contains the first
image caption for each image. To keep things simple, we simply discard the
alternative captions for each image.

The list dest_word_sequences is equivalent to the destination language
sentence in the language translation example. This function does not load all the
feature vectors but just the paths to them. The reason for this is that the feature
vectors for all the images consume a fair amount of space, so for many machines,
it would be impractical to hold the entire dataset in memory during training.

Function to read file.

def read_training_file(file_name, max_len):
 pickle_file = gzip.open(file_name, 'rb')

 image_dict = pickle.load(pickle_file)

 pickle_file.close()

 image_paths = []

 dest_word_sequences = []

 for i, key in enumerate(image_dict):

 if i == READ_IMAGES:

 break

 image_item = image_dict[key]

 image_paths.append(image_item[0])

 caption = image_item[1]

 word_sequence = text_to_word_sequence(caption)

 dest_word_sequence = word_sequence[0:max_len]

 dest_word_sequences.append(dest_word_sequence)

 return image_paths, dest_word_sequences

Code Snippet 16-7 Functions to read the Directory with Image Captions

TEST_FILE_DIR = '../data/test_images/'

TEST_IMAGES = ['boat.jpg',

 'cat.jpg',

 'table.jpg',

 'bird.jpg']

PrOGrAMMInG ExAMPLE: ATTEnTIOn-BASED IMAGE CAPTIOnInG

429

Instead, we read the feature vectors on the fly when they are needed. This is a
common technique when working with large datasets.

Code Snippet 16-8 contains functions to tokenize and untokenize the sentences.
These are similar, if not identical, to what we used in the language translation
example. We finally call the functions to read and tokenize the image captions.

As previously mentioned, we cannot afford to keep the entire dataset in memory
during training but need to create our training batches on the fly. We handle this

Functions to tokenize and un-tokenize sequences.

def tokenize(sequences):
 tokenizer = Tokenizer(num_words=MAX_WORDS-2,
 oov_token=OOV_WORD)

 tokenizer.fit_on_texts(sequences)

 token_sequences = tokenizer.texts_to_sequences(sequences)

 return tokenizer, token_sequences

def tokens_to_words(tokenizer, seq):
 word_seq = []

 for index in seq:

 if index == PAD_INDEX:

 word_seq.append('PAD')

 elif index == OOV_INDEX:

 word_seq.append(OOV_WORD)

 elif index == START_INDEX:

 word_seq.append('START')

 elif index == STOP_INDEX:

 word_seq.append('STOP')

 else:

 word_seq.append(tokenizer.sequences_to_texts(

 [[index]])[0])

 print(word_seq)

Read files.

image_paths, dest_seq = read_training_file(TRAINING_FILE_DIR \

 + 'caption_file.pickle.gz', MAX_LENGTH)

dest_tokenizer, dest_token_seq = tokenize(dest_seq)

Code Snippet 16-8 Call the Function That reads the File and Functions to Tokenize
the Sentences

CHAPTEr 16 OnE-TO-MAny nETWOrk FOr IMAGE CAPTIOnInG

430

task by creating a class that inherits from the keras Sequence class in Code
Snippet 16-9. In the constructor, we supply the paths to the feature vectors, as well
as the tokenized captions, and the batch size. Just as for the language translation
example, the recurrent network in the decoder will need the tokenized data both
as input and output but shifted by one location and with a STArT token on the input
side. This explains why we provide two variables dest_input_data and dest_
target_data to the constructor. We also need to provide the batch size.

Sequence class to create batches on the fly.

class ImageCaptionSequence(Sequence):

 def __init__(self, image_paths, dest_input_data,

 dest_target_data, batch_size):

 self.image_paths = image_paths

 self.dest_input_data = dest_input_data

 self.dest_target_data = dest_target_data

 self.batch_size = batch_size

 def __len__(self):
 return int(np.ceil(len(self.dest_input_data) /

 float(self.batch_size)))

 def __getitem__(self, idx):

 batch_x0 = self.image_paths[

 idx * self.batch_size:(idx + 1) * self.batch_size]

 batch_x1 = self.dest_input_data[

 idx * self.batch_size:(idx + 1) * self.batch_size]

 batch_y = self.dest_target_data[

 idx * self.batch_size:(idx + 1) * self.batch_size]

 image_features = []

 for image_id in batch_x0:

 file_name = TRAINING_FILE_DIR \

 + image_id + '.pickle.gzip'

 pickle_file = gzip.open(file_name, 'rb')

 feature_vector = pickle.load(pickle_file)

 pickle_file.close()

 image_features.append(feature_vector)

 return [np.array(image_features),

 np.array(batch_x1)], np.array(batch_y)

Code Snippet 16-9 Sequence Class Used to Create Batches on the Fly During Training

PrOGrAMMInG ExAMPLE: ATTEnTIOn-BASED IMAGE CAPTIOnInG

431

The __len__() method is expected to provide the number of batches that our
dataset provides, which is simply the number of images divided by the batch size.

The main functionality in the class is the __getitem__() method, which
is expected to return the training data for the batch number indicated by the
argument idx. The output format of this method depends on what our network
requires as input. For a single training example, our network needs a set of
feature vectors as input from the encoder side and a shifted version of the target
sentence as input to the decoder recurrent network. It also needs the original
version of the target sentence as the desired output for the network. Thus, the
output from this method should be a list with two elements representing the two
inputs and a single element representing the output. The details become clearer
when we later build our training network. There is one more thing to consider,
though. The __getitem__() method is expected to return a batch instead of
a single training example, so each of the three items we described will be an
array where the number of elements is determined by the batch size. Because
each one of the input and output elements for a given training example is itself a
multidimensional array, it is easy to get lost with all the different dimensions.

One thing worth mentioning is that many implementations use a Python
Generator function instead of extending the keras Sequence class. The benefit
of using the keras Sequence class is that it produces deterministic results in the
presence of multithreading.

The constructor for the ImageCaptionSequence class that was described
earlier assumes that we already have created three arrays with appropriate
input data. Two of these arrays (for the recurrent network in the decoder)
directly correspond to what we created in the language translation example.
This is shown in Code Snippet 16-10, where we also call the constructor for
ImageCaptionSequence.

Code Snippet 16-10 Preparation of Training Data

Prepare training data.

dest_target_token_seq = [x + [STOP_INDEX] for x in dest_token_seq]

dest_input_token_seq = [[START_INDEX] + x for x in

 dest_target_token_seq]

dest_input_data = pad_sequences(dest_input_token_seq,

 padding='post')

CHAPTEr 16 OnE-TO-MAny nETWOrk FOr IMAGE CAPTIOnInG

432

We are now ready to define the encoder and decoder models and connect them.
We start with an overview of the detailed architecture. This time, we start with an
overview of the overall encoder-decoder network in Figure 16-4. VGG19 is not a
part of the actual encoder model because we already did that processing offline,
but we have included it as a dashed box in the lower left corner for completeness.
We now walk though this figure with a focus on issues that are different from the
language translation example.

dest_target_data = pad_sequences(

 dest_target_token_seq, padding='post',

 maxlen=len(dest_input_data[0]))

image_sequence = ImageCaptionSequence(

 image_paths, dest_input_data, dest_target_data, BATCH_SIZE)

enc_mean_layer

feature_vector_input

dec_layer1

dec_embedding_input

dec_embedding_layer

dec_attention_layer

dec_layer2

dec_embedding_layer_outputs

dec_layer1_outputs

Model inputs

Model output

(discarded)

dec_layer2_outputs

dec_query_layer

enc_layer_c enc_layer_h

VGG19 minus
top four layers

(o�ine computed)

enc_mean_layer_output

enc_layer_*_outputs

dec_query_layer_outputs

dec_attention_layer_outputs

dec_concat_layer

dec_layer2_inputs

dec_reshape_layer

dec_reshape_
layer_outputs

Figure 16-4 Block diagram of our encoder-decoder image-captioning model

PrOGrAMMInG ExAMPLE: ATTEnTIOn-BASED IMAGE CAPTIOnInG

433

The architecture is a typical encoder-decoder architecture, although most of the
encoding has already been done offline. There are still some remaining layers
in the encoder model. The decoder side consists mainly of an embedding layer,
one LSTM layer (dec_layer1), an attention layer, and a fully connected softmax
layer (dec_layer2). It also has a couple of other layers that we discuss shortly.
We note that the decoder is similar to the decoder in Chapter 15, “Attention and
the Transformer,” but with a single recurrent layer. The recurrent layer and the
attention layer feed straight into the fully connected softmax layer. Our network
has a couple of simplifications. There is no feedback loop for the attentional
vector. Further, we use the output of the recurrent layer to query the attention
layer instead of the cell/hidden state that was used in Figure 15-6. The reason
for these two simplifications is mainly to avoid introducing the concept of how to
build custom layers in keras, and we did not manage to come up with an easy way
of implementing those two concepts (attentional vector feedback loop and using
the cell/hidden state to query the attention layer) without a custom keras layer.

Let us now study the encoder side in detail. Given our previous figures of
attention, the three blue layers seem somewhat unexpected. Why is it not
sufficient to feed the feature vectors to the attention layer and let the model
attend to the regions of its choice? We cannot claim that we know the exact
answer to that question, but it is not hard to believe that it is beneficial for the
network to start with a global view of the image and then selectively use the
attention mechanism to study individual details. We provide this global view
by using enc_mean_layer to compute the elementwise average of the 196
(14×14) feature vectors to end up with a single 512-element feature vector that
represents the global view. We then feed that as initial state to our LSTM layer.

Given the parameters of our network, we could have taken the output from
enc_mean_layer and directly fed it to the LSTM layer (mean_layer outputs
512 values, and we have 256 LSTM cells each requiring h and c), but to make our
network more flexible, we added two fully connected layers (enc_layer_c and
enc_layer_h) between the mean_layer and the LSTM state inputs. We can
now freely modify the number of LSTM cells, as long as we adjust the number of
units in these two fully connected layers. A fair question is why to introduce the
concept of averaging feature vectors instead of just keeping some more of the
top layers of the VGG19 network. Could we not have used the output of the upper

If you want to build complicated networks, building custom keras layers is a
good skill to obtain.

CHAPTEr 16 OnE-TO-MAny nETWOrk FOr IMAGE CAPTIOnInG

434

layers as state input and still use the output of the convolutional layer as attention
input? The answer is that this would likely be a fine approach, but we simply
followed what was done by xu, Ba, and colleagues (2015).

The decoder side is straightforward. The dec_query_layer is a fully connected
layer that serves a purpose similar to that of the two fully connected layers on
the encoder side. The query input on the attention layer is expected to be of the
same dimension (512) as each of the feature vectors. By introducing the dec_
query_layer, we can now choose the number of LSTM units in dec_layer1
independently from the feature vector size. The reason we feed the dec_query_
layer from the output of dec_layer1 instead of from its state outputs is that
the attention layer requires an input for every timestep, and the keras LSTM layer
only outputs the final state outputs, while its normal output can be told to provide
a value for every timestep using the return_sequences=True parameter.

Two other things worth mentioning are the dec_reshape_layer and the
dec_concat_layer. These layers do not do any computations. The Reshape
layer reshapes the feature vectors from 14×14 to 196. The concat layer simply
concatenates the outputs from dec_layer1 and dec_attention_layer into
a single vector that can be used as input to the final layer.

Figure 16-5 shows the individual encoder and decoder models that are used
as building blocks for the joint model. The TensorFlow implementation of the
encoder is found in Code Snippet 16-11. Most things in this code snippet should
be self-explanatory by now. The enc_mean_layer is implemented by a
GlobalAveragePooling2D layer. It operates on the output of a convolutional
layer, which has the dimensions width, height, and channels. The layer computes
the average of all elements within a channel, which results in a vector with the
same number of elements as there are channels in the input. We call the model
enc_model_top because it represents only the top layers of the encoder where
the bottom ones were precomputed by the VGG model.

Code Snippet 16-12 shows the implementation of the decoder model. We focus
on the details that are different compared to the text translation example. Given
how much time we have spent on discussing the internals of the Attention
layer, it is a surprising how little code is needed. We simply instantiate it without
any arguments, and it takes two inputs and produces a single output. We use
a Reshape layer to change the dimensions of the feature vectors from 14×14
to 196.

PrOGrAMMInG ExAMPLE: ATTEnTIOn-BASED IMAGE CAPTIOnInG

435

dec_query_layer_outputs

enc_layer_*_outputs

enc_mean_layer_output

dec_layer1

dec_embedding_input

dec_layer2

dec_embedding_layer

dec_query_layer

dec_embedding_layer_outputs

dec_layer1_outputs

dec_layer2_inputs

Encoder model inputs

Decoder model outputs

dec_feature_vector_input dec_layer1_states
(h and c)

enc_layer_outputs

Decoder model inputs

dec_layer2_outputs
Encoder model outputs

dec_layer1_states
(h and c)

Encoder model Decoder model

enc_mean_layer

enc_layer_c enc_layer_h
dec_attention_layer

dec_attention_layer_outputs

dec_concat_layer

dec_reshape_layer

dec_reshape_
layer_outputs

feature_vector_input

VGG19 minus
top four layers

(o�ine computed)

Figure 16-5 Block diagrams of the individual encoder and decoder models used
as building blocks

Code Snippet 16-11 Implementation of Encoder Model

Build encoder model.

Input is feature vector.

feature_vector_input = Input(shape=(14, 14, 512))

Create the encoder layers.

enc_mean_layer = GlobalAveragePooling2D()

enc_layer_h = Dense(LAYER_SIZE)

enc_layer_c = Dense(LAYER_SIZE)

Connect the encoding layers.

enc_mean_layer_output = enc_mean_layer(feature_vector_input)

CHAPTEr 16 OnE-TO-MAny nETWOrk FOr IMAGE CAPTIOnInG

436

One thing to note is that we give the argument mask_zero=False to the
Embedding layer. The reason is that, to use the masking feature, all layers
downstream of the Embedding layer need to support that feature, and the
Attention layer does not, so we simply have no choice but to turn off masking.
The effect is that the network must learn to ignore the PAD value itself, but as
previously discussed, this usually works fine.

Finally, the Concatenate layer is also simple to use and requires no arguments
to instantiate; it simply takes two inputs that are concatenated into an output
array where the width is the sum of the widths of the input arrays.

Code Snippet 16-12 Implementation of Decoder Model

enc_layer_h_outputs = enc_layer_h(enc_mean_layer_output)

enc_layer_c_outputs = enc_layer_c(enc_mean_layer_output)

Organize the output state for encoder layers.

enc_layer_outputs = [enc_layer_h_outputs, enc_layer_c_outputs]

Build the model.

enc_model_top = Model(feature_vector_input, enc_layer_outputs)

enc_model_top.summary()

Build decoder model.

Input to the network is feature_vector, image caption

sequence, and intermediate state.

dec_feature_vector_input = Input(shape=(14, 14, 512))

dec_embedding_input = Input(shape=(None,))

dec_layer1_state_input_h = Input(shape=(LAYER_SIZE,))

dec_layer1_state_input_c = Input(shape=(LAYER_SIZE,))

Create the decoder layers.

dec_reshape_layer = Reshape((196, 512),

 input_shape=(14, 14, 512,))

dec_attention_layer = Attention()

dec_query_layer = Dense(512)

PrOGrAMMInG ExAMPLE: ATTEnTIOn-BASED IMAGE CAPTIOnInG

437

Finally, we create a joint model from the encoder and decoder in Code
Snippet 16-13. This model will be used for training. Just as in the text translation
example, we discard the state outputs from the decoder in this joint model. There
is no need for explicit state management for this joint model because TensorFlow
does it for us during training.

dec_embedding_layer = Embedding(output_dim=EMBEDDING_WIDTH,

 input_dim=MAX_WORDS,

 mask_zero=False)

dec_layer1 = LSTM(LAYER_SIZE, return_state=True,

 return_sequences=True)

dec_concat_layer = Concatenate()

dec_layer2 = Dense(MAX_WORDS, activation='softmax')

Connect the decoder layers.

dec_embedding_layer_outputs = dec_embedding_layer(

 dec_embedding_input)

dec_reshape_layer_outputs = dec_reshape_layer(

 dec_feature_vector_input)

dec_layer1_outputs, dec_layer1_state_h, dec_layer1_state_c = \

 dec_layer1(dec_embedding_layer_outputs, initial_state=[

 dec_layer1_state_input_h, dec_layer1_state_input_c])

dec_query_layer_outputs = dec_query_layer(dec_layer1_outputs)

dec_attention_layer_outputs = dec_attention_layer(

 [dec_query_layer_outputs, dec_reshape_layer_outputs])

dec_layer2_inputs = dec_concat_layer(

 [dec_layer1_outputs, dec_attention_layer_outputs])

dec_layer2_outputs = dec_layer2(dec_layer2_inputs)

Build the model.

dec_model = Model([dec_feature_vector_input,

 dec_embedding_input,

 dec_layer1_state_input_h,

 dec_layer1_state_input_c],

 [dec_layer2_outputs, dec_layer1_state_h,

 dec_layer1_state_c])

dec_model.summary()

CHAPTEr 16 OnE-TO-MAny nETWOrk FOr IMAGE CAPTIOnInG

438

Just as for the language translation example, we use the encoder and decoder
separately during inference. However, in this image-captioning example, the
encoder also needs to include the VGG19 layers, as we will not do inference on
precomputed feature vectors. We therefore create yet another model in Code
Snippet 16-14, which consists of the VGG19 network (except for the top layers)
followed by our decoder model.

Build and compile full training model.

We do not use the state output when training.

train_feature_vector_input = Input(shape=(14, 14, 512))

train_dec_embedding_input = Input(shape=(None,))

intermediate_state = enc_model_top(train_feature_vector_input)

train_dec_output, _, _ = dec_model([train_feature_vector_input,

 train_dec_embedding_input] +

 intermediate_state)

training_model = Model([train_feature_vector_input,

 train_dec_embedding_input],

 [train_dec_output])

training_model.compile(loss='sparse_categorical_crossentropy',

 optimizer='adam', metrics =['accuracy'])

training_model.summary()

Code Snippet 16-13 Implement the Full Encoder-Decoder Training Model

Build full encoder model for inference.

conv_model = VGG19(weights='imagenet')

conv_model_outputs = conv_model.get_layer('block5_conv4').output

intermediate_state = enc_model_top(conv_model_outputs)

inference_enc_model = Model([conv_model.input],

 intermediate_state

 + [conv_model_outputs])

inference_enc_model.summary()

Code Snippet 16-14 Encoder Used for Inference representing the Full Encoder
Model That Can Take Images as Inputs

PrOGrAMMInG ExAMPLE: ATTEnTIOn-BASED IMAGE CAPTIOnInG

439

We are finally ready to train and evaluate our model, and the code is found in
Code Snippet 16-15. One key difference compared to past code examples is that
instead of providing the training set, we provide the image_sequence object as
argument to the fit() function. The image_sequence object will provide the
training data batch by batch as the feature vectors are read from disk.

After each training epoch, we run through our four test images. The process for
this is similar to what we did in the language translation example but with one
difference. Instead of running an input sentence through the encoder model that
was based on a recurrent network, we read an image from disk, preprocess it,
and run it through our encoder model that is based on the convolutional VGG19
network.

Code Snippet 16-15 Code to Train and Evaluate the Image-Captioning Model

for i in range(EPOCHS): # Train and evaluate model

 print('step: ' , i)

 history = training_model.fit(image_sequence, epochs=1)

 for filename in TEST_IMAGES:

 # Determine dimensions.

 image = load_img(TEST_FILE_DIR + filename)

 width = image.size[0]

 height = image.size[1]

 # Resize so shortest side is 256 pixels.

 if height > width:

 image = load_img(

 TEST_FILE_DIR + filename,

 target_size=(int(height/width*256), 256))

 else:

 image = load_img(

 TEST_FILE_DIR + filename,

 target_size=(256, int(width/height*256)))

 width = image.size[0]

 height = image.size[1]

 image_np = img_to_array(image)

 # Crop to center 224x224 region.

 h_start = int((height-224)/2)

CHAPTEr 16 OnE-TO-MAny nETWOrk FOr IMAGE CAPTIOnInG

440

Figure 16-6 shows the four images that we used to evaluate our image-
captioning network. These images have nothing to do with the COCO dataset but
are simply images that we provided. As shown in the code snippets, we printed
out the predictions after each training epoch, and we now list some of the more
noteworthy descriptions that the network produced.

The yacht picture resulted in two descriptions that caught our eyes. The
descriptions make sense, although the wording of the first sentence sounds more

 w_start = int((width-224)/2)

 image_np = image_np[h_start:h_start+224,

 w_start:w_start+224]

 # Run image through encoder.

 image_np = np.expand_dims(image_np, axis=0)

 x = preprocess_input(image_np)

 dec_layer1_state_h, dec_layer1_state_c, feature_vector = \

 inference_enc_model.predict(x, verbose=0)

 # Predict sentence word for word.

 prev_word_index = START_INDEX

 produced_string = ''

 pred_seq = []

 for j in range(MAX_LENGTH):

 x = np.reshape(np.array(prev_word_index), (1, 1))

 preds, dec_layer1_state_h, dec_layer1_state_c = \

 dec_model.predict(

 [feature_vector, x, dec_layer1_state_h,

 dec_layer1_state_c], verbose=0)

 prev_word_index = np.asarray(preds[0][0]).argmax()

 pred_seq.append(prev_word_index)

 if prev_word_index == STOP_INDEX:

 break

 tokens_to_words(dest_tokenizer, pred_seq)

 print('\n\n')

PrOGrAMMInG ExAMPLE: ATTEnTIOn-BASED IMAGE CAPTIOnInG

441

Figure 16-6 Four images used to evaluate our image-captioning network. Top left: A yacht
docked in front of a couple of buildings in Split, Croatia. Top right: A cat on a desk in front
of a keyboard and a computer monitor. Bottom left: A table with plates, utensils, bottles,
and two bowls with crayfish. Bottom right: A seagull in front of an anchored sailboat in
Santa Cruz, California, USA.

CHAPTEr 16 OnE-TO-MAny nETWOrk FOr IMAGE CAPTIOnInG

442

like what a landlubber would say than what you would typically hear from a true
boatman:

A large white ship is parked in the water.

A large white ship floating on top of a lake.

For the cat picture, the following two descriptions also make much sense,
although the network mistook the keyboard and computer screen for a laptop in
the second description:

A cat is laying on top of a wooden desk.

A cat rests its head on a laptop.

The network did not manage to identify the crayfish on the table but provided two
decent descriptions of the picture:

A table topped with breakfast items and a cup of coffee.

A view of a table with a knife and coffee.

Finally, the picture of the seagull resulted in the following captions:

A large white bird is standing in the water.

A large white bird sitting on top of a sandy beach.

We selected these examples because they worked out well. The network also
produced many nonsensical results:

A large cruise ship floating on top of a cruise ship.

A cat is sitting on a couch.

A group of friends sitting on a table with a knife.

A white and white and white sea water with a few water.

As an experiment, we also modified our network to output the attention score for
each region of the image. Figure 16-7 highlights the nine regions with the highest
attention scores for two of the images.

We can see that the attention mechanism fully focuses on the yacht in one of
the images, whereas in the image of the table, it focuses on one of the crayfish
bowls, two of the plates, one of the bottles, and one of the forks. Our network did
not reproduce the effect observed by xu, Ba, and colleagues (2015), where the
attended region clearly moved from one region to another for each word. Instead,

COnCLUDInG rEMArkS On IMAGE CAPTIOnInG

443

in our experiments, the attended region turned out to be more static, although it
did move a bit as the output sentences were produced. We hypothesize that the
reason is that our network is fairly simple and does not have a feedback loop in
which the output from the attention mechanism affects the input to the attention
mechanism in the next timestep. As previously described, the network design
in our programming example was chosen to be as simple as possible while still
illustrating the use of attention. See the paper by xu, Ba, and colleagues for a
more complex network and a more rigorous evaluation.

Concluding remarks on Image
Captioning

In this chapter, we used the COCO dataset (Lin et al., 2015) and an image-
captioning application to illustrate the usage of the attention mechanism. If you
are interested in experimenting further with image captioning, you can also
consider trying out the smaller and simpler Flickr8k dataset (Hodosh, young,
and Hockenmaier, 2013) or the newer and more extensive Conceptual Captions
dataset (Sharma et al., 2018). In terms of the image-captioning application, there
are many things that can be improved over our implementation. One thing would
be to use a more modern and complicated convolutional network than VGG19

Figure 16-7 Two of the test images with the attended regions highlighted

CHAPTEr 16 OnE-TO-MAny nETWOrk FOr IMAGE CAPTIOnInG

444

or a decoder based on more layers or on the Transformer architecture. Another
option is to not precompute the feature vectors and instead train the model end
to end. As described in Chapter 8, “Deeper Cnns and Pretrained Models,” the best
approach is to first freeze the pretrained layers and do initial training of the newly
added layers. Once that is done, you can unfreeze the layers and fine-tune the
model end to end. Some of these techniques were used in the paper introducing
the Conceptual Captions dataset, and it is worth noting that their evaluation
indicated that their networks without attention over the image regions worked
better than the ones that did use attention (Sharma et al., 2018). On the other
hand, they also concluded that a decoder based on the Transformer (which itself
uses self-attention) performed better than a model based on LSTM.

A different method to image captioning is described by Dai, Fidler, and Lin (2018).
They use a compositional approach that aims at decoupling the process of
determining what to say from how to say it. That is, although the basic techniques
of neural image captioning were published relatively soon after the Alexnet paper
(krizhevsky, Sutskever, and Hinton, 2012), new ideas are still being explored. It
should not be considered a fully solved problem.

Before moving on to Chapter 17, “Medley of Additional Topics,” we take a step
back and reflect on this programming example, which is the most complex
programming example in this book. We note that it incorporates most of the
concepts discussed so far. It contains fully connected, convolutional, and recurrent
layers (using LSTM cells). It learns word embeddings and uses the attention
mechanism. It demonstrates the power of transfer learning. It is an example of
an encoder-decoder architecture, and it combines both image data (as input) and
textual data (as output).

Just for fun, we also make a brief comparison between the complexity of our
image-captioning network and some biological organisms. Our image-captioning
network contains roughly 15 million units and 30 million unique weights. It is not
obvious whether more complex cells such as LSTM should be counted as a single
neuron or a handful of neurons and whether a weight that is shared among many
neurons in a convolutional network should be counted as one or more synaptic
connections. As a start, if we just want a rough comparison, we note that our
15 million units are about the same order of magnitude as a frog with 16 million
neurons. Our 30 million weights are about the same order of magnitude as the
10 million synapses of a fruit fly. If we count the shared weights as if they were
unique weights, they could potentially be comparable to the 1 billion synapses of
a honeybee. We see that this is significantly less than a cat with its 760 million
neurons and 10 trillion synapses. We ask ourselves, how come our cat is good at

COnCLUDInG rEMArkS On IMAGE CAPTIOnInG

445

ignoring us but has a hard time with converting an image to a textual description?
A reasonable interpretation is that our image-captioning network is engineered
for its task, and comparing it to a true biological system might not make much
sense. Another interpretation is that, even if we find our image-captioning
network reasonably complex, actual living organisms are way more complex, and
we still have a long way to go before we are close to modeling something similar
to a human brain.

This concludes our in-depth description of computer vision and language
processing. The network in this chapter is an example of a multimodal network
in that it works with both text and images, also known as two different modalities.
Multimodal deep learning is one of the topics of the next chapter.

This page intentionally left blank

447

Chapter 17

Medley of Additional
Topics

We have organized this book as a narrative in which each chapter to a large
extent builds upon previous chapters. In Chapter 16, “One-to-Many Network for
Image Captioning,” we brought together techniques from many of the previous
chapters into a single image captioning application.

In reality, many of these concepts have evolved simultaneously and not
necessarily in the order we presented them. Similarly, we sometimes found it
difficult to include all important topics in our narrative. Therefore, if you are new
to deep learning (DL), you now have a solid foundation, but you also have blind
spots. We address some of these blind spots by introducing additional topics that
we find important.

This chapter is different from other chapters in that it introduces multiple
techniques, including multiple programming examples, that are somewhat
unrelated to each other. We do not go into the details as much as in previous
chapters. The overall goal is to ensure that you get some exposure to each of
these topics, so you can make an informed choice whether to pursue them
further. In addition, the networks implemented in the programming examples in
this chapter are simpler than those in the last couple of chapters, so they should
be relatively easy to understand.

ChaPTEr 17 MEDLEy Of aDDITIONaL TOPICS

448

We discuss autoencoders, multimodal learning, multitask learning, network
tuning, and neural architecture search, presented in that order. Without further
ado, we start by describing autoencoders.

autoencoders
In Chapter 14, “Sequence-to-Sequence Networks and Natural Language
Translation,” Chapter 15, “attention and the Transformer,” and Chapter 16, we
saw examples of encoder-decoder architectures. The encoder converted an
input into an intermediate representation. The decoder took this intermediate
representation as input and converted it into the desired output. We used this
general architecture for natural language translation and image captioning.

an autoencoder is a special case of the encoder-decoder architecture, where both
the input value and the desired output value are identical. That is, the task for the
autoencoder is to implement the identity function. This is shown in figure 17-1.
The model consists of an encoder that creates an intermediate representation
of the input data, followed by a decoder that is tasked with reproducing the input
data from this intermediate representation.

Input
Encoder

Intermediate
representation

Decoder
Reproduced

input

Autoencoder

Figure 17-1 autoencoder architecture

auTOENCODErS

449

The exact architecture of the encoder and decoder depends on the use case and
type of data. That is, for textual data, the encoder and decoder might be recurrent
networks or based on the transformer architecture, and for other types of data
they might be fully connected feedforward networks or convolutional networks.

an obvious question is why we would want to build such an architecture. What
would be the use case? One key property plays a role in making them useful. as
illustrated in the figure, the dimensionality of the intermediate representation
is typically lower than the dimensionality of the input data which forces the
model to find a compact intermediate representation. That is, the intermediate
representation is a compressed version of the input data. The encoder
compresses the data, and the decoder decompresses the data back to its original
form. however, the intent is not to try to replace gzip, jpeg, or other compression
algorithms. Instead, in most cases, the idea is to use the intermediate
representation either directly or for further analysis or manipulation. We see
some examples of this in the next section.

The idea of autoencoders has been around for a long time. One early example
is described in a paper by rumelhart, hinton, and Williams (1986), who
demonstrated a more compact representation of one-hot encoding (one solution
would be standard binary encoding).

uSE CaSES fOr auTOENCODErS

as a first example of how to use autoencoders, let us consider a case where we
want to determine whether two different sentences convey similar messages.
as mentioned in Chapter 14, Sutskever, Vinyals, and Le (2014) analyzed the
intermediate representations of a sequence-to-sequence network used for
translation by transforming them into a 2D space and plotting the resulting
vectors. figure 17-2 shows an adaptation of their resulting chart, which illustrates
how sentences with the same meaning, but different sentence structures, are
grouped together. That is, the intermediate representation serves as a sentence
vector, where similar sentences are located close to each other in vector space. In

an autoencoder is trained to output the same value on the output that is
presented on the input. however, it does so by first encoding the inputs in a
more compact intermediate representation. This intermediate representation
can be used for further analysis.

ChaPTEr 17 MEDLEy Of aDDITIONaL TOPICS

450

other words, once we have trained an encoder-decoder network on a translation
task, we can use the encoder part of the network to produce such vectors.

One problem with this approach is that it can be costly to obtain training data
for a translation network, given that each training example consists of the same
sentence in two different languages. We can solve that by training our translation
network to be an autoencoder. We simply train the sequence-to-sequence model
to translate from one language to the same language—for example, English to
English. Given that the intermediate representation is narrower than the input
and output, the model is forced to come up with a meaningful intermediate
representation, as in figure 17-2. Note that no change is needed to the translation
network itself to make it an autoencoder. The only change is to the training data,
where we train the network to output a sentence in the same language as the
input.

It is worth pointing out the similarity between the word2vec algorithm and the
autoencoder example we just described. In word2vec, we take a wide (one-hot
encoded) representation of a single word, then go through an encoding step
whereby we reduce its dimensionality to a narrow intermediate representation.

Figure 17-2 Intermediate representation of a translation network. (Source:
adapted from Sutskever, I., Vinyals, O., and Le, Q. (2014), “Sequence to Sequence
Learning with Neural Networks,” in Proceedings of the 27th International
Conference on Neural Information Processing [NIPS’14], MIT Press, 3104–3112.)

auTOENCODErS

451

This encoding step is then followed by a decoding step, which tries to predict not
the word itself but its surrounding words in a wide representation. We have seen
that word2vec can tease out semantics from the words it is trying to encode, so it
is unsurprising that the autoencoder architecture can do the same for sentences.

a second example of a use case for an autoencoder is outlier detection. Imagine
that we have trained an autoencoder to reproduce an English sentence as
output when presented with an English sentence as input. If we now present an
arbitrary English sentence to the network, we expect the output to be similar, if
not identical, to the input. Specifically, we expect the value of the loss function to
be small given that the objective of the training process was to minimize the loss
function.

Now imagine that we use this same network but present a french sentence as
input. It seems unlikely that an autoencoder trained on the English language
will be good at reproducing a sentence in french. It has not had the opportunity
to learn the french vocabulary or sentence structure. Therefore, the value of
the loss function will be larger when the network is presented with an arbitrary
french sentence than with an arbitrary English sentence. That is, a high loss value
indicates that the current input data is different from the typical input data the
autoencoder was trained on. In other words, a high loss indicates that the current
input data is an outlier.

an important application of outlier detection is when applied to credit card
transaction data. Each credit card transaction consists of a number of features
such as amount, time of day, vendor, and location. We can group all of these
features into a feature vector and use it as input to an autoencoder that we train
to reproduce that same feature vector on its output. If we now present an atypical
transaction to the network, it will not be as good at reproducing the vector on its
output. That is, the loss value is higher, which indicates that this is an abnormal
transaction that should be flagged as suspicious.

OThEr aSPECTS Of auTOENCODErS

an important aspect of the two preceding examples is that the autoencoder finds
patterns in unlabeled data. In particular, in the second example, we do not assume
that we have a set of labeled outliers that we teach the model to detect. We simply
rely on the fact that outliers are not present (or at least are rare by definition) in
the training data, and therefore the model will not be good at minimizing their
loss. The fact that an autoencoder can find patterns in unlabeled data makes it a

ChaPTEr 17 MEDLEy Of aDDITIONaL TOPICS

452

good candidate for a building block in an unsupervised learning algorithm. In that
context it is common to feed the internal representation vectors to a so-called
clustering algorithm that groups vectors into clusters where similar vectors are
placed in the same cluster.

another important aspect of the autoencoder is its use as a dimensionality
reduction technique whereby the new narrower representation still maintains
properties of the wider representation. The encoder can be used to reduce the
number of dimensions, and the decoder can be used to expand the number of
dimensions. The autoencoder is just one of many examples of dimensionality
reduction techniques. hastie, Tibshirani, and friedman (2009) describe other
methods for dimensionality reduction from the traditional machine learning (ML)
field, the most common being principal component analysis (PCa).1

The basic autoencoder can be modified in various ways to be used in other
applications. One example is the denoising autoencoder. The architecture is the
same, but the training data is slightly modified. Instead of training the model with
identical input and output data, a corrupted version of the data is used as input.
The model is then trained to reproduce a correct version of corrupted input data.
The resulting model can be used to removing noise from the input data—for
example, image or video data.

PrOGraMMING EXaMPLE: auTOENCODEr fOr OuTLIEr DETECTION

In this programming example, we demonstrate how an autoencoder can be used
for outlier detection. We do this by first training an autoencoder on the Modified
National Institute of Standards and Technology (MNIST) dataset. Then we observe
how the error is higher when the network is presented with an image that does
not represent a handwritten digit. In Code Snippet 17-1, we start with the usual
set of import statements, followed by loading the MNIST dataset.

1. PCa is used in traditional machine learning but was invented before the term machine learning was
coined. Therefore, it might be more accurate to simply view it as a mathematical concept.

Clustering algorithms can be used to automatically group vectors into clusters
where the vectors in a single cluster are similar to each other. k-means
clustering is a well-known iterative algorithm and a good topic for further
reading (hastie, Tibshirani, and friedman, 2009).

auTOENCODErS

453

Instead of standardizing the data to be centered around 0, we scale the data to be in
the range 0 to 1. The reason is worth some discussion. The task for the autoencoder
is to reproduce the input on its outputs. This implies that we need to define the
input data and the output unit of the network in a way that makes this possible.
for example, if we use input data centered around 0, and a logistic sigmoid as the
output unit, then the network simply cannot solve the problem because the logistic
sigmoid can output only positive values. When working with image data, we want
the output range to be bounded to a range of valid values (typically integer values
between 0 and 255 or floating-point values between 0 and 1). a common way to
ensure this is to scale the input values to be between 0 and 1 and use a logistic
sigmoid unit as output unit. another alternative would be to center the input around
0 and use a linear output unit, but we would then need to postprocess the output
data to ensure that they do not contain out-of-range values.

The next step is to define and train the model. This is shown in Code Snippet
17-2. The encoder part of the model consists of a Flatten layer (changing
the dimension from 28×28 to 784) followed by a single fully connected (Dense)
layer with 64 units. The decoder consists of another fully connected layer
with 784 units, followed by a Reshape layer that changes the dimension from

import tensorflow as tf

from tensorflow import keras

from tensorflow.keras.utils import to_categorical

import numpy as np

import matplotlib.pyplot as plt

import logging

tf.get_logger().setLevel(logging.ERROR)

EPOCHS = 10

Load traditional MNIST dataset.

mnist = keras.datasets.mnist

(train_images, train_labels), (test_images,

 test_labels) = mnist.load_data()

Scale the data.

train_images = train_images / 255.0

test_images = test_images / 255.0

Code Snippet 17-1 Initialization Code and Loading/Scaling the Dataset

ChaPTEr 17 MEDLEy Of aDDITIONaL TOPICS

454

784 to 28×28. That is, the decoder performs the inverse of the operations done by
the encoder. The goal for the autoencoder is to generate an output image that is
identical to the input image, and it has to do that by fully encoding the 28×28 (784)
image in the intermediate representation vector of size 64.

We should point out that although we use fully connected layers for both the
encoder and decoder in this example, when working with images, it is more
common to use convolutional layers and some form of convolution-based
upsampling layers. a detailed description of this can be found in appendix B, but
we use fully connected layers in this example to keep things simple and because
it is feasible when working with the small and simple images from MNIST.

In Code Snippet 17-3, we use the trained model to try to reproduce the images
in the test dataset. after applying the model to all test images, we plot one of the
test images next to its corresponding version produced by the network.

Create and train autoencoder.

model = keras.Sequential([

 keras.layers.Flatten(input_shape=(28, 28)),

 keras.layers.Dense(64, activation='relu',

 kernel_initializer='glorot_normal',

 bias_initializer='zeros'),

 keras.layers.Dense(784, activation='sigmoid',

 kernel_initializer='glorot_normal',

 bias_initializer='zeros'),

 keras.layers.Reshape((28, 28))])

model.compile(loss='binary_crossentropy', optimizer = 'adam',

 metrics =['mean_absolute_error'])

history = model.fit(train_images, train_images,

 validation_data=(test_images, test_images),

 epochs=EPOCHS, batch_size=64, verbose=2,

 shuffle=True)

Code Snippet 17-2 Building and Training the Model

auTOENCODErS

455

as shown in figure 17-3, the network does a decent job of recreating the image.
The next step is to apply our autoencoder to a different image. We use a different
dataset known as Fashion MNIST (Xiao, rasul, and Vollgraf, 2017). This dataset
is designed to serve as a drop-in replacement for MNIST. It consists of the same
number of training and test images, using the same 28×28 resolution. Just as
for MNIST, each image belongs to one of ten classes. The difference compared to
MNIST is that instead of depicting handwritten images, the images depict various
pieces of clothing: dress, shirt, sneaker, and so on. Code Snippet 17-4 loads this

Predict on test dataset.

predict_images = model.predict(test_images)

Plot one input example and resulting prediction.

plt.subplot(1, 2, 1)

plt.imshow(test_images[0], cmap=plt.get_cmap('gray'))

plt.subplot(1, 2, 2)

plt.imshow(predict_images[0], cmap=plt.get_cmap('gray'))

plt.show()

Code Snippet 17-3 Demonstrate the Behavior of the autoencoder on the Test
Dataset

Figure 17-3 Test image (left) and reproduced image (right)

ChaPTEr 17 MEDLEy Of aDDITIONaL TOPICS

456

dataset and uses the trained model to try to reproduce the fashion MNIST test
images.

as shown in figure 17-4, the result is much worse than for MNIST. That is, our
autoencoder has learned how to reproduce handwritten digits, but it has not
learned to reproduce arbitrary images.

Load Fashion MNIST.

f_mnist = keras.datasets.fashion_mnist

(f_train_images, f_train_labels), (f_test_images,

 f_test_labels) = f_mnist.load_data()

f_train_images = f_train_images / 255.0

f_test_images = f_test_images / 255.0

Predict and plot.

f_predict_images = model.predict(f_test_images)

plt.subplot(1, 2, 1)

plt.imshow(f_test_images[0], cmap=plt.get_cmap('gray'))

plt.subplot(1, 2, 2)

plt.imshow(f_predict_images[0], cmap=plt.get_cmap('gray'))

plt.show()

Code Snippet 17-4 Try the autoencoder on the fashion MNIST Dataset

Figure 17-4 Test image from fashion MNIST (left) and reproduced image (right)

auTOENCODErS

457

To quantify this further, in Code Snippet 17-5 we compute the mean absolute error
for the autoencoder, both for all MNIST test examples and all fashion MNIST test
examples. We then plot the results. It might have made more sense to compute the
binary cross-entropy loss because that is what we used when training the network.
however, in terms of illustrating the difference in error, any suitable error function
will do, and we picked mean absolute error to simplify the code.

The resulting plot is shown in figure 17-5. It is clear that the error is smaller for
the MNIST examples than for the fashion MNIST examples. If the error is larger
than 0.02 (the boundary between blue and orange), it is likely that the image does
not depict a handwritten digit. That is, an outlier has been detected.

We note that the blue and orange bars are not clearly separated. There is some
overlap. To provide some insight into that, Code Snippet 17-6 plots the two MNIST
test images that result in the biggest error.

Compute errors and plot.

error = np.mean(np.abs(test_images - predict_images), (1, 2))

f_error = np.mean(np.abs(f_test_images - f_predict_images), (1, 2))

_ = plt.hist((error, f_error), bins=50, label=['mnist',

 'fashion mnist'])

plt.legend()

plt.xlabel('mean absolute error')

plt.ylabel('examples')

plt.title("Autoencoder for outlier detection")

plt.show()

Code Snippet 17-5 Plot the Loss for Both MNIST and fashion MNIST

Code Snippet 17-6 find and Plot Biggest Outliers in MNIST Test Dataset

Print outliers in mnist data.

index = error.argmax()

plt.subplot(1, 2, 1)

plt.imshow(test_images[index], cmap=plt.get_cmap('gray'))

error[index] = 0

index = error.argmax()

ChaPTEr 17 MEDLEy Of aDDITIONaL TOPICS

458

Looking at the resulting images in figure 17-6, we see that they do represent
outliers in the regular data. The left image is cropped in an unfortunate way, and
the right image looks somewhat odd. That is, they truly can be considered outliers
in the MNIST dataset.

Before moving on to the next topic, it is worth pointing out that, although MNIST
and fashion MNIST are labeled datasets, we did not make use of the labels in this
programming example. Neither did we make use of the fashion MNIST dataset for
training the model. That is, we trained the model to distinguish between MNIST
and fashion MNIST, as well as to find outliers in the test set of MNIST itself, solely
by using the training images in the MNIST dataset.

Figure 17-5 histogram of error for MNIST and fashion MNIST. The error value can
be used to determine whether a given example represents a handwritten digit.

plt.subplot(1, 2, 2)

plt.imshow(test_images[index], cmap=plt.get_cmap('gray'))

plt.show()

MuLTIMODaL LEarNING

459

Multimodal Learning
The programming examples in this book have made use of different types
of input data, such as written natural language, image data, and numerical
data representing the price of an item. These different types of data can
also be referred to as different modalities—that is, the mode in which the
phenomenon is experienced or represented. Multimodal machine learning
(multimodal ML) is the field of building models that use or relate to data with
multiple modalities.

as previously mentioned, the image-captioning example in Chapter 16 is an
example of a multimodal DL application. In this section, we describe a taxonomy
introduced by Baltrušaitis, ahuja, and Morency (2017) in a survey paper on
multimodal ML. as a part of this description, we point out where the image-
captioning example and other related examples fit into this taxonomy. We
conclude with a small programming example of a classification network that uses
two modalities of the same data as its inputs.

TaXONOMy Of MuLTIMODaL LEarNING

Baltrušaitis, ahuja, and Morency (2017) divide multimodal learning into five
topics: representation, translation, alignment, fusion, and co-learning. We
summarize these topics next, but in a slightly different order. We present fusion
right after representation because these two topics are highly related to each
other, particularly in the context of deep neural networks.

Figure 17-6 The two MNIST test examples resulting in the biggest errors

ChaPTEr 17 MEDLEy Of aDDITIONaL TOPICS

460

REPRESENTATION

an important aspect of building a model is how to represent the input data.
Working with multimodal data adds a dimension to this problem. One of the
simplest ways to present multimodal data to a model is to concatenate the
multiple feature vectors into a single vector. In some cases, this is impractical,
such as if one modality is a time series with multiple timesteps and the other
modality is a single feature vector. another problem is that one modality might
unintentionally dominate the overall input.

for example, consider an image and a textual description of the same object.
The image might consist of on the order of a million pixels, whereas the textual
description might be just ten words. Without somehow explicitly communicating
that the collection of ten words is equally important as the one million pixel
values, it can be hard to train the network to make good use of the textual input.
a way to address this issue is to build a network consisting of a set of parallel
networks that process the different input modalities and then combine the
results further into the network. having such parallel networks can also address
the issue of different dimensions of the input data. for example, we can use
a recurrent network to transform textual input data into a fixed-width vector
representation. Similarly, we can use a convolutional network to convert image
data into a vector representing higher-level features that are present in the
image.

Once we have these separate input networks, another aspect is how to combine
them further into the network. One solution is to concatenate the outputs of
these input networks and feed into a fully connected layer that creates what
Baltrušaitis, ahuja, and Morency (2017) call a joint representation of the multiple
modalities. This is often the preferred method if the expected use case is that all
modalities will be present when the network is later used for inference.

a different solution is to keep the modalities separate inside of the network but
enforce some kind of constraint on how they relate to each other. Baltrušaitis,
ahuja, and Morency call this a coordinated representation. an example of a
constraint is that representations of the same type of object should be close to
each other (in vector space) for the two modalities. This can be exploited in cases
where only one modality is present during inference. We might train the network
on images and text and form a coordinated representation. During inference,
only one of the modalities is presented to the network, but the network can
still perform the task it is trained to do. The three described solutions to how to
represent two modalities are illustrated in figure 17-7.

MuLTIMODaL LEarNING

461

FUSION

Multimodal fusion is highly related to the topic of representation. The
representation problem we just discussed applies to any use case where we
work with multimodal input data. The data in the different modalities do not
necessarily need to be two different views of the same entity. Our understanding
of multimodal fusion is that it specifically refers to when we are trying to solve a
task (e.g., classification or regression) but have multiple views of the same input
data, in different modalities. an example is when trying to classify an object based
on an image and a sound recording of the object.

In such a setting, multimodal fusion can be discussed in terms of the two
extremes early fusion and late fusion. Early fusion refers to simply concatenating
the input vectors, which is precisely the first alternative that we listed in the
section about representation. Late fusion is to have multiple, separately trained
models that are later combined. for example, in a classification task, we
would train one network that does image classification and one that does text
classification. We would then combine the output of these networks, for example,
by a weighted voting system. Early and late fusion are illustrated in figure 17-8.

Early and late fusion are two extremes, and there are design points that are
hybrids of the two. In the context of neural networks, the line is often blurred. for
example, if we implement a classifier that uses a joint representation of the two
input modalities, then fusion happens as a part of the model itself.

Flatten and concatenate

Text Image

Flatten and concatenate

Text TextImage Image

RNN RNNCNN CNN

Fully
connected

Fully connected

Concatenated representation Coordinated representationJoint representation

Training
constraint

Fully
connected

Figure 17-7 Concatenated modalities (left), joint representation (middle), and
coordinated representation (right)

ChaPTEr 17 MEDLEy Of aDDITIONaL TOPICS

462

TRANSLATION

an important part of multimodal learning is the concept of finding mappings
between multiple modalities. finding such mappings is equivalent to translating
from one modality into another.

We have already seen examples of translating between modalities. The task of
our image-captioning network in Chapter 16 was to translate from an image (one
modality) into a textual description of that same image (a different modality).
We did this by using a convolutional network to convert the image into an
intermediate vector representation of the data. This was fed as input data to
an autoregressive recurrent network, which generated a corresponding textual
description.

Similarly, in Chapter 14, we built a natural language translation network that
translated from french to English. It is not readily apparent that this network
can be considered a multimodal network given that both the input and output
are textual data. however, one could argue that the descriptions in different
languages are two different views of the overall language-independent message
that they are trying to convey. regardless of the strict definition, we observe that,
conceptually, the language translation network was much related to the image-
captioning network, which clearly is multimodal.

The two networks we just discussed are both generative in nature. That is, the
output is generated by the network based on an internal representation. another
class of models are example-based models. Such models map the current input
example to a previously seen training example and simply retrieve the output

Flatten and concatenate

Text Image

Weighted voting

Text Image

Classifier Classifier

Early fusion Late fusion

Classifier

Figure 17-8 Examples of early fusion (left) and late fusion (right) in the context of
classification

MuLTIMODaL LEarNING

463

corresponding to that training example. There are also combination-based
approaches, where the outputs of multiple training examples are combined to
form a predicted output during inference.

ALIGNMENT

In multimodal learning, alignment refers to mapping subcomponents of two
or more modalities to each other. for example, given an image and a textual
description of that image, we align these two inputs to each other by mapping
words or phrases from the textual description to regions or objects in the image.

One technique that can be used for alignment is attention. In our description of
attention in Chapter 15, we described how it can be used by a translation network
to focus on the right set of words when producing the output sentence. Similarly,
in the image-captioning example in Chapter 16, we saw how it can be used to
focus on specific areas of the image. We can find the alignment between the
two modalities by analyzing the dynamically computed weights in the attention
mechanism. In fact, these dynamically computed weights are referred to as the
alignment vector. Note that these two examples are somewhat special in that
they find the alignment between a source modality and a destination modality as
the destination is being generated. That is, it is a combination of alignment and
translation.

Baltrušaitis ahuja, and Morency (2017) distinguish between explicit alignment and
implicit alignment. In the explicit case, the task at hand is to find the alignment
between two data sources. In the implicit case, alignment is done as an early step
to improve the result of a later task. for example, a classification network will do
better if it is fed with multiple modalities of the same input data, but that assumes
that the two modalities are first aligned so they truly represent two different
views of the same object.

CO-LEARNING

The fifth and last topic in this taxonomy is co-learning. This is a class of
techniques whereby one modality is used to aid the process of training a model
on another modality. Co-learning can be particularly useful when we do not have
a labeled (or have only a partly labeled) dataset for one modality and we can
complement it with another dataset in a different modality, especially if the other
dataset happens to be more extensively labeled. We limit ourselves to mentioning
a couple of examples of how we can co-learn with multiple datasets.

The first example, introduced by Blum and Mitchell (1998), is co-training. Consider
a classification problem where we have a dataset that consists of mostly

ChaPTEr 17 MEDLEy Of aDDITIONaL TOPICS

464

unlabeled data, and each training example consists of two views in different
modalities—for example, an image and a textual description. We now train two
separate classifiers on the few labeled examples. One classifier uses the image
as input data, and the other uses the textual description. We can now use these
classifiers to classify some random unlabeled examples and add to the labeled
part of the dataset. after doing this iteratively a number of times, we end up with
a larger dataset that can be used to train a combined classifier that uses both
modalities as inputs. Blum and Mitchell showed that this approach significantly
reduced the classification error rate compared to training on only the initial
labeled dataset or using only one of the modalities.

Our second example is to make use of transfer learning and map the
representation of two different modalities into the same representation. frome
and colleagues (2013) performed an experiment where they combined text and
image data. They first pretrained a word2vec model on a text corpus, resulting in
a set of word embeddings. They then pretrained an image classification network
on the ImageNet dataset. finally, they removed the top softmax layer from the
image classification network and trained it further for a new task, using transfer
learning. This new task was to produce the same embedding as the word2vec
model produced when presented with the textual ImageNet label. That is,
given a labeled image of a cat, the word vector for cat was first produced using
word2vec. This was then used as the target value when fine-tuning the pretrained
image classifier, with the softmax layer removed. During inference, an image is
presented to the trained network, which outputs a vector in the same space as
the word embeddings. The prediction is simply the word closest to the resulting
vector. One result of training the model in this way is that even when it predicts
the wrong result, its result is often meaningful because other related words are
close in vector space.

These two examples represent two different categories of multimodal co-learning
problems. The first example requires training examples in which each instance
has associated data in both modalities. That is, each training example has both an
image and a textual description. Baltrušaitis, ahuja, and Morency (2017) refer to
this as parallel data. The second example also uses both image and textual data
but with two different datasets. This is an example of nonparallel data. Note that
there is still one connection point that ties the two modalities together, namely,
the textual labels associated with each image. Baltrušaitis ahuja, and Morency
also describe examples with hybrid data. One such case is where we do not have
a dataset with parallel data for the two modalities that we want to connect, but
we do have datasets with parallel data that connect these two modalities to a
third common modality. We can use this third modality to bridge between the two
desired modalities.

MuLTIMODaL LEarNING

465

PrOGraMMING EXaMPLE: CLaSSIfICaTION WITh MuLTIMODaL
INPuT DaTa

In this programming example, we demonstrate how to train a classifier, using two
input modalities. We use the MNIST dataset but in addition to the image modality,
we also create a textual modality. We start with initialization code and loading and
standardizing the MNIST dataset in Code Snippet 17-7.

Code Snippet 17-7 Initialization Code and Loading/Standardizing the MNIST
Dataset

import tensorflow as tf

from tensorflow import keras

from tensorflow.keras.utils import to_categorical

from tensorflow.keras.preprocessing.text import Tokenizer

from tensorflow.keras.preprocessing.text \

 import text_to_word_sequence

from tensorflow.keras.preprocessing.sequence \

 import pad_sequences

from tensorflow.keras.layers import Input

from tensorflow.keras.layers import Embedding

from tensorflow.keras.layers import LSTM

from tensorflow.keras.layers import Flatten

from tensorflow.keras.layers import Concatenate

from tensorflow.keras.layers import Dense

from tensorflow.keras.models import Model

import numpy as np

import matplotlib.pyplot as plt

import logging

tf.get_logger().setLevel(logging.ERROR)

EPOCHS = 20

MAX_WORDS = 8

EMBEDDING_WIDTH = 4

Load training and test datasets.

mnist = keras.datasets.mnist

ChaPTEr 17 MEDLEy Of aDDITIONaL TOPICS

466

Code Snippet 17-8 creates the second input modality, which is a textual
representation of each input example. To not make it too easy for the network, this
textual view of the data is not complete but gives only partial information about
the digit. for each training and test example, we alternate between specifying that
the digit is odd or even and specifying that it is a high or low number. The textual
modality created in this code snippet does not fully define what digit it is but can
be helpful when an image is ambiguous.

Code Snippet 17-8 function to Create a Textual Modality of the Training and Test
Examples

(train_images, train_labels), (test_images,

 test_labels) = mnist.load_data()

Standardize the data.

mean = np.mean(train_images)

stddev = np.std(train_images)

train_images = (train_images - mean) / stddev

test_images = (test_images - mean) / stddev

Function to create second modality.

def create_text(tokenizer, labels):
 text = []

 for i, label in enumerate(labels):

 if i % 2 == 0:

 if label < 5:

 text.append('lower half')

 else:

 text.append('upper half')

 else:

 if label % 2 == 0:

 text.append('even number')

 else:

 text.append('odd number')

 text = tokenizer.texts_to_sequences(text)

 text = pad_sequences(text)

 return text

MuLTIMODaL LEarNING

467

The image classification network is similar to the example in Chapter 5, “Toward
DL: frameworks and Network Tweaks,” but with an additional subnetwork that
processes the textual input. This subnetwork consists of an Embedding layer
and an LSTM layer. The output of the LSTM layer is concatenated with the image
input and fed to a fully connected layer. This layer is followed by the final fully
connected softmax layer that produces the classification. The implementation is
shown in Code Snippet 17-9.

Code Snippet 17-9 Classification Network with Two Input Modalities

Create second modality for training and test set.

vocabulary = ['lower', 'upper', 'half', 'even', 'odd', 'number']

tokenizer = Tokenizer(num_words=MAX_WORDS)

tokenizer.fit_on_texts(vocabulary)

train_text = create_text(tokenizer, train_labels)

test_text = create_text(tokenizer, test_labels)

Create model with functional API.

image_input = Input(shape=(28, 28))

text_input = Input(shape=(2,))

Declare layers.

embedding_layer = Embedding(output_dim=EMBEDDING_WIDTH,

 input_dim = MAX_WORDS)

lstm_layer = LSTM(8)

flatten_layer = Flatten()

concat_layer = Concatenate()

dense_layer = Dense(25,activation='relu')

output_layer = Dense(10, activation='softmax')

Connect layers.

embedding_output = embedding_layer(text_input)

lstm_output = lstm_layer(embedding_output)

flatten_output = flatten_layer(image_input)

concat_output = concat_layer([lstm_output, flatten_output])

ChaPTEr 17 MEDLEy Of aDDITIONaL TOPICS

468

after training the network for 20 epochs, we arrive at a validation accuracy of
97.2%. To put this into context, we modified the method that creates the textual
modality to always state 'lower half'. another option would have been to
remove the textual input modality altogether, but then the network would have
fewer weights, so we figured that it would be fairer to keep the textual input but
make it provide no additional information. The resulting validation accuracy was
96.7%, which indicates that the additional textual information was beneficial.

To further illustrate the effect of using the two input modalities, we do an
experiment in Code Snippet 17-10. We first show all the information about a
given test example. It turns out to be the digit 7, and the textual description was
'upper half'. We then use the network to make a prediction, given this image
and textual description as input. We print out digits and predicted probabilities,
sorted on the basis of the probabilities. as expected, the network correctly
predicts the digit as a 7.

dense_output = dense_layer(concat_output)

outputs = output_layer(dense_output)

Build and train model.

model = Model([image_input, text_input], outputs)

model.compile(loss='sparse_categorical_crossentropy',

 optimizer='adam', metrics =['accuracy'])

model.summary()

history = model.fit([train_images, train_text], train_labels,

 validation_data=([test_images, test_text],

 test_labels), epochs=EPOCHS,

 batch_size=64, verbose=2, shuffle=True)

Code Snippet 17-10 Perform Experiments with the Trained Multimodal Network

Print input modalities and output for one test example.

print(test_labels[0])

print(tokenizer.sequences_to_texts([test_text[0]]))

plt.figure(figsize=(1, 1))

plt.imshow(test_images[0], cmap=plt.get_cmap('gray'))

plt.show()

MuLTITaSk LEarNING

469

as a next step, we do another prediction, but this time we change the textual
input to indicate 'lower half'. Looking at the probabilities, we see that
the probabilities for the high digits have decreased. The results were not fully
consistent from run to run, but in many cases, the probabilities changed enough
so the prediction from the network changed from a 7 to a 3. This makes it clear
that the network has learned to take both the image and the textual description
into account.

Multitask Learning
In the previous section, we saw that multimodal learning can involve a single
network simultaneously working on multiple representations of the same data.
a different concept, although similar sounding, is multitask learning, which
involves training a single network to simultaneously solve multiple separate
tasks. Multimodal learning and multitask learning are orthogonal to each other
but can also be combined. That is, we can create a single network that works on

Predict test example.

y = model.predict([test_images[0:1], np.array(

 tokenizer.texts_to_sequences(['upper half']))])[0] #7

print('Predictions with correct input:')

for i in range(len(y)):

 index = y.argmax()

 print('Digit: %d,' %index, 'probability: %5.2e' %y[index])

 y[index] = 0

Predict same test example but with modified textual description.

print('\nPredictions with incorrect input:')

y = model.predict([test_images[0:1], np.array(

 tokenizer.texts_to_sequences(['lower half']))])[0] #7

for i in range(len(y)):

 index = y.argmax()

 print('Digit: %d,' %index, 'probability: %5.2e' %y[index])

 y[index] = 0

ChaPTEr 17 MEDLEy Of aDDITIONaL TOPICS

470

multiple modalities of the same data to solve multiple tasks simultaneously. This
is demonstrated in the programming example later in this section.

Why TO IMPLEMENT MuLTITaSk LEarNING

Let us start with reasoning about the benefit of having a single network solve
multiple tasks by considering why it works and why it is beneficial. We touched
on this topic in Chapter 4, “fully Connected Networks applied to Multiclass
Classification,” when we described how to build a network for multiclass
classification for handwritten digits. One potential solution was to create a
separate network for each digit. That is, instead of one multiclass classification
network, we could have built ten different digit detection networks. Our reasoning
at that point was that there are commonalities between recognizing different
digits. We did not elaborate at the time but now take this reasoning a step further.
Let us consider the three digits 3, 6, and 8. The lower part of each digit is rounded.
It would be inefficient to have three separate “rounded lower part detectors”
when we can achieve the same functionality by sharing a single implementation.
apart from this inefficiency with respect to the total number of neurons, it also
turns out that sharing these neurons forces them to generalize better. Instead
of overfitting to detect just a single digit, the neurons are forced to learn more
general concepts, like detecting a rounded lower part as just mentioned.

The same reasoning applies to multitask learning. as long as a set of tasks are
somewhat related, we can see efficiency gains and less overfitting by training the
network to solve these tasks simultaneously. for example, at the end of Chapter 8,
we briefly mentioned the computer vision tasks detection and segmentation
(also discussed in detail in appendix B). In addition to classifying what types of
objects are in an image, these tasks involve drawing a bounding box or detecting
individual pixels belonging to the classified object. It is easy to see that there are
commonalities between these tasks. regardless whether the network is tasked
with classifying an object as a dog or drawing a bounding box around the dog, it is
first helpful for it to be able to detect typical dog features.

It is worth noting that there is a connection point between transfer learning and
multitask learning. In Chapter 16, we demonstrated how a convolutional network
pretrained for object classification could be reused in the context of image
captioning. Multitask learning does something similar. The difference is that
instead of first training it on one task and then reusing it for a different task, the
network is simultaneously trained and reused for two or more tasks.

MuLTITaSk LEarNING

471

hOW TO IMPLEMENT MuLTITaSk LEarNING

In the previous section, we reasoned about why multitask learning should work
and be beneficial, but the discussion was abstract. We now make it more concrete
by describing the details of how it is done. The trick is to build a network that has
multiple sets of output units. These sets of output units do not need to be of the
same type. for example, consider a network that is tasked with both classifying
an object and drawing a bounding box. One way of building such a network is
to have one softmax output unit for classification and four linear output units to
represent the four corners of the bounding box. These different output units are
often known as heads, and the shared part of the network is known as trunk. That
is, multitask learning can be done using a multiheaded network, as illustrated in
figure 17-9. Note that a head does not necessarily consist of only a single layer,
but each head can be a multilayered subnetwork.

The introduction of multiple output units also implies introducing multiple loss
functions. The selection of these loss functions is straightforward. We use the
same types as for a single-headed network. for example, we use categorical
cross-entropy for a softmax branch used for multiclass classification, whereas
we use mean squared error for a linear branch used for regression. We combine
these multiple loss functions into a single loss function by simply computing a
weighted sum. This raises the question of what weights to use. a simple solution
is to just treat them as any other hyperparameters that need to be tuned when
training the network.

Hidden layer(s)

Input

Classifier Regression

Shared
trunk

Multiple
heads

Task A Task B

Figure 17-9 Two-headed network for multitask learning. One head performs a
classification task, and the other head performs a regression task.

ChaPTEr 17 MEDLEy Of aDDITIONaL TOPICS

472

OThEr aSPECTS aND VarIaTIONS ON ThE BaSIC IMPLEMENTaTION

In the previous section, we described a basic network for multitask learning. as
always, there are many possible variations on the basic implementation. In this
section, we mention a couple of them.

So far, we have implicitly assumed that we train the network to solve multiple
tasks because we need to solve all those tasks. however, multitask learning can
also be used to improve a network where the goal is to solve a single task. We
described how training a network to solve multiple tasks forces the shared parts
of the network to learn generalized solutions. That is, the additional task can
act as a regularizer that reduces overfitting. The network will thereby do better
on the test set for the main task. With this background, we can now revisit the
auxiliary classifier used in GoogLeNet. In Chapter 8, we described it as a way to
fight vanishing gradients. a different way to view the auxiliary classifier is that
it encourages the network to learn features at different detail levels. This can
be viewed as increased generalization resulting from multitask learning (the
auxiliary classifier acts as a second head to learn a secondary task).

The way parameters are shared in the basic network architecture described in the
previous section is known as hard parameter sharing. This simply means that the
trunk of the network is fully shared between the multiple heads. another option
is soft parameter sharing. In such a setting, each task has its own corresponding
network. however, during training, the combined loss function encourages the
weights in some layers to be similar between the models. That is, the weights of
the different networks will act as if they are shared in cases where it is beneficial,
but they still have the freedom to be different from each other if that is more
beneficial. That is, the weights are only softly shared between models.

karpathy (2019b) points out that multitask learning introduces some additional
interesting trade-offs, especially in a team project setting. as previously
described, an obvious and simple regularization technique is early stopping. That
is, simply detect how many epochs result in the best performance on the test set
and stop training at that point. This is trivial in the uni-task learning case, but it is
not as straightforward in a multitask learning case. Consider the learning curves
in figure 17-10. Do you stop training when task a, task B, or task C performs
the best? This becomes particularly contentious when different people are
responsible for different tasks but are sharing the trunk of the network due to
resource constraints. a similar question is who gets to pick the weights for the
joint loss function. The weights are likely to end up being different depending on if
the owner of task a, task B, or task C gets to decide.

MuLTITaSk LEarNING

473

We now move on to a programming example that combines multimodal and
multitask learning. If you want to learn more about multitask learning, ruder
(2017) and Crawshaw (2020) have written survey papers on the topic.

PrOGraMMING EXaMPLE: MuLTICLaSS CLaSSIfICaTION aND
QuESTION aNSWErING WITh a SINGLE NETWOrk

In this programming example, we extend the multimodal network from the last
programming example with an additional head to build a network that does
multitask learning using multimodal inputs.

We teach the network to simultaneously do multiclass classification (identify
the handwritten digit) and perform a simple question-answering task. The
question-answering task is to provide a yes/no answer to a question about the
digit in the image. The textual input will look similar to the textual input in the
last programming example ('upper half', 'lower half', 'odd number',
'even number'). however, instead of correctly describing the digit, the text
is chosen randomly and represents a question. The network is then tasked with
classifying the image into one of ten classes as well as with determining whether
the answer to the question is yes or no (is the statement true or false). as always,
we start with initialization code and loading the dataset in Code Snippet 17-11.

Figure 17-10 Learning curves for three different tasks in a multitask learning
scenario

ChaPTEr 17 MEDLEy Of aDDITIONaL TOPICS

474

import tensorflow as tf

from tensorflow import keras

from tensorflow.keras.utils import to_categorical

from tensorflow.keras.preprocessing.text import Tokenizer

from tensorflow.keras.preprocessing.text \

 import text_to_word_sequence

from tensorflow.keras.preprocessing.sequence \

 import pad_sequences

from tensorflow.keras.layers import Input

from tensorflow.keras.layers import Embedding

from tensorflow.keras.layers import LSTM

from tensorflow.keras.layers import Flatten

from tensorflow.keras.layers import Concatenate

from tensorflow.keras.layers import Dense

from tensorflow.keras.models import Model

import numpy as np

import logging

tf.get_logger().setLevel(logging.ERROR)

EPOCHS = 20

MAX_WORDS = 8

EMBEDDING_WIDTH = 4

Load training and test datasets.

mnist = keras.datasets.mnist

(train_images, train_labels), (test_images,

 test_labels) = mnist.load_data()

Standardize the data.

mean = np.mean(train_images)

stddev = np.std(train_images)

train_images = (train_images - mean) / stddev

test_images = (test_images - mean) / stddev

Code Snippet 17-11 Initialization Code for the Multitask Multimodal Network
Example

MuLTITaSk LEarNING

475

The next step is to extend the MNIST dataset with questions and answers. This
is done in Code Snippet 17-12. The code alternates between the four questions/
statements for each training and test example. It then determines whether the
answer is yes or no based on the ground truth label.

Code Snippet 17-12 Method used to Extend the Dataset with Questions and
answers

Function to create question and answer text.

def create_question_answer(tokenizer, labels):
 text = []

 answers = np.zeros(len(labels))

 for i, label in enumerate(labels):

 question_num = i % 4

 if question_num == 0:

 text.append('lower half')

 if label < 5:

 answers[i] = 1.0

 elif question_num == 1:

 text.append('upper half')

 if label >= 5:

 answers[i] = 1.0

 elif question_num == 2:

 text.append('even number')

 if label % 2 == 0:

 answers[i] = 1.0

 elif question_num == 3:

 text.append('odd number')

 if label % 2 == 1:

 answers[i] = 1.0

 text = tokenizer.texts_to_sequences(text)

 text = pad_sequences(text)

 return text, answers

Create second modality for training and test set.

vocabulary = ['lower', 'upper', 'half', 'even', 'odd', 'number']

tokenizer = Tokenizer(num_words=MAX_WORDS)

ChaPTEr 17 MEDLEy Of aDDITIONaL TOPICS

476

The next step is to create the network. This is shown in Code Snippet 17-13.
Most of the network is identical to the programming example for the multimodal
network. The key difference is that in parallel with the ten-unit output layer for
multiclass classification, there is a one-unit output layer for binary classification.
Given that there are two separate outputs, we also need to supply two separate
loss functions. In addition, we supply weights for these two loss functions to
indicate how to weigh the two into a single loss function for training the network.
The weights should be treated like any other hyperparameter. a reasonable
starting point is to have the same weight for both losses, so we use 50/50. finally,
when calling the fit method, we must provide ground truth for both heads of the
model.

Code Snippet 17-13 Multitask Network with Multimodal Inputs

tokenizer.fit_on_texts(vocabulary)

train_text, train_answers = create_question_answer(tokenizer,

 train_labels)

test_text, test_answers = create_question_answer(tokenizer,

 test_labels)

Create model with functional API.

image_input = Input(shape=(28, 28))

text_input = Input(shape=(2,))

Declare layers.

embedding_layer = Embedding(output_dim=EMBEDDING_WIDTH,

 input_dim = MAX_WORDS)

lstm_layer = LSTM(8)

flatten_layer = Flatten()

concat_layer = Concatenate()

dense_layer = Dense(25,activation='relu')

class_output_layer = Dense(10, activation='softmax')

answer_output_layer = Dense(1, activation='sigmoid')

Connect layers.

embedding_output = embedding_layer(text_input)

lstm_output = lstm_layer(embedding_output)

PrOCESS fOr TuNING a NETWOrk

477

The training process will now report one metric for each head. With our 50/50
weights for the two loss functions, the network achieves a 95% validation
accuracy on the classification task and a 91% accuracy on the question-answering
task. If you are interested, you can change the loss function weights in favor of the
question-answering task and see if you can thereby improve its accuracy.

Process for Tuning a Network
In the programming examples throughout this book, we have shown the results
from various experiments with different network configurations, but we have
not tried to formalize the methodology for training a network. In this section, we
briefly outline a set of steps to follow when training your network. It is loosely
inspired by an online blog post, which we recommend to anybody wanting a more
extensive description (karpathy, 2019a).

first, you need to ensure that you have high-quality data. Our programming
examples have included basic preprocessing of the data, but in general, it is

flatten_output = flatten_layer(image_input)

concat_output = concat_layer([lstm_output, flatten_output])

dense_output = dense_layer(concat_output)

class_outputs = class_output_layer(dense_output)

answer_outputs = answer_output_layer(dense_output)

Build and train model.

model = Model([image_input, text_input], [class_outputs,

 answer_outputs])

model.compile(loss=['sparse_categorical_crossentropy',

 'binary_crossentropy'], optimizer='adam',

 metrics=['accuracy'],

 loss_weights = [0.5, 0.5])

model.summary()

history = model.fit([train_images, train_text],

 [train_labels, train_answers],

 validation_data=([test_images, test_text],

 [test_labels, test_answers]), epochs=EPOCHS,

 batch_size=64, verbose=2, shuffle=True)

ChaPTEr 17 MEDLEy Of aDDITIONaL TOPICS

478

beneficial to spend more time and effort on cleaning and sanity checking the data.
In particular, it is often useful to visualize the data as scatter plots, histograms,
or other types of charts to see if there are any obvious patterns or broken data
points.

a second step is to create a naïve model that will serve as a baseline to compare
against. Without such a model, it is hard to tell if your multilayer hybrid CNN/
rNN network with dropout and attention is doing anything good and is worth the
complexity. your naïve model should be simple enough that you can convince
yourself that the model implementation itself does not contain bugs. This will also
help you ensure that your data preprocessing steps work as expected and that the
data is properly presented to the model.

Now you are ready to build your DL model, but even at this step, you should start
small. Create a tiny subset of your training dataset and create a fairly simple
model that you think should be able to memorize the dataset. as an example,
when we built our sequence-to-sequence network for language translation, we
started with a dataset of just four sentences, each containing three to four words.
Our initial model failed to memorize these sentences, which was caused by bugs
in the model implementation as opposed to the model being too small or simple.
Obviously, failure to learn a small dataset does not need to be caused by bugs
in the model; it can also be that it is the wrong type of model or that you need to
adjust other hyperparameters such as the optimizer type, learning rate, or weight
initialization scheme. If you cannot get your model to memorize a tiny subset of
your actual dataset, then there is a low probability that increasing the dataset will
help. In addition, staying with a tiny dataset at this point will allow you to do rapid
prototyping without long iteration times for training.

Once you have built a model that can memorize your tiny subset of the training
dataset, you can increase the dataset size to something more challenging.
Chances are that you will now run into issues with model capacity (i.e., you need
a larger or more complex model). at this point, it is time to add layers or increase
the size of the layers. While doing so, make sure not only to look at the training
error but also to keep an eye on the test error. If the training error is decreasing

for the record, obviously, we did not start with a four-sentence dataset. Just
like everybody else, we were optimistic. We threw a real dataset at the model
but had to gradually strip down both the model and the dataset to the very
basics to find the bugs that prevented it from learning.

PrOCESS fOr TuNING a NETWOrk

479

but the test error is flat, then it is an indication that the network fails at
generalizing and you should employ various regularization techniques. Start with
the standard approaches, such as dropout and L2 regularization. If it is simple,
especially when working with images, consider increasing your dataset size using
data augmentation.

If you see your test error decreasing or your training error increasing, it is an
indication that your regularization techniques work and that you have gotten
overfitting under control. at that point, you can increase the size of the model
again and see if that further reduces the error. It is often the case that you will
need to go through multiple iterations of regularization and model size increases
before you arrive at a model that is good enough for your intended use case.

at any point during this process, you can also experiment with different initial
learning rates as well as different types of optimizers, such as adam, adaGrad, or
rMSProp.

figure 17-11 summarizes this tuning process. however, tuning a deep neural
network is often referred to as an art more than a science, so the flow chart
should be considered only a starting point. To do all of the tuning tasks, you need
a fair amount of persistence and must be willing to experiment with different
network architectures and parameters. In this process, it is invaluable to have a
fast computing platform that can do rapid iterations so you do not have to wait
overnight for results.

finally, if you consider the process we described, it becomes clear that your
training process has been heavily influenced not only by your training dataset but
also by your test dataset. for all of these iterations, you have been guided by the
model performance on the test dataset while tuning the hyperparameters. This
applies even if you do not do the work iteratively but just run a large number of
different configurations and pick the best one. In Chapter 5, we described two
solutions to this issue. The first solution is to split your dataset into three subsets:
training set, validation set, and test set. During the training process, you use only
the training set and validation set. Once you are done iterating and have a trained
model, you do a final evaluation of the model on the test set, which will now be
your actual measurement of how well the model generalized to previously unseen
data. The second solution is a technique known as cross-validation. It avoids
splitting the dataset into three different parts, but at the expense of additional
computations.

ChaPTEr 17 MEDLEy Of aDDITIONaL TOPICS

480

Obtain, explore, and clean
data

START

DONE

Create naive model to
provide a baseline. Sanity

check behavior of data
preprocessing and training

Create initial simple DL
model

Model learns?
NO

YES Bugs in
model?

Fix bugs

NO

Poor hyper-
parameters?

Tune hyper-
parameters

NO

Poor model
architecture?

Modify
architecture

NO

Unsolvable
problem?

Modify input
data

Try to train on small set of
training examples

Try to train on large set of
training examples

Low train and
low test error?

NO

YES
High train error?

Increase model
capacity and

tune other
hyper-

parameters

NO

Regularize
model or reduce
model capacity

NOToo many
iterations?

Consider
collecting more

training data

YES

YES

Figure 17-11 Process for tuning a network

PrOCESS fOr TuNING a NETWOrk

481

The process we just described is based on the assumption that you are building
your network from scratch. as stated in Chapter 8, if your problem type is well
known, a pretrained model can be a very attractive option. Similarly, even if
there does not exist a pretrained model for your exact problem type, you can
still consider leveraging a pretrained model in a transfer-learning setting. In the
tuning process, you would simply use the pretrained model as a building block
as you experiment with different types of models. Just remember that it is often
useful to freeze the pretrained weights during the first few epochs of training to
ensure that the pretrained weights are not ruined in the process of training the
randomly initialized weights in the layers you added to the pretrained model.
you can later unfreeze the weights and do end-to-end fine-tuning of the full
model.

WhEN TO COLLECT MOrE TraINING DaTa

a key question is when to collect more training data. This is often an expensive
process. Therefore, it is important to not do it unless it is absolutely necessary.
a good way of determining whether additional data will help is to experiment
with existing data. Ng (2018) suggests plotting learning curves to determine
whether the problem is truly lack of data or is caused by a model not suitable
for the task at hand. Instead of training the model on the entire training dataset,
we artificially reduce the size to a very small set of training examples. We then
evaluate the model on the full test set. Then we increase the training dataset
slightly, by adding back some of the training examples we previously removed,
and again evaluate the model on the full test set. By doing this, we can see
how the training and test error change as a function of training set size. This is
illustrated in figure 17-12.

In the chart to the left, the training error is small when the training set is small.
That is, the model manages to memorize the training examples. however, as
the training dataset increases, the model’s performance worsens. further, the
test error ends up similar to the training error as we add more training data. In
this case, it is unlikely that adding more training data will help. More likely, the
selected model is not a good match for the problem.

In the chart to the right, the training error is still low as the training set size is
increased. further, the test error is still decreasing. This indicates that there is a
good chance that increasing the size of the training set will result in an improved
model.

ChaPTEr 17 MEDLEy Of aDDITIONaL TOPICS

482

Neural architecture Search
as seen in the previous section, it is nontrivial to arrive at the right network
architecture and the right set of hyperparameters for the training process. In
Chapter 5, we briefly discussed how to automate the hyperparameter tuning
process using exhaustive or random grid search. a related technique is to
automate the process of exploring different network architectures, a field known
as neural architecture search (NaS).

kEy COMPONENTS Of NEuraL arChITECTurE SEarCh

as the name implies, NaS treats the process of arriving at a feasible network
architecture as a search problem. In a survey paper, Elsken, Metzen, and hutter
(2019) describe how this search problem can be divided into three parts: search
space, search strategy, and evaluation strategy. The roles these three elements play
in the NaS process are illustrated in figure 17-13.

We first need to define an overall search space, or solution space. We then apply
a search strategy to select a candidate solution, or a set of solutions, from this
search space. We evaluate these candidates using an evaluation strategy. We
repeatedly employ the search strategy and evaluation strategy until we find an
acceptable solution. More details of each step in this process are found in the next
few sections.

Figure 17-12 Learning curves. Left: The model does not do well on the existing training
data. It is unlikely that adding more training data will help. right: The model does well on
the existing training data, but there is a big gap between training and test errors. The test
error has not flattened out, so adding more training data can help.

NEuraL arChITECTurE SEarCh

483

SEARCH SPACE

a starting point is to define the search space. a first thought might be to not
restrict it at all and to enable the search algorithm to find the best solution.
Thinking more about it, adding some restrictions is necessary in a practical
implementation. for example, if our chosen DL framework is Tensorflow using
the keras aPI, then a reasonable restriction is that the defined model should be
a valid keras model. Similarly, assuming a well-defined problem with an existing
dataset, restricting the search space to a model that is compatible with the format
of this dataset is also a reasonable assumption. That is, if we want to find a model
that can do image classification for the CIfar-10 dataset, then it is reasonable to

Define search space

START

DONE

Evaluate candidate(s)

Acceptable
solution?

NO

YES

Apply search strategy
to pick candidate

solution(s)

Figure 17-13 Process for neural architectural search

ChaPTEr 17 MEDLEy Of aDDITIONaL TOPICS

484

restrict the search space to models that can accept images of resolution 32×32×3
on its input and indicate ten probabilities as outputs. adding a size restriction to
the model also makes intuitive sense.

Most of the restrictions we mentioned should be noncontroversial, but it is
common to apply additional restrictions as well, with the need to strike a balance
between making use of prior knowledge and finding new architectures. One
option is to allow only sequential architectures, where we stack layers on top
of each other. This restricts the models to what we can build with the keras
Sequential aPI. This makes for an easy implementation but also significantly
restricts the types of models that can be built.

We can loosen this restriction by allowing skip connections. We know that this has
been beneficial for image classification. One challenge with skip connections is
how to combine them with the output of the skipped layer and still form a valid
input to the next layer. This is no different from our initial restriction that the
model needs to be a valid keras model, but in practice, we must figure out the
details of ensuring that the combination works.

another aspect is what building blocks to provide when coming up with the
solution space. for example, in Chapter 8, we described the inception module
(from GoogLeNet), which has shown to be useful in image classification. One
option is to provide such handcrafted modules as building blocks to the search
algorithm. This is not necessarily a restriction in the search space but does
introduce human bias with respect to which solutions are more likely to be
evaluated.

SEARCH STRATEGY

Once the search space is defined, a next step is to settle on a search algorithm
to explore this solution space. Search algorithms is a huge topic, and we
make no attempt at fully covering it. Instead, we describe three different
algorithms of increasing complexity to give just a taste of some solutions that
can be used.

Pure random search simply means that we repeatedly randomly select a
solution from the solution space and determine if it is better than the best-known
solution. This is done until we have found a solution that satisfies our needs.
This algorithm is the same as the random grid search algorithm described
in the context of hyperparameter tuning in Chapter 5, where the defined grid
represents the search space. This algorithm is a global search algorithm, and in

NEuraL arChITECTurE SEarCh

485

theory, it will converge to the best solution if run for sufficiently long. In practice,
the size of the search space combined with the cost of evaluating models
prevents this algorithm from exploring even a small fraction of the search space.
Therefore, this algorithm in isolation is not suitable for NaS, but it can be used
as a first step to find a solution that can be used as a starting point for a local
search algorithm.

Hill climbing is a local search algorithm, which iteratively refines a solution by
exploring models that are similar to the currently best-known model. Given a
model, we modify one parameter slightly in one direction and evaluate whether
the modified model is better than the current model. If so, this is declared as
the new best-known model, and we start a new iteration. If the new model is
worse than the best-known model, we drop it and modify the parameter in the
other direction. If that still does not improve the model, we move on to a different
parameter. There are various variations on hill climbing. for example, in steepest
ascent hill climbing, all neighboring solutions are first evaluated, and then the best
out of these explored models is declared as the best-known model. In the context
of NaS, modifying a parameter can involve modifying the size or type of a layer,
adding a layer, removing a layer, and so on. a drawback of hill climbing is that it
is a local search algorithm. Consequently, it is sensitive to what model is selected
as a starting point, and the algorithm can get stuck in a local optimum. One way
to partially address that issue is to do hill climbing multiple times from different
starting points, also known as random restart hill climbing.

a third option is to use an evolutionary algorithm. Such algorithms are inspired
by biological evolution whereby individuals of a population reproduce into new
individuals, and the fittest individuals survive to the next iteration. That is, instead
of refining a single model, as in hill climbing, we maintain a set (population)
of models (individuals). We select well-performing models (parents) from this
population and combine them to create new models (children), with the hope
that the combination of two models leads to an even better model. Evolutionary
algorithms also apply random changes (mutations) to the individuals, which
results in exploring neighboring models similarly to what is done in hill climbing.
a key issue is how to combine two individuals in a meaningful way. for the
evolutional algorithm to work well, it is important that the new individual
maintains (inherits) properties from its parents.

The behaviors of these three search algorithms are illustrated in figure 17-14.
The assumed problem is image classification. for illustration purposes, we
assume a severely constrained search space. Each model consists of a number
of convolutional layers followed by a number of fully connected layers. all

ChaPTEr 17 MEDLEy Of aDDITIONaL TOPICS

486

parameters are fixed except for the number of convolutional and fully connected
layers. That is, the search space is two-dimensional, which enables us to plot it.
The best possible solution is shown as a green rectangle in each chart, and the
circles represent candidates selected by the different search strategies. The color
coding of the circles indicates whether the candidate is far away (red), somewhat
close (yellow), or close (green) to the optimal solution.

In the case of uniform random search, the candidates are picked at random
without making use of information gained from previous candidates. In the hill
climbing case, the algorithm identifies a parameter and direction that lead to a
better solution and selects that as the next candidate. It thereby gradually moves
closer and closer to the best solution, but there is a risk that it gets stuck in a
local minimum.

The evolutionary algorithm combines two parent solutions by using a crossover
operation (indicated by C on the arrows). In our case, we simply assume that
the crossover operation takes one parameter from each parent. We start with a
population of candidate solutions 1a, 1b, 1c, and 1d. We combine the two parents
1a and 1b, using the crossover operation, and arrive at 2a. Note that 2a is not
strictly a mix of the two parents in the figure because we also randomly apply
a mutation (indicated by M on the arrow) that modifies one of the parameters
slightly. By chance, this moves 2a slightly closer to the best solution. In parallel,
parents 1c and 1d are combined and result in the child 2b. The figure shows only
these two individuals from generation 2, but in reality, we would generate more
individuals and keep the better performing ones (natural selection). We then do
another iteration in which parents 2a and 2b are combined into solution 3, which
is close to the best possible solution. again, in reality, we would generate multiple
individuals in the third generation as well to keep the population size constant.

1

1 2

3

4 5

23

4

6

Convolutional layers

Fu
lly

 c
on

ne
ct

ed
 la

ye
rs

Fu
lly

 c
on

ne
ct

ed
 la

ye
rs

Fu
lly

 c
on

ne
ct

ed
 la

ye
rs

Best

Convolutional layers

Best

Convolutional layers

Best

6 7

8

C

C

CC

C
C

M

Hill climbingUniform random search Evolutionary algorithm

9

5

9

7 8

2a 3

1c

2b 1d

1a

1b

Figure 17-14 Behaviors of three different search algorithms: uniform random
search (left), hill climbing (middle), evolutionary search algorithm (right), where C
represents cross-over and M represents mutation

NEuraL arChITECTurE SEarCh

487

In the example, the crossover operation enables the evolutionary algorithm
to converge faster than the hill climbing algorithm. however, the evolutionary
algorithm can also get stuck in a local minimum, just like hill climbing. This might
all sound very abstract at this point, but we soon make it more concrete with a
programming example implementing these three algorithms.

as previously mentioned, the three algorithms represent just a small subset of
available search algorithms. One common theme among the three is that none
of them requires a gradient. another option is to define the models in a way that
a gradient can be computed between multiple models, and then use gradient
descent to search for the best model. Other approaches worth mentioning are
reinforcement learning and Bayesian optimization. More details and references to
how those and other algorithms have been applied to NaS can be found in the
survey paper by Elsken, Metzen, and hutter (2019). a different survey paper by
ren and colleagues (2020) is another resource to consult.

EVALUATION STRATEGY

The third step in the NaS process is to evaluate the candidate models during the
search step. Note that the actual evaluation is performed as a step in the search
algorithms we just described, but the way in which that is done is a separate topic.
Ideally, we would want to fully train and evaluate each model for the same amount
of time that we would normally train the final model in a production setting. This
is often not feasible, given that fully training the final model might take multiple
days. There is a direct trade-off between how much time we spend on training the
candidate solutions and the number of solutions we have time to evaluate. It is often
beneficial to reduce the amount of time spent on training each candidate solution
and thereby enable the search algorithm to evaluate more solutions.

In their survey paper, Elsken, Metzen, and hutter (2019) describe a number of
ways to reduce time spent on training the candidate models. We list some of the
simpler ones here:

• Train for a reduced number of epochs.

• Train with a reduced dataset.

• Downscale the model.

• Extrapolate the learning curve to take the trend into account.

• Inherit weights from the previous iteration instead of training the model
from scratch. This assumes that the models are sufficiently similar between
iterations, so it is feasible to transfer weights from one model to the next.

ChaPTEr 17 MEDLEy Of aDDITIONaL TOPICS

488

for more details about the these approaches as well as additional techniques, we
encourage interested readers to follow up on references in the survey by Elsken,
Metzen, and hutter.

PrOGraMMING EXaMPLE: SEarChING fOr aN arChITECTurE fOr
CIfar-10 CLaSSIfICaTION

In this programming example, we explore NaS to find a suitable architecture
for CIfar-10 classification. That is, we try to automatically arrive at a good
architecture instead of hand-engineering it as we did in Chapter 7, “Convolutional
Neural Networks applied to Image Classification.” We make no attempt at creating
the most advanced NaS algorithm out there but focus on illustrating the concept
by implementing three different search algorithms from scratch. The initial code
is the same, regardless of what search algorithm is used. as always, we start
with initialization code and loading the dataset in Code Snippet 17-14. We define
some variables that are part of defining the search space, such as what types of
layer can be used and what kind of parameters and values are valid for each type
of layer.

Code Snippet 17-14 Initialization Code and Loading the Dataset

import tensorflow as tf

from tensorflow import keras

from tensorflow.keras.utils import to_categorical

from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import Lambda

from tensorflow.keras.layers import Dense

from tensorflow.keras.layers import Flatten

from tensorflow.keras.layers import Reshape

from tensorflow.keras.layers import Conv2D

from tensorflow.keras.layers import Dropout

from tensorflow.keras.layers import MaxPooling2D

import numpy as np

import logging

import copy

import random

tf.get_logger().setLevel(logging.ERROR)

NEuraL arChITECTurE SEarCh

489

MAX_MODEL_SIZE = 500000

CANDIDATE_EVALUATIONS = 500

EVAL_EPOCHS = 3

FINAL_EPOCHS = 20

layer_types = ['DENSE', 'CONV2D', 'MAXPOOL2D']

param_values = dict([('size', [16, 64, 256, 1024, 4096]),

 ('activation', ['relu', 'tanh', 'elu']),

 ('kernel_size', [(1, 1), (2, 2), (3, 3), (4, 4)]),

 ('stride', [(1, 1), (2, 2), (3, 3), (4, 4)]),

 ('dropout', [0.0, 0.4, 0.7, 0.9])])

layer_params = dict([('DENSE', ['size', 'activation', 'dropout']),

 ('CONV2D', ['size', 'activation',

 'kernel_size', 'stride',

 'dropout']),

 ('MAXPOOL2D', ['kernel_size', 'stride',

 'dropout'])])

Load dataset.

cifar_dataset = keras.datasets.cifar10

(train_images, train_labels), (test_images,

 test_labels) = cifar_dataset.load_data()

Standardize dataset.

mean = np.mean(train_images)

stddev = np.std(train_images)

train_images = (train_images - mean) / stddev

test_images = (test_images - mean) / stddev

Change labels to one-hot.

train_labels = to_categorical(train_labels,

 num_classes=10)

test_labels = to_categorical(test_labels,

 num_classes=10)

ChaPTEr 17 MEDLEy Of aDDITIONaL TOPICS

490

The next step is to build some infrastructure for automatically generating models.
To keep things simple, we impose significant restrictions on the search space.
To start with, we allow only sequential models. In addition, given our knowledge
of the application (image classification), we impose a rigid structure on the
network. We view the network as a combination of a bottom subnetwork and a top
subnetwork. The bottom part consists of a combination of convolutional and max-
pooling layers, and the top part consists of fully connected layers. In addition, we
allow dropout layers after any layer, and we also add a flatten layer between the
bottom and the top to ensure that we end up with a valid Tensorflow model.

The methods in Code Snippet 17-15 are used to generate a random model within
this constrained search space. There is also a method that computes the size
of the resulting model in terms of the number of trainable parameters. Note
that these methods do not have anything to do with Tensorflow but is our own
representation of a network before invoking the DL framework.

Code Snippet 17-15 Methods to Generate a Network with random Parameters
Within the Defined Search Space

Methods to create a model definition.

def generate_random_layer(layer_type):

 layer = {}

 layer['layer_type'] = layer_type

 params = layer_params[layer_type]

 for param in params:

 values = param_values[param]

 layer[param] = values[np.random.randint(0, len(values))]

 return layer

def generate_model_definition():

 layer_count = np.random.randint(2, 9)

 non_dense_count = np.random.randint(1, layer_count)

 layers = []

 for i in range(layer_count):

 if i < non_dense_count:

 layer_type = layer_types[np.random.randint(1, 3)]

 layer = generate_random_layer(layer_type)

 else:

 layer = generate_random_layer('DENSE')

NEuraL arChITECTurE SEarCh

491

The next set of methods takes the model definition created in the previous code
snippet and creates and evaluates a corresponding Tensorflow model for a
small number of epochs. This is all shown in Code Snippet 17-16. The method
that evaluates the model imposes a size restriction. If the requested model has
too many parameters, the method simply returns an accuracy of 0.0. The search

 layers.append(layer)

 return layers

def compute_weight_count(layers):

 last_shape = (32, 32, 3)

 total_weights = 0

 for layer in layers:

 layer_type = layer['layer_type']

 if layer_type == 'DENSE':

 size = layer['size']

 weights = size * (np.prod(last_shape) + 1)

 last_shape = (layer['size'])

 else:

 stride = layer['stride']

 if layer_type == 'CONV2D':

 size = layer['size']

 kernel_size = layer['kernel_size']

 weights = size * ((np.prod(kernel_size) *

 last_shape[2]) + 1)

 last_shape = (np.ceil(last_shape[0]/stride[0]),

 np.ceil(last_shape[1]/stride[1]),

 size)

 elif layer_type == 'MAXPOOL2D':

 weights = 0

 last_shape = (np.ceil(last_shape[0]/stride[0]),

 np.ceil(last_shape[1]/stride[1]),

 last_shape[2])

 total_weights += weights

 total_weights += ((np.prod(last_shape) + 1) * 10)

 return total_weights

ChaPTEr 17 MEDLEy Of aDDITIONaL TOPICS

492

algorithm that invokes the method will need to check for this and, if needed,
generate a smaller model.

Code Snippet 17-16 Translate a Model Definition into a Tensorflow Model and
Evaluate That Model for a Small Number of Epochs

Methods to create and evaluate model based on model definition.

def add_layer(model, params, prior_type):
 layer_type = params['layer_type']

 if layer_type == 'DENSE':

 if prior_type != 'DENSE':

 model.add(Flatten())

 size = params['size']

 act = params['activation']

 model.add(Dense(size, activation=act))

 elif layer_type == 'CONV2D':

 size = params['size']

 act = params['activation']

 kernel_size = params['kernel_size']

 stride = params['stride']

 model.add(Conv2D(size, kernel_size, activation=act,

 strides=stride, padding='same'))

 elif layer_type == 'MAXPOOL2D':

 kernel_size = params['kernel_size']

 stride = params['stride']

 model.add(MaxPooling2D(pool_size=kernel_size,

 strides=stride, padding='same'))

 dropout = params['dropout']

 if(dropout > 0.0):

 model.add(Dropout(dropout))

def create_model(layers):
 tf.keras.backend.clear_session()

 model = Sequential()

 model.add(Lambda(lambda x: x, input_shape=(32, 32, 3)))

 prev_layer = 'LAMBDA' # Dummy layer to set input_shape

 prev_size = 0

NEuraL arChITECTurE SEarCh

493

We now have all the building blocks to implement our first and simplest search
algorithm, namely, pure random search. This is shown in Code Snippet 17-17.
It consists of an outer for loop that runs for a fixed number of iterations. Each
iteration randomly generates and evaluates a model. There is an inner loop to
handle the case when the generated model is too big. The inner loop simply
repeatedly generates random models until one is generated that adheres to the
size restriction.

Code Snippet 17-17 Implementation of the Pure random Search algorithm

 for layer in layers:

 add_layer(model, layer, prev_layer)

 prev_layer = layer['layer_type']

 model.add(Dense(10, activation='softmax'))

 model.compile(loss='categorical_crossentropy',

 optimizer='adam', metrics=['accuracy'])

 return model

def create_and_evaluate_model(model_definition):
 weight_count = compute_weight_count(model_definition)

 if weight_count > MAX_MODEL_SIZE:

 return 0.0

 model = create_model(model_definition)

 history = model.fit(train_images, train_labels,

 validation_data=(test_images, test_labels),

 epochs=EVAL_EPOCHS, batch_size=64,

 verbose=2, shuffle=False)

 acc = history.history['val_accuracy'][-1]

 print('Size: ', weight_count)

 print('Accuracy: %5.2f' %acc)

 return acc

Pure random search.

np.random.seed(7)

val_accuracy = 0.0

ChaPTEr 17 MEDLEy Of aDDITIONaL TOPICS

494

as the program runs, you will see how 500 different models are evaluated for
three epochs each and their accuracy is printed along with the accuracy of the
best model so far. In our experiment, the evaluation accuracy for the best model
ended up being 59%.

as already described, randomly generating models without making any use of the
observations of the behavior of past models is an inefficient way of trying to find
the best solution. The next step is to implement the hill climbing algorithm. This
is done in Code Snippet 17-18. We create a helper method that randomly adjusts
one of the parameters slightly to move an existing model into a neighboring
model in the allowed search space. The first for loop determines the index of the
boundary between the bottom (non-dense) and top (dense) layers. The next step
is to determine whether to increase or decrease the capacity of the model. This is
followed by determining whether to add/remove a layer or tweak parameters of
an existing layer. Much of the logic is there to ensure that the modified model still
stays within the boundaries of what is a legal model.

The actual hill climbing algorithm is implemented at the bottom of the code
snippet. It assumes an initial model and gradually tweaks it in the direction that
improves prediction accuracy. The implemented version of the algorithm is known
as stochastic hill climbing. a parameter is modified at random, and if the resulting
model is better than the previously best-known model, the change is kept.
Otherwise, it is reverted, and another tweak is tried. The given implementation
assumes that the hill climbing algorithm is run after doing random search, so
there is a promising model to start from.

for i in range(CANDIDATE_EVALUATIONS):

 valid_model = False

 while(valid_model == False):

 model_definition = generate_model_definition()

 acc = create_and_evaluate_model(model_definition)

 if acc > 0.0:

 valid_model = True

 if acc > val_accuracy:

 best_model = model_definition

 val_accuracy = acc

 print('Random search, best accuracy: %5.2f' %val_accuracy)

NEuraL arChITECTurE SEarCh

495

Code Snippet 17-18 hill Climbing algorithm

Helper method for hill climbing and evolutionary algorithm.

def tweak_model(model_definition):
 layer_num = np.random.randint(0, len(model_definition))

 last_layer = len(model_definition) - 1

 for first_dense, layer in enumerate(model_definition):

 if layer['layer_type'] == 'DENSE':

 break

 if np.random.randint(0, 2) == 1:

 delta = 1

 else:

 delta = -1

 if np.random.randint(0, 2) == 1:

 # Add/remove layer.

 if len(model_definition) < 3:

 delta = 1 # Layer removal not allowed

 if delta == -1:

 # Remove layer.

 if layer_num == 0 and first_dense == 1:

 layer_num += 1 # Require >= 1 non-dense layer.

 if layer_num == first_dense and layer_num == last_layer:

 layer_num -= 1 # Require >= 1 dense layer.

 del model_definition[layer_num]

 else:

 # Add layer.

 if layer_num < first_dense:

 layer_type = layer_types[np.random.randint(1, 3)]

 else:

 layer_type = 'DENSE'

 layer = generate_random_layer(layer_type)

 model_definition.insert(layer_num, layer)

 else:

 # Tweak parameter.

 layer = model_definition[layer_num]

 layer_type = layer['layer_type']

ChaPTEr 17 MEDLEy Of aDDITIONaL TOPICS

496

The hill climbing algorithm takes the best model from the random search
experiment and gradually refines it. after evaluating 500 different models, our
evaluation accuracy was 74%.

for both the random search algorithm and the hill climbing algorithm, our
evaluation strategy was to evaluate each solution for only three epochs. We made
the assumption that the resulting validation error would be a good indicator of
how well the model would perform after more training. To get a more accurate
evaluation of how well the best model actually performs, Code Snippet 17-19

 params = layer_params[layer_type]

 param = params[np.random.randint(0, len(params))]

 current_val = layer[param]

 values = param_values[param]

 index = values.index(current_val)

 max_index = len(values)

 new_val = values[(index + delta) % max_index]

 layer[param] = new_val

Hill climbing, starting from best model from random search.

model_definition = best_model

for i in range(CANDIDATE_EVALUATIONS):

 valid_model = False

 while(valid_model == False):

 old_model_definition = copy.deepcopy(model_definition)

 tweak_model(model_definition)

 acc = create_and_evaluate_model(model_definition)

 if acc > 0.0:

 valid_model = True

 else:

 model_definition = old_model_definition

 if acc > val_accuracy:

 best_model = copy.deepcopy(model_definition)

 val_accuracy = acc

 else:

 model_definition = old_model_definition

 print('Hill climbing, best accuracy: %5.2f' %val_accuracy)

NEuraL arChITECTurE SEarCh

497

evaluates the best model for 20 epochs. as expected, the increased number
of epochs increases the test accuracy. In our experiment, we ended up with an
accuracy of 76%. That result is comparable to the best configuration in Chapter 7
if we take into account that we trained that configuration for 128 epochs.

The third search algorithm that we implement is an evolutionary algorithm. It is
shown in Code Snippet 17-20. We start by defining the number of simultaneous
candidate solutions in the population to be 50. a key part of the evolutionary
algorithm is the crossover operation, which combines two existing solutions
(parents) into a new solution (child) that inherits properties of both of its parents.
The approach we have taken is to simply take the bottom (non-dense) layers
from one of the parents and combine it with the top (dense) layers from the
other parent. The thinking here is that the task of the bottom layers is to extract
useful features from the image, and the task of the top layers is to perform the
classification. If one of the parents has a good structure for extracting features
and the other parent has a good structure for doing a classification based on a
good set of features, then an even better model can be found by combining the
two. We confirmed that this works in practice with a hand-engineered example.
The crossover method also has logic to combine all layers from the parent
models if the parent models are sufficiently small.

The evolutionary algorithm starts by generating and evaluating a population
of random models. It then randomly generates new models by tweaking and

Evaluate final model for larger number of epochs.

model = create_model(best_model)

model.summary()

model.compile(loss='categorical_crossentropy',

 optimizer='adam', metrics=['accuracy'])

history = model.fit(

 train_images, train_labels, validation_data =

 (test_images, test_labels), epochs=FINAL_EPOCHS, batch_size=64,

 verbose=2, shuffle=True)

Code Snippet 17-19 Evaluate the Best-known Model for a Larger Number of
Epochs

ChaPTEr 17 MEDLEy Of aDDITIONaL TOPICS

498

combining models in the existing population. There are three ways that a new
model can be created:

• Tweak an existing model.

• Combine two parent models into a child model.

• Combine two parent models into a child model and apply a tweak to the
resulting model.

Once new models have been generated, the algorithm probabilistically selects
high-performing models to keep for the next iteration. In this selection process,
both the parents and the children participate, which is also known as elitism
within the field of evolutionary computation.

Code Snippet 17-20 Evolutionary algorithm

POPULATION_SIZE = 50

Helper method for evolutionary algorithm.

def cross_over(parents):
 # Pick bottom half of one and top half of the other.

 # If model is small, randomly stack top or bottom from both.

 bottoms = [[], []]

 tops = [[], []]

 for i, model in enumerate(parents):

 for layer in model:

 if layer['layer_type'] != 'DENSE':

 bottoms[i].append(copy.deepcopy(layer))

 else:

 tops[i].append(copy.deepcopy(layer))

 i = np.random.randint(0, 2)

 if (i == 1 and compute_weight_count(parents[0]) +

 compute_weight_count(parents[1]) < MAX_MODEL_SIZE):

 i = np.random.randint(0, 2)

 new_model = bottoms[i] + bottoms[(i+1)%2]

 i = np.random.randint(0, 2)

 new_model = new_model + tops[i] + tops[(i+1)%2]

NEuraL arChITECTurE SEarCh

499

 else:

 i = np.random.randint(0, 2)

 new_model = bottoms[i] + tops[(i+1)%2]

 return new_model

Evolutionary algorithm.

np.random.seed(7)

Generate initial population of models.

population = []

for i in range(POPULATION_SIZE):

 valid_model = False

 while(valid_model == False):

 model_definition = generate_model_definition()

 acc = create_and_evaluate_model(model_definition)

 if acc > 0.0:

 valid_model = True

 population.append((acc, model_definition))

Evolve population.

generations = int(CANDIDATE_EVALUATIONS / POPULATION_SIZE) - 1

for i in range(generations):

 # Generate new individuals.

 print('Generation number: ', i)

 for j in range(POPULATION_SIZE):

 valid_model = False

 while(valid_model == False):

 rand = np.random.rand()

 parents = random.sample(

 population[:POPULATION_SIZE], 2)

 parents = [parents[0][1], parents[1][1]]

 if rand < 0.5:

 child = copy.deepcopy(parents[0])

 tweak_model(child)

 elif rand < 0.75:

 child = cross_over(parents)

ChaPTEr 17 MEDLEy Of aDDITIONaL TOPICS

500

The code first generates and evaluates a population of 50 random models. It then
repeatedly evolves and evaluates a new population of 50 individuals. after having
evaluated ten generations, or 500 individuals in total, the evaluation accuracy of
the best solution in our experiment ended up at 65%, which was worse than the
hill climbing algorithm. Just as for the hill climbing algorithm, you can get a more
accurate evaluation by training the best model for a larger number of epochs
using the Code Snippet 17-19. for our model from the evolutionary algorithm, this
resulted in a test accuracy of 73%.

The results can vary significantly from run to run given that all three search
algorithms are stochastic. Our results indicate that the hill climbing algorithm is
better than the specific evolutionary algorithm we implemented, and both of them
are better than the pure random search. The main purpose of this programming
example was not to arrive at the most optimized solution but to illustrate and
demystify these three approaches to automatically finding a network architecture.
We did have some problems with out-of-memory errors, which seemed related
to creating a large number of models after each other in the same program.
Depending on your machine configuration, you might have to reduce the number
of iterations or maximum model size.

 else:

 child = cross_over(parents)

 tweak_model(child)

 acc = create_and_evaluate_model(child)

 if acc > 0.0:

 valid_model = True

 population.append((acc, child))

 # Randomly select fit individuals.

 population.sort(key=lambda x:x[0])

 print('Evolution, best accuracy: %5.2f' %population[-1][0])

 top = np.int(np.ceil(0.2*len(population)))

 bottom = np.int(np.ceil(0.3*len(population)))

 top_individuals = population[-top:]

 remaining = np.int(len(population)/2) - len(top_individuals)

population = random.sample(population[bottom:-top],

 remaining) + top_individuals

best_model = population[-1][1]

NEuraL arChITECTurE SEarCh

501

IMPLICaTIONS Of NEuraL arChITECTurE SEarCh

NaS provides a path to automatically generating DL models and thereby
enabling practitioners not skilled in network architectures to build their own
problem-specific models. as an example, Jin, Song, and hu (2019) introduced a
NaS framework known as auto-keras. using this framework, searching for an
architecture for a classifier is reduced to an import statement and a couple of
lines of code:2

from autokeras import StructuredDataClassifier

search = StructuredDataClassifier(max_trials=20)

search.fit(x = X_train, y = y_train)

however, as seen in the previously described programming example, this
comes at a significant computational cost. One open issue with respect to NaS is
whether it truly will result in a general solution and thereby remove the need for
detailed DL skills among practitioners. at least in the near future, it seems likely
that practitioners will still need to know the basics about their specific problem
domain and use NaS as a tool that helps with finding the best solution within a
well-defined solution space. another central question, raised by Thomas (2018),
is whether every new problem needs its own unique architecture. It might well
be that the best way to enable a large number of nonexperts to make use of DL
is by making it easy to use transfer learning based on pretrained models. These

2. as usual, you would also need to load a dataset and ensure that it is in the right format.

at this point, it is fun to take a step back and look at what we just did. We used
an algorithm inspired by biological sexual reproduction to evolve a population
of models implementing an architecture that is inspired by biological neurons.
The result was a model that can classify images based on what type of object
is present in the image. Not too long ago, this would have sounded like total
science fiction, and it is easy to spin it in a way that makes an outsider think
that we are evolving our own little lifeform in our lab. In reality, it is just a
simple Python script consisting of less than 300 lines of code. Then again, lines
of code might not be the most meaningful metric. Perhaps we will soon have a
sufficiently expressive library, where we can solve any human-level task with a
single line of code:

model.add_brain(neurons=8.6e10, connections_per_neuron=7000)

ChaPTEr 17 MEDLEy Of aDDITIONaL TOPICS

502

pretrained models would be developed by a smaller set of experts with access to
the vast computational power needed for finding new complicated architectures.

Concluding remarks
In this chapter, we discussed autoencoders, multimodal learning, multitask
learning, network tuning, and NaS. If your goal is to apply DL to industry
problems, then we believe that the section about network tuning is at least as
important as knowing the latest and greatest network architectures. Without a
good methodology, it is easy to waste time and resources on the wrong things or
simply fail to reap benefits of DL in cases where DL actually is a good solution.

however, we do want to provide a word of caution. DL is not the solution to
everything, and even in application areas where DL does a good job, there can be
more efficient solutions. It is often the case that a well-thought-out engineered
solution to a problem requires significantly less computational power than a
DL-based solution. Similarly, if an engineered solution is not practical, sometimes
it is the case that a traditional ML technique is more efficient than a DL-based
solution. Therefore, as with any other engineering task, it is important to consider
different solutions and pick the right tool to apply to your specific problem.

This concludes our presentation of different DL techniques, and we are ready to
move on to the final chapter, where we discuss some important ethical aspects of
DL as well as provide pointers for further reading.

503

Chapter 18

Summary and
Next Steps

In this last chapter of the book, we start with a section that summarizes what we
think you should have learned from the book, to give you an opportunity to identify
things that you might have missed. An important aspect when you start applying
your newly gained skills is that you do so in a responsible manner. To stress
this, we have included a discussion about data ethics and algorithmic bias. We
conclude by listing some areas of deep learning (DL) that we have omitted, and
we outline some potential paths forward to continue your learning process after
finishing this book.

Things You Should Know by Now
This book has introduced a large number of concepts, and if you have not been
exposed to them in the past, it might be somewhat overwhelming. This section
summarizes the major concepts so you can sanity check that you did not miss
anything significant. You can use this section to identify concepts that you might
want to revisit before moving on in your DL studies.

This book has described a number of different problem types that can be
addressed with DL. They include binary classification, multicategory classification,
regression, and time-series prediction. We also showed examples of converting

ChAPTEr 18 SummArY AND NExT STEPS

504

data from one representation to another, such as from one language to another
or creating a textual description from an image. We also touched on sentiment
analysis of textual data and outlier detection.

The basic building blocks for the neural networks that we have used to solve
these problems are units/neurons that are all variations on the rosenblatt
perceptron. For the simplest units, the only difference is the activation function,
where we have mostly used linear, tanh, logistic sigmoid, and rectified linear
unit (reLu). We have also used a more complex unit known as long short-term
memory (LSTm).

We combined these units into different types of layers or network architectures,
such as fully connected feedforward networks, convolutional networks, and
recurrent networks, where each network type is good for solving a specific set of
problems. We have also shown how different network types can be combined into
hybrid architectures, including the fairly complicated encoder-decoder networks
used in the later chapters, and how they can be extended to include attention. We
described the Transformer architecture, which employs self-attention. Finally,
we showed examples of networks that work on multiple modalities, as well as
multiheaded networks used for multitask learning.

All of these networks have been trained using stochastic gradient descent (SGD),
in which the gradients are computed using the backpropagation algorithm. This
requires an appropriate loss function, and we looked at mean squared error (used
for linear output units), cross-entropy (for sigmoid output unit), and categorical
cross-entropy (for softmax output layers). As part of this process, you need to
decide on a weight initialization scheme, a learning rate, as well as whether you
want to use vanilla SGD or a more advanced optimizer such as Adam or rmSProp.

During training, we have had to pay attention to training error versus test error
and employed various techniques in cases when learning did not proceed
as desired. We looked at various techniques to fight exploding and vanishing
gradients that prevented the network from learning at all and explored various
regularization techniques for cases in which the network managed to learn the
training set but did not generalize to the test set. Examples of such regularization
techniques are early stopping, L1 and L2 regularization, dropout, and data
augmentation. related to all of these parameters, we discussed methods for
tuning your network and selecting hyperparameters, and we also discussed the
concept of neural architecture search (NAS) to automate the processes of finding
a model architecture.

EThICAL AI AND DATA EThICS

505

To train a network, we need a dataset. In this book, we have used standard
datasets such as mNIST, Boston housing, CIFAr-10, and COCO. We have also used
downloaded data not specifically intended for DL—for example, quarterly sales
data, the book Frankenstein, and a set of sentences translated from French to
English.

To use these datasets, we have frequently had to convert the data into suitable
representations by standardizing numerical data, ensuring that image data
is properly represented as one or more channels, one-hot encoding textual
data when working with individual characters, or creating dense encodings of
words, also known as word embeddings. We learned how such word embeddings
could encode both grammatical features and semantics of the words that they
represent. related to this is vector representation of entire sentences, which we
saw can be used for sentiment analysis.

We hope that all of the above at least seems vaguely familiar to you after reading
this far in the book. If you feel that you need to revisit something, then just browse
the green boxes throughout the book until you find the topic that you missed. You
can also consult the cheat sheets in Appendix J for a visual summary of many of
the concepts.

Ethical AI and Data Ethics
Throughout this book, we have pointed out various examples of ethical problems
arising from training models on datasets that are not sufficiently diverse or
contain human biases. These examples fall under the wider topics of ethical
artificial intelligence (AI) and data ethics.

Ethics involves identifying and recommending right and wrong behavior. Data
ethics is a subfield, which relates to these aspects in the context of data, in
particular, personal data. In other words, any discussions about what is right
and wrong to do with personal data have to do with data ethics. Similarly, ethical
AI relates to these topics in the overall context of AI, of which data is just one
component.

As is typically the case with new technologies, legislation has a hard time keeping
up with the pace of innovation, which causes a void of checks and balances. This
makes it especially important for you, as a practitioner, to act responsibly to avoid
causing harm. In this section, we give a brief introduction to this topic and provide
some pointers for further reading.

ChAPTEr 18 SummArY AND NExT STEPS

506

One problem arises when a trained model is used in a setting for which it was
never intended. For example, if a model is known to contain human biases, then
using it in law enforcement is a bad idea. mitchell and colleagues (2018) proposed
a way of addressing this. When releasing a model, they recommend also releasing
documentation describing details about the model and its intended use case.
This piece of documentation is known as a model card and is based on a template
with a predefined set of topics. The model card is similar to the datasheet for
datasets discussed in Chapter 4, “Fully Connected Networks Applied to multiclass
Classification” (Gebru et al., 2018), but instead of documenting the dataset, the
model card documents the model.

A major challenge with ethics is that different people have different views on what
is right and wrong. This implies that there are no exact answers, and it is easy to
make mistakes due to personal biases and blind spots. To some extent, this can
be addressed in a team setting. Throughout the product development phases,
identify and discuss potential problems with the application and the algorithms
and data it is based on. Ideally, this is done in a diverse team with multiple
perspectives. however, even a homogenous team or a single person can use their
empathy to identify problems that apply only to people other than themselves.
maintaining a checklist of specific problems to look for, as well as topics or
questions to consider, can facilitate these discussions.

PrOBLEmS TO LOOK OuT FOr

much of this section is based on a book chapter, “Data Ethics,” in Deep Learning for
Coders with fastai and PyTorch (Thomas, howard, and Gugger, 2020) on Data Ethics.
The authors discuss the following four problems as particularly relevant: recourse
and accountability, feedback loops, bias, and disinformation. We provide an overview
and examples of these topics before moving on to a checklist of questions to
consider in these product discussions.

THE NEED FOR RECOURSE AND ACCOUNTABILITY

regardless of how well intentioned an algorithm is, it is likely that things
will go wrong in some cases. There need to be ways to address recourse and
accountability, possibly by bypassing the system, to avoid putting people in catch-
22 situations. This requires the system designer, provider, and maintainer to
assume accountability instead of just blaming the system.

A good example of such a problem is the uS credit score agencies that collect
and aggregate personal financial data into a single score for every uS consumer.

EThICAL AI AND DATA EThICS

507

Other companies and institutions rely on this score to determine if a consumer
should be allowed to take out a loan, get a credit card, or sign up for a cell phone
plan. Needless to say, sometimes things go wrong, and a person ends up with
an inaccurate score. Correcting these inaccuracies involves much time and
bureaucracy. many of these problems could be solved if the companies involved
assumed more accountability and provided more streamlined ways of resolving
inaccuracies.

One can argue that this is more of an organizational problem than a technology
problem. however, in order to solve such a problem, all parts of the system
need to work together, and as a developer of new technology, you can play a
key role by raising questions of accountability and recourse early in a system’s
design. Another prime example of this is the No Fly List maintained by the
uS government. Accidentally ending up on this list can have devastating
consequences that are extremely hard to resolve. A cartoon by Sorensen
illustrates this (Sorensen, n.d.). Although the details of how somebody ends up
on this list are kept secret, it is not hard to envision that technology and data are
used in one or more steps in the process.

FEEDBACK LOOPS

Whenever designing a system, it is important to consider whether it can lead to
the system running out of control. This is particularly important when the actions
of the system affect the environment that the system works in. That is, the output
at one point in time will affect the inputs at a later point in time.

One example of such feedback loops described by Thomas, howard, and Gugger
(2020) is YouTube’s recommendation system. The observation is that people
tend to get drawn to controversial content, including conspiracy theories that are
simply not true. It also turns out that the same group of people who get drawn
to videos of conspiracy theories watch a lot of YouTube videos. This combination
resulted in YouTube’s recommendation system starting to recommend more and
more videos of conspiracy theories, attracting and radicalizing more and more
extremist viewers. In short, the system achieved its intended goal to attract users
who spend a lot of time using the system, but it came with an unintended negative
side effect on society.

Another example of a feedback loop is when an automatic tool is used to identify
suitable candidates in a hiring process. Consider a case where the tool is trained
on data describing the individuals who are currently successful within this
occupation. If this occupation is currently dominated by a specific group of people
(e.g., male employees), the model may well detect this bias. It will then use this

ChAPTEr 18 SummArY AND NExT STEPS

508

bias when identifying candidates and suggest mostly male applicants. De-Arteaga
and colleagues (2019) describe how this can compound existing imbalances.
Because the system suggests mostly male applicants, even more men will be
hired, which in turn can widen the gender gap even further within that occupation.

Feedback loops are not only problematic for affected individuals and society
at large. The company providing the service is also at great risk. Baer (2019)
describes a case in which a bank used an algorithm to automatically identify
low-risk customers and raise their credit limit. The algorithm identified low-
risk customers by looking at their credit utilization (percentage of used credit
compared to upper limit), and if it was below a certain threshold, then the upper
limit was raised. The moment their credit limit was raised, the utilization fell
further because utilization is a function of the upper limit. This in turn caused
the system to further increase the credit limit. A number of iterations later, the
customers would have close to unlimited credit, which led to people spending
more than they could afford and put the bank at great risk.

DISINFORMATION

One important subfield of DL is generative models. We have only briefly touched
on this topic in the context of autocompletion of text, but DL can be used to
generate larger bodies of text as well. These models can be used to generate
and spread disinformation, which can take the form of Twitter bots (Wojcik et al.,
2018) generating and retweeting fake news.

Similarly, generative DL models can produce realistic-looking images and videos.
Such models have been used to create videos in which the appearance of a
person is altered to look like somebody else. Falsified video is known as deepfake
(Sample, 2020) and has been used in malicious ways to mislead and cause harm.

BIAS

We have already touched on bias in datasets, but there are multiple types and
sources of bias. Suresh and Guttag (2019) discuss six distinct types of bias to
be aware of when working with machine learning (mL). Each type of bias is
associated with a particular step in the mL pipeline:

• Historical bias is bias present in the real world. Even if a language model were
trained on all text that had ever been written, the text would be affected by
human bias of the authors.

EThICAL AI AND DATA EThICS

509

• Representation bias is an outcome of sampled data not being representative of
the world. If we use only the English version of Wikipedia to train our model,
then it is not representative of other languages. Further, it is not representative
of all English text either, because Wikipedia represents a special kind of
content.

• Measurement bias results from measuring one feature and using it as a
proxy for the true feature that we are trying to measure. If we use criminal
convictions as a proxy for criminal activity, but our justice system employs
racial profiling, or convictions are biased in other ways, then our measure of
criminal activity will be biased.

• Aggregation bias results from the model combining distinct subgroups in an
incorrect way. For example, imagine creating a model that produces a medical
diagnosis without having access to patient gender or ethnicity. Given that
gender and ethnicity often play a role in properly diagnosing a patient, this
model will do worse for certain groups. Instead, it can be better to develop
separate models for different groups or provide the model with inputs to
distinguish between the different groups.1 A good way to detect this kind of
problem is to not only look at the overall performance metric of the model but
also compute it individually for different subgroups and ensure that the model
performs similarly across subgroups.

• Evaluation bias results from the way the model is evaluated. For example, if the
test dataset or the evaluation metrics are poorly chosen, then there is a risk
that the resulting model will not do well when deployed.

• Deployment bias is bias arising from the deployed model being used or
interpreted in a way that was not originally intended.

To illustrate how these concepts can be applied in practice, consider Figure 18-1,
which originally was posted on Twitter. The left image is a low-resolution image
of Barack Obama, the 44th president of the united States. The right image is the
output of a model known as PuLSE that is designed to create a realistic-looking
high-resolution image of a face using a low-resolution image as input (menon,
Damian, hu, et al., 2020). Although the model had been shown to work well on a
test dataset, this example indicates that the model is biased toward outputting
a face resembling a white person. It does not do well when applied to a face of a
person of color.

1. using different models for different groups can introduce its own set of problems and can be
somewhat controversial.

ChAPTEr 18 SummArY AND NExT STEPS

510

PuLSE makes use of a model known as StyleGAN (Karras, Laine, and Aila, 2019)
to generate high-resolution images. The StyleGAN model was trained on the
Flickr-Faces hQ (FFhQ) dataset. This dataset was introduced in the same paper
as StyleGAN and was obtained by crawling the Flickr website for pictures of faces.
Only pictures under permissive licenses were used. PuLSE itself does not train
any additional parameters but simply uses the pretrained model, so no additional
dataset was used for training. The Celeb hQ dataset (Karras et al., 2018) was used
to evaluate PuLSE. Celeb hQ is derived from the CelebA dataset (Liu et al., 2015),
which consists of pictures of faces of celebrities.

Let us now reason about the types of biases that made things go wrong. First,
consider the question whether the intent was to build a model that works for
any individual in the world or only for people who use Flickr. Clearly, if the intent
was to build a model that works for all people in the world, then representation
bias has been introduced by using images only from Flickr in the training data.
Even if the intent was to build a model only for Flickr users, there would still be
representation bias given that only images under permissive licenses were used.

Second, the model might suffer from aggregation bias. A starting point to address
this bias is to detect it. This is typically done by looking at accuracy metrics
for individual subgroups as opposed to using only a single accuracy metric for
the entire test set. In this specific example, the subgroups would be different
ethnicities. No accuracy metric was used, but the output of the model was simply

Figure 18-1 Left: A low-resolution image of Barack Obama. right: The resulting
output from the original PuLSE model. The goal of the model is to provide a
realistic high-resolution image that could correspond to the low-resolution image.
The resulting image indicates that the model suffers from racial bias. (Source:
From https://twitter.com/Chicken3gg/status/1274314622447820801)

https://twitter.com/Chicken3gg/status/1274314622447820801

EThICAL AI AND DATA EThICS

511

inspected to determine whether the generated face looked realistic. That is, using
a more diverse test dataset to confirm that the model worked well for minorities
would have uncovered this problem.

Third, using the Celeb hQ dataset for testing introduces evaluation bias. It is
unlikely that the physical appearance of celebrities represents the physical
appearance of the general population. Further, the Celeb hQ has been shown to
not be very diverse. In fact, when Karras and colleagues (2019) introduced the
FFhQ dataset, they said that this new dataset “includes vastly more variation than
CelebA-hQ in terms of age, ethnicity and image background, and also has much
better coverage of accessories such as eyeglasses, sunglasses, hats, etc.”

Finally, we find it likely that deployment bias plays a role, although this is
somewhat subtle. As previously mentioned, PuLSE makes use of StyleGAN. To
ensure that the generated images look realistic, PuLSE restricts the search space
StyleGAN is allowed to consider. It does so by imposing a constraint on the input
parameters to StyleGAN. It is unclear to us whether this is how the StyleGAN
model was originally intended to be used. That is why we suspect that deployment
bias causes problems in this case, especially given that the original StyleGAN
paper clearly shows that the model is capable of generating high-quality realistic
images of people of color.

In a more recent version of the PuLSE paper, menon, Damian, ravi, and rudin
(2020) added a section about bias in which they discuss these concerns, including
the theory that the constraint PuLSE imposes on the input parameters is part of
the problem. On the other hand, they also point out that another study has shown
that there is demographic bias in the images generated by StyleGAN (Salminen
et al., 2020). This bias is likely to affect the output of any downstream model that
uses the model unless the downstream model somehow removes this bias.

This later version of the PuLSE paper (menon, Damian, ravi, and rudin, 2020)
also includes an evaluation of the model on the FairFace dataset (Kärkkäinen
and Joo, 2019). The dataset is specifically designed to provide a better balance
with respect to race composition. They also released an updated version of the
model itself that has the ability to report failure to converge instead of producing
an image that poorly matches the low-resolution image. Finally, they include a
model card that details the intended use case and more details about the model
including ethical considerations.

This section focused on bias, and it is easy to fall into the trap of thinking that
just getting an unbiased dataset solves the problem. There are additional ethical
aspects to consider when working with images of people. In particular, it is

ChAPTEr 18 SummArY AND NExT STEPS

512

important to consider whether it is ethical to use the images in the first place.
Did the people in the pictures give their consent to use the pictures? Did they give
their consent to use them for the use case you are working on? These are the
kinds of questions that researchers and practitioners working with this kind of
data should ask themselves.

ChECKLIST OF QuESTIONS

Apart from being aware of the specific problems we just discussed, Thomas
(2019) recommends that teams ask themselves the following checklist of
questions throughout the development cycle of a project:

• Should we even be doing this?

• What bias is in the data?

• Can the code and data be audited?

• What are the error rates for different subgroups?

• What is the accuracy of a simple rule-based alternative?

• What processes are in place to handle appeals or mistakes?

• how diverse is the team that built it?

Other good questions to consider can be found in Ethics in Tech Practice: A Toolkit
(Vallor, 2018). We also recommend reading “Data Ethics” (Thomas, howard, and
Gugger, 2020), which much of this section is based on. Another resource that we
have found useful is Baer’s Understand, Manage, and Prevent Algorithmic Bias: A
Guide for Business Users and Data Scientists (2019).

Things You Do Not Yet Know
This book includes a large number of topics within the DL field, but it does
not cover everything. Therefore, we conclude this final chapter with a brief
description of some important topics that we have omitted and provide some
ideas of ways to continue your learning process.

ThINGS YOu DO NOT YET KNOW

513

rEINFOrCEmENT LEArNING

The mL field is often partitioned into three distinct branches:

• Supervised learning

• unsupervised learning

• reinforcement learning

most of the mechanisms described in this book fall into the category of
supervised learning, although we have also seen some examples of unsupervised
learning.

The third branch, reinforcement learning, has not been used in this book, but we
briefly describe how it relates to the other two branches. We encourage interested
readers to read other resources on this topic.

In a supervised learning algorithm, the model learns from a labeled dataset
that represents the specific ground truth we want the model to learn. In an
unsupervised learning algorithm, however, the dataset is not labeled, and the
algorithm is responsible for finding structure in the data. reinforcement learning
is different from both of these settings in that an agent learns to interact with an
environment, with the goal of maximizing a cumulative reward function. That is,
the agent is not provided with a ground truth that defines correct behavior but is
given feedback (the reward) detailing whether an action, or series of actions, is
good or bad. The agent itself needs to explore the space of possible sequences of
actions and learn how to maximize its reward.

A famous example of how DL has been applied in the field of reinforcement
learning is when mnih and colleagues (2013) showed how a model learned to play
Atari video games. The agent learned what user input to provide to the game to
maximize the resulting score. It did not have labeled examples of what user action
to take given a specific input (the pixels on the screen) but had to explore the set
of available actions and learn which ones led to the best cumulative reward (the
final score of the game).

VArIATIONAL AuTOENCODErS AND GENErATIVE ADVErSArIAL
NETWOrKS

In Chapter 12, “Neural Language models and Word Embeddings,” we saw an
example of how a language model can be used to generate content. Given the

ChAPTEr 18 SummArY AND NExT STEPS

514

beginning of a sentence, the model generated a plausible continuation. This
generated text is not simply a recording of a previously seen sentence but can
take the form of a newly generated, previously unseen text sequence. however,
it is not a random sequence but a sequence that adheres to learned grammatical
structure. Further, in Chapter 17, we saw how an autoencoder can be used to
re-create an image given a narrower intermediate representation. however,
we have not yet seen examples of a model that can generate previously unseen
images. Two popular models for doing this are the variational autoencoder (VAE)
and the generative adversarial network (GAN).

The VAE, introduced by Kingma and Welling (2013), is based on the normal
autoencoder that was described in Chapter 17. The idea is that once an
autoencoder is trained to reproduce images, the decoder part of the network can
be used to generate new images. We simply take an intermediate representation
and modify it slightly, with the expectation that the decoder will output a new
valid output image. It turns out that if we do this with a regular autoencoder, the
result is often poor. The way the autoencoder is trained does not necessarily lead
to the result that a small change in the intermediate representation results in a
correct or realistic output. The variational autoencoder is a modified version of
the autoencoder in which the training process is changed to encourage the model
to behave more accurately in that respect.

The GAN, introduced by Goodfellow and colleagues (2014), takes a different
approach. Instead of training a single model to reproduce an input image, we train
two different models to do two different tasks. One model, known as the generator,
is trained to generate an image based on a random set of inputs. This is similar
to how the decoder component of an autoencoder generates an image based on
a narrow intermediate representation, but with the distinction that the generator
network is not provided with a ground truth image to reproduce. Instead, its
objective is to fool the other network, which is known as the discriminator. The
discriminator is trained to discriminate between true images from the dataset
and images generated by the generator. These two networks are adversarial in
nature (hence the name of the approach) in that the generator continuously tries
to improve its ability to fool the discriminator and the discriminator continuously
tries to improve its ability to call the generator’s bluff. The net effect is a
generator that can generate images that cannot be distinguished from images
in the dataset, based on random inputs. By varying this random input, random
output images are generated.

VAEs showed some early promise but lost popularity with the emergence of GANs,
which demonstrated better results. In particular, images generated by VAEs were

ThINGS YOu DO NOT YET KNOW

515

often blurry. however, in a recent paper, Vahdat and Kautz (2020) demonstrated
how a type of VAE can be used to generate sharp images. Their work could spawn
a renewed interest in the VAE field.

In this section, we described VAEs and GANs in the context of image generation
because that is the most popular application area for these techniques. however,
the concepts are more general and can be applied to other types of data as well.

NEurAL STYLE TrANSFEr

The two techniques we just described can be used to generate images that
have the same appearance as images in the training dataset. Another important
generative technique, introduced by Gatys, Ecker, and Bethge (2015), is neural
style transfer. This technique is used to separate content from style in an
image. In this context, content refers to the objects depicted in an image, and
style refers to properties such as texture and color schemes of objects in
an image.

Neural style transfer is able to extract content from one image and style from
a second image, and then combine the two into a new image. In their paper,
Gatys, Ecker, and Bethge demonstrate examples of combining the content of
a photograph with the style from paintings by famous artists. The resulting
generated image contains the same objects as in the photograph but in the style
of paintings by J. m. W. Turner, Vincent van Gogh, Edvard munch, Pablo Picasso,
and Wassily Kandinsky.

rECOmmENDEr SYSTEmS

DL has had a big impact on recommender systems. Such systems are used by
many online services to guide users to content and products that they are likely
to be interested in. For example, online shopping sites often suggest items to buy
based on previous purchases. Similarly, movie and music streaming services
provide suggestions on movie titles and songs that a user might be interested in
based on what they previously have shown interest in. A key component to these
systems is to not only look at historical patterns for an individual user but also
learn from usage patterns of other users on the same site. Zhang and colleagues
(2019) have written a survey paper containing many useful references that
provide more information about recommender systems.

ChAPTEr 18 SummArY AND NExT STEPS

516

mODELS FOr SPOKEN LANGuAGE

This book has focused on images and written natural language. Another
important topic within human–computer interaction is spoken natural language.
Just as DL has revolutionized computer vision and textual language processing,
it has also led to significant breakthroughs in speech recognition (speech-to-
text) and speech synthesis (text-to-speech). You can find an overview of speech
recognition work in a review paper by Nassif and colleagues (2019). Some
examples of speech synthesis are Tacotron (Wang et al., 2017), Tacotron 2 (Shen
et al., 2018), Flowtron (Valle et al., 2020), and TalkNet (Beliaev, rebryk, and
Ginsburg, 2020). We encourage you to read some of the referenced papers and, if
nothing else, follow some links from the papers to online demos to get an idea of
how well it works!

Next Steps
We end this book with providing some ideas for further reading. There are
multiple paths to take depending on your goals and interests, so we outline a few
potential directions.

Perhaps you feel that you are done with theory for a while and just want to code.
Perhaps you have a real problem that you want to try to solve. If so, just go for
it! If you need some inspiration, we recommend that you seek out some of the
many tutorials that can be found online and start exploring. If you want a bit more
guidance, then you might want to pick up the book Deep Learning with Python
(Chollet, 2018), which contains many useful code examples, including examples

It is not clear to us where the name Tacotron comes from, but our best guess
is that it is a wordplay on talk-a-tron, which sounds similar to Detectron, a
framework for CNN-based object detection and related techniques. On the
other hand, a footnote in the Tacotron paper states that some of the authors
really like taco, whereas some of the others prefer sushi, so maybe we should
not overanalyze this topic.

DL for speech recognition and for speech synthesis are good topics for future
reading.

NExT STEPS

517

of the just mentioned techniques neural style transfer and image generation with
VAE and GAN.

Another option is to dive deeper into a specific topic by reading the corresponding
appendix in this book. The book is also sprinkled with yellow boxes with
suggestions for further reading, and we have provided plenty of references to use
as starting points to familiarize yourself with the historical research literature
on the topic. You can then search online for more recent publications that cite
the papers you found relevant and learn about the most recent findings. If you do
choose to focus on a specific topic, you should also be prepared to spend time on
the non-DL-specific parts of the chosen field. For example, if you want to work on
language models, you need to understand the perplexity metric, and if you want to
work on machine translation, you need to understand the BLEu score. After all, DL
is just a collection of methods that can be applied to a wide set of problems, and
to do well on a certain problem, you need to understand the problem domain, the
solution space (both DL and non-DL), and the success metrics. Perhaps you found
this book interesting but feel that you want some insight into traditional mL and to
learn about some topics not covered by this book, such as reinforcement learning,
VAEs, GANs, and neural style transfer. In that case, you can consider reading the
two-volume book Deep Learning: From Basics to Practice (Glassner, 2018). much
of the first volume will introduce you to traditional mL concepts and basic neural
networks, and the second volume focuses on DL.

If you want a deeper and more mathematical understanding of the field, consider
reading Deep Learning (Goodfellow, Bengio, and Courville, 2016). Specifically,
we recommend this book for anybody who wants to do academic research
and publish papers within the DL field. The book starts with an overview of
mathematics and probability theory that is useful in mL in general and DL in
particular. It continues with an overview of traditional machine learning, followed
by a thorough description of the DL field.

Another option is to take online classes. Three such alternatives we have found
useful are classes offered by NVIDIA Deep Learning Institute,2 Andrew Ng’s
Coursera classes,3 and mL/DL classes from the Lazy Programmer.4 Another
alternative is to watch some Lex Clips videos5 on YouTube. Jeremy howard and
rachel Thomas provide a great set of free courses through their fast.ai research

2. https://www.nvidia.com/dli
3. https://www.coursera.org
4. https://lazyprogrammer.me
5. https://www.youtube.com/lexclips

https://www.nvidia.com/dli
https://www.coursera.org
https://lazyprogrammer.me
https://www.youtube.com/lexclips

ChAPTEr 18 SummArY AND NExT STEPS

518

group.6 If these courses appeal to you, then you can also consider reading howard
and Gugger’s Deep Learning for Coders with fastai and PyTorch (2020), which
teaches DL from scratch. Although the book has much overlap with Learning Deep
Learning, the authors take more of a top-down approach that many readers might
find useful.

This section represents our thoughts on how to proceed, but DL is a rapidly
evolving field with new papers being published every week, and books almost as
frequently, so you should use your own judgment. We hope that you found this
book useful and that it has given you the knowledge and inspiration needed to
continue your quest of Learning Deep Learning.

6. Making Neural Nets Uncool Again, https://www.fast.ai

https://www.fast.ai

519

Appendix A

Linear Regression and
Linear Classifiers

This appendix logically follows Chapter 3, “Sigmoid Neurons and Backpropagation.”

As described in the preface, the approach we are taking in this book is to take a
fast track to exciting parts of deep learning (DL). As such, we decided to not start
the book with a number of traditional machine learning (ML) topics. Inspired by
Nielsen (2015), we spent the three first chapters on binary classification problems
using perceptrons and multilevel networks. Binary classification involves
determining whether the inputs should result in an output belonging to one out
of two classes. A more common way to introduce ML is to start with a regression
problem, where we predict a real number instead of a discrete class. This is
described in the next couple of sections.

We then move on to describe a couple of linear methods for binary classification.
That is, we solve the type of problems studied in Chapters 1 to 3 but using
traditional ML techniques.

Linear Regression as a Machine
Learning Algorithm

Assume that we have a number of training examples, consisting of one or more
input values and an associated real-valued output. This is a regression problem.
From an ML perspective, this problem involves training a mathematical model

APPENDIx A LINEAR REgREssIoN AND LINEAR CLAssIFIERs

520

to predict the expected output value when presented with input values. We will
make this more concrete in the following sections. Perhaps the simplest model
to attempt to solve a problem like this is to use linear regression. We start with
considering the case of a single input variable.

UNIVARIATE LINEAR REgREssIoN

We use a made-up problem to illustrate the use of linear regression with a
single input variable. Assume that you are running an ice cream shop and you
want to get some idea of how much ice cream you will sell tomorrow. You have
made the observation that the amount of ice cream you sell seems to be related
to the temperature each day, so you want to explore whether you can predict
the ice cream demand by using the temperature forecast. To get some insight
into whether this idea seems promising, you create a scatter plot of historical
temperature data and ice cream demand. The red markers in Figure A-1 show
what that might look like.

Using the red markers, we can try to fit some kind of curve to the data to come
up with a formula that we can use to predict the demand given a specific
temperature. The figure shows how we have fit a green straight line of the form:

y ax b= +

where y represents the demand, and x represents the temperature. For the line
in the figure, the parameters are a = 2.0 and b = −112. An obvious question is how

Figure A-1 Relationship between temperature and number of ice cream cones
sold. For readers more familiar with the Celsius temperature scale, a rule of
thumb is that 61°F is about 16°C and 82°F is about 28°C (just flip the digits).

LINEAR REgREssIoN As A MAChINE LEARNINg ALgoRIThM

521

we came up with these two parameters, and that is the job of our ML algorithm.
For our linear regression case, we can come up with an analytical solution, but in
some cases, it can be more efficient to use an iterative algorithm. We will see both
examples in a couple of sections. First, we look at variations of this regression
problem.

MULTIVARIATE LINEAR REgREssIoN

The model in the last section was fairly limited, in that it used only a single
input variable. We could envision that ice cream demand is related not only to
the outside temperature but also to the amount of advertisement that has been
shown on television the day before. We can handle this additional variable by
extending our linear model to two dimensions. Figure A-2 shows an example of
such a model. In this figure, we do not show any of the actual data points but just
the predictions by the model.

With two input variables, our prediction now takes the form of a plane as opposed
to a straight line. We can see how the number of ice cream cones sold increases
with both temperature and the number of minutes of advertisement. The equation
for our plane is

0 1 1 2 2z x xβ β β= + +

where z is the demand, x
1
 represents advertisement, and x

2
 represents

temperature. The parameters are b
0
 = −112, b

1
 = 0.5, and b

2
 = 2.0. Just like before,

it is the task for our ML algorithm to come up with these parameters.

Figure A-2 Model for ice cream demand as a function of temperature and
advertisement

APPENDIx A LINEAR REgREssIoN AND LINEAR CLAssIFIERs

522

There is nothing magical about having just two input variables. This model
generalizes to n input variables where we end up with an n-dimensional
hyperplane. The only issue is that it is hard to visualize.

MoDELINg CURVATURE WITh A LINEAR FUNCTIoN

Although we have extended the model to use an arbitrary number of input
variables, the model is still somewhat limited in that it can do a good job of
modeling dependencies only where a straight line or a (hyper) plane can fit the
data well. We can easily imagine cases where this is not so. For example, going
back to our ice cream example, let us consider a greater temperature range than
just 61°F to 82°F. If we extend the upper end of the range to 100°F (about 38°C),
we could imagine that as the temperature increases, ice cream demand does not
increase as much because people might choose to stay inside air-conditioned
buildings instead of buying ice cream. This is shown in Figure A-3.

In addition to fitting a green straight line to the data, we have included a curve
(blue) based on a second-order polynomial:

y x x0 1 2
2β β β= + +

In this formula, y is the demand, x is the temperature, and x2 is the squared
temperature. The parameters are b

0
 = −220, b

1
 = 5.0, and b

2
 = −0.02. Just as for

our previous examples, it is the task of the ML algorithm to come up with these
parameters for our linear regression problem. At this point, you might wonder if
we just misspoke when we called this a linear regression problem given that the

Figure A-3 Data points where a quadratic curve is a better fit to the data than a
straight line

CoMPUTINg LINEAR REgREssIoN CoEFFICIENTs

523

resulting curve looks very much quadratic as opposed to linear. however, linear
refers to the parameters that we are estimating (b

0
, b

1
, . . ., b

n
), so as long as we

do not raise these parameters to a power, or apply other nonlinear operations on
them, this is still considered a linear model. Therefore, the problem is a linear
regression problem. If this seems unintuitive, consider the multivariate case in the
previous section. Assuming that you agree that it was straightforward to extend
the univariate case to two or more variables, then the preceding equation is not
that different. The model does not know that we created the second variable (x2)
by squaring the first one. It could just as well have been an independent variable
that happened to take on the same value as the square of x.

This example used only a single input variable (temperature), but we created
another variable (squared temperature) from that variable, so the model still had
two inputs. We can extend this to include higher-order polynomials as well. We
can also combine it with the type of model that we saw in the previous section,
where we had multiple input variables (temperature and advertisement), and then
create higher-order polynomials of all the original input variables. By doing so, we
arrive at fairly complex models, which still all are considered linear models.

Computing Linear Regression
Coefficients

so far, we have described how linear regression can be used to predict real-
valued numbers, also known as a regression problem, but we have not described
how to come up with the parameters (coefficients) for the solution. There are
multiple good ways of fitting a straight line to a number of data points. Perhaps
the most common way of doing it is known as ordinary least squares (oLs) and
is based on minimizing the mean squared error (MsE). If you have seen oLs in
the past, chances are that you have also seen a closed-form solution. That is, a
solution that can be computed by manipulating mathematical symbols as opposed
to computing an approximate solution with numerical methods. We soon discuss
the closed-form solution, but first we describe how we can use gradient descent
to arrive at a numeric solution iteratively. gradient descent was described in
Chapter 2, “gradient-Based Learning.” We start by formulating our hypothesis of
what the solution looks like. If we have n input variables, the most straightforward
linear regression hypothesis is

0 1 1 2 2y w w x w x w xn n= + + +…+

APPENDIx A LINEAR REgREssIoN AND LINEAR CLAssIFIERs

524

but as previously shown, we can think of more complicated cases where we
include higher-order terms as well. We can now solve our linear regression
problem iteratively using gradient descent. We use the MsE as a loss function:

m
y y mean squared error

i

m
i i1

ˆ
1

2

∑() ()−() ()

=

When using this loss function for linear regression, we end up with a convex
optimization problem, which implies that any local minimum is also a global
minimum. This means that as long as we pick the learning rate to be small
enough, gradient descent will always converge to the optimum solution. This
might all sound great, but it is worth noting that the optimum solution is in the
context of the assumed hypothesis space. If a linear function cannot solve the
problem or cannot solve it well, the optimum set of parameters for our linear
function can still result in a bad solution.

As mentioned, it is also possible to compute a closed-form solution to this
problem. We do not go through this in detail but we outline the approach and state
the final solution. If you are interested, there are plenty of books that describe
linear regression in detail. For example, both hastie, Tibshirani, and Friedman
(2009) and goodfellow, Bengio, and Courville (2016) discuss it in the context of ML.

The closed-form solution is based on the same thinking as gradient descent.
We have our stated loss function (MsE), and we want to minimize it. This is
done by expanding the sum in the preceding formula for all training examples,
and then computing the derivative and solving it for zero. If we have just a
handful of training examples and just a single input dimension, it is somewhat
straightforward to do this with regular algebra, but as the number of input
examples or dimensions increases, it quickly becomes hairy. A solution to this
problem is to instead state our problem in terms of matrices and vectors and
then solve it with linear algebra.1 It can be shown that if we arrange all our input
vectors in a matrix X, and the output values in a vector y, then we can compute a
vector b that consists of the coefficients that minimize the loss using the following
formula:

β ()=
−1

X X XT T y

1. our description is very terse and meant mostly as a refresher for readers who have already studied
how to solve linear regression with linear algebra. If you have not seen this before, you will most likely
need to consult a more extensive text on the topic.

CLAssIFICATIoN WITh LogIsTIC REgREssIoN

525

The formula uses a construct that we have not seen in this book before, namely,
the inverse of a matrix, which is denoted as a superscript −1 to a matrix. In the
this formula, the matrix that is inverted (XTX) is a matrix resulting from a matrix
multiplication, but it is decoupled from the matrix inverse operation itself. We do
not describe the details of how to invert a matrix, but it is worth pointing out that
not all matrices can be inverted. Further, it is computationally costly to invert
large matrices. Because of this computational cost, in cases where we have a
large number of training examples (in the hundreds of thousands or millions), it
is often preferable to use gradient descent even though a closed-form solution
exists. This concludes our discussion about linear regression, and we now move
on to a related method, which can be used for classification instead of regression.

Classification with Logistic Regression
In Chapter 1, “The Rosenblatt Perceptron,” and Chapter 2, we used a perceptron
to solve binary classification problems, but there are other types of classification
algorithms as well, one important example being logistic regression. The name is
somewhat confusing given that it solves a classification problem as opposed to a
regression problem. The name likely originates from logistic regression being a
variation of linear regression, which we soon see.

Let us now assume that we are ice cream customers instead of owners of an ice
cream shop. Let us further assume that we really like ice cream and want to buy
ice cream regardless of the temperature. however, we do not like standing in
line, so if the line is too long, we do not want to go to the ice cream shop. To avoid
wasting our time by going to the ice cream shop just to discover that the line is
too long, we want to come up with a model that uses the temperature as input
data and tries to predict whether or not the line is too long. From our perspective,
the exact length of the line does not matter. Either it is short enough that we
are willing to wait in it or it is too long, so we go home. That means that this is a
binary classification problem—the value we are trying to predict is either true (too
long) or false (short enough).

Figure A-4 shows an attempt at solving this problem with linear regression. The
red marks show the actual cases of too long a line (value = 1) and a short enough
line (value = 0), and we see a green straight line attempted to fit to the data points.
A first observation is that it is not possible to perfectly predict whether the line
is too long from the temperature alone because there is overlap between the
data points at the top and at the bottom. This should not be a surprise. A second

APPENDIx A LINEAR REgREssIoN AND LINEAR CLAssIFIERs

526

observation is that our straight line predicts a real-valued number as opposed to
a discrete value. We could address this issue by assuming that the value 0.5 is a
threshold: Anything greater than 0.5 is interpreted as too long, and anything less
than 0.5 is interpreted as short enough. The observant reader will notice that this
is exactly what the perceptron does.

If we look at Figure A-4 and consider the ice cream example in the previous
sections, where we saw that a quadratic curve fit the data best, it seems like it
would make sense to explore whether we can fit the data better with a function
other than a straight line.

Figure A-5 shows an attempt to do so. We have plotted a shifted version of
the logistic sigmoid function in the same chart as the data points that indicate
whether or not the ice cream line is too long.

For reference, the formula for the logistic sigmoid function2 follows. It has already
been extensively used in the book as a neuron activation function.

 :
1

1
logistic function S x

e x)(=
+ −

Looking at the chart, a first observation is that this function looks like a much
better choice than a straight line. A second observation is that it does not seem
like it is much of an improvement over the perceptron. The curve in Figure A-5

2. What is described here is a specific instance of a logistic function. It is just one of multiple members
of the family of logistic functions.

Figure A-4 Attempt at using linear regression to solve a binary classification
problem

CLAssIFICATIoN WITh LogIsTIC REgREssIoN

527

looks similar to the curve in Chapter 1, Figure 1-3, which illustrated the sign
function used by the perceptron. This in turn is the same behavior as applying a
threshold to the straight line in Figure A-4. That is, these three approaches are
much related to each other. however, one benefit of logistic regression is that the
curve in Figure A-5 does not have discontinuities as do the perceptron function
and any other threshold-based approach. This implies that as long as we come
up with a feasible cost function, we can directly apply gradient descent without
any caveats related to discontinuities. Without further explanation, a feasible cost
function for logistic regression is shown here:

m
y ln y y ln y cross entropy loss

i

m
i i i i1

ˆ 1 1 ˆ -
1

∑ ()() () () ()− ⋅ + − ⋅ −() () () ()

=

This cost function is known as the cross-entropy loss function, and it is also
used in the context of neural networks (described in Chapter 5 “Toward DL:
Frameworks and Network Tweaks”). In the context of logistic regression, the
cross-entropy loss function has the nice property that the logistic regression
problem ends up being another example of a convex optimization problem. That
is, given a small enough value of the learning rate parameter, gradient descent
will always converge to an optimal solution. As opposed to linear regression,
there is no known closed-form solution for the general case of logistic regression.
We now move on to show how we can state our logistic regression problem in a
way that solves the XOR problem.

Figure A-5 Chart showing how a logistic sigmoid function can fit the data points
indicating whether the ice cream line is too long

APPENDIx A LINEAR REgREssIoN AND LINEAR CLAssIFIERs

528

Classifying XOR with a Linear Classifier
The logistic sigmoid function, combined with the cross-entropy loss function,
results in a convex optimization problem known as logistic regression. It can be
solved iteratively with gradient descent. still, logistic regression suffers from the
same limitation as the perceptron when it comes to linear separability. Figure
A-6 illustrates this for a problem with two input variables (x

1
 and x

2
), where

we see that it is impossible to draw a straight line that perfectly separates the
two classes. This type of chart was introduced in Chapter 1 in the context of the
behavior of a perceptron. It was further revisited in Chapter 2.

given our previous observation that a straight line is somewhat limiting, it
should not come as a surprise that we now explore whether we can modify our
classification function further to try to address problems that are not linearly
separable. We do this by revisiting the XOR problem that we have already seen
is not linearly separable. Figure A-7 shows how we can separate the two classes
(pluses and minuses) if we are allowed to use a more complex shape than a
straight line. There are multiple ways of solving it, but we think that an ellipse is a
reasonable approach. The left part of the figure shows that it is trivial to draw an
ellipse such that it separates the pluses from the minuses.

When we looked at a similar chart for the perceptron, we saw that the straight
line that represented the decision boundary originated from a 3D plot of a plane,
and the decision boundary was the line on the plane where the z-value was 0
(because that was where the sign function changed its output value). We can

Figure A-6 Example of how logistic regression cannot perfectly solve a problem
that is not linearly separable

529

CLAssIFYINg XOR WITh A LINEAR CLAssIFIER

do the same in this case, but we start with the equation for an ellipse centered
around 0 and rotated by an angle q.

x x

a

x x

b

cos sin sin cos
11 2

2

1 2

2θ θ θ θ() () () ()−

+
+

=

If we solve this equation for 0 and call the resulting formula z, we get an equation
that is greater than 0 outside of the ellipse and less than 0 inside the ellipse.
The equation is shown here, and z is plotted against x

1
 and x

2
 in the right part of

Figure A-7.

z
x x

a

x x

b

cos sin sin cos
11 2

2

1 2

2θ θ θ θ() () () ()=
−

+
+

−

If we now use z as input to the logistic sigmoid function, it can be used to correctly
classify the data points for the XOR problem, assuming that we can come up with
all the constants in the expression.

The expression for z can be rearranged to the following:

0 1 1 2 2 1
2

3 2
2z w w x x w x w x= + + +

where

10w = −

Figure A-7 how the XOR problem can be solved by using the function of an ellipse
instead of a straight line

APPENDIx A LINEAR REgREssIoN AND LINEAR CLAssIFIERs

530

w
b a

θ θ() ()= −

2cos sin
1 1

1 2 2

w
a b

θ θ() ()= +

cos sin
2

2

2

2

2

w
a b

θ θ() ()= +

sin cos
3

2

2

2

2

That is, z is still a linear expression with respect to the parameters w
0
, w

1
, w

2
, and

w
3
, which implies that we can use logistic regression to solve the XOR problem as

long as we provide it with the inputs x
1
x

2
, x

1
2, and x

2
2.

Before concluding this section, we should point out that using the formula for an
ellipse is not the only way to solve this problem, and an even simpler solution is
to use only the two terms x

1
 and x

1
x

2
, which results in a solution similar to what is

shown in Figure A-8.

An obvious question is how to figure out what kind of terms to include in our
equations to arrive at solutions of this kind. The process of coming up with these
inputs, also called features, is known as feature engineering and is an important
part of traditional ML. The role of feature engineering is less important in the
context of DL, where the responsibility of extracting features primarily belongs to
the learning algorithm. Chapter 3 showed this with an example of how a neural
network could learn to solve the XOR classification problem. Let us now move on
to another important linear classifier.

Figure A-8 Alternative logistic regression solution to the XOR problem

CLAssIFICATIoN WITh sUPPoRT VECToR MAChINEs

531

Classification with support Vector
Machines

As already mentioned, both the perceptron and logistic regression are examples
of linear classifiers. Another important linear classifier in ML is the support
vector machine (sVM). This section provides a brief introduction to sVMs.

In the context of logistic regression, we saw that all data points were used when
solving the optimization problem to determine parameters of the model. The
sVM takes a different approach. Consider all the data points in Figure A-9. For
now, ignore the dashed lines and the arrows. We see that the green line perfectly
separates the two classes, but we could construct a number of other variations
on the green line and still manage to perfectly separate the classes. For example,
we could shift the line right, left, up, or down a little bit or modify its slope or do
a combination of shifting and changing slope. A reasonable question is whether
it makes sense to worry about the data points far from the current decision
boundary, such as those in the upper right corner of the figure. These data
points will be correctly classified regardless of how we do these minor tweaks.
Therefore, one approach is to pay attention only to the data points close to the
decision boundary and draw the line to fit them well. An sVM does just that by
identifying a limited set of data points that define the boundary.

In addition to the decision boundary (solid green line in the figure), the sVM
defines a margin that consists of the distance between two parallel lines (dashed
magenta lines in the figure) that are on each side of the boundary. The sVM

Figure A-9 Decision boundary for a support vector machine

APPENDIx A LINEAR REgREssIoN AND LINEAR CLAssIFIERs

532

selects a decision boundary in a way that the distance between these two dashed
lines (the margin) is maximized. As shown in the figure, this implies that a number
of data points are right on these lines. We can say that the lines are supported by
these data points. The vectors from the origin to these points are called support
vectors, which gives the algorithm its name.

As we have previously seen, there exist cases that are not perfectly separable but
where a straight line still makes sense. For example, noise in the data could cause
classes to overlap, or the overlap could be caused by some unknown variable not
included in the model. This is illustrated in Figure A-10, where a small number
of pluses and minuses are located on the wrong side of the decision boundary.
It is still possible to use an sVM for such cases, but there is now an additional
trade-off to make. We can increase the margin by allowing more of the training
examples to violate the margin constraint (fall on the wrong side of the margin
line). Conversely, we can reduce the number of training examples that violate the
margin constraint by reducing the margin. This trade-off is controlled by a tunable
parameter to the training algorithm.

We have seen that logistic regression can be used for the XOR problem if we first
combine the raw input variables into new variables (features). Not surprisingly,
this can be done for an sVM as well. A challenge with this approach, not only for
sVMs, is that we need to compute all of these additional input features before
we can do training or classification. In some cases, this can be computationally
expensive. A key property of the sVM is that we can employ a technique known as

Figure A-10 support vector machine for a case where the classes are not linearly
separable but where a straight line still makes sense as the decision boundary

EVALUATIoN METRICs FoR A BINARY CLAssIFIER

533

the kernel trick to reduce the computational cost of working in this transformed
input space.

We do not describe the details of how the kernel trick works because we would
first need to go into the mathematics of the sVM algorithm itself. however, we
do want to point out one thing that we find nonobvious from some descriptions.
The special thing about the sVM and the kernel trick is not that they enable
classification with additional (engineered) input features to solve problems that
are not linearly separable. As previously described, that can be done with logistic
regression as well. The significance of the kernel trick in conjunction with sVMs is
that it can be used to reduce the computational complexity of working with these
additional input features.

This concludes our descriptions of linear classifiers. The perceptron, logistic
regression, and sVM represent only a subset of the available algorithms. other
examples are linear discriminant analysis (LDA) and naïve Bayes. The sVM
algorithm has also been extended to the regression problem domain, with a
related algorithm known as support vector regression. hastie, Tibshirani, and
Friedman (2009) describe these and additional techniques and is a good source
for future reading.

Evaluation Metrics for a Binary Classifier
It is often the case that we can come up with multiple different models when
attempting to solve a classification problem. A key question is how to evaluate
which model is best. Intuitively, it seems like the model with the highest accuracy
would be a good choice, where accuracy is defined in the following way:

accuracy

correct predictions

total predictions
=

As often is the case, things are not that simple. Consider the case where the
task at hand is to predict whether a patient is in the early stages of a serious
medical condition given a number of variables. Further assume that, on
average, only five out of 100 of patients have this condition. A model that always
predicts that a patient does not have the condition will have 95% accuracy
but is practically useless. A model that correctly identifies four out of five of
the patients that have the condition and incorrectly identifies another five of
the patients as having the condition will have only a 94% accuracy because it

APPENDIx A LINEAR REgREssIoN AND LINEAR CLAssIFIERs

534

misclassified (1 + 5)/100. however, it is much more useful as an initial tool to
identify what patients require further screening. This highlights the need to look
at other metrics in addition to accuracy. A common starting point is to organize
the actual classes as well as the predicted classes into a table known as a
confusion matrix, as shown in Table A-1. The rows represent predicted classes,
and the columns represent actual classes. As an example, the model predicted
that the condition is present for four patients who had the condition. This is
represented by the number 4 in the upper left cell for which the condition is
both predicted as present and truly present, also known as a true positive (TP).
In all, there are four combinations, the three remaining being false positive (FP),
false negative (FN), and true negative (TN).

FP is also known as a type I error, and FN is known as a type II error. It is
useful to distinguish between the two because different types of errors can
have vastly different consequences. In this example, it is easy to envision that
it is worse to fail to identify a patient who has a condition than to incorrectly
identify a healthy patient as having the condition if the purpose is to identify
patients for further screening and treatment if necessary. We can use the
numbers in the table to compute a large number of metrics that can be used to
gain further insight into how the predictor works. Table A-2 contains three such
metrics that are commonly used, including accuracy. some of the terms in the
table sometimes go by other names. For example, recall is sometimes known
as sensitivity.

Recall is a good metric if we are interested in how certain we are that the model
will identify patients that we intend to identify. In the example, it is important
that this metric shows a high percentage. similarly, a low precision will indicate
that we identify many false positives, which implies additional cost in terms of
both additional screening as well as emotional distress for patients who will

Table A-1 Confusion Matrix for the Envisioned Predictor

ACTUAL CLASS

Condition present Condition not
present

Predicted Class Condition present 4 TP 5 FP

Condition not
present

1 FN 90 TN

EVALUATIoN METRICs FoR A BINARY CLAssIFIER

535

now worry that they have a serious condition until they get more accurate test
results.

This example showed that we gain additional insight into the strengths and
weaknesses of a model by considering metrics other than accuracy. however,
even if we do have the confusion matrices for a number of models, it is not always
obvious which model to pick. one technique that can provide additional insight
is to plot each model in receiver operating characteristic (RoC) space. This is a 2D
plot with false-positive rate on the x-axis and true-positive rate on the y-axis.
Figure A-11 shows such a plot for five different models, each represented by a
single data point in the plot.

Table A-2 Three Common Metrics Computed from the Confusion Matrix

METRIC FORMULA DESCRIPTION

Accuracy TP TN

P N

4 90

5 95
94%

+

+
=

+

+
=

Percentage of all predictions that
were correctly predicted

Recall TP

TP FN

4

4 1
80%

+
=

+
=

Percentage of the true outcomes
that were identified by the
predictor

Precision TP

TP FP

4

4 5
44%

+
=

+
=

Percentage of the predicted true
outcomes that were actually true

Figure A-11 Five models plotted in receiver operating characteristic space

APPENDIx A LINEAR REgREssIoN AND LINEAR CLAssIFIERs

536

The data points are the following:

1. The model described in our example with a false-positive rate of 0.05 and a
true-positive rate of 0.8.

2. A more sensitive model, which identifies all five patients with the condition
but results in 20 false positives. It has a false-positive rate of 0.21 and a true-
positive rate of 1.

3. A less sensitive model, which identifies only three out of five patients with the
condition but results in only one false positive. Its false-positive rate is 0.01
and true-positive rate is 0.6.

4. The model that always predicts “no condition” with a false-positive rate of 0
and a true-positive rate of 0.

5. A coin-flip with a false-positive rate of 0.5 and a true-positive rate of 0.5.

If it is not obvious how we arrive at these false- and true-positive rates, then
we encourage you to write out the confusion matrix and compute the metrics to
confirm.

Looking at the plot, we see that the data points for our naïve models (always
predicted true, and random) are located on the diagonal, and our better
models are above the diagonal. From that perspective, if a data point ever
ends up below the diagonal, a first thought is that it is a bad model because its
performance is worse than if outcomes were picked randomly. This is a true
observation, but given that we work with binary classification, it is trivial to
transform a model that is consistently worse than chance into a good model by
simply doing the opposite of what the model predicts. That is, if you recomputed
the metrics for the bad model but interpreted a true prediction as false and a
false prediction as true, you would end up with a data point that is located above
the diagonal in in the plot.

For models that are based on a continuous-valued parameter, such as a threshold
value, different values of that parameter will result in different points in RoC
space. If we plot these different points as the parameter is varied, we end up with
something known as an ROC curve. The RoC curve can then be used to select a
parameter value that strikes an appropriate balance between false- and true-
positive rates.

EVALUATIoN METRICs FoR A BINARY CLAssIFIER

537

Finally, it is sometimes good to have a single score to use when evaluating a
model without having to think of the trade-off between false- and true-positive
rates. In such cases, a good candidate is the F

1
 score:

F score
TP

TP FP FN

2

2

2 * 4

2 * 4 5 1
0.571 =

+ +
=

+ +
=

A high score corresponds to a good model. The numbers in this equation
correspond to the confusion matrix in Table A-1. If the predictor had predicted
everything correctly, then the F

1
 score would end up being 1.

It should now be clear that it is important to carefully consider what metric is
appropriate for each problem. The metrics described in this section serve as a
good starting point of alternatives to consider.

This page intentionally left blank

539

Appendix B

Object Detection and
Segmentation

This appendix logically follows Chapter 8, “Deeper CNNs and Pretrained Models.”

Our detailed descriptions of convolutional networks in Chapter 7, “Convolutional
Neural Networks Applied to Image Classification,” and Chapter 8 focused on
object classification. The objective was to determine which one, out of a large
number of classes, the image represented. This is a fairly simplified view of the
world. It is often the case that an image contains many different objects belonging
to different classes, which results in more complicated tasks. Three such tasks
are object detection, semantic segmentation, and instance segmentation. They
are all illustrated in Figure B-1. Object detection involves identifying the location
(drawing a bounding box) and type of individual objects in an image. That is, it is a
combination of a localization and classification problem. Semantic segmentation
involves identifying to what type of object each pixel in an image corresponds.
Instance segmentation is similar, but more detailed, in that the task is to identify
the image pixels for each detected object instance.

In the next couple of sections, we describe some popular methods for object
detection, semantic segmentation, and instance segmentation. We do not go
into as much detail as in previous chapters, but we focus on providing intuitive
descriptions with the goal of giving you a big picture of how the techniques work.

APPENdIx B OBjECT dETECTION ANd SEgmENTATION

540

Object detection
We already know how to classify an image to arrive at the most probable type
of object in that image. We do it with a number of convolutional layers, followed
by some fully connected layers, and finally by a softmax layer that provides a
probability for each class. We also know that we can use a linear output unit to
predict numerical values. This is known as a regression problem. That is exactly
what we want to do when we predict a bounding box, with the variation that we
want to predict four values: the two coordinates (x, y) for the top left corner and
the two parameters width and height (w, h).

Figure B-2 shows a simple network architecture that begins with convolutional
layers for image feature extraction, followed by some fully connected layers. After
that, the network is split into two sibling branches (also known as heads). One is a
classification branch, consisting of one or more fully connected layers and ending
with a softmax output function. The other branch solves the regression problem
of predicting the bounding box parameters. It is also built from fully connected
layers, but because the output should be real-valued, the output units need to be
linear units without any activation functions. As described in Chapter 5, “Toward
dL: Frameworks and Network Tweaks,” ReLU is a reasonable activation function
to start with for the hidden units.

given the network in Figure B-2, it is not hard to envision a naïve solution to the
detection problem. We can design the network to expect a small image as input.
We train this classification network with training examples where one class

Figure B-1 Left: Object detection—detect objects, draw bounding boxes around them, and
classify them. middle: Semantic segmentation—identify all pixels that correspond to a
specific object type. Right: Instance segmentation—identify pixels for individual instances
of each object. These images are produced using an implementation of mask R-CNN, which
is described at the end of this appendix. The algorithm also detected the background as a
“dining table,” but we manually suppressed that to make the images less cluttered.

Bowl

Bowl

Cup
Cup

SpoonOrange
Orange

Orange
Orange

Orange

Object detection

Fork
Fork Spoon

Orange

CupBowl

SpoonFork

Semantic segmentation

Bowl

Bowl

Cup
Cup

SpoonSpoonFork
Fork

Orange
Orange

Orange
Orange

Orange

Instance segmentation

OBjECT dETECTION

541

represents “no object” (i.e., background). We train the bounding box branch to
output the coordinates for a bounding box around the object. Once this is done,
we can repeatedly apply this network to different regions of a larger image (e.g.,
by using a sliding window approach, to find regions that the network classifies
as containing an object). This naïve implementation is computationally expensive
because the network is evaluated a large number of times for a single image, and
another limitation is its fixed input region size.

Not surprisingly, the success that AlexNet demonstrated on classification was
shortly followed by attempts to use similar techniques for object detection.
This resulted in rapid advances in detection in parallel with the advances in
classification that were described in Chapter 8. Of particular interest is a series
of papers that gradually refined an initial technique to be both more accurate
and more efficient. The series started with a technique known as region-based
CNN (girshick et al., 2014), which was followed by a faster version known as Fast
R-CNN (girshick, 2015). Shortly thereafter, an even faster version was published
under the creative name Faster R-CNN (Shaoqing et al., 2015). The next few

Fully connected layers

Image

Convolutional layers

Branch for bounding
box regression

Branch for
classification

One-hot output 4 real-valued outputs

Fully connected layers with
softmax output

Fully connected layers
with linear output

Figure B-2 Network that can both classify an object and predict the parameters
for a corresponding bounding box

APPENdIx B OBjECT dETECTION ANd SEgmENTATION

542

sections outline this progression while omitting many of the details. Some of the
included details are there only to make the description understandable but are
not relevant for the more recent techniques. In such cases, we try to point that out
so that you can avoid spending too much time on them.

R-CNN

The region-based CNN (or R-CNN) technique consists of a combination of deep
learning (dL) and other more traditional computer vision techniques. All the steps
of the R-CNN algorithm are shown in Figure B-3.

Instead of using the sliding window approach outlined previously, it starts
by identifying region proposals using one of a number of existing computer
vision techniques. We do not describe these techniques in detail because one
of the improved versions of the model (Faster R-CNN) later replaces it with a
dL-based technique. For the purpose of understanding how R-CNN works, we just
assume that there is a preprocessing step applied to the image, which identifies
approximately 2,000 rectangle-shaped regions of various sizes. These regions
are candidates for containing an object, but there may well be plenty of false
positives.

The next step in R-CNN is to run a CNN-based classification network on each
region proposal, and like the network in our earlier naïve approach, this network
can also classify regions as not containing an object. R-CNN uses a variation of
the AlexNet architecture for classification. The network is first pretrained on
ImageNet. That is, R-CNN makes use of transfer learning. Next, instead of using
the full network as is, the final layer (softmax) is removed, so the output of the
network is a vector of 4,096 elements. This 4,096-dimensional feature vector is
used as input to both the classification step and the bounding box refinement step
(described shortly).

CNN without
softmax

Classification Bounding box
refinement

Traditional
computer vision

Pretrained neural
network

Support vector
machines

Class-specific
linear models

Region proposalsImage Bounding box

Class

Done once per region proposal

Figure B-3 R-CNN pipeline. Only one of the steps is based on deep learning.

OBjECT dETECTION

543

If you read the paper, you will note that for classification, instead of using a
softmax layer, R-CNN uses support vector machines (SVms; also discussed in
Appendix A), which is a binary classification technique from traditional machine
learning (mL). The SVms use the 4,096-dimensional feature vector as input. For
all practical purposes, you can still envision the classification as being done by a
final softmax layer, although the accuracy will be slightly different. One detail to
deal with is that the proposed rectangular regions are of arbitrary size and aspect
ratios. For R-CNN, this issue is resolved by warping the image region (changing
the size and aspect ratio) to the expected input size, after first having added some
padding to reduce the risk that the original region proposal cropped the object. We
will see in a later section that Fast R-CNN uses a different approach.

It might seem like 2,000 regions is a large number of regions. However, it is
significantly fewer than what a sliding window would result in. Still, many of the
regions will overlap, so the next step in the algorithm (not shown in the figure)
is to analyze this overlap and make a call of whether two regions truly classify
different objects. This overlap analysis does not use dL but uses a metric known
as intersection over union (IoU), which is compared to a threshold value.

Now that the algorithm has detected and classified a number of objects, the final
step in R-CNN is to refine the bounding box for each detected object. The thinking
is that the original region proposals were created by a simple algorithm and are
not expected to have high accuracy. Now that a smaller number of objects has
been identified, a more accurate predictor can come up with better bounding
boxes. For R-CNN, this is done using a class-specific linear regression model.
That is, if there are K classes, the algorithm will train K linear regression models.
When R-CNN later has detected and classified an object, it uses the corresponding
linear regression model to refine the bounding box for a given object. The linear
regression model uses the coordinates from the original region proposal as
well as the 4,096 features extracted by the network as inputs. Thus, this model
has access to complex information about the object that it is trying to create a
bounding box for. We omit the exact details of how this bounding box refinement
works and note that later models use techniques fully based on neural networks
instead of linear regression models.

The topic of using SVms versus softmax in the final layer has been studied in
various contexts (Agarap, 2018; Lenc and Vedaldi, 2015; Liu, Ye, and Sun, 2018;
Tang, 2013). At this point, the community seems to have settled on softmax as
the default choice, but using SVms is definitely an alternative to keep in mind.

APPENdIx B OBjECT dETECTION ANd SEgmENTATION

544

FAST R-CNN

One major performance bottleneck in R-CNN is that each of the 2,000 region
proposals results in a forward pass through the convolutional network.
Addressing this issue is one of the key contributions in the follow-up work that
resulted in Fast R-CNN. Other changes include using VggNet-16 instead of
AlexNet, and instead of SVm and linear regression, it uses neural networks for the
classification and bounding box refinement.

The first step in Fast R-CNN is to run the entire image through the convolutional
and max pooling layers of a pretrained VggNet-16 model. That is, the two fully
connected layers and the softmax layer have been removed. This results in

a feature map of the dimensions
32

32

W H
× , where W and H are the width and

height of the input image.1 Fast R-CNN relies on receiving approximately 2,000
region proposals from a simple model, just as R-CNN did. given one such region
of interest for the input image, it is easy to find a mapping to the corresponding
rectangular region in the feature map. We can now use those features as inputs to
our classification network. This is the main source of speedup in Fast R-CNN over
R-CNN. Instead of doing a forward pass for each region proposal through all the
convolutional layers, we do a single forward pass for the entire image. Although the
entire image is larger than each region proposal, it is not 2,000 times larger because
many of the proposals have overlapping regions, resulting in a significant speedup.

As opposed to warping the image into fixed dimensions, the model uses a layer
called a region of interest (ROI) pooling layer. This layer is applied to the feature
map and uses max pooling to convert the ROI of the feature map into a feature
map of size 7×7. This is the same size as the input to the fully connected layers
that we had removed from the model. Therefore, we can connect the output of the
ROI pooling layer to the pretrained fully connected layers. Figure B-4 illustrates
how the ROI pooling layer converts an arbitrarily sized region into fixed size.

The figure shows how a 4×8 region can be converted into a 2×2 region, but
in reality, in Fast R-CNN the target size is 7×7. The figure shows only a single
channel, although the feature map consists of 512 channels in practice.
As mentioned previously, the output of the ROI pooling layer feeds two
fully connected layers. The output of these two fully connected layers is a
4,096-dimensional feature vector that feeds two separate sibling networks.

1. A network consisting solely of convolutional layers and pooling layers can accept an image of any
dimensions as input given some minor padding. The denominator (32) results from the network having
five pooling layers, each reducing the dimensions by a factor of two.

OBjECT dETECTION

545

One of the networks is responsible for classifying the region as one out of many
object types or as not an object (background). This network is simply a fully
connected layer, followed by a softmax layer with K+1 outputs to classify the
region as either containing one out of K different objects or no object at all. The
second network operates side by side with its sibling and is responsible for
predicting a more accurate bounding box. This network is also a fully connected
network but with K sets of four outputs, representing the four coordinates for K
different bounding boxes. That is, the set of four outputs to consider depends on
which type of object the network detected. The overall architecture is shown in
Figure B-5.

One thing to note is that these coordinates are not specified in terms of an
absolute number of pixels. Instead they are expressed in terms of parameterized
offsets compared to the region proposal that was input to the network. For
completeness, assume that our training example provides a set of ground truth
coordinates G

x
, G

y
, G

w
, G

h
, where G

x
 and G

y
 represent the center of the bounding

box and G
w
 and G

h
 represent the width and the height respectively. We also

have the corresponding region proposal coordinates P
x
, P

y
, P

w
, P

h
 from the initial

stage in our model. We now teach our network to predict t
x
, t

y
, t

w
, t

h
, where these

parameters are defined as follows:2

t
G P

P
t

G P

P
t log

G

P
t log

G

Px
x x

w
y

y y

h
w

w

w
h

h

h

()()

=
−

=
−

=

=

2. It is not completely clear to us why this parameterization is good, but the R-CNN paper where it
was introduced (girshick et al., 2014) stated that “as a standard regularized least squares problem,
this can be solved efficiently in closed form.” This parameterization might be beneficial even for Fast
R-CNN, where a network is in charge of finding a solution, or a different parameterization might have
worked equally well.

5 8

7 9

4 4 3 2

1

2 4 2

3 4 6 5 3 1

Region of
interest

Max
pooling

9 4

7 6 5 2 4

5 1 3 6 5 2 4

8 7 3 2

Figure B-4 How max pooling is used to convert an arbitrarily sized region of
interest into fixed dimensions.

APPENdIx B OBjECT dETECTION ANd SEgmENTATION

546

It is worth noting that R-CNN used only dL to solve the feature extraction step in
the object detection pipeline. Fast R-CNN, on the other hand, additionally uses dL
for the classification and bounding box prediction steps. The region proposals are
still created using a more traditional approach.

FASTER R-CNN

After the optimizations introduced with Fast R-CNN, the region proposal step
emerged as a performance bottleneck. Faster R-CNN addresses this bottleneck by
extending the neural network to provide its own region proposal instead of relying
on a separate step up front. The full image is run through the convolutional layers
from a pretrained VggNet-16 to create a feature map, just as for Fast R-CNN. This
feature map is used as input to a region proposal network (RPN), which creates
the region proposals that were created by a more traditional computer vision

Fully connected layers

Image

Convolutional layers

Branch for bounding
box refinement

Fully connected layer with
softmax output

Fully connected layer
with linear output

Branch for
classification

One-hot output
(K classes)

K sets of 4 real-
valued outputs

Region
proposal

ROI max pooling

Feature map

Done once

Done once per
region

proposal

Region selection

Figure B-5 Overall architecture of the Fast R-CNN network

OBjECT dETECTION

547

technique in the past models. This RPN is the key contribution in Faster R-CNN.
It nicely increases performance and results in an end-to-end dL solution to the
entire object detection problem.

The RPN is a network that takes N×N features as input (where N = 3 in the paper
[Shaoqing et al., 2015]), predicts whether the corresponding area in the original
image contains one or more objects, and if so, provides region proposals for
those objects. Sliding the RPN over the feature map produces region proposals
for all objects in the image. given that there is no straightforward (or any?) way
to make a network have an arbitrary number of outputs, the RPN is limited to
providing K region proposals (where K = 9 in the paper) for each set of N×N
input features. The RPN consists of one fully connected ReLU layer followed
by two fully connected sibling layers. One of the sibling layers provides K
outputs, where each output indicates whether or not an object is present. The
second sibling layer provides K sets of four outputs, where each set of four
outputs is used to indicate locations of regions corresponding to the objects
that the network deemed as being present. This is similar to the classification
and bounding box refinement network that we described for Fast R-CNN, but
remember that the RPN serves a different purpose.

This description of the RPN is not complete. The network includes one
additional mechanism to make the region proposal functionality work better.
This mechanism is based on anchor boxes. An anchor box is a rectangle of a
specific size and aspect ratio that is centered at the current position of the RPN.
Each of the K region proposals is based on an anchor box with unique size and
aspect ratio. In particular, for K = 9, the anchor boxes correspond to all nine
combinations of three different sizes and three different aspect ratios. The three
sizes used in the paper are 1282, 2562, and 5122, and the three aspect ratios are
1:2, 1:1, and 2:1, resulting in the combinations (1282, 1:2), (1282, 1:1), (1282, 2:1),
(2562, 1:2), (2562, 1:1), and so on. The final region proposals are computed by
combining a specific anchor box with the coordinates predicted by the network.
For example, if the second output of the first sibling layer indicates that an object
is present, then the second set of outputs in the other sibling layer will predict the
coordinates in relationship to the anchor box of size 1282 pixels and 1:1 aspect
ratio. The coordinates are parameterized in the same way as for the bounding
box refinement described for R-CNN. The RPN, including the anchor boxes, is
illustrated in Figure B-6.

Now that we have both a feature map and region proposals, the rest of the
network is identical to Fast R-CNN. That is, we use these region proposals to
identify a part of the feature map to run through the ROI max pooling layer to

APPENdIx B OBjECT dETECTION ANd SEgmENTATION

548

produce a fixed-sized feature vector. This feature vector is then input to the
remaining network that classifies the region as belonging to a specific class
or not being an object. The sibling network further refines the region proposal
to arrive at a refined bounding box. The overall architecture is shown in
Figure B-7.

A fair question is why it is fast to use a sliding window approach when we
previously have made a point that sliding windows is inefficient. The reasons that
a sliding window approach is feasible in this case are that the search space and
computational cost of the network have been reduced. First, the RPN is applied to
the output of the convolutional layers. This output is of lower resolution than the
original image. Second, the anchor box approach used by the RPN can propose
multiple sizes and aspect ratios at once and thereby removes the need to evaluate
the network once for each combination of size and aspect ratio. Finally, the RPN
is a very small network, so it is not overly costly to evaluate a large number
of times. It is a classification network that works with nine different classes,
as it identifies, at most, nine regions per sliding window location. This can be
compared to the number of different object types that the overall network needs
to be able to classify, which is orders of magnitudes larger.

Faster R-CNN concludes our description of object detection techniques. The next
few sections focus on a different problem, known as semantic segmentation.

31 2 4 65

7 98Fully connected layer

Branch for anchor
refinement

Fully connected layer with
linear output

Branch for region
detection

One-hot output
(K proposals)

K sets of 4 real-valued
outputs

K anchor boxes...

Feature map

Region
proposal
network

Sliding window

Fully connected layer with
softmax output

Figure B-6 Left: Region proposal network. The network consists of two sibling branches.
The bounding box parameters are predicted relative to one out of K predefined anchor
boxes of fixed size and aspects. Right: Anchor boxes.

SEmANTIC SEgmENTATION

549

Semantic Segmentation
The task of semantic segmentation involves assigning each pixel in an image to
an object class by painting all pixels for a certain type of object in the same color.
For example, an input image with two cats and a dog could result in an output
image where the pixels for the two cats are yellow, the pixels for the dog are red,
the ground pixels are green, and all sky pixels are blue. A key property of this task
is that the width and height dimensions of the output are the same as the width
and height dimensions of the input. However, the number of channels is different
between the input and the output. The input typically has three input channels
(RgB), and the output has the same number of channels as the number of classes,
which was four in the example just described. Figure B-8 shows a naïve attempt
at creating a network that fulfills these properties.

Fully connected layers

Branch for bounding
box refinement

Fully connected layer with softmax
output

Fully connected layer
with linear output

Branch for
classification

One-hot output
(K classes)

K sets of 4 real-
valued outputs

Done once

Done once per
region

proposal

Region proposal network
Done large number

of times (sliding
window)

Image

Convolutional layers

ROI max pooling

Feature map

Region selection

Figure B-7 Faster R-CNN architecture

APPENdIx B OBjECT dETECTION ANd SEgmENTATION

550

It consists of a convolutional network, without any pooling layers and with a
stride of 1 for all layers. The number of channels increases as we move into
the network. The output layer contains the same number of channels as the
total number of object types that we want to be able to classify. If we pad
the boundaries of each layer properly, the output layer will end up with the
right size.

This network has no pooling layers or large strides for the convolutions. Their
absence is inefficient because the layers deeper into the network not only have
many channels but also are both high and wide (see middle layer in Figure B-8).
This means that the total number of values (features) increases for each layer in
the network. On the contrary, in a typical CNN the width and height decrease as
we move deeper into the network, which results in a reduced or constant total
number of features.

To enable using a more traditional CNN (where the resolution decreases inside the
network) in the context of semantic segmentation, we need to somehow increase
the resolution again in the final layers to arrive at an output layer with the right
dimensions. The next section describes how this can be done.

UPSAmPLINg TECHNIQUES

Increasing the resolution of an image is known as upsampling. It can be done
in many different ways, most of which are not specific to dL. We start by
describing two common techniques known as nearest neighbor interpolation and
bilinear interpolation. Figure B-9 illustrates a scenario in which we upsample
a 3×3 image by 2× into a 6×6 image. The leftmost part of the figure shows the

Input
image

Conv layer
6 channels

Conv layer
12 channels

Conv output layer
5 channels

Annotated
image

Figure B-8 Simple architecture for semantic segmentation. The width and height
of all layers are of the same size to result in an output with the same resolution
as the input image. Each 3d box represents a convolutional layer with a number
of channels.

SEmANTIC SEgmENTATION

551

original 3×3 pixel image. To the right of that is an illustration of the desired 6×6
output image. Further right, the two images are overlaid on top of each other.
Somewhat unintuitively, an upsampled pixel (red) does not fall equidistantly
between the original pixels (blue). Instead, each pixel happens to be located in
a position where it is close to one specific original pixel and farther away from
other original pixels. given that background, nearest neighbor interpolation is
trivial to explain. Each upsampled pixel simply takes on the value of the closest
original pixel. That is, each group of four upsampled pixels will take on the same
color as the original pixel located in the center of the four upsampled pixels.
Although the resulting image consists of 36 pixels, it will never consist of more
than nine unique colors. Needless to say, this results in a pixelated appearance
of the upsampled image.

One way to address the pixelation issue is to interpolate between the colors of the
neighboring pixels. There are many ways of doing this; perhaps the most common
one is bilinear interpolation. This is illustrated in the right half of the figure.
Consider the bright red pixel and its distances to the four blue surrounding pixels.
We measure the distance in terms of the fraction of the distance between these
four blue pixels. The closest blue pixel is 1/4 of the distance in each direction (x
and y). The farthest one is 3/4 of the distance in each direction. The other two
are (1/4, 3/4) and (3/4, 1/4) distances away. We now compute a weight for each
pixel, where the weight is computed as (1 − x

distance
) × (1 − y

distance
). That is, the

weight of the closest pixel is (3/4) × (3/4) = 9/16. The weight of the pixel furthest
away is (1/4) × (1/4) = 1/16. The weights of the two other pixels are both (1/4) ×
(3/4) = 3/16. Note that the weights are not proportional to the Euclidian distances
between the red pixel and the blue pixel. Instead, the weight is computed as the
product of the distances in each of the two (x, y) dimensions. more details about
interpolation techniques can be found in texts about computer graphics, such as
Real-Time Rendering (Akenine-möller et al., 2018).

1/4 3/4

1/4

3/4

Low resolution image Upsampled image

Bilinear interpolation details

(1 –) (1 –) = 1 –
 4

 1 –
 4

9–
16* (1 –) (1 –) = 3 –

 4
 1 –
 4

3–
16 *

(1 –) (1 –) = 3 –
 4

 3 –
 4

1–
16 *

(1 –) (1 –) = 1 –
 4

 3 –
 4

3–
16 *

Figure B-9 2× upsampling

APPENdIx B OBjECT dETECTION ANd SEgmENTATION

552

Conveniently, bilinear interpolation can be implemented using a form of
convolution. This is illustrated in the left part of Figure B-10. The trick is to first
space the pixels apart and insert dummy pixels with 0 values in between each
original pixel. The figure shows the original pixels in blue and the dummy pixels
in gray. We can now use a 4×4 convolutional kernel to calculate the value of the
pixel at the center of these 4×4 pixels. The values of all 16 elements of the kernel
are found in the figure. A fair question is why the convolutional kernel needs to
have 16 nonzero values when it will be applied to only four pixels with nonzero
values. The answer is that the relative location of the 0-valued pixels changes as
we move the kernel to compute the value of neighboring pixels.

Using the same technique, it is possible to construct a convolutional kernel that
implements nearest neighbor interpolation. It is simply a 2×2 kernel with the
value of all elements being 1.

It can be somewhat confusing to mentally visualize how the original pixels, the
dummy pixels, and the resulting interpolating pixels relate to each other. The
rightmost part of Figure B-10 shows them all in the same figure.

3/16 9/16 9/16 3/16

3/16 9/16 9/16 3/16

1/16 3/16 3/16 1/16

1/16 3/16 3/16 1/16

 = Original pixel = Zero padding = Computed (interpolated) pixel

Bilinear interpolation using
convolution kernel

4x4 convolutional kernel

Relationship between pixel
positions

resulting
pixel

for current
kernel

position

Figure B-10 Bilinear interpolation implemented using convolution. In reality, we
need to pad the edges of the original image with more 0 values or apply other
techniques to enable us to compute the edge pixels.

SEmANTIC SEgmENTATION

553

DECONVOLUTION AND UNPOOLING

Using the preceding framework, nearest neighbor and bilinear interpolation are
only two special cases of convolutional kernels that we can implement. Instead
of carefully selecting the weights in the kernel, these weights can be learned as
part of training the network. In the dL field, the combination of interspersing the
original pixels by 0-valued dummy pixels followed by applying a convolutional
kernel is often referred to as a deconvolution operation. This naming derives from
the fact that a normal convolutional layer downsamples an image (assuming a
stride greater than one), whereas the operation we just described upsamples the
image. That is, to some extent, the upsampling operation reverses the original
convolution operation. However, deconvolution is a somewhat unfortunate
name given that there already exists a different mathematical operation called
deconvolution. From that perspective, unless the context is clear, it makes sense
to refrain from using this term. Other names for this operation are transposed
convolution and fractional striding.

Using a convolutional layer with a stride greater than 1 is not the only way to
downsample images in a convolutional network. Another technique is the max
pooling operation, which groups (pools) a region of pixels together and selects
the maximum valued pixel. The left and middle parts of Figure B-11 illustrate the
max pooling operation. For each group (pool) of four pixels, the maximum valued
ones are indicated by more intense red color and a red square. The middle part of
the figure illustrates how each group of four pixels in the original image results
in a single pixel in the image after max pooling. The green square indicates the
position of the original pixel that had the max value.

just as deconvolution can be used to undo convolution, we can undo max pooling
with an operation known as unpooling. This is illustrated in the right part of
Figure B-11. The unpooling is similar to the first step of bilinear interpolation
or deconvolution in that it pulls apart the pixels and inserts 0-valued dummy
pixels. However, instead of placing the dummy pixels uniformly, it makes use of
information from a preceding max pooling operation. The figure shows how the

Max
pooling

Un-
pooling

Figure B-11 max pooling and unpooling

APPENdIx B OBjECT dETECTION ANd SEgmENTATION

554

unpooling operation places the nonzero pixels in locations that correspond to
where the maximum value originated before the max pooling operation. In reality,
an unpooling operation does not typically follow directly after a max pooling
operation, but there are multiple other operations interspersed between the two.

RELATIONSHIP BETWEEN DECONVOLUTION AND CONVOLUTION

In addition to the naming confusion between the deconvolution operation and
the mathematical deconvolution operation, our impression is that there is some
confusion with respect to how a deconvolution layer relates to a convolution
layer. The deconvolution layer was first introduced by Zeiler and colleagues
(2010). In subsequent work (Zeiler and Furgus, 2014; Zeiler, Taylor, and Fergus,
2011), the authors also introduced the unpooling operation and built networks
that combined the two. This was in the context of reversing the effect of prior
convolution and max pooling layers. They used unpooling and deconvolution to
map features inside an image network back to pixel space. That is, there was a
one-to-one correspondence between convolution/deconvolution and max pooling/
unpooling in the network. However, Zeiler and colleagues did not train the weights
of the deconvolution layer separately. Instead, they reused the weights from
the convolutional layer because they simply wanted to reverse the operation.
To make each weight affect the appropriate pixel, the matrix representing the
convolutional kernel needed to be transposed. This is the basis for the alternative,
and perhaps better, name transposed convolution. In cases where the weights
for the deconvolutional layer are learned separately, the point of transposing the
matrix is moot. It simply does not matter how we arrange the initial weights of the
matrix, given that they are initialized with random values anyway.

Combining unpooling and deconvolution is a source of confusion. We have
described deconvolution as being an upsampling operation in which we first
separate the pixels and then apply a convolution with a transposed kernel. A
fair question is what happens in the case where we combine unpooling and
deconvolution. The unpooling operation results in separating the pixels, so having
the deconvolution layer separating them further is typically not desired. This can
be avoided by using a stride of 1 for the deconvolution layer. The stride parameter
controls how much to pull the input apart, and we have implicitly assumed a
stride of 2 in all our examples. Setting the stride to 1 results in the output size
being the same as the input size, just as for a convolutional layer with stride 1.

This is similar to how a convolution followed by max pooling is handled. We
typically either use a combination of convolution with stride 1 and a max pooling
layer or use a stride greater than 1 and simply omit the max pooling layer. In the
former case, the max pooling layer does the downsampling, and in the latter,
downsampling is baked into the convolution. This is all illustrated in Figure B-12.

SEmANTIC SEgmENTATION

555

This takes us to what we think is a great source of confusion when dealing with
deconvolution layers. The deconvolution layer first pulls the inputs apart and
then performs a normal convolution but with a transposed version of the weight
matrix. In the case where we have a stride of 1, the input is not pulled apart.
Further, if the weights are learned (the normal use case), then the transpose
operation does not have practical importance. That is, the deconvolution layer is
equivalent to a convolutional layer! Still, it is common to see implementations that
use unpooling layers followed by deconvolution layers with a stride of 1, possibly
to make it clear that the overall network is upsampling.

AVOIDING CHECKERBOARD ARTIFACTS

One issue with the deconvolution approach is that it has been shown to result in
checkerboard artifacts (Odena, dumoulin, and Olah, 2016). This often happens
regardless whether you use unpooling and deconvolution with stride 1 or you
skip the unpooling and have larger stride in the deconvolution. going back to the
example where convolution is used to implement bilinear interpolation, this is not

Use of pooling

Convolutional layer
stride = 1

n × n

Max pool stride = 2

xn–
2

n–
2

xn–
2

n–
2

Convolutional layer
stride = 2

Unpool stride = 2

2n × 2n

Deconvolution layer
stride = 1 Deonvolution layer

stride = 2

2n × 2n 2n × 2n

Convolution Deconvolution

Figure B-12 Convolution/pooling and unpooling/deconvolution. Neither
convolution nor deconvolution changes the dimensions of the input when using
a stride of 1. Convolution/pooling downsamples and unpooling/deconvolution
upsamples.

Using a deconvolution layer with a stride of 1 and learned weights seems like a
very convoluted way of implementing a convolution.

APPENdIx B OBjECT dETECTION ANd SEgmENTATION

556

entirely surprising. We see that we are applying a convolution to an input image
that has many zeros in a very regular pattern. In the case of bilinear interpolation,
we carefully selected the weights given our knowledge of this input pattern. If
we had not done that, it is not surprising that the grid of zeros in the input can
result in a similar pattern on the output. Technically, the convolutional kernel
has the freedom to learn bilinear interpolation, but why make it so hard for the
network? Would it not be better to simply first apply nearest neighbor or bilinear
interpolation followed by a convolution? Odena and colleague studied this issue
and concluded that using nearest neighbor interpolation followed by a regular
convolution yielded the best result.

There are a number of variations on these concepts. The convolutional kernel can
be initialized to do bilinear interpolation and then adjusted by the training process
(Long, Shelhamer, and darrell, 2017). This can be combined with first doing
unpooling to still make use of the information from a preceding max pooling step
(Badrinarayanan, Kendall, and Cipolla, 2017).

In practice, for many applications, simply upsampling the image using either
nearest neighbor or bilinear interpolation followed by a normal convolution is
easy to implement and yields good results. This example seems to be a case
where the community simply was overcomplicating the problem.

Now that we know how to do upsampling, we are ready to describe more
advanced networks for semantic segmentation that can use lower resolution
layers in the middle of the network. We describe the deconvolution network (Noh,
Hong, and Han, 2015) and the U-Net (Ronneberger, Fischer, and Brox, 2015), which
both are logical extensions of what we have just described. Both networks are
examples of fully convolutional networks (FCNs), which are characterized by only
having convolutional, downsampling, and upsampling layers. They both build on
work by Long, Shelhamer, and darrell (2017), who had previously proposed using
FCNs for semantic segmentation.

In many applications, upsampling using nearest neighbor or bilinear
interpolation followed by a convolutional layer yields good results. We also
think it is easier to understand than the transposed convolution (deconvolution)
layer.

SEmANTIC SEgmENTATION

557

dECONVOLUTION NETWORK

given the upsampling techniques just described, the deconvolution network
proposed by Noh, Hong, and Han (2015) is straightforward. It is an extension of
the naïve semantic segmentation network outlined earlier. The difference is that it
uses pooling layers to reduce the dimension of the layers deeper into the network
instead of keeping it constant. This is followed by unpooling and deconvolutional
layers to restore the width and height of the output layer to the same dimensions
as in the input image.

The first part of the network is a VggNet-16 network but without the final softmax
layer. If you recall, VggNet-16 ends with two fully connected layers and a softmax
layer. It might seem strange that the two fully connected layers are not discarded
as the softmax layer is. How can a network with fully connected layers result
in a fully convolutional network? The answer is that, as pointed out by Long,
Shelhamer, and darrell (2017), a fully connected layer with 4,096 neurons can be
viewed as a convolutional layer with width = 1, height = 1, and 4,096 channels.
The remaining part of the network mirrors the convolution and max pooling
layers. Unpooling layers replace the max pooling layers, and deconvolution layers
with a stride of 1 replaces the convolution layers (Figure B-13).

224x224
112x112

56x56

28x28 14x14
1x1

Downsampling half (VGGNet) Upsampling half

64
128

256

512
512

4096

Max
pool Max

pool
Max
pool Max

pool Max
pool Un-pool

Un-pool
Un-pool

Un-pool
Un-pool3

224x224

21

224x224
Input
image

Output
segmentation

map

Figure B-13 deconvolution network for semantic segmentation. Each group
of slices represents a VggNet building block, and each slice represents a
convolutional layer. The number of channels for each layer is stated at the top and
matches what is used in VggNet-16. The dimensionality reduction is done using
2×2 max pooling (shown as text but not explicitly as layers in the figure). The
upsampling half of the network uses unpooling and deconvolutions that mirror
the downsampling half.

APPENdIx B OBjECT dETECTION ANd SEgmENTATION

558

The input to the network is a 224×224×3 RgB image. The output from the
network is a segmentation map of the dimensions 224×224×21. Each of the
224×224 pixels in the input image has a corresponding 21-element vector in the
segmentation map. This vector identifies whether the pixel corresponds to one of
20 different object types or does not correspond to an object at all.

U-NET

Looking at the deconvolution network in Figure B-13, it seems magical how the
network can use data from the narrowest part of the network (4,096 values) to
recreate pixel data at the input resolution (50,000+ pixels). In a previous section,
we justified the use of this low-dimensional intermediate representation with the
need for efficiency. Not surprisingly, it turns out that the semantic segmentation
result improves if the deconvolutional part of the network gets access to
more data. In particular, it is beneficial if it can see both the low-dimensional
intermediate representation and higher-dimensional representations originating
closer to the input of the network. Ronneberger, Fischer, and Brox (2015)
introduced U-Net, which does just that.

In the upsampling half of the network, at each upsampling step, the output is
concatenated with the output from a previous layer (in the downsampling half
of the network) with comparable resolution. Thus, the network can make use of
detailed pixel data close to the input as well as more coarse-grained hierarchical
representations from deep inside of the network. This is illustrated in Figure B-14.

Looking at the upsampling half of the network, a white block represents the
output of a convolutional layer that has been copied from the downsampling part
of the network. A red block represents a convolutional layer that upsamples the
output from the immediately preceding layer. The white and red blocks are now
concatenated and used as input by the next convolutional layer (blue blocks in the
figure). The figure omits the input image and the output segmentation map.

Now that we have described a couple of different networks for semantic
segmentation, we move on to a highly related topic: instance segmentation.

If you happen to know something about jPEg compression, then it might not
seem that magical that the narrowest part of the network is only 4,096 values,
but let us ignore that for now and not ruin the dramatic introduction to this
section.

INSTANCE SEgmENTATION WITH mASK R-CNN

559

Instance Segmentation with mask R-CNN
In the semantic segmentation problem, all instances of a certain object type result
in the same color in the output image. A related problem is instance segmentation.
It assigns different colors to different instances even if they are of the same type.
That is, two different cats in an image should result in two different colors in the
output image.

This problem is a mix of object detection and semantic segmentation. The model
needs to identify individual objects and then, for each object, identify the pixels
that are associated with the object. We can solve this problem by building on top
of Faster R-CNN, which already addressed the problem of localizing an object.

Copy

Copy

Copy

Copy

Downsampling half (VGGNet)

Ups
am

pl
ing

 h
alf

Copy

Concat

Concat

Concat

Concat

Concat

Figure B-14 The U-Net name is self-explanatory, but in reality, the network has
the same horizontal hourglass shape as the previously shown deconvolution
network. The key difference in the U-Net is that we copy output from layers from
the downsampling to the upsampling part of the network and concatenate them
with the upsampled layers.

APPENdIx B OBjECT dETECTION ANd SEgmENTATION

560

Mask R-CNN is a model that extends the Faster R-CNN model to also implement
the instance segmentation task (He et al., 2017). The key enabler is a third branch
of the network that operates in parallel with the classification branch and the
bounding box refinement branch. This third branch uses the feature map as
input and upsamples it. Its output is the pixel mask that identifies the pixels that
correspond to the identified object. If you think about it, adding an upsampling
branch to the feature map results in something similar to the deconvolution
network described earlier. That is, this output layer will provide semantic
segmentation for each region proposal, which implies that we have all the
information available to do instance segmentation. The classification branch tells
us if the region proposal contained an object, and if so, to what class that object
belongs. The segmentation branch provides one channel for each object class,
indicating which pixels belong to each class. Now we simply use the output of the
classification branch to select which channel from the segmentation branch is of
interest. This channel represents the pixels associated with the detected object.
If desired, we can also make use of the bounding box branch so we can draw a
bounding box around the object. The overall architecture is shown in Figure B-15.

Fully connected
layers

Branch for bounding
box refinement

Fully connected layer
with softmax output

Fully connected layer
with linear output

Branch for
classification

One-hot output
(K classes)

K sets of 4
real-valued outputs

Done once

Done once per
region

proposal

Region proposal
network

Done large number
of times (sliding

window)

Image

Convolutional layers

ROI align

Feature map

Region selection

Branch for
mask creation

Upsampling
network

K sets of 28x28
masks

Figure B-15 The full architecture of the mask R-CNN network

INSTANCE SEgmENTATION WITH mASK R-CNN

561

To conclude the description of mask R-CNN, we also note that in addition to the
segmentation branch, He and colleagues introduced an ROI align layer to replace
the ROI max pooling layer. The ROI align layer includes some interpolation
between values instead of just using max pooling operations. This makes it better
at preserving spatial relationships, which enables the segmentation branch to do
a better job of identifying the exact pixels to highlight.

Another thing to note is that the final mask resolution is limited to 28×28 pixels
in the paper (He et al., 2017). For objects that exceed that size, the masks are
scaled down before training. during inference, if a predicted bounding box is
larger, then the mask predicted by the network needs to be upscaled to the size
of the bounding box. We suspect that this design choice was made to reduce
computational needs or because it reduced the number of required training
iterations.

Finally, all our figures of R-CNN, Fast R-CNN, Faster R-CNN, and mask R-CNN
contain a block somewhat loosely specified as “convolutional layers,” also known
as the backbone of these networks. The detection and segmentation networks
evolved over a number of years, during which time we saw rapid progress in
convolutional network architectures. This progress carried over to the field of
detection and segmentation, and the backbone of the networks was made more
complex over time. R-CNN was based on AlexNet, whereas Fast and Faster R-CNN
used VggNet. mask R-CNN was evaluated using a number of different backbones,
including ResNet and ResNext (xie et al., 2017) with a couple of different depths
as well as a Feature Pyramid Network (FPN) proposed by Lin, doll, and colleagues
(2017).

Instead of providing a programming example in this appendix, we encourage you
to try out implementations that are available for download. The segmentation
example figure in the beginning of this appendix was produced with a
TensorFlow implementation of mask R-CNN (Mask R-CNN for Object Detection
and Segmentation, 2019). It took us less than 15 minutes to download, install,
and try out the demo application using the pretrained network to do instance
segmentation on one of our own images.

This concludes our description of object detection, semantic segmentation and
instance segmentation. It should now be clear that exceeding human ability in
image classification does not imply that dL can do everything. There exist plenty
of more complicated tasks to solve.

This page intentionally left blank

563

Appendix C

Word Embeddings
Beyond word2vec
and GloVe

This appendix logically follows Chapter 13, “Word Embeddings from word2vec and
GloVe.”

The word embeddings we discussed in Chapter 13 come with some limitations
that more recent embedding schemes have addressed. Specifically, the
embeddings we discussed have no way of handling out-of-vocabulary words, even
if the new word is just a minor variation of a known word. For example, consider
a case where the word dog was included in the training data, but its plural version
dogs was not and hence does not have a corresponding embedding. It would be
useful to have an embedding scheme that somehow can handle this case.

A different limitation is that there is only a single embedding corresponding to a
specific word, even if that word has different meanings in different contexts. For
example, consider the word can in the sentence “Can I have a can of soda?” The
first occurrence is a modal verb and the second is a noun. It would be useful if
these two instances of the same word resulted in two different embeddings.

In this appendix, we describe a few different schemes, which address these
limitations. We begin by describing wordpieces and FastText embeddings. Both

564

APPENDIX C WORD EMBEDDINGS BEYOND word2vec AND GloVe

of these methods make use of the fact that a word can be divided into smaller
units (subwords), but the methods still operate at a coarser granularity than just
individual characters. These two schemes address only the out-of-vocabulary
issue but not the issue of different meanings in different contexts. We then
describe a method that operates on single characters, which also addresses only
the out-of-vocabulary issue. However, the character-based method is also used as
a building block in a more advanced scheme known as ELMo (Embeddings from
Language Models), which addresses both out-of-vocabulary words and context-
dependent embeddings.

Wordpieces
This method is not an embedding scheme in itself but simply a way of creating
a vocabulary consisting of subwords instead of the full words. We can then use
any suitable method for learning embeddings for these subwords, including
learning the embeddings jointly with the application where they are used. The
technique was originally developed for a voice search system in Japanese and
Korean (Schuster and Nakajima, 2012) and was also used for a natural language
translation application used in production (Wu et al., 2016). It is also used by a
model known as BERT, which is described in Appendix D (Devlin et al., 2018).

The wordpieces are created in the following way. The initial vocabulary consists of
the individual characters found in the training corpus. Wu and colleagues (2016)
limited the number of characters to approximately 500 for Western languages
to avoid polluting the vocabulary with rare characters. The remaining characters
are replaced by a special out-of-vocabulary symbol. The vocabulary is used to
build a simple language model (not neural network based). The next step is to
add new symbols to the vocabulary by combining two existing symbols. That is, at
the very beginning, we combine two characters into a new two-character symbol,
which is added to the vocabulary. Adding all possible combinations of existing
symbols clearly does not make sense, because some of them will not result in
character sequences that are common, or that even exist, in the training corpus.
This especially applies later in the process when each symbol consists of more
characters. Instead, the candidate symbol is chosen on the basis of how well
the language model would behave if that symbol wore added to the vocabulary.
That is, we create K2 candidate symbols (assuming K existing symbols in the
vocabulary), evaluate K2 language models, and pick the symbol that resulted in
the best language model. This process is repeated until a user-defined number

WORDPIECES

565

of symbols have been added to the vocabulary. These symbols are now our
wordpieces that we later use to create word embeddings.

To make it more concrete, we walk through a small example. Assume a training
corpus that is based on the very limited alphabet e, i, n, and o. The vocabulary
starts out with just those four symbols. To identify the next symbol to add to the
vocabulary, we create all 16 combinations: ee, ii, nn, oo, ei, en, eo, ie, in, io, and so
on. We now want to identify which of these new 16 symbols result in the best
language model if added to the vocabulary. That is, we create one language model
with a vocabulary consisting of the symbols {e, i, n, o, ee}. We compare that to the
language model that instead uses the symbols {e, i, n, o, ii} and so on. Once all 16
models have been evaluated, we pick the one that results in the best language
model, which in our example happens to result in {e, i, n, o, no}. We now repeat
the process, this time with 25 possible combinations. The vocabulary gradually
grows, with one new symbol for each iteration:

{e, i, n, o, no}

{e, i, n, o, no, in}

{e, i, n, o, no, in, on}

{e, i, n, o, no, in, on, one}

{e, i, n, o, no, in, on, one, ni}

{e, i, n, o, no, in, on, one, ni, ne}

{e, i, n, o, no, in, on, one, ni, ne, nine}

The resulting vocabulary will consist of all individual characters as well as
n-grams of various sizes. Wu and colleagues (2016) found that a vocabulary
between 8K and 32K produced good results for their natural language translation
task. What we described was a naïve implementation. In reality, there are
implementation optimizations to reduce the computational complexity.

An input sentence can now be broken up into wordpieces using this vocabulary. If
a word exists in the wordpiece vocabulary, it is left unchanged, and otherwise it is
broken up into two or more pieces using the words in the wordpiece vocabulary.
For example, the resulting vocabulary in our example does not contain the word
none, so it would be formed by concatenating the two wordpieces n and one. Given
that the vocabulary contains individual characters, it is always possible to form
any word by combining pieces that exist in the vocabulary.

A wordpiece that begins a word is prepended with a special character (e.g., an
underscore). That makes it possible to unambiguously recreate the original text

APPENDIX C WORD EMBEDDINGS BEYOND word2vec AND GloVe

566

once it has been broken up into wordpieces. In the original paper (Schuster and
Nakajima, 2012), the special symbol was added to a wordpiece if it ended a word
as well, but the scheme was simplified in the subsequent paper (Wu et al., 2016).
Moving on from our toy example, we look at the following example from the paper:

Word: Jet makers feud over seat width with big orders at stake

wordpieces: _J et _makers _fe ud _over _seat _width _with _big _orders _at
_stake

In the example, we can see that the words Jet and feud were not in the vocabulary
and were therefore broken up into two pieces each. For Jet, this resulted in _J and
et, where the underscore symbol in front of J indicates that it is the beginning of
the word. We can now use any suitable method to learn word embeddings using
the wordpieces as vocabulary.

FastText
FastText (Bojanowski et al., 2017) is a direct extension of the word2vec continuous
skip-gram model. The intent is to create word embeddings that can handle out-
of-vocabulary words. As described in Chapter 13, the training objective for the
continuous skip-gram model is to, given a word, predict words that surround
that word in a sentence. This was done by training a binary classifier to output 1
for words surrounding the word and 0 for some other randomly selected words
(known as negative samples).

FastText modifies the representation of the input word to include some of its
internal structure. For each word in the input dataset, in addition to each word,
the model also forms all character n-grams for the word. We have previously
looked at n-grams consisting of n consecutive words, but we can apply the same
concept to characters inside a word. For the rest of this appendix, n-gram will
refer to n consecutive characters instead of words. FastText limits itself to n-grams
where n is greater than or equal to 3 and less than or equal to 6. The first n-gram
in a word is prepended with a start symbol, <, and the last n-gram in a word
is appended with an end symbol, >. To give an example from Bojanowski and
colleagues’ paper (2017), the word where results in the following n-grams:

<wh, whe, her, ere, re>, <where>

The example only shows n-grams of size 3, so in reality, there will be more
n-grams as well. As shown, the start and end symbols are added to the original

CHARACTER-BASED METHOD

567

word itself as well. This implies that an n-gram that happens to be identical to a
full word will still be treated as a separate word. For example, the n-gram her will
be treated as a different word from the full word <her>.

In the FastText model, each word as well as all the n-grams have a corresponding
vector. We form the embedding for a specific word by averaging the vectors for
the word and all its n-grams. From a training objective perspective, this results in
that we train the model not only to predict surrounding words from a given word
but also to predict the surrounding words from the given word’s internal n-grams.

When using FastText, out-of-vocabulary words will simply be represented by the
average of the n-grams of that word. It is not hard to imagine how this can lead
to a vector that is similar to a vector of an existing word in the case where the
out-of-vocabulary word is just a slight variation of that existing word. FastText
embeddings have been created for a large number of languages and are available
online to download.

Character-Based Method
Instead of breaking up words into subwords before training the model, another
approach to handling out-of-vocabulary words is simply to work on characters
instead of words. This might seem unintuitive because we are talking about word
embeddings, but we can build a model that outputs word embeddings using
characters instead of words or subwords as input. We describe such a model
in this section. Another important aspect of this model is that it is the basis
for another model used to produce context-dependent word embeddings. We
describe this follow-on model in the next section.

In Chapter 11, “Text Autocompletion with LSTM and Beam Search,” and
Chapter 12, “Neural Language Models and Word Embeddings,” we saw examples
of neural language models that work on characters as well as on words. The
ones in our code examples were based on recurrent networks. These models
were autoregressive in that the predicted output symbol was fed back as input
to the network in the next timestep. Kim et al. describe a language model that
is similar but uses a hybrid approach (Kim et al., 2016). It uses characters as
inputs but predicts words on the output. Further, it is more complicated in that
it uses character embeddings that are run through a 1D convolutional network
followed by a highway network. This produces word embeddings that are then fed
to the recurrent layer. We start by describing these initial layers that operate on
characters and produce word embeddings.

APPENDIX C WORD EMBEDDINGS BEYOND word2vec AND GloVe

568

The overall idea with this word embedding scheme is that a word can be char-
acterized by the n-grams it contains. To gain some insight into what the scheme
does, imagine that you have a vector where each entry indicates whether a specific
n-gram is present in the word. The entry is set to 1 if the n-gram is present and to
0 if the n-gram is not present. That is, we create a bag-of-character-n-grams. This
vector can now be used as an embedding. Two words that are different variations
of a single word (e.g., the singular form and the plural form), will get similar
 embeddings. Only the n-grams for the suffixes will differ. Some examples are
shown in Figure C-1 for the word supercalifragilisticexpialidocious, which is the title
of a song from the famous children’s movie Mary Poppins (Sherman and Sherman,
1963). It would be unlikely to find that full word in the vocabulary unless a very
specific training corpus was used. However, many of the building blocks (n-grams)
commonly occur in other texts.

The figure shows how we can create a bag-of-n-grams from many of the n-grams
formed by consecutive characters of that word (top row) as well as the two
variations subcalifragilisticexpialidocious and supercalirobusticexpialidocious.
The n-grams are chosen to work well for this example. We also included three
totally unrelated n-grams (to the very right in the figure) that do not appear in the
words, to illustrate that not all known n-grams will appear in the input words. This
example illustrates how these three related words end up with word vectors that
are similar to each other but different from unrelated words.

The character-based embeddings that we discuss in this section are similar to
this scheme but with two important differences. First, instead of deciding up front
what n-grams to look for, the n-grams are learned by the model. Second, instead
of using a binary number to indicate whether an n-gram is present, each entry in
the vector is a real-valued number. The magnitude of the value is a measure of

Bag-of-character-n-grams

super cali fragilistic expiali docious

sub cali fragilistic expiali docious

super cali robustic expiali docious

Input word

super cali fragi expia docsub robust

1 0 1 1 0 1 1

0 1 1 1 0 1 1

1 0 1 0 1 1 1

spoon ful sug

0

0

0

0

0

0

0

0

0

Figure C-1 Bag-of-n-grams based on some of the n-grams in the word
supercalifragilisticexpialidocious and two variations on that word

We recognize that “totally unrelated n-grams” might be a somewhat strong
statement for this case.

CHARACTER-BASED METHOD

569

how similar the n-grams from the current word are to the target n-grams. Even
n-grams that were not present in the training set can influence the output. This is
illustrated in Figure C-2. Some of the target n-grams are slightly different from
the ones in the previous figure to illustrate the approximate matching. The vector
entries are now real-valued and indicate similarity between the target n-grams
and the n-grams found in the words.

Both figures have ordered the n-grams in the same order as they show up in the
words that we analyze, but in reality, the order is arbitrary, as a bag-of-n-grams
does not capture the order among the n-grams. In particular, it is not the case
that each n-gram is scored only on the specific part of the word that has the same
color in the figure. The score is based on all n-grams in the word. For example,
consider the n-gram robust. It might seem odd that it has gotten a score of 0.1
instead of 0.0 for the words that contain fragilistic, given that fragilistic does not
have any similarity with robust. However, there are other parts of the word that
have some commonalities—for example, docious contains the letters o, u, and s in
the same order as robust.

The approximate bag-of-n-grams can be implemented using a 1D convolution,
which is illustrated on the right side of Figure C-3. We are already familiar with
2D convolutions (left part of the figure) where we are sliding a K×K kernel over
an image. The kernel computes a weighted sum of the pixel at the center of

super calista fragile expiate docentsub robust

1.0 0.2 0.7 0.9 0.1 0.9 0.8

0.3 1.0 0.7 0.9 0.1 0.9 0.8

1.0 0.2 0.7 0.1 1.0 0.9 0.8

Approximate bag-of-character-n-grams

super cali fragilistic expiali docious

sub cali fragilistic expiali docious

super cali robustic expiali docious

Input word

spoon ful sug

0.1

0.05

0.1

0.1

0.1

0.05

0.2

0.1

0.2

Figure C-2 Approximate-bag-of-n-grams where each vector entry indicates similarity to
the target n-gram

2D Convolution 1D Convolution

Figure C-3 Difference between 2D (left) and 1D (right) convolutions

APPENDIX C WORD EMBEDDINGS BEYOND word2vec AND GloVe

570

the kernel and the surrounding pixels. We saw that the kernel acts as a feature
identifier and thereby creates a feature map that indicates where certain features
in the image are present. We can apply the same concept but in one dimension
with a 1D kernel of width w that we sweep over all the characters in a word. At
any given point, the kernel will compute a weighted sum of the character directly
under the kernel as well as the surrounding characters. With a width of w, it can
thereby identify an n-gram consisting of w characters. The convolution results in a
1D feature map that indicates where in a word a specific n-gram is present.

One thing that we glossed over in the preceding discussion is how the individual
characters are represented. As shown in Figure C-3, each pixel in an image
consists of multiple color channels, so the 2D convolution operates in three
dimensions. Similarly, we encode each character as a vector of elements, so the
1D convolution operates in two dimensions, as shown in the figure. An obvious
way of encoding a character as a 1D vector is to use one-hot encoding. Another
way is to learn a dense character embedding to reduce the number of elements in
the vector. That is the method used by Kim and colleagues (2016).

We are now ready to present the process of creating a word embedding from a
string of characters. The process is illustrated in Figure C-4.

A word consists of a string of j characters. Each character is converted to a
d-dimensional embedding by an embedding layer. We input this set of character
vectors into a 1D convolution layer. This discussion has been limited to only a single
kernel, that is, a single output channel, represented by a single horizontal track
in Figure C-4. The kernel of width w is applied to all j characters of the word and

String of
j characters
representing

word k

Convert to
embeddings

of size d

j vectors of
size d

Apply 1D kernel
of width w to all locations to

detect n-gram 1

Vector (length j-w+1)
representing presence of n-

gram in all locations in
character string

Select
the max

value

 1D convolutional
layer with m channels

Max pooling
layer

Embedding layer
(lookup table)

Scalar value
representing single

feature: Was n-gram 1
present in the word?

Apply 1D kernel
of width w to all locations to

detect n-gram 2

Select
the max

value

Apply 1D kernel
of width w to all locations to

detect n-gram m

Select
the max

value

m-
dimensional
output vector

n-gram 2 present?

n-gram m present?

Figure C-4 Creating word embedding from a string of characters

CHARACTER-BASED METHOD

571

results in a vector with j−w+1 elements (instead of j because padding is not used).
This vector indicates the location where the n-gram corresponding to the kernel is
found. However, we are not interested in knowing the location of the n-gram, but
only whether it is contained in the word. Thus, the convolutional layer is followed
by a max pooling operation with a single output. This produces a single element of
our m-dimensional word embedding. This process is repeated once for each output
channel, as represented by the different colored tracks in the figure. Each channel
identifies its own n-gram, and the combined output of all the channels forms a word
embedding given a string of characters. This implies that a word embedding will be
formed even for words that were not present in the training dataset.

One drawback of this embedding is that the only similarity between words it is
likely to capture is similarity in spelling. Kim and colleagues (2016) addressed
that shortcoming by passing the embedding through a multilevel network to
produce the final embedding. The thinking is that this additional network can
capture interactions between the n-grams. One finding was that a regular fully
connected feedforward network did not do very well, but a highway network did.
As described in Chapter 10, “Long Short-Term Memory,” a highway network is a
feedforward network with skip connections controlled by trainable gates. The full
network is shown in Figure C-5.

1D convolution, tanh, 2048 channels

Max pooling

Char
1 Char jChar 2

Embedding
layer

Embedding
layer

Embedding
layer

Highway, ReLU, 2048

Highway, ReLU, 2048

Fully connected, linear, 512 Change dimensions

Capture interaction
between n-grams

Basic embedding
from previous figure

Figure C-5 Full network to produce character-based word embeddings

APPENDIX C WORD EMBEDDINGS BEYOND word2vec AND GloVe

572

Kim and colleagues used these character-based word embeddings as input to a
language model based on a single recurrent layer using long short-term-memory
(LSTM) cells, followed by a softmax layer to predict the next word. The dimensions
in Figure C-5 are somewhat different than what the authors used, and there is
also an additional projection layer (fully connected without activation function)
at the end of the network. This matches the network that is the base of the ELMo
embeddings described in the next section.

ELMo
Embeddings from language models, also known as ELMo (Peters et al., 2018),
is based on a language model that uses the character-based embeddings from
the previous section. This language model was first studied by Jozefowicz and
colleagues (2016) and uses two bidirectional LSTM-based recurrent layers. That
study compared a number of different configurations of layers and sizes. We
focus on the specific configuration that was later used by Peters and colleagues
(2018) for the ELMo embeddings. A key property of these embeddings is that
they are context dependent; that is, a single word can have different embeddings
depending on the context in which the word is used. That is not the only way
that ELMo is different from other embeddings that we have studied. Instead of
just using the pretrained embeddings as is, these embeddings have specific
parameters that are intended to be tuned by the end application.

Clearly, to make word embeddings context dependent, the embedding for a word
cannot be retrieved by a lookup from just the word itself. Instead, surrounding
words (the context) is also needed. ELMo solves this issue by using a bidirectional
language model to generate the embeddings. We have previously seen examples
of how language models predict the next word given the preceding words. A
bidirectional language model has access to both preceding and subsequent words
of the word that it tries to predict.

A key observation is that the embeddings fed to a language model are context
independent, but the representations in the hidden layers and the output layer of
the language model include accumulated information about surrounding words.
In particular, for a bidirectional language model, these representations will be
affected by both historical and future words—that is, by the full context. The
language model used by ELMo is illustrated in Figure C-6.

573

ELMo

Starting from the bottom, the first module produces a context-independent word
embedding using the character-based word embedding scheme described in
the previous section. This module consists of the character embedding layer,
1D convolution, max pooling, highway networks, and projection layer. The 1D
convolution uses 2,048 kernels1 (it can look for 2,048 n-grams) of different sizes,
but the projection layer reduces the word embedding dimension to 512. All of this
is inside of what is denoted “Character embedding module” in the figure.

The bidirectional language model is based on two bidirectional LSTM layers,
each having 4,096 units in each direction. The output layer is a softmax layer
that predicts the missing word in a sequence. This prediction is necessary when
training the model, but the prediction can be discarded when using the model to
produce the context-dependent word embedding.

The hidden states of each of the LSTM layers are fed through a projection
layer that reduces the dimensionality from 4,096 to 512. Because each LSTM
is bidirectional, each layer results in a vector of 1,024 (2×512) entries after

1. The 2,048 kernels used in ELMo look for n-grams of different lengths. The size and number of
kernels are [1, 32], [2, 32], [3, 64], [4, 128], [5, 256], [6, 512], [7, 1024], using the notation [kernel size,
number of kernels]. For example, the model has 64 output channels that represent n-grams of size 3
(kernel size: 3; kernel count: 64).

Character embedding
module, 512

Bidirectional LSTM, 2 x 4096

Word n

Bidirectional LSTM, 2 x 4096

Softmax

Character
embeddings,

convolution, pooling,
highway networks,

projection layer

Word based
bidirectional

language modelFully
connected,
linear, 512

Predicted
word n + 1

Fully
connected,
linear, 512

Forward hidden state

Backward hidden state

Fully
connected,
linear, 512

Fully
connected,
linear, 512

Forward hidden state

Backward hidden state

3 x 1024-wide
embeddings to be

combined for ELMo

Copy

Context independent embedding

Figure C-6 Bidirectional language model to generate ELMo embeddings

APPENDIX C WORD EMBEDDINGS BEYOND word2vec AND GloVe

574

concatenation. The input layer consists of only 512 entries, but we concatenate it
with a copy of itself, and we end up with three sets of 1,024 entries, shown at the
top right in the figure.

ELMo embeddings are produced by running the text for which we want
embeddings through the language model, and for each word fed to the model,
we record these three vectors. The ELMo embedding is formed by computing a
single vector that is a weighted sum of these three vectors. The weights to use
are application specific and are learned by the end-user model. This is illustrated
in Figure C-7.

The figure shows the language model unrolled in time, with the words can, i, have,
a, can as input. We note that the first and last words (colored green) both are can,
but they have different meanings. The language model outputs three vectors (E1,
E2, and E3) for each timestep, and the ELMo embedding is a weighted sum of the
three vectors. For the two instances of the word can, E1 will be the same because
it is context independent. E2 and E3 depend on the surrounding words, and the
resulting ELMo embeddings for the two words are thereby different (indicated
by the second instance being colored in red). Although ELMo embeddings can
be used in isolation, Peters and colleagues (2018) showed that it is beneficial to
combine them with another context-independent embedding scheme. Figure C-7
shows how this can be done, using pretrained GloVe vectors as the context-
independent scheme.

can

BidirLM

E1

E2

E3

ELMoGloVe

Weighted
Sum

GloVe
Layer

i

BidirLM

E1

E2

E3

Weighted
Sum

GloVe
Layer

ELMoGloVe

have

BidirLM

E1

E2

E3

Weighted
Sum

GloVe
Layer

ELMoGloVe

a

BidirLM

E1

E2

E3

Weighted
Sum

GloVe
Layer

ELMoGloVe

can

BidirLM

E1

E2

E3

Weighted
Sum

GloVe
Layer

ELMoGloVe

Embedding
"can"

Embedding
"i"

Embedding
"have"

Embedding
"a"

Embedding
"can"

Figure C-7 Process of forming context-dependent embeddings by concatenating ELMo
embeddings with any other context-independent embedding

RELATED WORK

575

As already mentioned, the weights used to combine the three vectors are trained
in conjunction with training the model that uses the ELMo vectors. These three
weights (s

1
, s

2
, s

3
) are softmax normalized so that they add up to 1. In addition, a

single scaling factor (γ) is learned that is applied to the final vector. That is, the
task-specific ELMo embedding is given by

 1 2 3 , 11 2 3 1 2 3ELMo s E s E s E where s s stask task task task taskγ)(= + + + + =

Related Work
In our description of the character-based embeddings introduced by Kim and
colleagues (2016), we noted how the convolution and max pooling operations
result in an approximate bag-of-character-n-grams (or just bag-of-n-grams for
short). We described in Chapter 12 that there are two main variations of bag-of-
n-grams. They can indicate either the presence of each n-gram (binary element)
or the count of each n-gram. Wieting and colleagues (2016) did the latter in their
work on CHARAGRAM embeddings. They explicitly created a bag-of-n-grams
instead of using convolutions and used the resulting vector as input to a single
fully connected layer using the ReLU activation function.

Athiwaratkun, Wilson, and Anandkumar (2018) introduced an embedding scheme
similar to FastText but with the ability to capture multiple word senses and
uncertainty information. This enabled the scheme to handle rare, misspelled, or
even unseen words. They named their scheme Probabilistic FastText.

ELMo is not the only existing scheme for context-dependent embeddings. It
builds on work on contextualized word vectors, or CoVe for short (McCann et al.,
2017). In that work, the authors produced context-dependent embeddings from a
machine translation model instead of from a language model. Another difference
compared to ELMo is that CoVe uses only the representation from the top layer of
the model, whereas ELMo uses a combination of multiple layers when forming the
embedding.

This appendix described some techniques to make word embeddings more
versatile than the word2vec and GloVe embeddings described in Chapter 13.
Another body of work that builds on word embeddings is document or paragraph
embeddings. The objective is to find an embedding for an entire phrase instead
of for a single word. We mention some examples here to provide references

APPENDIX C WORD EMBEDDINGS BEYOND word2vec AND GloVe

576

for future reading. The first one is doc2vec (Le and Mikolov, 2014). The training
objective used is to predict the next word in a paragraph. That is, doc2vec is
similar to the language model–based approach described in Chapters 12 and 13,
but the technique is modified to produce an embedding for a sequence of words
instead of for a single word. Mimicking the development of word embeddings,
the skip-thought model (Kiros et al., 2015) is a generalization of the continuous
skip-gram model from word2vec. The training objective is to predict surrounding
sentences given an input sentence, and the result is an embedding for that
input sentence. Finally, sent2vec (Pagliardini, Gupta, and Jaggi, 2018) composes
sentence embeddings using word embeddings and n-gram embeddings as
building blocks.

577

Appendix D

GPT, BERT, and
RoBERTa

This appendix logically follows Chapter 15, “Attention and the Transformer.”

In Chapter 15, we described the Transformer architecture and how it can be
used for natural language translation. Transformers have also been used as
building blocks to solve other natural language processing (NLP) problems. In this
appendix, we describe three such examples.

A key idea is to pretrain a basic model on a large text corpus. As a result of this
pretraining, the model learns general language structure. This model then can
be either used as is to solve a different kind of task or extended with additional
layers and fine-tuned for the actual task at hand. That is, these kinds of models
make use of transfer learning. We saw an example of how this can be done
for images in Chapter 16, “One-to-Many Network for Image Captioning.” There
we used a VGGNet pretrained on the ImageNet dataset as basis for our image-
captioning network. The network learned how to extract useful image features on
the classification task used for pretraining. In the end task, we added the decoder
part of the network that generated image captions, using these extracted features
as input.

Similarly, the models discussed in this appendix learn to extract features from
text data during pretraining. This process is also related to how word embeddings
were learned in Chapter 12, “Neural Language Models and Word Embeddings,”
and Chapter 13, “Word Embeddings from word2vec and GloVe.” There we

578

APPENDIX D GPT, BERT, AND RoBERTa

pretrained a model on text data, which resulted in the first layer of the model
(the embedding layer) learning useful word representations. This embedding
layer could then be reused in other models. The models in this appendix take this
concept one step further. Instead of being limited to reusing only the embedding
layer, multiple layers of the pretrained model are reused in the end application.

GPT
The Generative Pre-Training (GPT; Radford et al., 2018) model is a neural
language model, similar to what was described in Chapter 12. Given a sequence
of input words, the model is trained to predict the next word. We have already
seen how such a model can be used to do text autocompletion. That is, the
pretraining task is to generate text, which gives the model its name.

The language model introduced in Chapter 12 was based on long short-term
memory (LSTM) layers, whereas GPT is based on the Transformer architecture
(described in Chapter 15). To understand this, it is helpful to go back to the natural
language translation network from Chapter 14, “Sequence-to-Sequence Networks
and Natural Language Translation.” It is an LSTM-based encoder-decoder
architecture in which the encoder produces an intermediate representation, and
the decoder network generates a translation in the target language. That is, the
decoder is a language model that uses the intermediate representation as a
starting point. From that perspective, the decoder component of the Transformer
is a language model based on self-attention layers instead of LSTM layers. One
key difference when using the decoder as a standalone language model is that
there is no need to include the attention layer that attends to the intermediate
representation produced by the encoder, simply because the encoder does not
exist. The masked self-attention layer is still present. The basic building block
is shown on the left side of Figure D-1. The right side of the figure shows how
multiple such building blocks (12 in the GPT model) are combined, just as in the
Transformer architecture.

Figure D-2 illustrates pretraining of the model. The model is presented with an
arbitrary sentence on its input. In the figure, we use “gpt is pre trained on an lm
task” as an example. The ground truth the model is trained to predict is the same
sentence but shifted by one word. That is, the first output word corresponds to the
second word in the sentence. The masked self-attention mechanism prevents the
model from cheating by “looking into the future” of the input sentence.

GPT

579

Linear

Softmax

Input
embeddings

+

Masked
self-

attention

+ + +

Norm

Feed
forward

Norm

+

Feed
forward

Norm

+

Norm

Feed
forward

Norm

+

Input
Position

1

Input
Position

2

Input
Position

N

Attention

+ +

n

+

Norm Norm Norm

Positional
embeddings

Decoder
module

GPT
network

Not present in GPTpNot present in GPTNNNN pppNNo esesssss PTPTTTTTT

Decoder
module

Decoder
module

Decoder
module

Norm

Figure D-1 Left: Transformer decoder modified to be used as a standalone
language model. Right: GPT network based on multiple stacked decoder modules.

GPT
(Transformer decoder)

gpt onis pre trained an lm task

is pre trained on an lm task

Output

Input

Figure D-2 GPT pretraining on the language model task

APPENDIX D GPT, BERT, AND RoBERTa

580

Each red box in the figure corresponds to a layer using a softmax activation function
to provide the probabilities for all words in the vocabulary. This pretraining is done
on unlabeled data and can thereby be done on massive amounts of text.

After pretraining, the model is fine-tuned for the specific task, using labeled
data. The inputs to the model, as well as the output layer, are modified slightly to
better suit the end task the model is being used for. Figure D-3 illustrates this for
a similarity task in which the model is presented with two sentences as an input.
The task is to determine whether the two sentences are similar. To do so, the
input needs to be modified to be able to represent two sentences, which is done
with a learned delimiter (DELIM) token. In addition, the input is augmented with a
START token in the beginning and an END token at the end.

Apart from modifying the format of the input sequence, the output layer is also
modified. The GPT paper (Radford et al., 2018) describes how the modification
can be done for a handful of different types of tasks. For the similarity task
illustrated here, there is no natural order between the two sentences, so the
recommendation is to evaluate the model twice. For the second evaluation, the
order of the two sentences is swapped. The outputs corresponding to the END
token for each of these two evaluations are then added elementwise. It is the raw
output from the transformer module that is used—that is, the softmax layer is
discarded. The vector that results from this addition is used as input to a linear
classifier, which is trained to indicate whether the two sentences are similar.

Another use case is sentiment analysis for which the input is just a single text
sequence, so no delimiter token is used. Further, only one evaluation of the
network is required. Just as for the similarity task, a linear classifier is simply

GPT
(Transformer decoder)

[START] [DELIM] [END]gpt is good gpt does well

N/A N/A N/A N/A N/A N/A N/A N/A Output

Text 1 Text 2Input

Output

Figure D-3 Fine-tuning task

GPT

581

trained using the outputs corresponding to the END token as inputs. Details of
how to use the network outputs to solve other types of tasks can be found in the
original GPT paper.

There are a few more details worth mentioning. In the original Transformer paper
(Vaswani et al., 2017), the positional encoding was computed using a formula,
as described in Chapter 15. The GPT model handles this task differently in that
the positional encodings are learned. Figure D-4 illustrates how the input to the
Transformer decoder is created by adding the word embedding to a learned
position embedding of the same dimensionality.

Another detail is how the loss function is constructed. Instead of training only the
linear classifier, it turns out that it is beneficial to train the model to act as a language
model during the fine-tuning step as well. Therefore, the fine-tuning loss function is
a weighted sum of the language model loss function and the end-task loss function.
Finally, GPT does not use a vocabulary of full words but uses a technique known as
byte-pair encoding (Sennrich, Haddow, and Birch, 2016). This technique is based on
subwords and can thereby avoid the problem with out-of-vocabulary words similar
to some of the already-described techniques in Appendix C.

When GPT was introduced, it showed significant improvement over existing models
in 9 out of 12 evaluated tasks. GPT was also studied in the context of zero-shot task
transfer. In such a setting, a pretrained model is applied to a different end task
but without fine-tuning the model for that end task. One example from the paper
is the task of sentiment analysis. Sennrich, Haddow, and Birch (2016) did this by
first concatenating the sentence with the word very and feeding this text sequence
into the model. The output of the model was then interpreted by looking at the
probabilities the model assigned to the two words positive and negative for the
next predicted word. When evaluated on a sentiment analysis test set, the model
correctly assigned higher probability to the word positive in many cases when the
sentence expressed a positive sentiment, and vice versa. That is, even though the
model had not been explicitly trained on the task of sentiment analysis or even
exposed to the training part of the dataset, it had managed to learn this task from

ESTART EDELIM EENDEgpt Eis Egood Egpt Edoes Ewell

E0 E1 E2 E3 E4 E5 E6 E7 E8

+ + + + + + + + +

Word
embedding

Position
embedding

= = = = = = = = =

Resulting
embedding

Figure D-4 How input embeddings are created for GPT

APPENDIX D GPT, BERT, AND RoBERTa

582

an unrelated body of text, using unsupervised learning. A more detailed evaluation
of the GPT architecture on zero-shot task transfer has been done in later studies
(Puri and Catanzaro, 2019; Radford et al., 2019), using GPT-2, which is a scaled-up
version of the GPT model. Brown and colleagues (2020) have done further studies
on the GPT architecture and have shown how an even bigger model (GPT-3) can
solve end tasks in a transfer-learning setting using limited or no fine-tuning.

BERT
A model known as Bidirectional Encoder Representations from Transformers (BERT;
Devlin et al., 2018) takes a somewhat different approach than GPT. BERT makes
use of the observation that there are both backward and forward dependencies
between words in a sentence. We touched on this in the section about bidirectional
recurrent neural networks (RNNs) in Chapter 11, “Text Autocompletion with LSTM
and Beam Search.” The masked self-attention layers in the Transformer decoder
explicitly prevent the network from considering dependencies on future symbols.
BERT, on the other hand, is based on the encoder part of the Transformer
architecture, which does not have this limitation.

To accommodate for the bidirectional property of the architecture, BERT does not
use the traditional language model as its pretraining task. Instead, it is trained
on two tasks known as masked language model and next-sentence prediction. The
model is trained on both of these tasks simultaneously. The details of these two
pretraining tasks are described next.

MASKED LANGUAGE MODEL TASK

As described for GPT, the language model pretraining task consists of predicting
the next word in a sentence. In the masked language model pretraining task for
BERT, the objective is to predict a number of missing (masked) words using both
historical and future words in a sentence. Consider the input sentence “my dog is
a hairy beast,” which is a sentence similar to what was used in the paper (Devlin
et al., 2018). We take this sentence and randomly mask a number of words and
the model is trained to predict the missing words. The input examples are formed
in the following manner:

• Fifteen percent of the words in an input sentence are selected to be masked
(e.g., the word hairy).

• For 80% of the selected masked words, the word embedding is replaced by a
special mask embedding, so we end up with “my dog is a [MASK] beast.”

BERT

583

• For 10% of the selected masked words, the word embedding is replaced by the
embedding for a randomly selected word, so we might end up with “my dog is a
apple beast.”

• For the remaining 10% of the selected masked words, we do not replace the word
embedding but instead use the embedding for the correct word, so we end up with
“my dog is a hairy beast.” This might sound like the word does not get masked
after all, but the distinction between this word and the non-masked words is that
the model is still evaluated on the basis of whether it manages to predict this word.

BERT will try to predict all the words in the sentence, including the ones that are
not masked, but from a training perspective, the model is scored according to how
well it does on only the 15% masked words.

NEXT-SENTENCE PREDICTION TASK

Whereas the masked language task aims to teach the model sentence structure,
the next-sentence prediction task aims to teach the model relationships between
two sentences. This task is a classification problem with the two categories
IsNext and NotNext. The model is presented with two sentences, and the goal is to
determine whether the second sentence logically follows the first sentence. If so,
it should classify the example as the category IsNext. If the second sentence does
not logically follow the first sentence, then the model should classify the example
as NotNext. That is, we have two cases during training:

• In 50% of the cases, simply present two consecutive sentences from the text
corpus and train the model to output the category IsNext. An example is the
sentence “the man went to [MASK] store” followed by “he bought a gallon
[MASK] milk.” Note that some of the words are masked because the two
training tasks are performed at the same time.

• In 50% of the cases, present two unrelated (nonconsecutive) sentences from
the text corpus and train the model to output the category NotNext. An example
is the sentence “the man went to [MASK] store” followed by “penguins [MASK]
flight ##less birds.”

The two hash signs before less indicate that it is a wordpiece. BERT uses
wordpieces as tokens instead of the full words. Wordpieces were described in
Appendix C and come with the advantage of better handling of out-of-vocabulary
words. In short, if a word does not exist in the training vocabulary, it will be
replaced by a sequence of subwords. These wordpieces are run through a regular
embedding layer to create embeddings. In this example, the word flightless was

APPENDIX D GPT, BERT, AND RoBERTa

584

not in the vocabulary and was therefore broken up into the two pieces flight and
less. The hash sign notation follows the notation in the BERT paper (Devlin et al.,
2018) and is different from the underscore notation used in Appendix C.

Although these examples used actual sentences, in reality, the BERT pretraining
task uses a broader definition, where a sentence is simply a consecutive
collection of words from the corpus. Thus, each “sentence” might well consist
of multiple actual sentences with the restriction that the total number of words
for the two sentences cannot exceed the model width, which for the typical BERT
model is 512 words.

BERT INPUT AND OUTPUT REPRESENTATIONS

To be able to handle the two pretraining tasks we just presented, as well as other
NLP tasks, BERT needs to be able to accept two sentences as an input. It also
needs to be able to output a category prediction (IsNext or NotNext) as well as a
word prediction corresponding to each word in the input sentences. BERT handles
this with a combination of special tokens and a concept known as segment
embeddings. Figure D-5 shows the organization of input and output tokens for
BERT. The input consists of a classification token CLS, followed by the tokens for a
first sentence (e.g., the question in a question-answering task). The first sentence
ends with a separation token SEP. It is followed by tokens for an optional second
sentence (e.g., the answer), which again ends with the SEP token.

BERT
(Transformer encoder)

CLS SEP SEPwho are you i am bert

Tc T1 T1 T2T2 T3 T3TSEP TSEP

Question Answer

Classification
output

Input

Output

Figure D-5 BERT inputs and outputs. The input begins with a special
classification CLS token. It is followed by a sequence of question tokens and
a sequence of answer tokens. Each of those two groups ends with a special
separation SEP token.

BERT

585

For tasks that require only a single input sentence (e.g., sentiment analysis), the
input is simply a CLS token, followed by the question, and ending with a SEP token.

The output from BERT takes the form of one vector corresponding to each input
symbol (word). The CLS token in the input results in a corresponding output that
can be used for tasks that need to aggregate information for the entire sentence
instead of for just an individual word. An example of such a task is a classification
task. To use this output position for classification, we train a linear classifier using
the output vector from this position as input, similar to how is done for GPT, as
described earlier. That is, we extend BERT with an additional fully connected layer
with a softmax output matching the number of categories we want to classify.
This fully connected layer uses the CLS output vector as its input. For the next-
sentence pretraining task, this softmax layer would have the two outputs IsNext
and NotNext (technically, it could have a single logistic sigmoid neuron as its
output given that it is only two categories).

Apart from the CLS and SEP tokens, there is also the masking token MASK that
has already been described. It is not shown in Figure D-5, but for the masked
language model task, this token would replace one or more input words.

BERT learns positional embeddings just as the GPT model does. One could argue
that the combination of special tokens and positional embeddings should be
sufficient. However, to further simplify for the network to learn, BERT also learns
segment embeddings. There is one segment embedding E

A
 corresponding to the first

sentence and one segment embedding E
B
 corresponding to the second sentence. E

A

is added to each word embedding of the first sentence, and E
B
 is added to each word

embedding of the second sentence, as illustrated in Figure D-6.

Word
embedding

Segment
embedding

Position
embedding

Resulting
embedding

ECLS Ewho Eare Eyou ESEP ESEPEi Eam Ebert

+ + + + + + + + +

+ + + + + + + + +

= = = = = = = = =

E1 E2 E3 E4 E5 E6 E7 E8E0

EA EA EA EA EA EB EB EB EB

Figure D-6 How input vectors to the encoder network are formed. Each input
vector is a sum of three embeddings. The first is the embedding corresponding to
the word. The second is a segment embedding (indicating whether the word is a
part of the question or answer). The third is a position embedding.

APPENDIX D GPT, BERT, AND RoBERTa

586

APPLYING BERT TO NLP TASKS

BERT has been shown to be versatile and has been applied to a wide variety of
tasks. The original paper (Devlin et al., 2018) presented state-of-the-art results in
no less than 11 NLP tasks. We list just some of them here:

• Sentiment analysis of text, similar to the tweet and movie review examples
discussed in Chapter 12.

• Spam detection.

• Determine whether a second sentence is an entailment, a contradiction, or
neutral with respect to the first sentence.

• Given a question and a text paragraph that contains the answer, identify
the specific set of words that answers the question. For example, given
the question “Where do water droplets collide with ice crystals to form
precipitation?” and the paragraph “Precipitation forms as smaller droplets
coalesce via collision with other rain drops or ice crystals within a cloud,” the
goal for the network is to produce within a cloud on its output.

To solve these tasks, the starting point is a BERT model pretrained on the masked
language model and next-sentence prediction task. BERT is then augmented with
additional layers that are fine-tuned for the task at hand. For example, for the
first three tasks, we add a fully connected network followed by a softmax output
to provide a classification. For the fourth task (identifying the answer), BERT is
augmented with a mechanism that, together with the individual word outputs, is
trained to indicate the start and end positions in the answer sentence. These two
positions indicate the specific sequence of words that contains the actual answer.

Just as for the Transformer, Alammar (2018a) has written a blog post describing
BERT, including links to an implementation available for download.

RoBERTa
The BERT architecture spawned many follow-on studies applying BERT to
different NLP problems. Other studies presented modifications to the BERT
architecture to improve on the results of the original model. Liu, Ott, and
colleagues (2019) noted that it is challenging to compare the results from
different studies because they often are done with different training parameters
and datasets, some of which are not publicly available. Therefore, instead of

587

RoBERTa

modifying BERT, the authors decided to replicate the BERT study and explore
the impact of training parameters and dataset size. They found that BERT was
significantly undertrained. By modifying the training approach and using a larger
dataset, they managed to make the original BERT architecture perform even
better. They even found it to perform better than the more recently published
work that had extended the BERT architecture. We note that these findings are not
without controversy, which is discussed in the related work section later in this
appendix. Liu, Ott, and colleagues named their work RoBERTa, which is short for a
Robustly Optimized BERT Pretraining Approach. We summarize the key findings in
this section.

In the original BERT paper (Devlin et al., 2018), the masked language modeling
task was trained by first statically masking words in the training dataset and
then using this masked version of the dataset repeatedly for each training epoch.
Instead of statically masking the dataset up front, RoBERTa dynamically masks
words during training. The model will therefore see different words being masked
during the different training epochs.

BERT uses the two pretraining tasks masked language model and next-
sentence prediction. In the original BERT paper, Devin and colleagues did an
ablation study and concluded that the next-sentence prediction task was helpful
because the model accuracy on downstream tasks decreased when only using
the masked language model as the training objective. Interestingly, when
Liu, Ott, and colleagues (2019) replicated the study, they came to a different
conclusion. They found that the model performed better when they used only
the masked language model as a pretraining task. The reason for these two
differing conclusions is subtle. We see the following when reading the BERT
paper. In the description of the ablation study where they run without next-
sentence prediction pretraining, Devin and colleagues (2018) state that they
“use the exact same pretraining data.” Our interpretation is that, just as for the
baseline system, 50% of the training examples will consist of two noncontiguous
sentences. The only difference is that the model is scored only on the basis of
its ability to predict masked words.

Liu, Ott, and colleagues (2019) took a different approach for RoBERTa. In the
case where they use only the masked language model as a pretraining task, they
additionally make sure to use only a contiguous sequence of text. When they
present their opposite conclusion on next-sentence prediction, they state, “It is
possible that the original BERT implementation may only have removed the loss
term while still retaining the SEGMENT-PAIR input format.” We find it plausible
that they did indeed identify the difference between the two experiments, and

APPENDIX D GPT, BERT, AND RoBERTa

588

it seems consistent with the statement in the BERT paper. Overall, it is not
surprising that when next-sentence prediction is not included as a pretraining
task, the model will benefit from all training examples containing contiguous
blocks of text instead of having 50% of the examples consist of two unrelated
blocks of texts concatenated together. Somewhat related, Lan and colleagues
(2020) introduced A Lite BERT (ALBERT) and showed that using a pretraining task
known as sentence order prediction (SOP) in addition to the masked language
model pretraining task resulted in improvements over the next-sentence
prediction pretraining task.

A third set of changes introduced by RoBERTa is to use a larger mini-batch size,
increased number of training epochs, and a significantly larger training dataset.
Liu, Ott, and colleagues (2019) evaluated mini-batch sizes from 256 (used in
BERT) up to 8K. The conclusion was that a mini-batch size of 2K was the best
choice when holding the total amount of computations constant. However, to
enable more parallelism for the case with larger dataset sizes, they used a
mini-batch size of 8K for the largest experiments. BERT had used a dataset
consisting of a combination of books and Wikipedia, totaling 16 GB. For RoBERTa
the dataset size was increased tenfold to 160 GB by using three additional text
corpora. Finally, the RoBERTa study also increased the number of training steps1
by fivefold.

All in all, these changes resulted in better results than other previously reported
improvements over BERT. Liu and colleagues explicitly point out that they decided
not to explore a different architecture but that it can be considered as future work.
Overall, this study illustrates that not only model architecture is important, but so
are training parameters and training data. We touch on this topic again at the very
end of this appendix.

Historical Work Leading Up to
GPT and BERT

Both GPT and BERT rely on unsupervised pretraining followed by supervised task
specific fine-tuning. This is known as semi-supervised learning. GPT was not the
first model to use semi-supervised learning in the NLP field. In Chapter 13, we

1. We talk about training steps (mini-batches) instead of epochs because the total number of training
examples included in an epoch is not constant when the dataset size is increased.

HISTORICAL WORK LEADING UP TO GPT AND BERT

589

described how word embeddings can be learned in an unsupervised manner and
then used in a subsequent supervised learning task. In that case, only the weights
from the first layer (the embedding layer) are transferred to the model to use for
fine-tuning.

Dai and Le (2015) took this concept one step further in their work on semi-
supervised sequence learning in the context of text classification (e.g., sentiment
analysis). They studied two different pretraining tasks. One was a language
model task, similar to what we described in Chapter 12, where the objective is
to predict the next word from a sequence of preceding words. The other was an
autoencoder task where the model first consumes an input word sequence and
creates an internal representation. The objective is then to generate that same
word sequence on its output. Dai and Le showed that an LSTM-based RNN for text
classification performed better if it was initialized with weights learned from one
of these two tasks instead of just using randomly initialized weights.

Whereas Dai and Le had used domain-specific text (e.g., movie reviews) for the
unsupervised pretraining, Howard and Ruder (2018) showed that they could
improve model performance by pretraining on a large body of text not directly
related to the end task. This observation, in combination with the fact that the
pretraining task is unsupervised, is significant. Instead of requiring carefully
selected and labeled data, the pretraining task can use all of the vast amounts
of textual data that are available online. Howard and Ruder showed impressive
results on multiple text classification tasks. They used a language model as the
pretraining task and named their work Universal Language Model Fine-tuning
(ULMFiT).

We can now put GPT and BERT into context. GPT is similar to ULMFiT but is
based on the Transformer decoder block instead of an LSTM-based model.
GPT uses a language model as the pretraining task just as ULMFiT does.
BERT is based on the Transformer encoder block. However, instead of using
the language model pretraining task, BERT uses a form of the autoencoder
pretraining task that was also used by Dai and Le (2015). The pretraining task
used in BERT has been referred to as a denoising autoencoder because the
task is not truly to reproduce the same output as the data presented as input.
Instead, the objective for BERT is to recreate a sentence given a corrupted
version (some words have been replaced by MASK tokens). A key difference
between GPT and BERT is that the pretraining task for BERT is bidirectional.
This implies that BERT can make use of both historical and future words in a
sentence when predicting the output.

APPENDIX D GPT, BERT, AND RoBERTa

590

Other Models Based on the Transformer
As described in Chapter 15, the Transformer relies fully on attention and does not
use recurrence. One drawback of this is that the length of the historical context
has a hard limit. To address this issue, Dai and colleagues (2019) extended
the Transformer by combining it with recurrent connections. They called it the
Transformer-XL, where XL means eXtra Long. To enable the model to work with
variably sized input, they also modified the positional encodings to be based on
relative positions instead of absolute positions. All in all, the Transformer-XL can
identify longer-term dependencies than the original Transformer.

Enhanced Representation through Knowledge Integration, or ERNIE, uses the
same architecture as BERT but improves on its performance by modifying how it
is trained (Sun et al., 2019). One such modification is to mask multiword entities
instead of single words. For example, if the input sentence contains the two
consecutive words Harry Potter, it would treat both words as an entity instead of
as two separate words. That is, during pretraining, in a case where BERT would
mask one of the two words, ERNIE would mask both words together. Similarly,
ERNIE groups multiple words into phrases. For example, the three words a series
of would all be masked together because they form a phrase. ERNIE 2.0 adds
additional tweaks to the training process along with more pretraining tasks
(Sun et al., 2020). It also adds the concept of a task-specific embedding, which
is dependent on what task the model is currently expected to solve. This task-
specific embedding is used in addition to the positional embedding and segment
embedding that were shown in Figure D-6. ERNIE 2.0 improves over BERT on
multiple NLP tasks in both English and Chinese.

Whereas ERNIE largely kept the BERT architecture unchanged (except for the
task embedding used to modify the input), XLNet made changes to the model
itself (Yang et al., 2019). First, it taps into the improvements on the Transformer
architecture by using Transformer-XL instead of the original Transformer. That
is, it uses recurrent connections and the associated changes to the positional
encodings. The other major change is somewhat subtle. Yang and colleagues
noted that while the masked language model pretraining task (the denoising
autoencoder task mentioned previously) for BERT is powerful, it does not
resemble what the model will see for the end task. The traditional language
model used by GPT is more realistic. In particular, the BERT training objective
makes the assumption that the masked words (15% of all words) are independent.
That is not true, because they occur in the same sentence, and dependencies
between words in the same sentence are expected. XLNet tries to get the best of

OTHER MODELS BASED ON THE TRANSFORMER

591

both worlds by using a language model approach but using multiple permutations
of the word order of the input sentence, including future words. This enables the
model to benefit from the bidirectionality from BERT while avoiding the issue of
dependencies between masked words.

Yang and colleagues (2019) showed that XLNet outperforms BERT. On the
other hand, the RoBERTa study (Liu, Ott, et al., 2019) concluded that the BERT
architecture outperformed XLNet when addressing the undertraining issue.
However, the comparison does not end there. The most recent version of the
XLNet paper (Yang et al., 2019) includes an attempt at doing a fair comparison
between XLNet and RoBERTa and showed that XLNet was still better, in particular
for tasks that involve longer context. Yang and colleagues hypothesize that it
results from the Transformer-XL based architecture.

This back-and-forth illustrates that it is hard to pinpoint the effect of architecture
versus training process. Therefore, doing a fair comparison between two
architectures can be difficult. Another big challenge is that the models and
datasets have now gotten to a size that training the model requires huge
computational resources. To illustrate this, we consider the following sentence
from the RoBERTa paper: “We pretrain our model using 1024 V100 GPUs for
approximately one day” (Liu, Ott, et al., 2019). As another example, Shoeybi
and colleagues (2019) used 512 V100 GPUs to sustain 15.1 petaflops across an
application in their work on Megatron-LM. Similarly, in their work on the Text-
To-Text Transfer Transformer (T5), Raffel and colleagues (2019) describe that
training the models requires a great deal of computation, and they use slices of
tensor processing unit (TPU) pods. They further describe a TPU pod as a multirack
ML supercomputer consisting of 1,024 TPU chips. At the time of these studies, a
V100 GPU was the most high-end GPU available for DL training, and a TPU is a
special built chip to accelerate tensor operations. Getting access to a system with
512 to 1,024 of them for an extended period of time was not cheap. Bender and
colleagues (2021) further explore the topic of big language models and training
data size from different angles, including environmental impact and ethics.
Given these concerns, it would not surprise us if more efficient language model
architectures will emerge over time. We are also hopeful that the ethical concerns
are taken seriously and that the industry and research community come up with
innovative ways of ensuring that language models trained on large datasets do
not cause harm.

This page intentionally left blank

593

Appendix E

Newton-Raphson
versus Gradient
Descent

This appendix is related to Chapter 2, “Gradient-Based Learning.”

The pervasive method for adjusting the weights in deep learning (DL) is gradient
descent. It is an iterative method used to minimize the output value of a function.
We believe that many readers are already familiar with a different iterative
minimization method known as Newton-Raphson. We have included this appendix
for readers who are curious about how the two methods relate to each other.

We describe Newton-Raphson in a single dimension, similarly to how we
introduced gradient descent in Chapter 2. The method can be used both to find a
solution (root) to an equation as well as to solve an optimization problem (find the
minimum). We start with the root finding method.

We often feel bad for poor Raphson, whose name is often left out—the method
is more commonly referred to as just Newton’s method.

APPENDIx E NEWToN-RAPhsoN vERsus GRADIENT DEsCENT

594

Newton-Raphson Root-Finding Method
In Chapter 2, we noted that we can state our learning problem mathematically as
trying to solve the following equation for a given training example:

y ŷ 0− =

We never tried to solve that particular problem with gradient descent but instead
introduced the mean squared error (MsE) function and changed our problem into
a minimization problem. Let us now instead see how we can use the root-finding
version of Newton-Raphson to solve this equation.

In the single dimension case, where we have a function1 y = f(x), the method will
find the value of x that results in f(x) = 0. The Newton-Raphson method starts with
an initial guess of the solution x

0
 and then iteratively refines it until an x that is

close enough to the actual solution is found. Figure E-1 shows geometrically how
the Newton-Raphson method works.

We start with an initial guess of x
0
 = 1.75. We insert it into f(x) and conclude that

the result is not 0. From the chart, we can see that f(x
0
) is about 4.5 (the height of

the red dashed line). We create the equation for the tangent (orange line in chart),
solve it for y = 0, and arrive at a new guess: x

1
 = 1.28. We insert that value into f(x)

and see that the result is about 1.0 (the height of the purple dashed line), which
is still not close enough to 0. We make a new attempt, calculate the tangent for a

1. In this context, y does not refer to the network output, but simply refers to any mathematical
function that we want to solve for zero

Figure E-1 The Newton-Raphson method

NEWToN-RAPhsoN RooT-FINDING METhoD

595

second iteration (green line), and arrive at a new guess: x
2
 = 1.06. We insert that

value into f(x), see that it is close to 0, and our conclusion is that x = 1.06 is an
approximate solution to the equation f(x) = 0.

Looking at Figure E-1, we can derive a formula for computing the refined value
x

n+1
 given a previous x

n
. The following equality follows from the figure:

1

f x
f x

x xn
n

n n

))((
′ =

− +

To understand why, let us assume that n = 0. The derivative (left side of equality)

is the same as the slope of the orange line. This slope can be computed as
∆
∆

y

x
,

where Δy is the height of the dashed red line and Δx is the distance between x
0

and x
1
. We note that Δy for a given iteration n can be computed as f(x

n
), which

is the numerator on the right side of the stated equality. similarly, Δx can be
computed as (x

n
 − x

n+1
), which is the denominator. This explains why the equality

holds true. solving for x
n+1

, we get

1x x
f x

f xn n
n

n

)
)

(
(= −

′+

which is how we iteratively find a solution according to the Newton-Raphson
method. The method works even if the initial guess of x results in a negative
function value, because the subtraction in the formula in combination with the
negative function value will result in x

n+1
 becoming greater than x

n
.

NEWToN-RAPhsoN APPLIED To oPTIMIZATIoN PRoBLEMs

We noted in Chapter 2 that, in reality, we want to use an error function that
combines the error of multiple training examples into a single metric, such as
the MsE:

1
ˆ

1

2

m
y y mean squared error

i

m
i i∑)()(−))((

=

We also described that doing so causes an issue in that there might not exist
a solution where the error function is 0. This is illustrated in the upper part of
Figure E-2, which plots an error function based on MsE. The initial guess x

0
 is

fairly close to the minimum value of the error, but because Newton-Raphson tries
to find a point where the function is 0, it takes a long step to the left (orange line),
followed by a long step to the right (green line), and never converges. It is clear
that using a root-finding algorithm on an equation that has no roots is pointless.

APPENDIx E NEWToN-RAPhsoN vERsus GRADIENT DEsCENT

596

Instead, we can use the optimization version of Newton-Raphson. Just like
gradient descent, this version aims at minimizing the function instead of solving
it for 0. We do this by applying Newton-Raphson to the derivative of the original
function, because a derivative of 0 implies an extreme point, such as a local
minimum. This is done in the bottom part of Figure E-2, which plots the derivative
of the already studied function in the upper part of the figure. We provide an initial
guess x

0
, and the algorithm takes a step (orange line) to a point x

1
 and overshoots

the solution. It then takes another step (green line almost exactly on top of the
blue function) to x

2
, which is very close to the actual solution.

Figure E-2 Top: Newton-Raphson on the original function f(x). The algorithm does
not converge because the function has no 0 roots. Bottom: Newton-Raphson on
the derivative f'(x). The algorithm finds a point where the derivative is 0, which
corresponds to a local minimum for the original function f(x).

RELATIoNshIP BETWEEN NEWToN-RAPhsoN AND GRADIENT DEsCENT

597

Relationship Between Newton-Raphson
and Gradient Descent

one challenge with the optimization version of Newton-Raphson is that we first
need to compute the derivative of the error function to arrive at the function
to solve for 0, and then we need to compute the derivative of this new function
for each step. That is, we need to compute both the derivative and the second
derivative of the error function. More formally, the optimization version of
Newton-Raphson is a second-order optimization method. Gradient descent,
on the other hand, is a first-order optimization method in that it requires only
the first derivative. This reduces the amount of both computation and storage
needed, which is significant when optimizing a function consisting of millions of
parameters.

This page intentionally left blank

599

Appendix F

Matrix Implementation
of Digit Classification
Network

This appendix is related to Chapter 4, “Fully Connected Networks Applied to
Multiclass Classification.”

This appendix contains two alternative implementations of the digit classification
network. In the first implementation, the idea is to organize the weights for all the
neurons in a layer into a single matrix, where each row in the matrix represents a
neuron. The weighted sums for an entire layer of neurons can then be computed by
multiplying this matrix by the input vector. We then extend it to handle mini-batches
as well. We organize all the input examples of a mini-batch into a single matrix. The
weighted sums for an entire layer of neurons for all input examples in the mini-
batch can then be computed by a single multiplication of these two matrices.

Single Matrix
Starting with the implementation without mini-batches, the only functions that
have changed compared to the code example in Chapter 4 are forward_pass,
backward_pass, and adjust_weights. They are shown in Code Snippet F-1.

APPEndIx F MATrIx IMPlEMEnTATIon oF dIgIT ClASSIFICATIon nETWork

600

Code Snippet F-1 Functions for Forward Pass, Backward Pass, and Adjusting
Weights

def forward_pass(x):
 global hidden_layer_y

 global output_layer_y

 # Activation function for hidden layer.

 hidden_layer_z = np.matmul(hidden_layer_w, x)

 hidden_layer_y = np.tanh(hidden_layer_z)

 hidden_output_array = np.concatenate(

 (np.array([1.0]), hidden_layer_y))

 # Activation function for output layer.

 output_layer_z = np.matmul(output_layer_w,

 hidden_output_array)

 output_layer_y = 1.0 / (1.0 + np.exp(-output_layer_z))

def backward_pass(y_truth):
 global hidden_layer_error

 global output_layer_error

 # Backpropagate error for each output neuron.

 error_prime = -(y_truth - output_layer_y)

 output_log_prime = output_layer_y * (

 1.0 - output_layer_y)

 output_layer_error = error_prime * output_log_prime

 # Backpropagate error for each hidden neuron.

 hidden_tanh_prime = 1.0 - hidden_layer_y**2

 hidden_weighted_error = np.matmul(np.matrix.transpose(

 output_layer_w[:, 1:]), output_layer_error)

 hidden_layer_error = (

 hidden_tanh_prime * hidden_weighted_error)

def adjust_weights(x):
 global output_layer_w

 global hidden_layer_w

 delta_matrix = np.outer(

 hidden_layer_error, x) * LEARNING_RATE

 hidden_layer_w -= delta_matrix

SInglE MATrIx

601

In these functions, we no longer loop over the individual neurons and do
dot products, but instead, we handle an entire layer in parallel using matrix
operations.

The forward_pass function is straightforward. We use the numPy matmul
function to multiply the weight matrix by the input vector and then apply the
activation function tanh on the resulting output vector. We then append a bias
needed for the output layer using the concatenate function and do the matrix
multiplication and activation function for the output layer as well.

The backward_pass function is not much more complicated. We compute the
derivatives of the error function and the activation function but note that all these
computations are done on vectors (i.e., all neurons in parallel). Another thing to
note is that the mathematical operators +, -, and * are elementwise operators.
That is, there is a big difference between using * and the matmul function.
one thing to note is the call to np.matrix.transpose and the indexing we
do with output_layer_w[:, 1:]. The transpose operation is needed to
make the dimensions of the weight matrix match what is needed for a matrix
multiplication with the error vector. The indexing is done to get rid of the bias
weights when computing the error terms for the hidden neurons because the
bias weight from the output layer is not needed for that operation. All in all, if
you are not fluent in matrix algebra, it is hard to see through what is going on
in the function. one way to convince yourself that it is doing the right thing is to
expand the vector and matrix expressions with a pen and paper for a small-sized
problem (like two neurons) and see that it does the same thing as in our previous
implementation.

The adjust_weights function is slightly tricky. For each of the two layers, we
need to create a matrix with the same dimensions as the weight matrix for that
layer but where the elements represent the delta to subtract from the weights.
The elements of this delta matrix are obtained by multiplying the input value that
feeds into a weight by the error term for the neuron that the weight connects

 hidden_output_array = np.concatenate(

 (np.array([1.0]), hidden_layer_y))

 delta_matrix = np.outer(

 output_layer_error,

 hidden_output_array) * LEARNING_RATE

 output_layer_w -= delta_matrix

APPEndIx F MATrIx IMPlEMEnTATIon oF dIgIT ClASSIFICATIon nETWork

602

to and finally multiplying by the learning rate. We already have the error terms
arranged in the vectors hidden_layer_error and output_layer_error.
Similarly, we have the input values for the two layers arranged in the vectors x
and hidden_layer_y. For each layer we now combine the input vector with
the error vector using the function np.outer which computes the outer product
of the two vectors. It results in a matrix where the elements are all the pairwise
products from the elements in the two vectors, which is exactly what we want. We
multiply the matrix by the learning rate and then subtract from the weight matrix.
Again, the best way to convince yourself that it does the right thing is to walk
through a small example, possibly in a Python interpreter, to see how the vectors
and matrices are combined.

When we run this program, we get very similar output compared to the
non-matrix implementation, but it runs faster because of the more efficient
implementation using matrix-vector multiplications instead of loops.

Mini-Batch Implementation
We now take this example one step further and introduce mini-batches. We take
multiple input examples and organize them into a matrix where each column
is an input vector, and the number of columns is the same as the mini-batch
size. We can now calculate the weighted sums for all neurons in a layer for all
examples in a mini-batch by multiplying these two matrices. The result will
be a new matrix with all the weighted sums for that layer for all examples
in that mini-batch. We do the same calculation for each layer and then do
backpropagation for the entire mini-batch in a similar manner. Finally, we
construct N update matrices, where N is the number of examples in the mini-
batch. We then calculate the elementwise mean of all of these matrices. This
results in a final matrix that we can subtract from the weight matrix to update
the weights, using the average gradient computed from the mini-batch. The
initialization code and the functions to print progress and plot are unchanged,
so we do not repeat them in this example.

The code representing the neurons and connections is shown in Code Snippet F-2.
The variables that were previously vector variables have now become matrices
where the new dimension is the mini-batch size. The programming example
assumes that the variable BATCH_SIZE has been initialized with the value 32.

MInI-BATCh IMPlEMEnTATIon

603

Code Snippet F-3 shows the functions for the forward pass, backward pass,
and weight adjustment. The forward_pass function is straightforward. The
only difference is that when creating the input to the output layer, we now need
to extend it with a vector of bias terms instead of just a single bias term. It is a
vector because there needs to be one bias element for each example in the mini-
batch. Another difference is that x is now a matrix representing a batch of training
examples instead of a vector representing a single example. The code itself has
not changed, but it is worth noting that the arguments to matmul are now two
matrices instead of a matrix and a vector.

The backward_pass function is unchanged, although the input y_truth now is
a matrix. The same applies to the global variables hidden_layer_error and
output_layer_error that are used in the function.

In adjust_weights, we need to append a vector of bias terms (technically, a
matrix where one dimension is 1) to the outputs from the hidden layer where
the vector length represents the mini-batch size. We have added a for loop that
loops through all the examples in the mini-batch, accumulates the deltas in the
delta_matrix, and then divides by the mini-batch size. This is how we compute
the average of the gradient. We then simply do the weight update just as in the
previous implementation but now using this averaged matrix instead.

def layer_w(neuron_count, input_count):
 weights = np.zeros((neuron_count, input_count+1))

 for i in range(neuron_count):

 for j in range(1, (input_count+1)):

 weights[i][j] = np.random.uniform(-0.1, 0.1)

 return weights

Declare matrices and vectors representing the neurons.

hidden_layer_w = layer_w(25, 784)

hidden_layer_y = np.zeros((25, BATCH_SIZE))

hidden_layer_error = np.zeros((25, BATCH_SIZE))

output_layer_w = layer_w(10, 25)

output_layer_y = np.zeros((10, BATCH_SIZE))

output_layer_error = np.zeros((10, BATCH_SIZE))

Code Snippet F-2 Matrices representing Weights, outputs, and Error Terms for
the Mini-Batch Implementation

APPEndIx F MATrIx IMPlEMEnTATIon oF dIgIT ClASSIFICATIon nETWork

604

Code Snippet F-3 Functions for Forward Pass, Backward Pass, and Weight
Adjustment for the Mini-Batch Implementation

def forward_pass(x):
 global hidden_layer_y

 global output_layer_y

 # Activation function for hidden layer.

 hidden_layer_z = np.matmul(hidden_layer_w, x)

 hidden_layer_y = np.tanh(hidden_layer_z)

 hidden_output_array = np.concatenate(

 (np.ones((1, BATCH_SIZE)), hidden_layer_y))

 # Activation function for output layer.

 output_layer_z = np.matmul(output_layer_w,

 hidden_output_array)

 output_layer_y = 1.0 / (1.0 + np.exp(-output_layer_z))

def backward_pass(y_truth):
 global hidden_layer_error

 global output_layer_error

 # Backpropagate error for each output neuron.

 error_prime = -(y_truth - output_layer_y)

 output_log_prime = output_layer_y * (

 1.0 - output_layer_y)

 output_layer_error = error_prime * output_log_prime

 # Backpropagate error for each hidden neuron.

 hidden_tanh_prime = 1.0 - hidden_layer_y**2

 hidden_weighted_error = np.matmul(np.matrix.transpose(

 output_layer_w[:, 1:]), output_layer_error)

 hidden_layer_error = (

 hidden_tanh_prime * hidden_weighted_error)

def adjust_weights(x):
 global output_layer_w

 global hidden_layer_w

 delta_matrix = np.zeros((len(hidden_layer_error[:, 0]),

 len(x[:, 0])))

MInI-BATCh IMPlEMEnTATIon

605

Finally, Code Snippet F-4 shows the training loop for the mini-batch implementation.
The for loops that loop over the training and test examples are now changed
to handle one mini-batch per iteration. This includes logic to collect a number of
training examples into a matrix that is then passed to the forward and backward
pass functions.

We cheated a little bit in the outer loops (index j) by not properly handling the end
of the training and test sets if they are not evenly divisible by the mini-batch size.
Instead of worrying about how to use partially filled matrices, we simply skip the
final few training and test examples. This would not be acceptable in a production
implementation but makes the code shorter and easier to understand.

 for i in range(BATCH_SIZE):

 delta_matrix += np.outer(hidden_layer_error[:, i],

 x[:, i]) * LEARNING_RATE

 delta_matrix /= BATCH_SIZE

 hidden_layer_w -= delta_matrix

 hidden_output_array = np.concatenate(

 (np.ones((1, BATCH_SIZE)), hidden_layer_y))

 delta_matrix = np.zeros(

 (len(output_layer_error[:, 0]),

 len(hidden_output_array[:, 0])))

 for i in range(BATCH_SIZE):

 delta_matrix += np.outer(

 output_layer_error[:, i],

 hidden_output_array[:, i]) * LEARNING_RATE

 delta_matrix /= BATCH_SIZE

 output_layer_w -= delta_matrix

Code Snippet F-4 Training loop for the Mini-Batch Implementation

index_list = list(range(int(len(x_train)/BATCH_SIZE)))

Network training loop.

for i in range(EPOCHS): # Train EPOCHS iterations

 np.random.shuffle(index_list) # Randomize order

 correct_training_results = 0

 for j in index_list:

 j *= BATCH_SIZE

APPEndIx F MATrIx IMPlEMEnTATIon oF dIgIT ClASSIFICATIon nETWork

606

When we run this implementation, we will get a different behavior than we got
with our previous implementation. Using mini-batches results in the updates
being done with different gradients, and there are also fewer total weight updates
per epoch. As a result, it can make sense to experiment with different parameter
values for our new configuration. our experiments indicate that, for our mini-
batch implementation with a mini-batch size of 32, we see better learning if we
increase the learning rate from 0.01 to 0.1.

 x = np.ones((785, BATCH_SIZE))

 y = np.zeros((10, BATCH_SIZE))

 for k in range(BATCH_SIZE):

 x[1:, k] = x_train[j + k]

 y[:, k] = y_train[j + k]

 forward_pass(x)

 for k in range(BATCH_SIZE):

 if(output_layer_y[:, k].argmax()

 == y[:, k].argmax()):

 correct_training_results += 1

 backward_pass(y)

 adjust_weights(x)

 correct_test_results = 0

 for j in range(0, (len(x_test) - BATCH_SIZE),

 BATCH_SIZE): # Evaluate network

 x = np.ones((785, BATCH_SIZE))

 y = np.zeros((10, BATCH_SIZE))

 for k in range(BATCH_SIZE):

 x[1:, k] = x_test[j + k]

 y[:, k] = y_test[j + k]

 forward_pass(x)

 for k in range(BATCH_SIZE):

 if(output_layer_y[:, k].argmax()

 == y[:, k].argmax()):

 correct_test_results += 1

 # Show progress

 show_learning(i, correct_training_results/len(x_train),

 correct_test_results/len(x_test))

plot_learning() # Create plot

607

Appendix G

Relating Convolutional
Layers to Mathematical
Convolution

This appendix is related to Chapter 7, “Convolutional Neural Networks Applied to
Image Classification.”

The intent of this appendix is to give a brief description of the mathematical
definition of convolution and to bridge the gap between the definition and its
application in convolutional networks. This description targets readers who
already have some familiarity with convolution. If you have not previously
encountered the concept, you might first need to consult a more extensive text
on convolution, which can typically be found in any book on signals and systems.
One such book is written by Balmer (1997). Somewhat counterintuitively, we think
it is questionable whether understanding convolution in detail will provide much
benefit with respect to basic understanding of convolutional networks.

If you have encountered convolution in the past, chances are that it was 1D
convolution in the context of signal processing1 and most likely was applied

1. Chances are that we are wrong and that we are projecting our experience onto you. It might be that
convolution was used for analog audio in our days, but nowadays people encounter convolution in
digital image processing.

APPEnDIx G RElATInG COnvOluTIOnAl lAyERS TO MAThEMATICAl COnvOluTIOn

608

to continuous signals. A common use case for convolution in this context is to
establish the impulse response of an audio filter2 to determine the characteristics
of the filter—that is, how much signals of different frequencies will be attenuated.
In contrast, in the context of deep learning (Dl)-based image classification, we
typically use 2D convolution applied to discrete signals. The convolutional kernel
is used as a pattern/feature identifier. From an implementation perspective, it is
common to do the related operation cross-correlation instead of convolution. We
get to that at the end of this description.

A convolution is an operation applied to two functions f(t) and g(t) and results in
a new function (f * g)(t), where * is the convolution operator. More specifically, the
function resulting from the convolution is defined as

∫ τ τ τ()() () ()= −
∞

∞

−

f g t f g t d*

Given that convolution is an integral, the value of the convolution represents the
area under a curve. The curve that we integrate over is obtained by multiplying f
by a mirrored and time-shifted version of g. The variable t determines how much
to time-shift the function g.

To make this more concrete,3 for the example of an audio filter, f would represent
the audio signal and g would represent the filter function. See Figure G-1 for
a graphical representation. The upper two charts show two functions, f and g.
The lower left chart shows how g has been mirrored around the y-axis and time
shifted. Over time, we slide this mirrored version of g from left to right. Each
time-shifted location of g results in a value of our convolution function. The figure
shows how the convolution is calculated for an input value of 2. We first compute
the product between f and g (mirrored and time shifted by 2), which results in the
red curve in the figure. We then integrate over this function, which results in the
green curve. That is, the green curve represents the area under the red curve.

The lower right chart shows the full convolution function for all input values. It
peaks at 3.0, which is the area under the red curve when g is in a location where it
fully overlaps f.

2. Audio filters can be used to control how much to suppress treble versus bass in an audio system.
3. As mentioned earlier, we assume that you have encountered convolution before. If not, this will
hardly be concrete to you.

609

 RElATInG COnvOluTIOnAl lAyERS TO MAThEMATICAl COnvOluTIOn

now consider the case where we apply convolution to a discrete signal instead of
a continuous signal—for example, discrete samples of a continuous audio signal.
Then the integral is replaced by a sum:

∑[] [] []() = −
∞

∞

=−

f g i f m g i m
m

*

In many cases, it is inconvenient (and unrealistic) to work with infinity, so we fall
back on working with finite sequences, and the discrete convolution changes to

∑[] [] []() = −
=−

f g i f m g i m
m M

M

*

Figure G-2 shows a graphical representation of discrete convolution, using
discrete versions of f and g from the previous figure. In the lower left chart, we
have chosen to time shift g by 1 as opposed to 2, as in the previous example. We

Product of f
and mirrored
and shifted g

Mirrored g(x)
sliding to the

right

Area
under the
red curve

Figure G-1 upper left: Function f(x). upper right: Function g(x). lower left:
Convolution process. A mirrored version of g(x) is slid from left to right. The red
curve represents the product of these two curves. The convolution represents the
area under this red curve.

APPEnDIx G RElATInG COnvOluTIOnAl lAyERS TO MAThEMATICAl COnvOluTIOn

610

omitted the red curve and added dashed lines connecting the data points for each
function in the lower left chart to make it more readable.

In the case of an audio signal, convolution is done in the time domain where the
independent variable is time. The output at time t will be a function of the inputs at
times t, t−1, . . ., t−n. A different use case is image processing, where convolution
is done in the spatial domain and in two dimensions. Instead of computing an
output based on a series of historical values, an image filter computes a pixel
value by using a region of pixels as input values. This can be used to blur or
sharpen an input image but also to perform edge detection. The latter use case
starts to become related to our convolutional networks.

here is the formula for discrete 2D convolution:

∑ ∑[] [] []() = − −
=− =−

f g i j f i j g i m j n
m M

M

n N

N

* , , ,

Figure G-2 Discrete convolution. The charts mimic the charts in Figure G-1, but
g is shifted by 1 instead of 2.

611

 RElATInG COnvOluTIOnAl lAyERS TO MAThEMATICAl COnvOluTIOn

If we inspect the equation, we see that it is almost the same computation as is
used when feeding M×N grayscale pixels (a single color channel) as inputs to
a neuron, assuming that f represents the pixels and g represents the neuron
weights. The two indices i and j represent the location of the pixel in the center
of the receptive field. The one complicating factor is the negative signs in the
arguments to the g function. These need to be changed to positive signs to match
the computations where we fed pixel values to a neuron.

This brings us to the concept of cross-correlation. If we replace the negative
signs in the g function by positive signs, then the equation no longer describes a
convolution operation. Instead, it describes the related operation cross-correlation.
In the case of neural networks, this has little significance given that the function
g (defined by the neuron weights) is automatically learned during training, so it
is just a matter of which weights get what values. From that perspective, it does
not matter if the actual implementation of the neural network flips the matrix
that holds the weights corresponding to g, or if it keeps the matrix the way it
is described in the preceding equation. The result will be the same regardless
whether we have implemented a convolutional network or a cross-correlational
network. To avoid any confusion, we state the mathematical formula for 2D
cross-correlation:

f g i j f i j g i m j n
m M

M

n N

N

∑ ∑[] [] []() = + +
=− =−

* , , ,

note that the minus signs in the convolution formula are replaced by plus signs
in the cross-correlation formula. It is now clear how the convolution operation
relates to the pattern identifier that we use in our convolutional network.

This page intentionally left blank

613

Appendix H

Gated Recurrent Units

This appendix is related to Chapter 10, “Long Short-Term Memory.”

In Chapter 10, we introduced long short-term memory (LSTM), which was
introduced by Hochreiter and Schmidhuber in 1997. In 2014, Cho and colleagues
(2014b) introduced the gated recurrent unit (GRU), which was described as
“motivated by the LSTM unit but is much simpler to compute and implement.”
Both LSTM and GRU are frequently used in modern recurrent neural networks
(RNNs). To refresh your memory, we start with Figure H-1 of an LSTM-based layer,
which was previously shown in Chapter 10, Figure 10-6.

When looking at this network of LSTM cells, a valid question is why we need
two different sets of states. It seems like it would be possible to construct a
constant error carousel (CEC) with just a single set of states. The GRU does
just that, as well as removes the output activation and the output gate. It
also combines the remember gate and forget gate into a single update-gate.
Two different versions of the GRU are shown in Figure H-2. The reason there
are two different versions is that the original version of the paper where the
GRU was proposed contained one implementation (Cho et al., 2014a), but this
implementation was somewhat revised in a later version (Cho et al., 2014b).
We discuss both implementations.

A GRU cell does not have a separate internal state but implements the CEC
using the global recurrent connections. It also combines the remember gate
and forget gate into a single update gate.

APPENdIx H GATEd RECURRENT UNITS

614

X1
(t) X2

(t) X3
(t)

Sig Sig Sig

*

c(t-1)

*

+

Out
Act

In
Act

*

Sig Sig Sig

*

c(t-1)

*

+

Out
Act

In
Act

*

LSTM Cell 1 LSTM Cell N

h1
(t) hN

(t)

CEC CEC

h1
(t-1) hN

(t-1)

Figure H-1 Network of LSTM cells

Sig Act

*

(r* h(t–1), x(t))

*

+

z

Sig Lin Lin

*

*
Act

Sig

GRU Cell
(reset after)

GRU Cell
(reset before)

h(t–1) x(t)

1– 1–

*

+

+

hi
(t–1) hi

(t–1)

hi
(t) hi

(t)

(x(t), h(t–1)) (x(t), h(t–1))(x(t), h(t–1))

z r

Figure H-2 Two versions of the GRU. Left: Reset-after implementation. Right:
Reset-before implementation.

615

 GATEd RECURRENT UNITS

The original implementation is shown on the left. The c-state for the CEC has been
removed from the cell, and the CEC is now using the output from the previous
timestep, indicated by the leftmost input arrow in the figure. This is a single
(scalar) value, and each cell receives its own output from the previous timestep.
All the other inputs in the figure are vector inputs, corresponding to all x-values
for the current timestep as well as all output values from the previous timestep.

The leftmost logistic sigmoid neuron (computing the value z) is known as the
update gate. It replaces the forget gate and remember gate in the LSTM. As shown
in the figure, instead of directly multiplying z by the incoming h-value, the node
marked as 1− means that we first compute (1−z), which makes the leftmost
multiplication in the figure act as a forget gate, whereas the unchanged z-value is
used to gate the value coming from the activation function (shown as Act). That is,
when the update gate output is 1, the CEC will be updated with the output of the
activation function, whereas when the update gate output is 0, it will remember
the state from the previous timestep.

Let us now look at what the input to the activation function is (i.e., what will feed
into the new value that the cell will remember). The second logistic sigmoid
neuron from the left (computing the value r) is known as the reset gate. This gate
determines how much the state from the previous timestep should affect the
newly computed value. This calculation is done by first computing a weighted
sum of the output from the previous timestep by feeding h(t−1) to a neuron with
no (linear) activation function (shown as Lin in the figure). We then multiply the
two together to form a single value. This value is then added to the output from a
weighted sum of the x-inputs (done by the rightmost Lin neuron) for the current
timestep. The sum of these two values is then fed into the activation function. All
in all, the combination of the set of nodes in the right corner of the GRU can be
viewed as a single neuron, which receives inputs h(t−1) that have been scaled by
the r-value and inputs x(t) that have not been scaled. Bias terms have been omitted
from the figure.

To summarize, the GRU introduces a number of simplifications compared to
an LSTM cell. There is no internal cell state. The GRU still has the ability to
remember state across many timesteps by computing the output as a weighted
sum of the output state from the previous timestep (instead of the internal state)
and the input activation function for the current timestep. These two weights are
dynamically controlled just as for LSTM, but instead of using two separate gates
(remember and forget), it uses a single update gate. Finally, the GRU does not have
an output gate or output activation function. The output is simply the weighted
sum of the input activation from the current timestep and the output state from
the previous timestep.

APPENdIx H GATEd RECURRENT UNITS

616

Alternative GRU Implementation
Let us now look at the alternative implementation on the right side of Figure H-2.
At a first glance, it looks like a simpler implementation, but note that the input to
the activation neuron (the rightmost neuron named Act) receives a vector r * h(t−1).
In this expression, r is a vector, and * represents the elementwise product. That is,
to use this version of the GRU, we need to first compute a vector of reset values
outside of the unit. We will see details of this soon, but first let us consider what
this unit does. Just as in the previous version of the GRU, the candidate value
that can be remembered by the cell is computed by the activation neuron, which
receives inputs h(t−1) that have been scaled elementwise by r-values and inputs x(t)
that have not been scaled. In other words, the key difference is that the scaling is
done before the matrix multiplication of h(t−1) by the weight matrix, whereas in the
first version of the GRU, the scaling was done after the matrix multiplication.

Network Based on the GRU
Figure H-3 shows an RNN layer built from reset-after GRU. The number of
parameters (weights) to learn is three times as many as for a simple RNN.
Compared to LSTM, we no longer have two sets of state in the network, and there
is only a single activation function and two gate functions.

Figure H-4 shows an RNN layer built from reset-before GRU. We have omitted
many connections to focus only on the inputs to the activation neuron. As
previously noted, we now need to compute an r-value for each element of h(t−1)
outside of the units to first scale each h(t−1) value before feeding it into the cells.

This second version (reset-before) is the most common version of GRU (although
Keras implements both). According to Chung and colleagues (2014), limited
experiments have shown that both alternatives are comparable in their ability to
learn (as mentioned in a single footnote in the study). With no significant learning
advantage, it might seem odd that one would come up with this second version of
the GRU given how it complicates the network topology. The explanation is likely

There are two versions of the GRU: reset-before and reset-after.

NETWoRK BASEd oN THE GRU

617

that many people do not necessarily think about the units in isolation, but they
look at the entire layer of units as a building block. Figure H-5 shows how a GRU
layer (bottom) compares to an LSTM layer (top), using the same style as used in
Understanding LSTM Networks (olah, 2015).

As you can see in the lower part of the figure, the reset gate (output r) is applied to
the vector h(t−1) before it is fed to the tanh neurons—that is, this is the reset-before
variation (the second version that we studied in this appendix). Clearly, when
looking at the entire layer as an entity, this variation does not look as convoluted
as when we looked at individual units.

Equation H-1 describes a GRU layer using matrix notation. This is again
describing the reset-before variation, where we multiply h(t−1) by r(t) (elementwise)
in (3) before doing the matrix multiplication with W.

h
N

(t-1)h
1

(t-1)

Sig Lin Lin

*

*
Act

Sig

GRU Cell 1

1-

*

+

+

z r

Sig Lin Lin

*

*
Act

Sig

GRU Cell N

1-

*

+

+

z r

h1
(t) h

N
(t)

X1
(t) X2

(t) X3
(t)

Figure H-3 Recurrent neural network layer built from reset-after GRU. This figure
does not show unrolling in time.

APPENdIx H GATEd RECURRENT UNITS

618

Equation H-1 Equations describing a GRU layer

Wt
z

t t
z , 1σ ()= +() () ()−z h x b

 (1)

Wt
r

t t
r , 1σ ()= +() () ()−r h x b

 (2)

�

�Wt t t t
h

tanh * , 1()= +() () () ()−h r h x b
 (3)

�t t t t t(1)* *1= − +() () () () ()−h z h z h (4)

If we instead want to describe the version with reset-after, we simply replace
(3) with

�
�()= +() () () ()−tanh * , 1Wt t t t
h

h r h x b

X
1
(t) X

2
(t) X

3
(t)

h1
(t) h

N
(t)

Sig Act

*

GRU Cell N

1-

*

+

z

Sig Act

*

GRU Cell i

1-

*

+

z

Sig Sig

* *

h
N

(t-1)h
1
(t-1)

Figure H-4 Recurrent neural network layer built from reset-before GRU. This
figure does not show unrolling in time.

NETWoRK BASEd oN THE GRU

619

When working at this abstraction level, the two variations are similar to each
other.

With respect to deciding between using LSTM or using GRU, we do not know of a
way to tell beforehand which unit will be the best choice. LSTM can sometimes do
better than GRU because of its larger number of tunable parameters. on the other
hand, LSTM can also do worse than GRU. It often makes sense to try both types of
units and use the one that works best for the problem in question.

tanhσ σ σ

tanh

x +

x x

X(t)

h(t)

h(t)

c(t)c(t–1)

h(t–1)

tanh

+x

xr z

1–
x

h(t–1)

X(t)

h(t)

h(t)

σσ

Figure H-5 A layer of LSTM (top) and a layer reset-before GRU (bottom). (Source:
Adapted from olah, C., Understanding LSTM Networks, August 2015, https://
colah.github.io/posts/2015-08-Understanding-LSTMs.)

It turns out that, from an implementation perspective, it can be beneficial to do
the reset after the matrix multiplication (Keras Issue Request, 2016).

http://colah.github.io/posts/2015-08-Understanding-LSTMs
http://colah.github.io/posts/2015-08-Understanding-LSTMs

This page intentionally left blank

621

Appendix I

Setting Up a
Development
Environment

This appendix describes how to set up a suitable development environment to try
out the code examples presented throughout this book. The code examples should
work on any platform that is capable of running Python 3 and either TensorFlow
or PyTorch (depending on which deep learning [DL] framework you like to use),
such as Linux, MacOS, and Windows. The examples in the first few chapters are
feasible to run on a CPU-only platform, but for the more advanced examples, your
experience will be much better if you get access to a graphics processing unit
(GPU)-accelerated platform,1 either by having your own GPU or by renting it by the
minute from a cloud service such as Amazon Web Services (AWS).

Similarly, the programming examples in the first four chapters do not require
a DL framework but can be run using only Python, some basic libraries, and
the Modified National Institute of Standards and Technology (MNIST) dataset.
Therefore, if you are eager to get started, then you can begin with the first few
sections of this appendix and stop after the section about MNIST. Then get back to
installing a DL framework once you are ready to start reading Chapter 5, “Toward
DL: Frameworks and Network Tweaks.”

1. Nothing prevents you from running all programming examples on a CPU, but it will take longer.

APPENDIx I SETTING UP A DEvELOPMENT ENvIrONMENT

622

If you want to focus on the PyTorch version of the code examples, then consider
reading the last section of this appendix, which highlights some key differences
between PyTorch and TensorFlow.

Python
All examples in this book are based on Python 3.x. If you are new to Python, you
might not be aware that Python 3 is a different language (although similar) than
Python 2, so it is key that your Python version is at least 3.0. The exact version
does not matter that much as long as it is compatible with the version of the DL
framework you are using. Chances are that you already have Python installed on
your system, and you can check whether it is installed as well as the version by
typing one of the following two command lines in your shell/command prompt:

python --version

python3 --version

It might be that python is aliased to version 3, or it might refer to version 2,
so make sure that you pick the right one. If Python is not installed, it should
be straightforward to download and install it from https://www.python.org/
downloads.

Once you have Python installed, you should be able to get through the initial
examples that do not require a DL framework. running the examples should be as
simple as changing to the directory containing the Python file you want to run, and
then providing the filename as an argument when starting Python:

python3 my_example.py

You will also need the packages numpy, matplotlib, idx2numpy, and pillow,
which are used for numerical computations, plotting, reading the MNIST dataset,
and images. You can check whether they are installed by typing the following
command, which will print all installed packages:

pip3 list

If not, you will want to install them. First, make sure to upgrade pip3 to the most
recent version, and then install the packages:

pip3 install pip3

pip3 install numpy

https://www.python.org/downloads
https://www.python.org/downloads

PrOGrAMMING ENvIrONMENT

623

pip3 install matplotlib

pip3 install idx2numpy

pip3 install pillow

Programming Environment
Although it is possible to simply put all code in a text file and run it from the
Python interpreter at the command prompt, we strongly believe that a more
advanced programming environment improves both debug capability and
productivity. We make no claims that what we describe is the best or only
environment, but we do find it reasonable. Thus, if you are new to Python and do
not want to spend much time researching the best options, we suggest that you
simply go with our recommendations.

JUPYTEr NOTEBOOK

Jupyter Notebook is an environment where you write and run your programs in a
Web browser. If you come from a more traditional programming environment, it
might seem odd at first, but if you try it out, you will discover that there are some
nice features. One of the more useful features is that you can run, modify, and
rerun parts of your program without restarting from the beginning. The declared
variables will keep their state. You can try things until you get them right and can
easily inspect any variable by adding new print statements. If you come from a
more traditional programming environment, you might argue that this can be
done with a traditional debugger as well. We still urge you to try it out because we
believe that you will see great benefit in Jupyter Notebooks once you get the hang
of it. You can also nicely mix and match code and documentation. We have made
all the programming examples in this book available as Jupyter Notebook files
in addition to providing traditional Python files. More information about how to
install Jupyter Notebook can be found on http://jupyter.org.

Depending on your platform and environment, you might have to add the following
line at the top of your file to get the plots right with Jupyter:

%matplotlib inline

This is known as a built-in magic command that directs Jupyter how to handle
plots.

http://jupyter.org

APPENDIx I SETTING UP A DEvELOPMENT ENvIrONMENT

624

USING AN INTEGrATED DEvELOPMENT ENvIrONMENT

Although Jupyter Notebooks are good for prototyping, we believe that anytime
you get serious about building a larger application, you should be using a proper
integrated developer environment (IDE), where you can easily break up and
partition your program into multiple files.

Another benefit of an IDE is how it typically comes with a debugger that allows
you to set breakpoints and single step into functions deep inside of the DL
framework as opposed to just relying on an error message and a stack trace.

There are many popular IDEs. We recommend using PyCharm found at http://
www.jetbrains.com/pycharm.

Another alternative is to use Eclipse supplemented by the PyDev extension.
This alternative is an easy way of getting started if you are already familiar with
Eclipse. Information about how to install Eclipse and PyDev can be found at http://
www.eclipse.org/downloads and http://www.pydev.org.

Programming Examples
All programming examples have been tested with TensorFlow 2.4 and PyTorch
1.8.0. Python files and Jupyter notebooks can be downloaded from https://
github.com/NvDLI/LDL/ or http://ldlbook.com.

The root of the repository contains four top-level directories:

• data is where datasets (see next section) should be downloaded to.

• stand_alone contains code examples that do not rely on a DL framework.

• tf_framework contains code examples that rely on the TensorFlow
framework.

• pt_framework contains code examples that rely on the PyTorch framework.

There is a one-to-one mapping between the code examples in the two directories
tf_framework and pt_framework.

The naming of each code example follows the pattern cXeY_DESCRIPTION.py
where X represents the chapter number, Y the example number in that chapter,
and DESCRIPTION is a brief description of what the example is doing.

http://www.jetbrains.com/pycharm
http://www.jetbrains.com/pycharm
http://www.eclipse.org/downloads
http://www.eclipse.org/downloads
http://www.pydev.org
https://github.com/NvDLI/LDL/
http://ldlbook.com
https://github.com/NvDLI/LDL/

DATASETS

625

Each code example is expected to be run from within the directory where the
code example is located, as it uses a relative path to access the dataset. That
is, you first need to change to the stand_alone directory before running code
examples located in that directory.

Because of the stochastic nature of DL algorithms, the results may vary from
run to run. That is, it is expected that your results will not exactly reproduce the
results stated in the book.

SUPPOrTING SPrEADSHEET

Apart from the described top-level directories, the root of the repository also
contains a spreadsheet named network_example.xlsx. The spreadsheet
provides additional insight about the basic workings of neurons and the learning
process. There are three tabs, each corresponding to a specific section of the
initial chapters:

• perceptron_learning corresponds to the section “The Perceptron
Learning Algorithm” in Chapter 1, “The rosenblatt Perceptron.”

• backprop_learning corresponds to the section “Using Backpropagation to
Compute the Gradient” in Chapter 3, “Sigmoid Neurons and Backpropagation.”

• xor_example corresponds to the section “Programming Example: Learning
the XOR Function” in Chapter 3.

Datasets
For most of the programming examples in this book, you need access to various
datasets or other resources. Some of these are included with the code examples or
in the DL framework, and others need to be downloaded to your local computer. We
have listed the ones that you need to download. All program examples assume that
the downloaded datasets are placed in the directory named data in the root of the
code example directory tree.

MNIST

The MNIST Database of handwritten digits can be obtained from http://yann.lecun
.com/exdb/mnist.

http://yann.lecun.com/exdb/mnist
http://yann.lecun.com/exdb/mnist

APPENDIx I SETTING UP A DEvELOPMENT ENvIrONMENT

626

Download the following files:

train-images-idx3-ubyte.gz

train-labels-idx1-ubyte.gz

t10k-images-idx3-ubyt.gz

t10k-labels-idx1-ubyte.gz

Once downloaded, gunzip them to the data/mnist/ directory. You need the
Python package idx2numpy to use this version of the MNIST dataset. This
package is not available on all platforms. See the book Web site (http://ldlbook
.com) for alternative solutions.

BOOKSTOrE SALES DATA FrOM US CENSUS BUrEAU

Sales data from the United States Census Bureau can be obtained from https://
www.census.gov/econ/currentdata.

Select Monthly Retail Trade and Food Services and click the Submit button. That
should take you to a page where you need to specify five different steps, as shown
in Figure I-1. Make the same selections as shown in the figure, and make sure
that the checkbox Not Seasonally Adjusted is checked. Then click the GET DATA
button.

That should result in a table with data values. Download it to a comma-separated
values (CSv) file by clicking the link TXT. remove the first few lines in the

Figure I-1 Fields to populate to download the correct data file

http://ldlbook.com
http://ldlbook.com
https://www.census.gov/econ/currentdata
https://www.census.gov/econ/currentdata

DATASETS

627

downloaded CSv file so the file starts with a single line containing headings
saying “Period,value” followed by one line for each month. Further, remove any
lines with non-numerical values, such as “NA”, at the end of the file. Name the file
book_store_sales.csv and copy to the data directory.

FrANKENSTEIN FrOM PrOJECT GUTENBErG

The text of Mary Shelley’s Frankenstein can be downloaded from
https://www.gutenberg.org/files/84/84-0.txt.

rename the file to frankenstein.txt and copy to the data directory.

Glove WOrD EMBEDDINGS

The Glove word embeddings file, which is close to 1 GB in size, can be
downloaded from http://nlp.stanford.edu/data/glove.6B.zip.

Unzip it after downloading and copy the file glove.6B.100d.txt to the
data directory.

ANKI BILINGUAL SENTENCE PAIrS

The Anki bilingual sentence pairs can be downloaded from
http://www.manythings.org/anki/fra-eng.zip.

Unzip it after download and copy the file fra.txt to the data directory.

COCO

Create a directory named coco inside of the data directory.

Download the following file:

http://images.cocodataset.org/annotations/annotations_trainval2014.zip

Unzip it and copy the file captions_train2014.json to the directory coco.

Download the following 13 GB file:

http://images.cocodataset.org/zips/train2014.zip

Unzip it into the data/coco/ directory so the path to the unzipped directory
is data/coco/train2014/.

https://www.gutenberg.org/files/84/84-0.txt.rename
https://www.gutenberg.org/files/84/84-0.txt.rename
http://nlp.stanford.edu/data/glove.6B.zip
http://www.manythings.org/anki/fra-eng.zip
http://images.cocodataset.org/annotations/annotations_trainval2014.zip
http://images.cocodataset.org/zips/train2014.zip

APPENDIx I SETTING UP A DEvELOPMENT ENvIrONMENT

628

Installing a DL Framework
There are multiple ways of installing both TensorFlow and PyTorch, and to some
extent, it depends on the platform you are using. In this section, we describe some
general directions. We distinguish between four different methodologies:

• System installation

• virtual environment installation

• running in a Docker container

• Using a cloud service

The code examples for this book have been tested with TensorFlow version 2.4
and PyTorch version 1.8.0.

SYSTEM INSTALLATION

This is the most straightforward way to install a framework in that it does not
make use of any mechanisms to isolate it from the rest of the system. You install
the framework on your system as well as any packages/libraries that it depends
on. If you are lucky, this is simple, but if you are unlucky, you run into problems
because you already have some of the libraries installed but you have the wrong
versions. You can then decide to upgrade or downgrade to a suitable version,
but that might break other pieces of software on your system that depend on
a specific installed version. Still, if you do not feel like learning about virtual
environments or Docker containers at this point, you can give it a shot. Simply
type the following in your shell to install TensorFlow:

pip3 install tensorflow

If you want to install a specific version that is not the latest version, for example,
version 2.4 that the code examples were developed for, then type

pip3 install tensorflow==2.4

Similarly, use the following command line to install PyTorch:

pip3 install torch torchvision

INSTALLING A DL FrAMEWOrK

629

If you want to install a specific version that is not the latest version, then you need
to find out what versions of torch and torchvision are compatible with each other,
and then install the correct versions together. For example, for PyTorch 1.8.0,

pip install torch==1.8.0 torchvision==0.9.0

Pay attention to any error messages that show up as the frameworks are
installed. Error messages can indicate dependencies on a missing package or that
an already installed package has the wrong version. If the latter is the case, you
need to decide whether you are comfortable with starting to tweak the versions of
the conflicting package or prefer to move on to a virtual environment.

vIrTUAL ENvIrONMENT INSTALLATION

This is similar to the system installation process, but first you install the
virtualenv tool. This tool lets you create one or more virtual environments
on your system. The benefit from this tool is that each virtual environment can
have its own version of a package installed. Thus, if you already have one version
of a package installed on your system and your framework requires a different
package, then you do not need to remove the existing version. Instead, you
install the framework and all the packages that it depends on in its own virtual
environment. The details of how to install the virtualenv tool and create a
virtual environment can be found at https://virtualenv.pypa.io.

GPU ACCELErATION

Additional steps are needed if you want to use GPU acceleration. You need to
install CUDA and CuDNN. The details will depend on what system you are running.

For detailed information about TensorFlow installation, with and without GPU
acceleration, see tensorflow.org/install.

For PyTorch, the equivalent information can be found at https://pytorch.org/
get-started/locally.

However, you do not need GPU acceleration for the first few programming
exercises, so you might want to start with a simple setup and worry about GPU
acceleration later.

https://virtualenv.pypa.io
http://tensorflow.org/install
https://pytorch.org/get-started/locally
https://pytorch.org/get-started/locally

APPENDIx I SETTING UP A DEvELOPMENT ENvIrONMENT

630

DOCKEr CONTAINEr

Another option is to use a Docker container. This is a way of getting away from
the process of installing the framework altogether. Instead, you first install the
Docker Engine on your system. You then download a Docker image, which has
everything you need (TensorFlow or PyTorch and any libraries that they depend
on) already installed on this image. You then tell the Docker Engine to create a
Docker Container based on that image. A Docker Container isolates the software
that is running inside it from its environment, somewhat like a virtual machine,
but more lightweight, as it does not contain the operating system itself. Using
Docker Containers is a popular way of running DL frameworks, and it is perhaps
also the simplest way of configuring them to make use of the GPU on your system.

USING A CLOUD SErvICE

Finally, if you do not want to install anything on your system, you can instead use
a cloud service. Using a cloud service is also a good alternative if you do not have
a system with a GPU but still want to be able to play around with GPU acceleration
before deciding to buy one.

One alternative is Google Colab, which provides machine access for free, including
GPU acceleration. It already has TensorFlow and PyTorch installed. You will need
to learn how to enable access to data on your Google Drive account for any code
examples that require datafiles as input.

Another alternative is AWS, where you can rent a machine by the minute. AWS
offers preconfigured machines ready to run TensorFlow and PyTorch, but there
is a little bit of a learning curve to get started, including setting up an account,
deciding what machine to rent, figuring out how to rent persistent storage that
does not get wiped when you shut down the machine, and configuring a security
group and network access. The benefit is that there is no work of configuring the
DL frameworks because they are already set up by AWS.

TensorFlow Specific Considerations
Because TensorFlow is the framework used for all the programming examples
in this book, the book is sprinkled with information about TensorFlow. We still
figured that it makes sense to specifically spell out here that TensorFlow can
be somewhat verbose, especially when using a GPU. If you want to reduce the

631

KEY DIFFErENCES BETWEEN PyTorch AND TensorFlow

verbosity when running the programs, you can set the environment variable
TF_CPP_MIN_LOG_LEVEL to 2. It can be done with the following command line
if you use bash:

export TF_CPP_MIN_LOG_LEVEL=2

Alternatively, you can add the following code snippet at the top of each program:

import os

os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'

Key Differences Between PyTorch and
TensorFlow

In this section, we point out some key differences between PyTorch and
TensorFlow. We try to highlight these differences in the documentation of each
PyTorch programming example as well, but we believe that it is helpful to have
them summarized here in a single place. Note that most of what is described here
requires skills taught throughout this book, so rather than reading this section up
front, we recommend revisiting this section over the course of reading the book.

Overall, when comparing the experience of programming for PyTorch versus
TensorFlow with the Keras API, our opinion is that the differences fall into one
major and one minor category. The major difference is that some things that are
handled by the Keras API need to be explicitly handled in PyTorch. This makes it
slightly harder to get started for a beginner but pays off in the long run in terms
of providing flexibility when you want to do something slightly off the beaten path.
The minor differences simply consist of a number of minor design/API choices
that are different between the two frameworks.

Both frameworks are rapidly evolving. Therefore, this section is likely to get
outdated over time. We recommend that you consult the most up-to-date
documentation for the framework you use.

NEED TO WrITE OUr OWN FIT/TrAINING FUNCTION

In our opinion, for a beginner, one of the bigger obstacles in PyTorch compared to
Tensorflow (using the Keras API) is the need to write your own function to train

APPENDIx I SETTING UP A DEvELOPMENT ENvIrONMENT

632

your model. In Tensorflow, once you have defined a model, you simply call the
function fit() with a set of suitable parameters, and the framework handles a
lot of the details, including running the forward pass, running the backward pass,
and adjusting the weights. In addition, it computes and prints out a number of
useful metrics like loss and accuracy for both the training set and the test set. In
PyTorch, you must handle these mechanics yourself.

Although this might seem cumbersome, in reality, it is not that much code to
write. In addition, as we show in our code examples, it is simple to write your
own library function that can be reused across many models. This is a prime
example of where we think it is a little bit harder to get started with PyTorch
than with Tensorflow. On the other hand, it is very powerful to be able to easily
modify this piece of code. That is illustrated by the natural language translation
example (Chapter 14, “Sequence-to-Sequence Networks and Natural Language
Translation”) and image captioning example (Chapter 16, “One-to-Many Network
for Image Captioning”), where our TensorFlow implementations of the training
loop are somewhat convoluted.

As a part of writing your own training loop, you will need to include the following
steps:

• Call the zero_grad() method on the chosen optimizer to inform the
optimizer that it should reset all gradients to zero, since the default is to
accumulate gradients over multiple steps

• Call to an instance2 of a Module object, which results in a call to the
forward() method to run the forward pass

• Compute loss and call backward() to run the backward pass

• Call the step() method on the chosen optimizer to update the weights based
on the current gradient

Apart from explicitly handling forward pass, loss computation, backward pass,
and weight adjustment, you also need to implement functionality to break
up your training and test data into mini-batches. This is typically done using
a DataLoader object. When using TensorFlow with the Keras API, all this
functionality is handled by the fit() function.

2. In Python 3, you can use the instance variable name of an object as a function name. When you call
this function, it will invoke the object’s __call__() method. In PyTorch, the __call__() method for
a Module object will invoke the forward() method.

633

KEY DIFFErENCES BETWEEN PyTorch AND TensorFlow

ExPLICIT MOvES OF DATA BETWEEN NumPy AND PyTorch

The Keras API in TensorFlow uses NumPy arrays as its representation of tensors.
For example, when passing a tensor to a model, the format is expected to be in
the form of a multidimensional NumPy array. In contrast, in PyTorch you need to
explicitly convert data between NumPy arrays and PyTorch tensors.

PyTorch keeps track of information to be able to do automatic differentiation
(using backpropagation) on PyTorch tensors. That is, as long as you work on
PyTorch tensors, you can use any computation supported by the tensor data type
when defining a function, and you will later be able to automatically compute
partial derivatives of that function. The explicit move to and from a tensor enables
PyTorch to track what variables to provide this functionality for.

There are a few different functions related to this:

• from_numpy()converts from NumPy array to PyTorch tensor.

• numpy()converts from PyTorch tensor to NumPy array.

• detach()creates a PyTorch tensor that shares storage with the original
PyTorch tensor but for which automatic differentiation is not supported.

• clone()creates a PyTorch tensor from a PyTorch tensor but where storage is
not shared between the two tensors.

• item()converts a single element in a PyTorch tensor into a NumPy value.

• with torch.no_grad() turns off support for automatic differentiation
within the scope of this construct.

For a beginner, it can be challenging to understand how these functions and
constructs all relate, especially when encountering a combined expression such
as detach().clone().numpy(). It is like with anything else. It takes some
time to get used to, but once you understand it, it is not that complicated.

ExPLICIT TrANSFEr OF DATA BETWEEN CPU AND GPU

In addition to explicitly moving data between NumPy and PyTorch, you must
explicitly move data (and models) between the CPU and the GPU. It is done using
the two functions:

• to(DEVICE) moves data to a specific device (typically GPU).

• cpu() moves data to the CPU.

http://torch.no_grad(

APPENDIx I SETTING UP A DEvELOPMENT ENvIrONMENT

634

In our opinion, this is easier to get familiar with, but it can still trip you in the
beginning, especially when combined with the mechanisms given previously,
and you might run into a combined expression such as .cpu().detach().
numpy().

ExPLICITLY DISTINGUISHING BETWEEN TrAINING AND INFErENCE

Some types of layers, such as Dropout and BatchNormalization, behave differently
during training than during inference. In TensorFlow, this is handled automatically
because the framework has explicit functions for training (fit) and inference
(predict). As described previously, in PyTorch, you must write these functions
yourself. Therefore, you must also explicitly tell a model when it is being used for
training or inference. This is done using the following functions:

• train()sets a model in training mode.

• eval() sets a model in inference mode.

For a beginner, it is easy to mix up the functionality of eval() and no_grad(),
which was described earlier. Both can make sense to use during inference.
The distinction is that eval() is required to get the correct behavior, whereas
no_grad() is an optimization to not track the extra state needed for auto-
differentiation (which is not needed during inference).

SEQUENTIAL vErSUS FUNCTIONAL API

We are now moving on to the differences that are minor but good to know about.
Most of our TensorFlow programming examples use the Keras Sequential API.
PyTorch has a very similar concept in the nn.Sequential class.

For the more advanced programming examples, it is a little bit different. For
TensorFlow, we use the Keras Functional API where the process of declaring
layers is separate from connecting them together. In PyTorch, this is handled
differently by instead creating a custom model by inheriting from the nn.Module
class and overriding the forward() function.

In our opinion, both methodologies are of a similar complexity level when using
supported layer types, but the PyTorch methodology might be somewhat simpler
when implementing layers that are not natively supported by the framework. The
programming example in Chapter 16 is an example of this, where we implement
the functionality of an attention layer in the PyTorch version. As a side note, that

635

KEY DIFFErENCES BETWEEN PyTorch AND TensorFlow

highlights another minor difference in that TensorFlow provides an attention
layer, whereas PyTorch does not.

LACK OF COMPILE FUNCTION

In TensorFlow, before calling the fit() function to train a model, you have to
call the compile() function to select a loss function and an optimizer. This is
not needed in PyTorch and likely follows from the fact that you write your own
training loop in PyTorch. As a part of that process, you explicitly invoke your loss
function and optimizer, so there is no need to tell the framework up front what
functions to use.

rECUrrENT LAYErS AND STATE HANDLING

For recurrent layers (e.g., LSTM), there are two key differences to highlight
between TensorFlow and PyTorch. First, stacking LSTM layers in PyTorch can be
done by simply providing a parameter to the LSTM layer constructor instead of
having to declare multiple instances after each other.

Second, in the programming examples that use recurrent layers, we show how
TensorFlow has functionality to declare a recurrent layer as either stateful or
not, and we make use of this when we build autoregressive models. The stateful
concept does not explicitly exist in PyTorch, but we show how to emulate it in our
PyTorch versions of the programming examples.

CrOSS-ENTrOPY LOSS

There are two key differences between the cross-entropy loss implementation
in PyTorch compared to Tensorflow. First, in PyTorch, the cross-entropy loss
function implicitly also models the logistic sigmoid function of the last neuron,
or the softmax in the case of a multiclass classification problem. That is, when
defining the network, you should use a linear output unit instead of also defining
an activation function. Second, in PyTorch, the cross-entropy loss function expects
an integer target instead of a one-hot encoded target. That is, there is no need to
one-hot encode the target value. This results in a more efficient implementation
from a memory usage perspective.

If you use TensorFlow, there are options to get the same behavior, but they need
to be explicitly specified because the default behavior is different.

APPENDIx I SETTING UP A DEvELOPMENT ENvIrONMENT

636

vIEW/rESHAPE

NumPy provides a function reshape() that can be used to change the
dimensions of a NumPy array, and TensorFlow has the corresponding function
for changing the shape of tensors. PyTorch has the same kind of functionality
implemented by a function named view().

637

Appendix J

Cheat Sheets

Larger versions of these cheat sheets can be downloaded from http://informit.com/title/9780137470358.

+

W1
W2

w0

Wn

X1
X2

Xn

z
Activation

y

Activation functions for output units

Activation functions for hidden units

Input encodings

Standardized
numerical

values

One-hot
encoded
classes

Word
embeddings

from
embedding layer

tanh ReLU

elu softplus maxout

leaky ReLU

logistic softmax linear

Feedforward network

Artificial neuronX0 = 1
(bias)

http://informit.com/title/9780137470358

APPEndix J ChEAt ShEEtS

638

+x

xr z
1–

x

tanh

tanh
x +

x

h(t–1)

h(t–1)

c(t–1)

Type Description Example usage

Fully connected

Convolutional

Sparsely connected. Employs
weight sharing. Consists
of multiple channels. Each
channel is often arranged in
two dimensions.

Image processing (2D
convolution) and text
processing (1D
convolution)

Simple recurrent

Recurrent connections. Output
from previous timestep is
used as input. Weight sharing
between timesteps.

Sequential data of
variable length, e.g.,
text processing

Long short-term
memory (LSTM)

Gated recurrent
unit (GRU)

Long sequences, e.g.,
text processing

Long sequences, e.g.,
text processing

Recurrent layer with more
complex units. Each unit
contains an internal memory
cell. Gates control when to
remember and forget.

Simplified version of LSTM. No
internal memory cell but still has
gates to control when to
remember or forget previous
output value.

Embedding

Attention
Extract information from
long text sequences or
images

Output vector is a weighted
sum of multiple input vectors.
The weights are dynamically
chosen to attend to the
most important vector.

Convert textual input
data into word
embeddings

Converts sparse one-hot
encoded data into a dense
representation. Implemented as
lookup table.

Adjustable
weights

LinLinLin

Layer types

Each neuron connects to each
output in preceding layer. Also
known as projection layer if no
activation function is used.

Cases where
specialized layers do
not provide additional
value

σ

σσ

σσ

X(t)

X(t)
h(t)

h(t)

h(t)

c(t)

Wd0 Wd1 Wd2 Wd3 Wd4

WE02

WE01

WE00

WE40

WE41

WE42

tanh

x

+

ChEAt ShEEtS

639

Linear algebra representation

W = U =

w1,1 w1,2 ... w1,n u1,1 u1,2 ... u1,m

w2,1 w2,2 ... w2,n u2,1 u2,2 ... u2,m

wn,1 wn,2 ... wn,n un,1 un,2 ... un,m

b =

b1 h1 x1
x2

xm

h2

hn

b2

bn

h = x =

NnN1

w1,1 wn,1

h1
(t–1), h2

(t–1), ..., hn
(t–1) h1

(t–1), h2
(t–1), ..., hn

(t–1)x1
(t), x2

(t), ..., xm
(t) x1

(t), x2
(t), ..., xm

(t)

b1

h1
(t) hn

(t)

Weighted sum for single neuron: z = wx

Weighted sums for fully connected layer for mini-batch: Z = WX

Weighted sums for fully connected layer: z = Wx

Recurrent layer: h(t) = tanh(Wh(t–1) + Ux(t) + b)

NOTE: Bias term is implicit in all but the recurrent case above

w1,2 w1,n u1,1

u1,2

u1,m un,m

un,1

bn

wn,2wn,n

un,2

...... ...

APPEndix J ChEAt ShEEtS

640

Algorithm Description

Stochastic gradient
descent (SGD)

Gradient is computed based on a mini-batch of
training examples.

Momentum
Addition to SGD where weight adjustment
depends on gradient from previous adjustments as
well as the current gradient.

AdaGrad Variation on SGD that adaptively adjusts the
learning rate during training.

Adam Variation on SGD with both adaptive learning
rate and momentum.

RMSProp Variation on SGD that normalizes gradient using
the root mean square (RMS) of recent gradients.

Training algorithm variations

Datasets

Big dataset: 60/20/20 (train/validation/test)

Small dataset: 80/20 (train/test) and k-fold cross-validation

Typical splits

ChEAt ShEEtS

641

APPEndix J ChEAt ShEEtS

642

Regression
Binary
classification

Multi class
classification

Non sequential
House price estimation
based on size and
location

Diagnose patient
based on symptoms

Classify hand-written
digits

Time series or
sequential
prediction

Predict future sales based
on historical data

Predict if it will rain
tomorrow based on
historical weather data

Text auto-completion

Examples of network architectures for different problem types

Fully connected layers

Convolutional layers
(optionally with pooling)

Fully connected layers

Logistic output
neuron

Softmax output layer

Fully connected layers

Linear output layer

Embedding layer

Fully connected layers

Softmax output layer

Recurrent layers
(simple, GRU, or LSTM)

Recurrent layers
(simple, GRU, or LSTM)

Generic binary classification Generic regression Image classification

Language model

Embedding layer Embedding layer

Fully connected layers

Softmax output layer

Recurrent layers
(simple, GRU, or LSTM)

Encoder-decoder for language translation

Problem types
Softmax output unit
Categorical cross-
entropy loss function

Logistic output unit
Cross-entropy loss
function

Linear output unit
Mean squared error (MSE)
loss function

Recurrent
networks can
handle variable
sequence length.
Alternatively,
pad/crop to fixed
length.

ChEAt ShEEtS

643

APPEndix J ChEAt ShEEtS

644

Word embeddings

Word vector arithmetic: King – Man + Woman = Queen

Word embedding schemes

Embedding
scheme

Notes

The “classic,” derived using
heuristics.word2vec

GloVe

wordpieces

FastText

Mathematically derived.

Handles out-of-vocabulary words
by working on subwords.

Extension of word2vec to handle
out-of-vocabulary words.

Same word results in di�erent
embeddings depending on context.

ELMo

ChEAt ShEEtS

645

Transformer-based NLP architectures

Traditional NLP techniques

n-gram

Extension of n-gram model.

Extension of bag-of-words
with some notion of word
order.

Bag-of-word but working on
characters instead of words.

Unordered document
summarization technique.

Building block in sentiment
analysis and document
comparison.

See above.

See above.

Determine similarities
between words.

Find likely sentence
candidate in speech
recognition. Text auto-
completion.

Simple statistical language
model. Computes probability
of word sequence.

skip-gram

bag-of-
words

bag-of-
ngrams

character-
based bag-
of-ngrams

BERT: Transformer encoder,
bidirectional with self-attention

Transformer: Encoder-decoder
architecture with both attention
and self-attention

GPT: Transformer decoder,
unidirectional with self-attention

DescriptionTechnique Application examples

APPEndix J ChEAt ShEEtS

646

Computer vision

LeNet,
LeNet-5

Detection

Semantic segmentation

Instance segmentation

Models: R-CNN, Fast R-CNN,
Faster R-CNN

Models: Deconvolution network,
U-Net

CNN before DL boom.

AlexNet

VGGNet

Inception

ResNet

E�cientNet

Networks for classification; also used as
backbone in other models

Deep hybrid architectures.

Inception v2,
v3, v4,
Inception-
ResNet,
ResNeXt

Depthwise separable
convolutions for more e�cient
implementation.

MobileNets,
Exception

Explored trade-o�s between
multiple dimensions for more
e�cient architecture.

Introduced skip connections.
Much deeper than previous
networks.

Complex building block with
parallel paths. Used by
GoogLeNet.

Demonstrated importance of
depth.

First DL-based ImageNet
winner.

Network Key properties

Model: Mask R-CNN

Computer vision

LeNet,
LeNet-5

Detection

Semantic segmentation

Instance segmentation

Models: R-CNN, Fast R-CNN,
Faster R-CNN

Models: Deconvolution network,
U-Net

CNN before DL boom.

AlexNet

VGGNet

Inception

ResNet

E�cientNet

Networks for classification; also used as
backbone in other models

Deep hybrid architectures.

Inception v2,
v3, v4,
Inception-
ResNet,
ResNeXt

Depthwise separable
convolutions for more e�cient
implementation.

MobileNets,
Exception

Explored trade-o�s between
multiple dimensions for more
e�cient architecture.

Introduced skip connections.
Much deeper than previous
networks.

Complex building block with
parallel paths. Used by
GoogLeNet.

Demonstrated importance of
depth.

First DL-based ImageNet
winner.

Network Key properties

Model: Mask R-CNN

647

Agarap, A. (2018). “A Neural Network Architecture Combining Gated Recurrent
Unit (GRU) and Support Vector Machine (SVM) for Intrusion Detection in Network
Traffic Data.” In Proceedings of the 2018 10th International Conference on Machine
Learning and Computing, 26–30. New York: Association for Computing Machinery.

Akenine-Möller, T., E. Haines, N. Hoffman, A. Pesce, M. Iwanicki, and S. Hillaire.
(2018). Real-Time Rendering, 4th ed. Boca Raton, FL: AK Peters/CRC Press.

Alammar, J. (2018a). “The Illustrated BERT, ELMo, and Co (How NLP Cracked
Transfer Learning)” (blog). http://jalammar.github.io/illustrated-bert/.

Alammar, J. (2018b). “The Illustrated Transformer” (blog). http://jalammar.github
.io/illustrated-transformer/.

Alammar, J. (2019). “The Illustrated Word2vec” (blog). http://jalammar.github.io/
illustrated-word2vec/.

Athiwaratkun, B., A. Wilson, and A. Anandkumar. (2018). “Probabilistic FastText
for Multi-Sense Word Embeddings.” Proceedings of the 56th Annual Meeting of
the Association for Computational Linguistics (Volume 1: Long Papers), 1–11.
Stroudsburg, PA: Association for Computational Linguistics.

Azulay, A., and Y. Weiss. (2019). “Why Do Deep Convolutional Networks Generalize
So Poorly to Small Image Transformations?” arXiv.org. https://arxiv.org/pdf/
1805.12177v2.

Ba, L., J. Kiros, and G. Hinton. (2016). “Layer Normalization.” arXiv.org. https://
arxiv.org/pdf/1607.06450v1.

Badrinarayanan, V., A. Kendall, and R. Cipolla. (2017). “SegNet: A Deep
Convolutional Encoder-Decoder Architecture for Image Segmentation.” IEEE
Transactions on Pattern Analysis and Machine Intelligence 39(12): 2481–2495.

Works Cited

http://jalammar.github.io/illustrated-bert/
http://jalammar.github.io/illustrated-transformer/
http://jalammar.github.io/illustrated-transformer/
http://jalammar.github.io/illustrated-word2vec/
http://jalammar.github.io/illustrated-word2vec/
http://arXiv.org
https://arxiv.org/pdf/1805.12177v2
https://arxiv.org/pdf/1805.12177v2
http://arXiv.org
https://arxiv.org/pdf/1607.06450v1
https://arxiv.org/pdf/1607.06450v1

WoRKS CITED

648

Baer, T. (2019). Understand, Manage, and Prevent Algorithmic Bias: A Guide for
Business Users and Data Scientists. Berkeley, CA: Apress.

Bahdanau, D., B. Cho, and Y. Bengio. (2014). “Neural Machine Translation by Jointly
Learning to Align and Translate.” arXiv.org. https://arxiv.org/pdf/1607.06450v1.

Balmer, L. (1997). Signals and Systems. Hertfordshire, UK: Prentice Hall.

Baltrušaitis T., C. Ahuja, and L. Morency. (2017). “Multimodal Machine Learning: A
Survey and Taxonomy.” arXiv.org. https://arxiv.org/pdf/1705.09406.

Beliaev, S., Y. Rebryk, and B. Ginsburg. (2020). “TalkNet: Fully-Convolutional
Non-Autoregressive Speech Synthesis Model.” arXiv.org. https://arxiv.org/
pdf/2005.05514.

Bender E., Gebru T., McMillan A., and Shmitchell S. (2021). “on the Dangers of
Stochastic Parrots: Can Language Models Be Too Big?” In Proceedings of the 2021
ACM Conference on Fairness, Accountability, and Transparency, 610–623. New York:
Association for Computing Machinery.

Bengio, J., R. Ducharme, P. Vincent, and C. Janvin. (2003). “A Neural Probabilistic
Language Model.” Journal of Machine Learning Research 3(6): 1137–1155.

Bengio, Y., P. Simard, and P. Frasconi. (1994). “Learning Long-Term Dependencies
with Gradient Descent Is Difficult.” IEEE Transactions on Neural Networks 5(2):
157–166.

Blum, A., and T. Mitchell. (1998). “Combining Labeled and Unlabeled Data with
Co-training.” In Proceedings of the Eleventh Annual Conference on Computational
Learning Theory (COLT’98), 92–100. New York: Association for Computing
Machinery.

Bojanowski, P., E. Grave, A. Joulin, and T. Mikolov. (2017). “Enriching Word Vectors
with Subword Information.” Transactions of the Association for Computational
Linguistics 5: 135–146.

Bolukbasi, T., K. Chang, J. Zou, V. Saligrama, and A. Kalai. (2016). “Man Is
to Computer Programmer as Woman Is to Homemaker? Debiasing Word
Embeddings.” Advances in Neural Information Processing Systems 29: 4349–4357.

Bostrom, N. (2003). “Ethical Issues in Advanced Artificial Intelligence.” In
Cognitive, Emotive and Ethical Aspects of Decision Making in Humans and in
Artificial Intelligence, Volume 2, (IIAS-147-2003), edited by I. Smit, W. Wallach,

http://arXiv.org
https://arxiv.org/pdf/1607.06450v1
http://arXiv.org
https://arxiv.org/pdf/1705.09406
http://arXiv.org
https://arxiv.org/pdf/2005.05514
https://arxiv.org/pdf/2005.05514

WoRKS CITED

649

and G. E. Lasker, 12–17. Tecumseh, oN: International Institute of Advanced Studies
in Systems Research and Cybernetics.

Brown T., B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A. Neelakantan,
et al. (2020). “Language Models Are Few-Shot Learners.” arXiv.org. https://arxiv
.org/pdf 2005.14165.

Buolamwini, J. (n.d.). Algorithmic Justice League. https://www.ajl.org/.

Buolamwini, J., and T. Gebru. (2018). “Gender Shades: Intersectional Accuracy
Disparities in Commercial Gender Classification.” Proceedings of the 1st
Conference on Fairness, Accountability and Transparency, in PMLR 81: 77–91.

Cho, K., B. van Merrienboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk,
and Y. Bengio. (2014a, June). “Learning Phrase Representations Using RNN
Encoder-Decoder for Statistical Machine Translation” (v. 1). arXiv.org. https://arxiv
.org/pdf/1406.1078v1.

Cho, K., B. van Merrienboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk,
and Y. Bengio. (2014b, Sept.). “Learning Phrase Representations Using RNN
Encoder-Decoder for Statistical Machine Translation” (v. 3). arXiv.org. https://arxiv
.org/pdf/1406.1078v3.

Chollet, F. (2016). “Xception: Deep Learning with Depthwise Separable
Convolutions.” arXiv.org. https://arxiv.org/pdf/1610.02357.

Chollet, F. (2018). Deep Learning with Python. Shelter Island, NY: Manning
Publications.

Chung, J., C. Gulcehre, K. Cho, and Y. Bengio. (2014). “Empirical Evaluation of Gated
Recurrent Neural Networks on Sequence Modeling.” arXiv.org. https://arxiv.org/
pdf/1602.03686.

Ciresan, D., U. Meier, J. Masci, L. Gambardella, and J. Schmidhuber. (2011).
“Flexible, High Performance Convolutional Neural Networks for Image
Classification.” Proceedings of the Twenty-Second International Joint Conference
on Artificial Intelligence (IJCAI’11), 1237–1242. Menlo Park, CA: AAAI Press/
International Joint Conferences on Artificial Intelligence.

Collobert, R., and J. Weston. (2008).“A Unified Architecture for Natural Language
Processing: Deep Neural Networks with Multitask Learning.” In ICML’08: 25th
International Conference on Machine Learning, 160–167. New York: Association for
Computing Machinery.

http://arXiv.org
https://arxiv.org/pdf
https://arxiv.org/pdf
https://www.ajl.org/
http://arXiv.org
https://arxiv.org/pdf/1406.1078v1
https://arxiv.org/pdf/1406.1078v1
http://arXiv.org
https://arxiv.org/pdf/1406.1078v3
https://arxiv.org/pdf/1406.1078v3
http://arXiv.org
https://arxiv.org/pdf/1610.02357
http://arXiv.org
https://arxiv.org/pdf/1602.03686
https://arxiv.org/pdf/1602.03686

WoRKS CITED

650

Cordonnier, J., A. Loukas, and M. Jaggi. (2020). “on the Relationship between
Self-Attention and Convolutional Layers.” International Conference on Learning
Representations (ICLR 2020). arXiv.org. https://arxiv.org/pdf/1911.03584.

Crawshaw, M. (2020). “Multi-Task Learning with Deep Neural Networks: A Survey.”
arXiv.org. https://arxiv.org/pdf/2009.09796.

Dai, A., and Q. Le. (2015). “Semi-Supervised Sequence Learning.” In Proceedings
of the 28th International Conference on Neural Information Processing Systems
(NIPS’15). 3079–3087. Cambridge, MA: MIT Press.

Dai, B., S. Fidler, and D. Lin. (2018). “A Neural Compositional Paradigm for Image
Captioning.” Advances in Neural Information Processing Systems 31: 658–668.

Dai, Z., Z. Yang, Y. Yang, J. Carbonell, Q. Le, and R. Salakhutdinov. (2019).
“Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context.”
In Proceedings of the 57th Annual Meeting of the Association for Computational
Linguistics, 2978–2988. Stroudsburg, PA: Association for Computational
Linguistics.

De-Arteaga, M., A. Romanov, H. Wallach, J. Chayes, C. Borgs, A. Chouldechova,
S. Geyik, K. Kenthapadi, and A. T. Kalai. (2019). “Bias in Bios: A Case Study of
Semantic Representation Bias in a High-Stakes Setting.” Proceedings of the
Conference on Fairness, Accountability, and Transparency. 120–128. arXiv.org.
https://arxiv.org/pdf/1901.09451.

Devlin, J., M. Chang, K. Lee, and K. Toutanova. (2018). “BERT: Pre-training of Deep
Bidirectional Transformers for Language Understanding.” arXiv.org. https://arxiv
.org/pdf/1810.04805.

Dickson, E. (2019, october 7). “Deepfake Porn Is Still a Threat, Particularly for
K-Pop Stars.” Rolling Stone. https://www.rollingstone.com/culture/culture-news/
deepfakes-nonconsensual-porn-study-kpop-895605/

dos Santos, C., and M. Gatti. (2014). “Deep Convolutional Neural Networks
for Sentiment Analysis of Short Texts.” Proceedings of the 25th International
Conference on Computational Linguistics (COLING’14): Technical Papers, Vol. 1,
69–78. Dublin, Ireland: Dublin City University and Association for Computational
Linguistics.

Duchi, J., E. Hazan, and Y. Singer. (2011). “Adaptive Subgradient Methods for online
Learning and Stochastic optimization.” Journal of Machine Learning Research 12:
2121–2159.

http://arXiv.org
https://arxiv.org/pdf/1911.03584
http://arXiv.org
https://arxiv.org/pdf/2009.09796
http://arXiv.org
https://arxiv.org/pdf/1901.09451
http://arXiv.org
https://arxiv.org/pdf/1810.04805
https://arxiv.org/pdf/1810.04805
https://www.rollingstone.com/culture/culture-news/deepfakes-nonconsensual-porn-study-kpop-895605
https://www.rollingstone.com/culture/culture-news/deepfakes-nonconsensual-porn-study-kpop-895605

WoRKS CITED

651

Dugas, C., Y. Bengio, F. Bélisle, and C. Nadeau. (2001). “Incorporating Second-order
Functional Knowledge for Better option Pricing.” In Advances in Neural Information
Processing Systems 13 (NIPS’00), 472–478. Cambridge, MA: MIT Press.

Elsken, T., Metzen J., and Hutter F. (2019). “Neural Architecture Search: A Survey.”
Journal of Machine Learning Research 20: 1–21.

Fisher, R. (1936). “The Use of Multiple Measurements in Taxonomic Problems.”
Annals Eugenics 7(2): 179–188.

Frome, A., Corrado G., Shlens J., Bengio S., Dean J., Ranzato M., and Mikolov T.
(2013). “DeViSE: A Deep Visual-Semantic Embedding Model.” In Proceedings of
the 26th International Conference on Neural Information Processing Systems—
Volume 2, edited by C. J. C. Burges, L. Bottou, M. Welling, Z. Ghahramani, and
K. Q. Weinberger, 2121–2129. Red Hook, NY: Curran Associates.

Fukushima, K. (1980). “Neocognitron: A Self-organizing Neural Network Model
for a Mechanism of Pattern Recognition Unaffected by Shift in Position.” Biological
Cybernetics 36(4): 193–202.

Gatys L., Ecker A., Bethge M. (2015). “A Neural Algorithm of Artistic Style.” arXiv
.org. https://arxiv.org/pdf/1508.06576.

Gebru, T., J. Morgenstern, B. Vecchione, J. Wortman Vaughan, H. Wallach, H. Daumé
III, and K. Crawford. (2018). “Datasheets for Datasets.” arXiv.org. https://arxiv.org/
pdf/1803.09010.

Gehring, J., M. Auli, D. Granger, D. Yarats, and Y. Dauphin. (2017). “Convolutional
Sequence to Sequence Learning.” In Proceedings of the 34th International
Conference on Machine Learning (ICML’17), edited by D. Precup and Y. W. Teh,
1243–1252. JMLR.org.

Gers, F., J. Schmidhuber, and F. Cummins. (1999). “Learning to Forget: Continual
Prediction with LSTM.” Ninth International Conference on Artificial Neural Networks
(ICANN 99). IEEE Conference Publication 2, (470): 850–855.

Gers, F., N. Schraudolph, and J. Schmidhuber. (2002). “Learning Precise Timing
with LSTM Recurrent Networks.” Journal of Machine Learning Research 3:
115–143.

Girshick, R. (2015). “Fast R-CNN.” Proceedings of the 2015 IEEE International
Conference on Computer Vision (ICCV’15), 1440–1448. Washington, DC: IEEE
Computer Society.

http://arXiv.org
http://arXiv.org
https://arxiv.org/pdf/1508.06576
http://arXiv.org
https://arxiv.org/pdf/1803.09010
https://arxiv.org/pdf/1803.09010
http://JMLR.org

WoRKS CITED

652

Girshick, R., J. Donahue, T. Darrell, and J. Malik. (2014). “Rich Feature Hierarchies
for Accurate object Detection and Semantic Segmentation.” Proceedings of the
2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR’14),
580–587. Washington, DC: IEEE Computer Society.

Glassner, A. (2018). Deep Learning: From Basics to Practice. Seattle, WA: The
Imaginary Institute,

Glorot, X., A. Bordes, and Y. Bengio. (2011). “Deep Sparse Rectifier Neural
Networks.” Fourteenth International Conference on Artificial Intelligence and
Statistics (AISTATS 2011). Journal of Machine Learning Research 15: 315–323.

Glorot, X., and Y. Bengio. (2010). “Understanding the Difficulty of Training Deep
Feedforward Neural Networks.” Thirteenth International Conference on Artificial
Intelligence and Statistics (AISTATS). Journal of Machine Learning Research 9:
249–256.

Goodfellow, I., D. Warde-Farley, M. Mirza, A. Courville, and Y. Bengio. (2013).
“Maxout Networks.” In Proceedings of the 30th International Conference on Machine
Learning (ICML’13), edited by S. Dasgupta and D. McAllester, III-1319–III-1327.
JMLR.org.

Goodfellow, I., Y. Bengio, and A. Courville. (2016). Deep Learning. Cambridge, MA:
MIT Press.

Goodfellow, I., Pouget-Abadie J., Mirza M., Xu B., Warde-Farley D., ozair S.,
Courville A., and Bengio Y. (2014). “Generative Adversarial Nets.” arXiv.org. https://
arxiv.org/pdf/1406.2661.

Graves, A., M. Liwicki, S. Fernandez, R. Bertolami, H. Bunke, and J. Schmidhuber.
(2009). “A Novel Connectionist System for Unconstrained Handwriting
Recognition.” IEEE Transactions on Pattern Analysis and Machine Intelligence 31(5):
855–868.

Harrison, D., and D. Rubinfeld. (1978). “Hedonic Housing Prices and the Demand
for Clean Air.” Journal of Environmental Economics and Management 5: 81–102.

Hastie, T., R. Tibshirani, and J. Friedman. (2009). The Elements of Statistical
Learning Data Mining, Inference, and Prediction. New York: Springer.

He, K., G. Gkioxari, P. Dollár, and R. Girshick. (2017). “Mask R-CNN.” 2017 IEEE
International Conference on Computer Vision (ICCV). IEEE Transactions on Pattern
Analysis and Machine Intelligence PP(99): 2980–2988.

http://JMLR.org
http://arXiv.org
https://arxiv.org/pdf/1406.2661
https://arxiv.org/pdf/1406.2661

WoRKS CITED

653

He, K., X. Zhang, S. Ren, and J. Sun. (2015a.) “Deep Residual Learning for Image
Recognition.” arXiv.org. https://arxiv.org/pdf/1512.03385.

He, K., X. Zhang, S. Ren, and J. Sun. (2015b). “Delving Deep into Rectifiers:
Surpassing Human-Level Performance on ImageNet Classification.” In
Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV),
1026–1034. Washington, DC: IEEE Computer Society.

He, K., X. Zhang, S. Ren, and J. Sun. (2016). “Identity Mappings in Deep Residual
Networks.” Computer Vision—ECCV 2016: 14th European Conference. Lecture
Notes in Computer Science 9908: 630–645.

Heck, J., and F. Salem. (2017). “Simplified Minimal Gated Unit Variations for
Recurrent Neural Networks.” IEEE 60th International Midwest Symposium
on Circuits and Systems (MWSCAS 2017). arXiv.org. https://arxiv.org/
pdf/1701.03452.

Hinton, G. (n.d.). Coursera Class Slides. https://www.cs.toronto.edu/~tijmen/
csc321/slides/lecture_slides_lec6.pdf.

Hinton, G., and R. Salakhutdinov. (2006). “Reducing the dimensionality of data with
neural networks.” Science 303(5786): 504–507.

Hinton, G., J. McClelland, and D. Rumelhart. (1986). Distributed Representations.
Vol. 1, in Parallel Distributed Processing: Explorations in the Microstructure of
Cognition, edited by D. Rumelhart and J. McClelland, 77–109. Cambridge, MA:
MIT Press.

Hinton, G., S. osindero, and Y. Teh. (2006). “A Fast Learning Algorithm for Deep
Belief Nets.” Neural Computation 18(7): 1527–1554.

Hochreiter, S., and J. Schmidhuber. (1997). “Long Short-Term Memory.” Neural
Computation Archive 9(8): 1735–1780.

Hodosh, M., P. Young, and J. Hockenmaier. (2013). “Framing Image Description
as a Ranking Task: Data, Models and Evaluation Metrics.” Journal of Artificial
Intelligence Research 47: 853–899.

Hopfield, J. (1982). “Neural Networks and Physical Systems with Emergent
Collective Computational Abilities.” Proceedings of the National Academy of
Sciences of the United States of America 79(8): 2554–2558.

http://arXiv.org
https://arxiv.org/pdf/1512.03385
http://arXiv.org
https://arxiv.org/pdf/1701.03452
https://arxiv.org/pdf/1701.03452
https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf

WoRKS CITED

654

Howard, A., M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. Andreetto,
and H. Adam. (2017). “MobileNets: Efficient Convolutional Neural Networks for
Mobile Vision Applications.” arXiv.org. https://arxiv.org/pdf/1704.04861.

Howard, J., and S. Gugger. (2020). Deep Learning for Coders with fastai and PyTorch.
Sebastopol, CA: o’Reilly,

Howard, J., and S. Ruder. (2018). “Universal Language Model Fine-tuning for
Text Classification.” Proceedings of the 56th Annual Meeting of the Association
for Computational Linguistics, 328–339. Stroudsburg, PA: Association for
Computational Linguistics.

Howley, D. (2015, June 29). Yahoo Tech. https://finance.yahoo.com/news/google-
photos-mislabels-two-black-americans-as-122793782784.html.

IMDb Datasets. (n.d.). https://www.imdb.com/interfaces/.

Ioffe, S., and C. Szegedy. (2015). “Batch Normalization: Accelerating Deep Network
Training by Reducing Internal Covariate Shift.” arXiv.org. https://arxiv.org/
pdf/1502.03167.

Ivakhnenko, A., and V. Lapa. (1965). Cybernetic Predicting Devices. New York: CCM
Information.

Jin H., Song Q., and Hu X. (2019). “Auto-Keras: An Efficient Neural Architecture
Search System.” arXiv.org. https://arxiv.org/pdf/1806.10282.

Jozefowicz, R., o. Vinyals, M. Schuster, N. Shazeer, and Y. Wu. (2016). “Exploring
the Limits of Language Modeling.” arXiv.org. https://arxiv.org/pdf/1609.02410.

Kärkkäinen, K., and J. Joo. (2019). “FairFace: Face Attribute Dataset for Balanced
Race, Gender, and Age.” arXiv.org. https://arxiv.org/pdf/1908.04913.

Kalchbrenner, N., L. Espehold, K. Simonyan, A. van den oord, A. Graves, and K.
Kavukcuoglu. (2016). “Neural Machine Translation in Linear Time.” arXiv.org.
https://arxiv.org/pdf/1610.10099.

Karpathy, A. (2015, May). The Unreasonable Effectiveness of Recurrent Neural
Networks. http://karpathy.github.io/2015/05/21/rnn-effectiveness/.

Karpathy, A. (2019a, April). A Recipe for Training Neural Networks. April http://
karpathy.github.io/2019/04/25/recipe/.

http://arXiv.org
https://arxiv.org/pdf/1704.04861
https://finance.yahoo.com/news/google-photos-mislabels-two-black-americans-as-122793782784.html
https://finance.yahoo.com/news/google-photos-mislabels-two-black-americans-as-122793782784.html
https://www.imdb.com/interfaces/
http://arXiv.org
https://arxiv.org/pdf/1502.03167
https://arxiv.org/pdf/1502.03167
http://arXiv.org
https://arxiv.org/pdf/1806.10282
http://arXiv.org
https://arxiv.org/pdf/1609.02410
http://arXiv.org
https://arxiv.org/pdf/1908.04913
http://arXiv.org
https://arxiv.org/pdf/1610.10099
http://karpathy.github.io/2015/05/21/rnn-effectiveness/
http://karpathy.github.io/2019/04/25/recipe/
http://karpathy.github.io/2019/04/25/recipe/

WoRKS CITED

655

Karpathy, A. (2019b). “Tesla Autopilot and Multi-Task Learning for Perception and
Prediction.” Lex Clips. https://www.youtube.com/watch?v=IHH47nZ7FZU.

Karpathy, A., and F. Li. (2014). “Deep Visual-Semantic Alignments for Generating
Image Descriptions.” arXiv.org. https://arxiv.org/pdf/1412.2306.

Karras, T., S. Laine, and T. Aila. (2019). “A Style-Based Generator Architecture for
Generative Adversarial Networks.” In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR). 4396–4405. Los Alamitos, CA :
IEEE Computer Society.

Karras, T., T. Aila, L. Samuli, and J. Lehtinen. (2018). “Progressive Growing of GANs
for Improved Quality, Stability, and Variation.” International Conference on Learning
Representations. arXiv.org. https://arxiv.org/pdf/1710.10196.

Keras Issue Request: Speedup GRU by Applying the Reset Gate Afterwards? (2016,
Sept.). https://github.com/keras-team/keras/issues/3701.

Kim, Y., Y. Jernite, D. Sontag, and A. Rush. (2016). “Character-Aware Neural
Language Models.” In Proceedings of the Thirtieth AAAI Conference on Artificial
Intelligence (AAAI’16), 2741–2749. Palo Alto, CA: AAAI Press.

Kingma, D., and J. Ba. (2015). “Adam: A Method for Stochastic optimization.”
Proceedings of 3rd International Conference on Learning Representations
(ICLR’15). arXiv.org. https://arxiv.org/pdf/1412.6980.

Kingma, D., Welling M. (2013). “Auto-Encoding Variational Bayes.” arXiv.org.
https://arxiv.org/pdf/1312.6114.

Kiros, R., Y. Zhu, R. R. Salakhutdinov, R. Zemel, R. Urtasun, A. Torralba, and
S. Fidler. (2015). “Skip-Thought Vectors.” Advances in Neural Information Processing
Systems 28 (NIPS 2015): 3294–3302.

Krizhevsky, A. (2009). Learning Multiple Layers of Features from Tiny Images.
Technical report. University of Toronto.

Krizhevsky, A., I. Sutskever, and G. Hinton. (2012). “ImageNet Classification with
Deep Convolutional Neural Networks.” Advances in Neural Information Processing
Systems 25 (NIPS 2012): 1106–1114.

Lan, Z., M. Chen, S. Goodman, and K. Gimpel. (2020). “ALBERT: A Lite BERT for Self-
supervised Learning of Language Representations.” Proceedings of International
Conference on Learning Representations (ICLR 2020).

https://www.youtube.com/watch?v=IHH47nZ7FZU
http://arXiv.org
https://arxiv.org/pdf/1412.2306
http://arXiv.org
https://arxiv.org/pdf/1710.10196
https://github.com/keras-team/keras/issues/3701
http://arXiv.org
https://arxiv.org/pdf/1412.6980
http://arXiv.org
https://arxiv.org/pdf/1312.6114

WoRKS CITED

656

Le, Q., and T. Mikolov. (2014). “Distributed Representations of Sentences and
Documents.” Proceedings of the 31st International Conference on International
Conference on Machine Learning (ICML’14). Journal of Machine Learning Research
32: 1188–1196.

LeCun, Y., Boser, B. Denker, J. S. Henderson, D. Howard, R. E. Hubbard, W., and
Jackel, L. D. (1990). “Handwritten Digit Recognition with a Back-Propagation
Network.” In Advances in Neural Information Processing Systems 2, 396–404.
Denver, Co: Morgan Kaufmann.

LeCun, Y., L. Bottou, G. orr, and K. Müller. (1998). “Efficient BackProp.” In Neural
Networks, Tricks of the Trade, edited by G. orr, 9–50. London: Springer-Verlag.

LeCun, Y., L. Bottou, Y. Bengio, P. Haffner, and LeCun. (1998). “Gradient-Based
Learning Applied to Document Recognition.” Proceedings of the IEEE 86(11):
2278–2324.

Lenc, K., and A. Vedaldi. (2015). “R-CNN Minus R.” In Proceedings of the British
Machine Vision Conference (BMVC), 5.1–5.12. Norfolk, UK: BMVA Press.

Lieberman, H., A. Faaborg, W. Daher, and J. Espinosa. (2005). “How to Wreck
a Nice Beach: You Sing Calm Incense.” In Proceedings of the 10th International
Conference on Intelligent User Interfaces (IUI ‘05), 278–280. New York: Association
for Computing Machinery.

Lin, M., Q. Chen, and S. Yan. (2013). “Network In Network.” arXiv.org. https://arxiv
.org/pdf/1312.4400.

Lin, T., M. Maire, S. Belongie, L. Bourdev, R. Girshick, J. Hays, P. Perona, D.
Ramanan, C. L. Zitnick, and P. Dollár. (2015). “Microsoft CoCo: Common objects
in Context.” arXiv.org. https://arxiv.org/pdf/1405.0312v3.

Lin, T., P. Doll, R. Girshick, K. He, B. Hariharan, and S. Belongie. (2017). “Feature
Pyramid Networks for object Detection.” 2017 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR). 936–944. Los Alamitos, CA: IEEE Computer Society.

Lin, Z., M. Feng, C. dos Santos, M. Yu, B. Xiang, and B. Zhou. (2017). “A Structured
Self-Attentive Sentence Embedding.” arXiv.org. https://arxiv.org/pdf/1703.03130.

Linnainmaa, S. (1970). “The Representation of the Cumulative Rounding Error of
an Algorithm as aTaylor Expansion of the Local Rounding Errors.” Master thesis,
University of Helsinki.

http://arXiv.org
https://arxiv.org/pdf/1312.4400
https://arxiv.org/pdf/1312.4400
http://arXiv.org
https://arxiv.org/pdf/1405.0312v3
http://arXiv.org
https://arxiv.org/pdf/1703.03130

WoRKS CITED

657

Lipton, Z., J. Berkowitz, and C. Elkan. (2015). “A Critical Review of Recurrent Neural
Networks for Sequence Learning.” arXiv.org. https://arxiv.org/pdf/1506.00019v4.

Liu, A., M. Srikanth, N. Adams-Cohen, M. Alvarez, and A. Anandkumar. (2019).
“Finding Social Media Trolls: Dynamic Keyword Selection Methods for Rapidly-
Evolving online Debates.” arXiv.org. https://arxiv.org/pdf/1911.05332.

Liu, T., X. Ye, and B. Sun. (2018). “Combining Convolutional Neural Network and
Support Vector Machine for Gait-based Gender Recognition.” 2018 Chinese
Automation Congress (CAC), 3477–3481.

Liu, Y., M. ott, N. Goyal, J. Du, M. Joshi, D. Chen, o. Levy, M. Lewis, L. Zettlemoyer,
and V. Stoyanov. (2019). “RoBERTa: A Robustly optimized BERT Pretraining
Approach.” arXiv.org. https://arxiv.org/pdf/1907.11692.

Liu, Z., P. Luo, X. Wang, and X. Tang. (2015). “Deep Learning Face Attributes in
the Wild.” In Proceedings of International Conference on Computer Vision (ICCV),
3730–3738.

Long, J., E. Shelhamer, and T. Darrell. (2017). “Fully Convolutional Networks
for Semantic Segmentation.” IEEE Transactions on Pattern Analysis and Machine
Intelligence 39(4): 640–651.

Luong, M. (2016). “Neural Machine Translation.” Doctoral dissertation, Stanford
University.

Luong, T., H. Pham, and C. Manning. (2015). “Effective Approaches to Attention-
based Neural Machine Translation.” Proceedings of the 2015 Conference on
Empirical Methods in Natural Language Processing, 1412–1421. Stroudsburg, PA:
Association for Computational Linguistics.

Mao, J., W. Xu, Y. Yang, J. Wang, and A. Yuille. (2014). “Explain Images with
Multimodal Recurrent Neural Networks.” arXiv.org. https://arxiv.org/
pdf/1410.1090.

Mask R-CNN for Object Detection and Segmentation. (2019). https://github.com/
matterport/Mask_RCNN.

McCann, B., J. Bradbury, C. Xiong, and R. Socher. (2017). “Learned in Translation:
Contextualized Word Vectors.” Advances in Neural Information Processing Systems
30 (NIPS 2017): 6297–6308.

McCulloch, W., and W. Pitts. (1943). “A logical calculus of the ideas immanent in
nervous activity.” Bulletin of Mathematical Biophysics 5: 115–133.

http://arXiv.org
https://arxiv.org/pdf/1506.00019v4
http://arXiv.org
https://arxiv.org/pdf/1911.05332
http://arXiv.org
https://arxiv.org/pdf/1907.11692
http://arXiv.org
https://arxiv.org/pdf/1410.1090
https://arxiv.org/pdf/1410.1090
https://github.com/matterport/Mask_RCNN
https://github.com/matterport/Mask_RCNN

WoRKS CITED

658

Menon, S., A. Damian, N. Ravi, and C. Rudin. (2020). “PULSE: Self-Supervised Photo
Upsampling via Latent Space Exploration of Generative Models.” arXiv.org. https://
arxiv.org/pdf/2003.03808.

Menon, S., A. Damian, S. Hu, N. Ravi, and C. Rudin. (2020). “PULSE: Self-Supervised
Photo Upsampling via Latent Space Exploration of Generative Models.” arXiv.org.
https://arxiv.org/pdf/2003.03808v1.

Mikolov, T., I. Sutskever, K. Chen, G. Corrodo, and J. Dean. (2013). “Distributed
Representations of Words and Phrases and their Compositionality.” In Proceedings
of the 26th International Conference on Neural Information Processing Systems,
Volume 2, edited by C. J. C. Burges, L. Bottou, M. Welling, Z. Ghahramani, and
K. Q. Weinberger, 3111–3119. Red Hook, NY: Curran Associates.

Mikolov, T., J. Kopecky, L. Burget, o. Glembek, and J. Cernocky. (2009). “Neural
Network Based Language Models for Highly Inflective Languages.” In Proceedings
of the 2009 IEEE International Conference on Acoustics, Speech and Signal
Processing, 4725–4728. Washington, DC: IEEE,

Mikolov, T., K. Chen, G. Corrado, and J. Dean. (2013). “Efficient Estimation of Word
Representations in Vector Space.” arXiv.org. https://arxiv.org/pdf/1301.3781.

Mikolov, T., M. Karafiat, L. Burget, J. Cernocky, and S. Khudanpur. (2010).
“Recurrent neural network based language model.” In Proceedings of the
11th Annual Conference of the International Speech Communication Association
(INTERSPEECH 2010), 1045–1048. Red Hook, NY : Curran Associates.

Mikolov, T., W. Yih, and G. Zweig. (2013). “Linguistic Regularities in Continuous
Space Word Representations.” In Proceedings of the 2013 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Language
Technologies, 746–751. Stroudsburg, PA: Association for Computational Linguistics.

Minsky, M., and S. Papert. (1969). Perceptrons. Cambridge, MA: MIT Press.

Mitchell, M., S. Wu, A. Zaldivar, P. Barnes, L. Vasserman, B. Hutchinson, E. Spitzer,
I. D. Raji, and T. Gebru. (2018). “Model Cards for Model Reporting.” Proceedings of
the Conference on Fairness, Accountability, and Transparency, in PMLR 81: 220–229.

Mnih, V., Kavukcuoglu L., Silver D., Graves A., Antonoglou I., Wierstra D., Riedmiller
M. (2013). “Playing Atari with Deep Reinforcement Learning.” arXiv.org. https://
arxiv.org/pdf/1312.5602.

Morin, F., and Y. Bengio. (2005). “Hierarchical Probabilistic Neural Network
Language Model.” AISTATS, 246–252.

http://arXiv.org
https://arxiv.org/pdf/2003.03808
https://arxiv.org/pdf/2003.03808
http://arXiv.org
https://arxiv.org/pdf/2003.03808v1
http://arXiv.org
https://arxiv.org/pdf/1301.3781
http://arXiv.org
https://arxiv.org/pdf/1312.5602
https://arxiv.org/pdf/1312.5602

WoRKS CITED

659

Nassif, A., I. Shahin, I. Attili, M. Azzeh, and K. Shaalan. (2019). “Speech Recognition
Using Deep Neural Networks: A Systematic Review.” IEEE Access 7: 19143–19165.

Nesterov, Y. (1983). “A Method of Solving a Convex Programming Problem with
Convergence Rate o(1/k^2).” Soviet Mathematics Doklady 27: 372–376.

Ng, A. Andrew Ng's Machine Learning Course | Learning Curves. https://www
.youtube.com/watch?v=XPmLkz8aS6U.

Nielsen, M. (2015). Neural Networks and Deep Learning (ebook). Determination
Press.

Nissim, M., R. Noord, and R. Goot. (2020). “Fair is Better than Sensational: Man is
to Doctor as Woman is to Doctor.” Computational Linguistics 03: 1–17.

Noh, H., S. Hong, and B. Han. (2015). “Learning Deconvolution Network for
Semantic Segmentation.” In Proceedings of the 2015 IEEE International Conference
on Computer Vision (ICCV’15), 1520–1528. Piscataway, NJ: IEEE.

odena, A., V. Dumoulin, and C. olah. (2016). “Deconvolution and Checkerboard
Artifacts.” Distill 1(10).

olah, C. (2015). Understanding LSTM Networks. https://colah.github.io/
posts/2015–08–Understanding-LSTMs.

olazaran, M. (1996). “A Sociological Study of the official History of the Perceptrons
Controversy.” Social Studies of Science 26(3): 611–659.

Pagliardini, M., P. Gupta, and M. Jaggi. (2018). “Unsupervised Learning of Sentence
Embeddings Using Compositional n-Gram Features.” In Proceedings of the 2018
Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, 528–540. Stroudsburg, PA: Association
for Computational Linguistics.

Papineni, K., S. Roukos, T. Ward, and W. Zhu. (2002). “BLEU: a Method for Automatic
Evaluation of Machine Translation.” Proceedings of the 40th Annual Meeting of the
Association for Computational Linguistics, 311–318. Stroudsburg, PA: Association
for Computational Linguistics.

Pennington, J., R. Socher, and C. Manning. (2014). “GloVe: Global Vectors for Word
Representations.” 2014 Conference on Empirical Methods in Natural Language
Processing (EMNLP), 1532–1543. Stroudsburg, PA: Association for Computational
Linguistics.

https://www.youtube.com/watch?v=XPmLkz8aS6U
https://www.youtube.com/watch?v=XPmLkz8aS6U
https://colah.github.io/posts/2015�08�Understanding-LSTMs.olazaran
https://colah.github.io/posts/2015�08�Understanding-LSTMs.olazaran
https://colah.github.io/posts/2015�08�Understanding-LSTMs.olazaran

WoRKS CITED

660

Peters, M., M. Neumann, M. Iyyer, M. Gardner, C. Clark, K. Lee, and L. Zettlemoyer.
(2018). “Deep Contextualized Word Representations.” 2018 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Language
Technologies, 2227–2237. Stroudsburg, PA: Association for Computational
Linguistics.

Philipp, G., D. Song, and J. Carbonell. (2018). “The Exploding Gradient Problem
Demystified—Definition, Prevalence, Impact, origin, Tradeoffs, and Solutions.”
arXiv.org. https://arxiv.org/pdf/1712.05577v4.

Press, o., and L. Wolf. (2017). “Using the output Embedding to Improve
Language Models.” 15th Conference of the European Chapter of the Association for
Computational Linguistics. Association for Computational Linguistics, 157–163.

Puri, R., and B. Catanzaro. (2019). “Zero-Shot Text Classification with Generative
Language Models.” Third Workshop on Meta-Learning at NeurIPS. arXiv.org.
https://arxiv.org/pdf/1912.10165.

Radford, A., J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever. (2019). Language
Models Are Unsupervised Multitask Learners. Technical Report, San Francisco:
openAI.

Radford, A., K. Narasimhan, T. Salimans, and I. Sutskever. (2018). Improving
Language Understanding by Generative Pre-Training. Technical Report, San
Francisco: openAI.

Raffel, C., N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena, Y. Zhou, W. Li, and
P. J. Liu. (2019). “Exploring the Limits of Transfer Learning with a Unified Text-to-
Text Transformer.” arXiv.org. https://arxiv.org/pdf/1910.10683.

Raji, D., and J. Buolamwini. (2019). “Actionable Auditing: Investigating the Impact
of Publicly Naming Biased Performance Results of Commercial AI Products.” In
Proceedings of the 2019 AAAI/ACM Conference on AI, Ethics, and Society, 429–435.
New York : Association for Computing Machinery.

Ren, P., Xiao Y., Chang X., Huang P., Li Z., Chen X., Wang X. (2020). “A Comprehensive
Survey of Neural Architecture Search: Challenges and Solutions.” arXiv.org.
https://arxiv.org/pdf/2006.02903.

Ronneberger, o., P. Fischer, and T. Brox. (2015). “U-Net: Convolutional Networks for
Biomedical Image Segmentation.” Medical Image Computing and Computer-Assisted
Intervention (MICCAI 2015), Lecture Notes in Computer Science 9351: 234–241.

http://arXiv.org
https://arxiv.org/pdf/1712.05577v4
http://arXiv.org
https://arxiv.org/pdf/1912.10165
http://arXiv.org
https://arxiv.org/pdf/1910.10683
http://arXiv.org
https://arxiv.org/pdf/2006.02903

WoRKS CITED

661

Rosenblatt, Frank. (1958). “The Perceptron: A Probabilistic Model for Information
Storage and organization in the Brain.” Psychological Review 65(6): 386–408.

Ruder S. (2017). “An overview of Multi-Task Learning in Deep Neural Networks.”
arXiv.org. https://arxiv.org/pdf/1706.05098.

Rumelhart, D., G. Hinton, and R. Williams. (1986). Learning Internal Representations
by Error Propagation. Vol. 1, in Parallel distributed processing: explorations in
the microstructure of cognition, by D. Rumelhart and J. McClelland, 318–362.
Cambridge, MA: MIT Press.

Russakovsky, o., J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, et al.
(2015). “ImageNet Large Scale Visual Recognition Challenge.” International Journal
of Computer Vision 115: 211–252. https://doi.org/10.1007/s11263-015-0816-y.

Salminen, J., S. Jung, S. Chowdhury, and B. Jansen. (2020). “Analyzing
Demographic Bias in Artificially Generated Facial Pictures.” Extended Abstracts of
the 2020 CHI Conference on Human Factors in Computing Systems, 1–8.

Sample, I. (2020, January 13). “What Are Deepfakes—And How Can You Spot
Them?” The Guardian. https://www.theguardian.com/technology/2020/jan/13/
what-are-deepfakes-and-how-can-you-spot-them

Santurkar, S., D. Tsipras, A. Ilyas, and A. Mądry. (2018). “How Does Batch
Normalization Help optimization?” In Proceedings of the 32nd International
Conference on Neural Information Processing Systems (NIPS 18), 2488–2498. Red
Hook, NY: Curran Associates.

Schmidhuber, J. (2015). “Deep Learning in Neural Networks: An overview.” Neural
Networks 61: 85–117.

Schuster, M., and K. Nakajima. (2012). “Japanese and Korean Voice Search.”
International Conference on Acoustics, Speech and Signal Processing, 5149–5152.
Piscataway, NJ: IEEE.

Schuster, M., and K. Paliwal. (1997). “Bidirectional Recurrent Neural Networks.”
IEEE Transactions on Signal Processing 45(11): 2673–2682.

Sennrich, R., B. Haddow, and A. Birch. (2016). “Neural Machine Translation of
Rare Words with Subword Units.” Proceedings of the 54th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers). 1715–1725. Red
Hook, NY: Curran Associates.

http://arXiv.org
https://arxiv.org/pdf/1706.05098
https://doi.org/10.1007/s11263-015-0816-y
https://www.theguardian.com/technology/2020/jan/13/what-are-deepfakes-and-how-can-you-spot-them
https://www.theguardian.com/technology/2020/jan/13/what-are-deepfakes-and-how-can-you-spot-them

WoRKS CITED

662

Shah, A., E. Kadam, H. Shah, S. Shinde, and S. Shingade. (2016). “Deep Residual
Networks with Exponential Linear Unit.” Proceedings of the Third International
Symposium on Computer Vision and the Internet (VisionNet’16), 59–65. New York:
Association for Computing Machinery.

Shaoqing, R., K. He, R. Girshick, and J. Sun. (2015). “Faster R-CNN: Towards Real-
time object Detection with Region Proposal Networks.” In Proceedings of the 28th
International Conference on Neural Information Processing Systems—Volume 1
(NIPS’15), 91–99. Cambridge, MA: MIT Press.

Sharma, P., N. Ding, S. Goodman, and R. Soricut. (2018). “Conceptual Captions: A
Cleaned, Hypernymed, Image Alt-text Dataset for Automatic Image Captioning.”
In Proceedings of the 56th Annual Meeting of the Association for Computational
Linguistics. Stroudsburg, PA: Association for Computational Linguistics,
2556–2565.

Shelley, M. (1818). Frankenstein; or, The Modern Prometheus. Lackington, Hughes,
Harding, Mavor & Jones.

Shen, J., R. Pang, R. J. Weiss, M. Schuster, N. Jaitly, Z. Yang, Z. Chen, et al.
(2018). “Natural TTS Synthesis by Conditioning Wavenet on MEL Spectrogram
Predictions.” 2018 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), 4779–4783. Piscataway, NJ: IEEE.

Sheng, E., K. Chang, P. Natarajan, and N. Peng. (2019). “The Woman Worked as
a Babysitter: on Biases in Language Generation.” In Proceedings of the 2019
Conference on Empirical Methods in Natural Language Processing and the 9th
International Joint Conference on Natural Language Processing, 3405–3410.
Stroudsburg, PA: Association for Computational Linguistics.

Sherman, Richard, and Robert Sherman. (1963).
“Supercalifragilisticexpialidocious.” From Walt Disney’s Mary Poppins.

Shoeybi, M., M. Patwary, R. Puri, P. LeGresley, J. Casper, and B. Catanzaro. (2019).
“Megatron-LM: Training Multi-Billion Parameter Language Models Using Model
Parallelism.” arXiv.org. https://arxiv.org/pdf/1909.08053.

Simonyan, K., and A. Zisserman. (2014). “Very Deep Convolutional Networks for
Large-Scale Image Recognition.” arXiv.org. https://arxiv.org/pdf/1409.1556.

Sorensen, J. (n.d.). Grounded: Life on the No Fly List. https://www.aclu.org/issues/
national-security/grounded-life-no-fly-list.

http://arXiv.org
https://arxiv.org/pdf/1909.08053
http://arXiv.org
https://arxiv.org/pdf/1409.1556
https://www.aclu.org/issues/national-security/grounded-life-no-fly-list
https://www.aclu.org/issues/national-security/grounded-life-no-fly-list

WoRKS CITED

663

Srivastava, N., G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov. (2014).
“Dropout: A Simple Way to Prevent Neural Networks from overfitting.” Journal of
Machine Learning Research 15: 1929–1958.

Srivastava, R., K. Greff, and J. Schmidhuber. (2015). “Highway Networks.” arXiv.org.
https://arxiv.org/pdf/1505.00387.

Sun, Y., S. Wang, Y. Li, S. Feng, H. Tian, H. Wu, and H. Wang. (2020). “ERNIE 2.0:
A Continual Pre-Training Framework for Language Understanding.” Thirty-
Fourth AAAI Conference on Artificial Intelligence. New York: Association for the
Advancement of Artificial Intelligence.

Sun, Y., S. Wang, Y. Li, S. Feng, X. Chen, H. Zhang, X. Tian, D. Zhu, H. Tian, and H. Wu.
(2019). “ERNIE: Enhanced Representation through Knowledge Integration.” arXiv
.org. https://arxiv.org/pdf/1904.09223.

Sun, Y., X. Wang, and X. Tang. (2013). “Hybrid Deep Learning for Face Verification.”
Proceedings of International Conference on Computer Vision.

Suresh, H., and J. Guttag. (2019). “A Framework for Understanding Unintended
Consequences of Machine Learning.” arXiv.org. https://arxiv.org/pdf/1901.10002.

Sutskever, I., o. Vinyals, and Q. Le. (2014). “Sequence to Sequence Learning with
Neural Networks.” In Proceedings of the 27th International Conference on Neural
Information Processing (NIPS’14). Cambridge, MA: MIT Press, 3104–3112.

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D.,
Vanhoucke, V., and Rabinovich, A. (2014). “Going Deeper with Convolutions.”
28th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 1–9.
Piscataway, NJ: IEEE.

Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I., and
Fergus, R. (2014). “Intriguing Properties of Neural Networks.” International
Conference on Learning Representations.

Szegedy, C., S. Ioffe, V. Vanhoucke, and A. Alemi. (2017). “Inception-v4, Inception-
ResNet and the Impact of Residual Connections on Learning.” In Proceedings of the
Thirty-First AAAI Conference on Artificial Intelligence (AAAI-17), 4278–4284. Palo
Alto, CA: AAAI Press.

Szegedy, C., V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna. (2016). “Rethinking the
Inception Architecture for Computer Vision.” In Proceedings of IEEE Conference on
Computer Vision and Pattern Recognition. Piscataway, NJ: IEEE.

http://arXiv.org
https://arxiv.org/pdf/1505.00387
http://arXiv.org
http://arXiv.org
https://arxiv.org/pdf/1904.09223
http://arXiv.org
https://arxiv.org/pdf/1901.10002

WoRKS CITED

664

Tan, M., and Q. Le. (2019). “EfficientNet: Rethinking Model Scaling for Convolutional
Neural Networks.” 36th International Conference on Machine Learning, 6105–6114.
Red Hook, NY: Curran Associates.

Tang, Y. (2013). “Deep Learning Using Linear Support Vector Machines.” Challenges
in Representation Learning, Workshop in Conjunction with the 30th International
Conference on Machine Learning (ICML 2013).

TensorFlow. (n.d.). Text Classification with Movie Reviews. https://www.tensorflow
.org/hub/tutorials/tf2_text_classification

Thomas, R. (2018). “An opinionated Introduction to AutoML and Neural
Architecture Search.” fast.ai. https://www.fast.ai/2018/07/16/auto-ml2/.

Thomas, R. (2019). “Keynote at open Data Science Conference West.”

Thomas, R., J. Howard, and S. Gugger. (2020). “Data Ethics.” In Deep Learning for
Coders with fastai and PyTorch, edited by J. Howard and S. Gugger. Sebastopal, CA:
o’Reilly Media.

Vahdat, A., Kautz J. (2020). “NVAE: A Deep Hierarchical Variational Autoencoder.”
arXiv.org. https://arxiv.org/pdf/2007.03898.

Valle, R., K. Shih, R. Prenger, and B. Catanzaro. (2020). “Flowtron: An
Autoregressive Flow-Based Generative Network for Text-to-Speech Synthesis.”
arXiv.org. https://arxiv.org/pdf/2005.05957.

Vallor, S. (2018). “Ethics in Tech Practice: A Toolkit.” Markkula Center for Applied
Ethics, Santa Clara University.

Vaswani, A., N. Shazeer, L. Kaiser, I. Polosukhin, N. Parmar, J. Uszkoreit, L. Jones,
and A. N. Gomez. (2017). “Attention Is All You Need.” Proceedings of the 31st
International Conference on Neural Information Processing (NIPS’17), edited by
U. von Luxburg, I. Guyon, S. Bengio, H. Wallach, and R. Fergus, 6000–6010. Red
Hook, NY: Curran Associates.

Vinyals, o., A. Toshev, S. Bengio, and D. Erhan. (2014). “Show and Tell: A Neural
Image Caption Generator.” arXiv.org. https://arxiv.org/pdf/1411.4555.

Wang, Y., R. J. Skerry-Ryan, D. Stanton, Y. Wu, R. J. Weiss, N. Jaitly, Z. Yang, et al.
(2017). “Tacotron: Towards End-to-End Speech Synthesis.” INTERSPEECH 2017,
4006–4010.

https://www.tensorflow.org/hub/tutorials/tf2_text_classification
https://www.tensorflow.org/hub/tutorials/tf2_text_classification
https://www.fast.ai/2018/07/16/auto-ml2/
http://arXiv.org
https://arxiv.org/pdf/2007.03898
http://arXiv.org
https://arxiv.org/pdf/2005.05957
http://arXiv.org
https://arxiv.org/pdf/1411.4555

WoRKS CITED

665

Werbos, P. (1981). “Applications of Advances in Nonlinear Sensitivity Analysis.”
Proceedings of the 10th IFIP Conference, 762–770. Berlin: Springer-Verlag.

Werbos, P. (1990). “Backpropagation Through Time: What It Does and How to Do
It.” Proceedings of the IEEE 78 (10): 1550–1560.

Wieting, J., M. Bansal, K. Gimpel, and K. Livescu. (2016). “Charagram: Embedding
Words and Sentences via Character n-grams.” Proceedings of the 2016 Conference
on Empirical Methods in Natural Language Processing, 1504–1515. Stroudsburg,
PA: Association for Computational Linguistics.

Wojcik, S., S. Messing, A. Smith, L. Rainie, and P. Hitlin. (2018). “Bots in
the Twiitersphere.” Pew Research Center. https://www.pewresearch.org/
internet/2018/04/09/bots-in-the-twittersphere/

Wu, H., and X. Gu. (2015). “Towards Dropout Training for Convolutional Neural
Networks.” Neural Networks 71 (C): 1–10.

Wu, Y., Y. Wu, M. Schuster, Z. Chen, Q. V. Le, M. Norouzi, W. Macherey, et al. (2016).
“Google’s Neural Machine Translation System: Bridging the Gap between Human
and Machine Translation.” arXiv.org. https://arxiv.org/pdf/1609.08144.

Xiao, H., Rasul, K., and Vollgraf, R. (2017). “Fashion-MNIST: a Novel Image Dataset
for Benchmarking Machine Learning Algorithms.” arXiv.org. https://arxiv.org/
pdf/1708.07747.

Xie, S., R. Girshick, P. Dollár, Z. Tu, and K. He. (2017). “Aggregated Residual
Transformations for Deep Neural Networks.” 2017 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR). IEEE, 5987–5995.

Xu, B., N. Wang, T. Chen, and M. Li. (2015). “Empirical Evaluation of Rectified
Activations in Convolutional Networks.” Deep Learning Workshop held in
conjunction with International Conference on Machine Learning.

Xu, K., J. Ba, R. Kiros, K. Cho, A. Courville, R. Salakhutdinov, R. Zemel, and Y.
Bengio. (2015). “Show, Attend and Tell: Neural Image Caption Generation with
Visual Attention.” Proceedings of the 32nd International Conference on International
Conference on Machine Learning (ICML’15), edited by F. Bach and D. Blei, 2048–
2057. JMLR.org.

Yang, Z., Z. Dai, Y. Yang, J. Carbonell, R. Salakhutdinov, and Q. Le. (2019). “XLNet:
Generalized Autoregressive Pretraining for Language Understanding.” Advances in
Neural Information Processing Systems 32 (NIPS 2019), 5753–5763. Red Hook, NY:
Curran Associates.

https://www.pewresearch.org/internet/2018/04/09/bots-in-the-twittersphere/Wu
https://www.pewresearch.org/internet/2018/04/09/bots-in-the-twittersphere/Wu
https://www.pewresearch.org/internet/2018/04/09/bots-in-the-twittersphere/Wu
http://arXiv.org
https://arxiv.org/pdf/1609.08144
http://arXiv.org
https://arxiv.org/pdf/1708.07747
https://arxiv.org/pdf/1708.07747
http://JMLR.org

WoRKS CITED

666

Zaremba, W., I. Sutskever, and o. Vinyals. (2015). “Recurrent Neural Network
Regularization.” arXiv.org. https://arxiv.org/pdf/1409.2329v5.

Zeiler, M., and R. Fergus. (2014). “Visualizing and Understanding Convolutional
Networks.” Computer Vision–ECCV 2014, 818–833. Cham, Switzerland: Springer.

Zeiler, M., D. Krishnan, G. Taylor, and R. Fergus. (2010). “Deconvolutional
Networks.” 2010 IEEE Computer Society Conference on Computer Vision and Pattern
(CVPR’10), 2528–2535. Piscataway, NJ: IEEE.

Zeiler, M., G. Taylor, and R. Fergus. (2011). “Adaptive Deconvolutional Networks
for Mid and High Level Feature Learning.” Proceedings of the 2011 International
Conference on Computer Vision (ICCV’11), 2018–2025. Washington, DC: IEEE
Computer Society.

Zhang, S., L. Yao, A. Sun, and Y. Tay. (2019). “Deep Learning Based Recommender
System: A Survey and New Perspectives.” arXiv.org. https://arxiv.org/pdf/
1707.07435.

Zhuang F., Qi Z., Duan K., Xi D., Zhu Y., Zhu H., Xiong H., and He Q. (2020). “A
Comprehensive Survey on Transfer Learning.” arXiv.org. https://arxiv.org/pdf/
1911.02685.

http://arXiv.org
https://arxiv.org/pdf/1409.2329v5
http://arXiv.org
https://arxiv.org/pdf/1707.07435
https://arxiv.org/pdf/1707.07435
http://arXiv.org
https://arxiv.org/pdf/1911.02685
https://arxiv.org/pdf/1911.02685
http://arXiv.org

667

Index

A
A Lite BERT (ALBERT), 588
Accountability, need for, 506–507
Accuracy in binary classifiers, 533–535
Activated neurons, 1
Activation functions

alignment vectors, 402
digit classification, 121
GPT, 580
gradient computation, 70–72, 74
gradient descent, 65
GRUs, 615
LSTM, 273, 276–278
perceptrons, 2–3
RNNs, 245
selecting, 66–67
vanishing gradients, 136–141, 250

Activation layer, 129
AdaGrad variation for gradient descent,

141–143
Adam variation for gradient descent, 141–143
Adaptive learning rate for gradient descent,

141–142
add() function

convolutional layers, 199–200
house prices example, 163–164

Addition of vectors, 22
Adversarial examples for modified images, 231
Adversarial networks, 514–515
Affine transformations, 176
Agents in reinforcement learning, 513
Aggregation bias, 509
AI (artificial intelligence), ethical, 505–512
ALBERT (A Lite BERT), 588
AlexNet network, 171–172
Alignment in multimodal learning, 463
Alignment vectors

attention technique, 400–404
computing, 400–402
mathematical notation and variations,

402–404

Amazon Web Services (AWS), 630
ANNs (Artificial neural networks). See Deep

neural networks
Analytic motivation in learning algorithm, 49–50
Anchor boxes in Faster R-CNN, 547–548
AND gates, 17, 19
Anki bilingual sentence pairs, 627
Architectures, 87–89
argmax() function, 111
Arguments for Python functions, 120
Arrays in NumPy, 260
Artifacts in semantic segmentation, 555–556
Artificial Intelligence (AI), xxvii–xxviii
Artificial intelligence (AI), ethical, 505–512
Artificial neural networks (ANNs). See Deep

neural networks
Artificial neurons

cheat sheet, 658
description, 2–3

Aspect ratios in Faster R-CNN, 547
Atari video games, 513
Attention, 393

alignment, 463
alignment vectors, 400–404
concluding remarks, 415–416
deeper networks, 404–406
encoder-decoder architecture, 394–399, 404
GPT, 578
image captioning, 420–443
multi-head attention, 410–411
rationale, 394
self-attention, 407–410
sequence-to-sequence networks, 395–406

Attentional vectors, 405
Audio filters, 608–611
Autocompletion. See Text autocompletion
Autoencoders, 448–449

aspects, 451–452
BERT, 589
evaluating, 455–456
initialization statements, 453

INDEx

668

Autoencoders (Continued)
outlier detection, 452–459
testing, 457–458
training, 450, 453–454
use cases, 449–451
variational, 513–515

Autoregressive text models, 287–289
Auxiliary classifiers in GoogLeNet, 212–213
Average pooling. See Pooling
AWS (Amazon Web Services), 630
Axons in biological neurons, 1

B
Backpropagation, 20

activation functions, 66–67
concluding remarks, 89
function composition and chain rule,

67–68
gradient computation, 69–80
gradient issues, 268–269
introduction, 59–60
modified neurons, 60–66
multiple neurons per layer, 81
network architectures, 87–89
pretrained models, 228–229
programming example, 82–87
vanishing gradients, 126

Backpropagation through time (BPTT),
248–250

Backward passes
backpropagation, 60, 76–80
MNIST learning, 109–111
word2vec, 352
xOR example, 85

Bag-of-character-n-grams, 568
Bag-of-n-grams, 337–338
Bag-of-words (BoW) model

CBOW, 346–347
combining with DL, 340–341
sentiment analysis of text, 334–338
similarity metrics, 339
word2vec, 355

Basic Linear Algebra Subprograms (BLAS), 20
Batch normalization

ResNet, 221
saturated neurons, 128–129
vanishing gradients, 270, 272

Batch size
book sales forecasting problem, 261
mini-batch gradient descent, 114
RoBERTa, 588

BatchNormalization layer, 129
Bayesian optimization, 487

Beam searches
text prediction, 289–291, 297
word-based language model, 305–307

BERT. See Bidirectional Encoder
Representations from Transformers
(BERT)

Bias
datasets, 96–97
neural language models, 332–333
types and sources, 508–511

Bias inputs, 2
Bias term for perceptrons, 33–34
Bidirectional Encoder Representations from

Transformers (BERT), 581
historical work on, 588–589
input and output representations, 584–585
masked language model task, 582–583
next-sentence prediction task, 583–584
NLP tasks, 586

Bidirectional language model, 572–573
Bidirectional RNNs, 298–300
Bigrams model, 307–309
Bilinear interpolation in semantic segmentation,

550–553, 555–556
BiLingual Evaluation Understudy (BLEU) score

machine translation, 517
natural language translation, 388

Binary classification
description, 238
evaluation metrics, 533–537
logistic sigmoid function, 155–156
output units, 154

Binary encoding, 101
Biological neurons, 1–2
BLAS (Basic Linear Algebra Subprograms), 20
Book sales forecasting problem, 239–240

census data for, 626–627
combining layers, 245–246
historical sales data, 254–255
initialization section, 253–254
multiple input variables, 263–264
naïve prediction code, 255–256
vs. networks without recurrence, 262–263
programming example, 250–264
RNNs, 258–262
standardize data, 256–258, 260
training examples, 251–253, 256–259

Boston Housing dataset
house prices, 161–165
input variables, 160–161

boston_housing() function, 161–165
Bounding boxes

Fast R-CNN, 544–546

INDEx

669

Faster R-CNN, 547–548
Mask R-CNN, 560–561
multitask learning, 470–471
object detection, 539–543

BoW model. See Bag-of-words (BoW) model
BPTT (backpropagation through time), 248–250
Branches

Mask R-CNN, 560–561
object detection, 540–541

Building blocks for convolutional layers,
175–179

Bypass paths in Keras Functional API, 370–371
Byte-pair encoding in GPT, 581

C
Callback functions in Keras Functional API, 385
CAM (content addressable memory), 400–401
Captioning images. See Image captioning
Categorical cross-entropy

LSTM, 295
multiclass classification, 143–145
multitask learning, 471
neural machine translation, 383–384
softmax output units, 154–155

categorical_crossentropy loss
function, 143, 193

CBOW (continuous-bag-of-words) model, 344
overview, 346–347
word2vec, 355

CEC. See Constant error carousel (CEC)
Celeb HQ dataset, 511
CelebFaces Attributes (CelebA) dataset, 96–97
Cell bodies in biological neurons, 1
Chain rule in backpropagation, 67–68
Channels

character-based embedding, 571
convolutional layers, 177–184, 186–193,

197–198
depthwise separable convolutions, 232
GoogLeNet, 210–215
Mask R-CNN, 560
ResNet, 219–221
semantic segmentation, 549–550
VGGNet, 206–208

Character-based embedding, 567–572
Character mappings in text autocompletion,

293
Character sequences in wordpieces, 564–565
Cheat sheets, 658–667
Checkerboard artifacts in semantic

segmentation, 555–556
CIFAR-10 dataset and classification

loading, 191–192, 488

programming example, 488–501
working with, 173–175

Cited works, 637–656
Classification branch in Mask R-CNN, 560
Clipping, gradient, 142, 270, 272
clone() function, 633
Closed-form solution in linear regression,

523–524
Cloud services, 630
CLS tokens in BERT, 584–585
Clustering algorithms for autoencoders, 452
CNNs. See Convolutional neural networks

(CNNs)
Co-learning in multimodal learning, 463–464
Co-training in multimodal learning, 463–464
COCO dataset

description, 627
image captioning, 422

Code examples. See Programming examples
Coefficients in linear regression, 523–525
Color channels in convolutional layers, 178
Column vectors, 22
Combination-based models for multimodal

learning, 463
Combining

BoW with DL, 340–341
convolutional and fully connected layers,

181–185
feature maps, 180–181
perceptrons, 17–20
RNN layers, 245–246

compile() function
digit classification, 121–122
PyTorch, 635

Composition function in backpropagation,
67–68

Computational complexity in word2vec,
344–346

Computational units in perceptrons, 2
Computer implementation in cross-entropy loss

function, 135–136
Computer vision cheat sheet, 667
Concatenation in multimodal learning,

460–461
Confusion matrices, 534–535
Constant error carousel (CEC)

gradient issues, 271–272
GRUs, 613, 615
LSTM, 273–276
vanishing gradients, 277–278

Constants in gradient-based learning, 48
Content addressable memory (CAM),

400–401

INDEx

670

Context
continuous skip-gram model, 348
ELMo, 572–574
sequence-to-sequence learning, 366–367
word2vec, 353

Contextualized word vectors (CoVe), 575
Continuous-bag-of-words (CBOW) model, 344

overview, 346–347
word2vec, 355

Continuous skip-gram model
optimized, 349–351
overview, 348–349
word2vec, 352, 355

Convex optimization problem in linear
regression, 524

Convolution matrices, 177
Convolutional layers

autoencoders, 454
initialization section, 191–192
mathematical convolution relation,

607–611
training, 192–193
training and test errors, 194–197

Convolutional neural networks (CNNs), 88–89
AlexNet, 171–173
backpropagation, 228–229
CIFAR-10 dataset, 173–175
combining layers, 181–185
concluding remarks, 201–203
depthwise separable convolutions, 232–234
EfficientNets, 234–235
feature maps, 179–180
GoogLeNet, 210–215
layer building blocks, 175–179
mistakes, 231
pretrained models. See Pretrained models
programming example, 190–200
ResNet, 215–226
sparse connections and weight sharing,

185–190
VGGNet, 206–209

Coordinated representation in multimodal
learning, 460–461

Cosine distance
GloVe, 357
sentiment analysis of text, 339–340

Cost function in logistic regression, 527
CoVe (contextualized word vectors), 575
cpu() function, 633
Credit cards

scores, 506–508
transactions, 451

Cross-correlation, 611

Cross-entropy and cross-entropy loss function
convolutional layers, 200
logistic regression, 527
multiclass classification, 158
multitask learning, 471
PyTorch vs. TensorFlow, 635
saturated neurons, 130–136
softmax output units, 154–155
tweaking, 144–145
weight decay, 166

Cross-validation
hyperparameter tuning, 146–150
network tuning, 479

Crossover operations in NAS, 486–487
CUDA BLAS (cuBLAS) library, 20
cuDNN library, 20
Curvature modeling, 522–523

D
DAGs (directed acyclic graphs), 19
Data augmentation in regularization, 229–231
data directory, 624
Data ethics, 505–512
Data moves in PyTorch vs. TensorFlow,

633–634
Data points, standardizing, 107
Datasets

cheat sheet, 661
generalization, 98–100
human bias in, 96–97
hyperparameter tuning and information

leakage, 100
for programming examples, 625–627
RNNs, 264
training networks, 92–100

Datasheets for datasets, 97
Dead neurons, 138
Debuggers in IDEs, 624
Decision boundaries for support vector

machines, 531–532
Decoder model. See Encoder-decoder

architecture and model
Deconvolution in semantic segmentation

checkerboard artifacts, 555–556
convolution relationship, 554–555
networks, 557–559
overview, 553–554

Deep neural networks (DNNs)
house prices example, 161–165
multiple perceptrons, 19

DELIM tokens in GPT, 580
Dendrites in biological neurons, 1–2
Denoising autoencoders, 452, 589

INDEx

671

Dense encoding, 101
Dense layers in digit classification, 121
Dependencies in BERT, 582
Deployment bias, 509
Depthwise separable convolutions, 232–234
Derivatives

gradient-based learning, 41–44
gradient descent, 46

detach() function, 633
Development environments, 621–622

datasets, 625–627
framework installation, 628–630
programming environments, 623–624
programming examples, 624–625
Python, 622–623
PyTorch vs. TensorFlow, 631–636
TensorFlow, 630–631

Differentiable functions in gradient descent,
60–61

Digit classification
example, 104–114
implementation, 118–124
import statements, 118–119
loading datasets, 119–120
loss function, 103–104
matrix implementation, 599–606
network architecture, 102–103
network creation, 120–122
programming example, 118–124
training, 122–123

Dimensions
autoencoder reduction of, 452
convolutional layers, 177

Directed acyclic graphs (DAGs), 19
Direction in vectors, 44
Discriminators in GAN, 514
Disinformation, 508
Distributed representations of words, 303–304,

310, 314
DNNs (deep neural networks)

house prices example, 161–165
multiple perceptrons, 19

Docker containers, 630
Document vectors in sentiment analysis of text,

338
Documentation, releasing, 506
Dot products

description, 23
matrices, 29
vectors, 57
word2vec, 353

Dropout
recurrent dropout, 265

convolutional layers, 197
regularization, 167–169

E
Early fusion in multimodal learning,

461–462
Early stopping for datasets, 99
Eclipse IDE, 624
EfficientNets, 234–235
Eigenvalues, 250
Elements of matrices, 24
Ellipses in logistic regression, 529
ELMo embeddings, 572–575
elu function, 139–140
Embedding images, 418–419
Embedding layers

CBOW model, 346–347
continuous skip-gram model, 349
GloVe, 356–361
neural language models, 345–346
optimized continuous skip-gram model,

350
self-attention, 408
sequence-to-sequence learning, 367
Transformer, 411
word2vec, 352–355

Encoder-decoder architecture and model
attention technique, 394–399, 404
autoencoders. See Autoencoders
image captioning, 418–419, 432–438
neural machine translation, 379–384
sequence-to-sequence learning, 366–368
Transformer, 411–415

Encoding text, 285–287
END tokens in GPT, 580–581
Enhanced Representation through Knowledge

Integration (ERNIE), 590
Environments in reinforcement learning, 513
Epochs, 111
ERNIE (Enhanced Representation through

Knowledge Integration), 590
Error function

backpropagation, 76–78, 81
gradient computation, 70–73

Error term in multiclass classification, 103–104
Errors in datasets, 99–100
Estimated weights in linear output units, 160
Ethical AI, 505–512
Ethics, 505–506

checklist, 512
problem areas, 506–512

Euclidean distance for vectors, 338–340
eval() function, 634

INDEx

672

Evaluation bias, 509
Evaluation metrics for binary classifiers,

533–537
Evolutionary algorithm in NAS, 485–487,

498–500
Example-based models in multimodal learning,

462–463
Excitatory synaptic signals, 2
Excited neurons, 1
Exhaustive grid search in hyperparameter

tuning, 147
Explicit alignment in multimodal learning, 463
Exploding gradient problems

clipping for, 142
mitigating, 267–272
RNNs, 273

Exponential functions in gradient descent, 62
Extreme Inception, 234

F
F scores for binary classifiers, 536
False negatives (FNs) in binary classifiers, 534
False positives (FPs)

binary classifiers, 534–535
pattern identification, 56

Fashion MNIST dataset, 455–459
Fast R-CNN, 541, 544–546
Faster R-CNN, 541, 546–549
FastText, 566–567
Feature engineering in logistic regression, 530
Feature identification in gradient-based

learning, 57
Feature maps

combining, 180–181
convolutional layers, 177, 179–181
Fast R-CNN, 544
Faster R-CNN, 546–547

Feature Pyramid Network (FPN), 561
Feature vectors in image captioning, 424–426
Feedback

neural language models, 325–326
text prediction, 288–289

Feedback loop issues, 507–508
Feedforward module in Transformer, 412
Feedforward networks

backpropagation, 87–89
cheat sheet, 658
language models, 310–311
limitations, 241–242
multiple perceptrons, 18–19
RNNs, 247
sentiment analysis of text, 341

FFhQ (Flickr-Faces hQ) dataset, 510–511

Filters, audio, 608–611
Fine tuning, 226–228
fit() function

digit classification, 122
multitask learning, 476
neural machine translation, 377, 385
PyTorch vs. TensorFlow, 632

fit_on_texts() function, 322
Fixed length datasets for time series, 264
Flatten layer, 121
Flickr-Faces hQ (FFhQ) dataset, 510–511
Folds in cross-validation, 149–150
Forecasting problem. See Book sales

forecasting problem
Forget gates in LSTM, 281
Forward passes

backpropagation, 60, 75–80
Fast R-CNN, 544
MNIST learning, 109–111
word2vec, 352
xOR example, 86

FPN (Feature Pyramid Network), 561
Fractional striding, 553
Frameworks, 117

concluding remarks, 150–151
cross-entropy loss function, 130–136
gradient descent variations, 141–143
hyperparameter tuning and cross-validation,

146–150
initialization and normalization techniques,

126–129
installation, 628–630
network and learning parameters, 143–146
programming example, 118–124
saturated neurons, 124–126
vanishing gradients, 124–126, 136–141

Frankenstein text, 627
from_numpy() function, 633
Fully connected layers, combining, 181–185
Fully connected networks, 153–154

backpropagation, 87–89
Boston Housing dataset, 160–161
concluding remarks, 170
generalization, 166–168
house prices example, 161–165
multiclass classification. See Multiclass

classification
multiple perceptrons, 18–19
output units, 154–160
regularization, 169–170
weights and calculations, 186

Fully connected softmax layer in text encoding,
286–287

INDEx

673

Function composition in backpropagation,
67–68

Functional API, 634–635
Functions in Python, 120
Fusion in multimodal learning, 461–462

G
GANs (generative adversarial networks),

513–515
Garbage-in/garbage-out (GIGO) problem in

datasets, 96–97
Gated Recurrent Units (GRUs)

alternate implementation, 616
networks based on, 616–619
overview, 613–615
sequence-to-sequence learning, 368

Gated units in LSTM, 272–273, 275, 281
Gating functions in LSTM, 278–279
Gender biases in neural language models, 333
Generalization

datasets, 98–100
regularization for, 166–168

Generative adversarial networks (GANs),
513–515

Generative Pre-Training (GPT), 578–582
Generators in GAN, 514
Geometric description for learning algorithm,

51
Geometric interpretation for perceptrons, 30–32
get_weights() function, 326
__getitem__() method, 431
GIGO (garbage-in/garbage-out) problem in

datasets, 96–97
Global pooling. See Pooling
Glorot initialization

vanishing gradients, 270, 272
weight initialization, 126–127

glorot_uniform() function, 127
GloVe algorithm, 343

concluding remarks, 361–362
properties, 356–361
word embeddings file, 627

Google Colab, 630
GPT (Generative Pre-Training), 578–582
GPUs. See Graphics processing units (GPUs)
Gradient-based learning

concluding remarks, 57
constants and variables, 48
derivatives and optimization problems,

41–44
gradient descent, 44–48
learning algorithm analytic motivation,

49–50

learning algorithm explanation, 37–41
learning algorithm geometric

description, 51
pattern identification, 54–57
plots, 52–54

Gradient clipping, 142, 270, 272
Gradient descent

backpropagation, 60
learning problem, 44–46
linear regression, 523–524
logistic regression, 527
mini-batch, 114–115
modified neurons, 60–66
multidimensional functions, 46–48
Newton-Raphson method, 597
variations, 141–143

Gradients
backpropagation, 69–80
cheat sheet, 662
GoogLeNet, 213
issues, 267–272
vanishing. See Vanishing gradients

Graphics processing units (GPUs)
acceleration, 629
AlexNet, 172
convolutional networks, 201
data transfer, 633
Google Colab, 630
mini-batches, 114
offload computations, 20–21
Transformer, 591

Grid search in hyperparameter tuning,
146–148

Ground truth, 7
GRUs. See Gated Recurrent Units (GRUs)

H
Handwritten digits

classification example, 104–114
Fashion MNIST dataset, 455–458
MNIST dataset, 93, 97
network architectures, 102–103
programming example, 118–124

Hard attention, 405–406
Hard parameter sharing in multitask learning,

472
He initialization

cross-entropy loss function, 144
vanishing gradients, 270, 272
weight initialization, 126–127

he_normal() function, 127
Head units in multitask learning, 471
Heads in networks, 540–541

INDEx

674

Hidden layers
digit classification, 102
house prices example, 162–163
multiple perceptrons, 19
neural language models, 345
RNNs, 245
sequence-to-sequence learning,

367–368
vanishing gradients in, 136–141

Hidden outputs in RNNs, 243
Hidden states

alignment vectors, 400, 402
RNNs, 246

Hidden units, 139
Hierarchical softmax

CBOW model, 346–347
continuous skip-gram model, 348
word2vec, 344–346

Highway networks, 282
Hill climbing in NAS, 485, 494–496
Hiring practice issues, 507–508
Historical bias, 508
Historical sales data in book sales forecasting

problem, 254–255
History of Neural Networks, xxviii–xxxi
House prices

Boston Housing dataset, 161–165
regularization, 169–170

Human biases
in datasets, 96–97
neural language models, 332–333

Hybrid data in multimodal learning, 464
Hyperbolic tangent (tanh) function

activation function, 136–137,
139–141

alignment vectors, 402
backpropagation, 78, 269–270
batch normalization, 129
convolutional layers, 200
derivative of, 75
Glorot initialization, 126–127
gradient descent, 61–67
LSTM, 273, 276–278
recurrent layers, 243–244

Hyperparameters
datasets, 100
learning rate, 8
tuning, 146–150

I
Identity functions for autoencoders, 448
IDEs (integrated development environments),

624

idx2numpy package
MNIST dataset reading, 94
versions, 622

Image captioning
architecture, 417–421
attention, 420–421
concluding remarks, 443–445
encoder-decoder architecture, 418–419,

432–438
feature vectors, 424–426
import statements, 422–423, 426–427
initialization statements, 427–428
json files, 422–425
programming example, 421–443
reading functions, 428
tokens, 429–430
training and evaluating, 439–443
training data, 431–432

Image classification
CIFAR-10 dataset, 173–175
concluding remarks, 201–203
convolutional neural networks, 171–173
feature maps, 180–181
fully connected layers, 181–185
programming example, 175–179, 190–200
sparse connections and weight sharing,

185–190
ImageNet challenge, 171
Images

autoencoders, 454–457
MNIST dataset, 94–95

Implicit alignment in multimodal learning, 463
Import statements

digit classification, 118–119
image captioning, 422–423, 426–427

Inception module in GoogLeNet, 210–214
Inference

Mask R-CNN, 561
multiclass classification, 100–101
neural language models, 325
neural machine translation, 384
PyTorch vs. TensorFlow, 634

Information leakage in test datasets, 100
Information theory, 133
Inhibitory synaptic signals, 2
Initialization

autoencoders, 453
book sales forecasting problem, 253–254
convolutional layers, 191–192
image captioning, 427–428
learning algorithm, 8–9
MNIST learning, 104–105
multimodal learning, 465–466

INDEx

675

multitask learning, 474–475
NAS, 488–489
neural language models, 319–320
neurons, 107–108
ResNet implementation, 223–224
saturated neurons, 126–129
text autocompletion, 292–293
xOR learning example, 82–83

Input activation in LSTM, 276, 278
Input word embedding in word2vec, 352–354
Inputs

attention technique, 394
autoencoders, 448, 453–454
BERT, 584–585
book sales forecasting problem, 251–253,

263–264
Boston Housing dataset, 160–161
cheat sheet, 664
curvature modeling, 523
digit classification, 121
gradient computation, 73
gradient descent, 48
language models, 310–311
learning algorithm, 8–9, 12
learning algorithm analytic motivation, 50
learning algorithm geometric

description, 51
linear regression, 521–523
logistic regression, 528–530
LSTM, 281
multimodal learning, 460–461
multiple perceptrons, 17–20
multitask learning, 476–477
neural language models, 321
pattern identification, 55–56
perceptrons, 2–3
plots, 52–53
prediction problems, 239
RNNs, 242–243
standardization in saturated neurons, 128
text autocompletion, 300–302
Transformer, 411–412
two-input example, 4–7

Instance segmentation
with Mask R-CNN, 559–561
object detection, 540

Instantiation of neurons, 107–108
Integrated development environments (IDEs),

624
Intermediate representation

autoencoders, 448–450
natural language translation, 389–391

Internal weights in plots, 53

Interpolation
Mask R-CNN, 561
semantic segmentation, 550–553, 555–556

Intersection over union (IoU) metric, 543
Iris Dataset, 93
IsNext category in BERT, 583–585
item() function, 633

J
Jaccard similarity, 338–339
Joint representation in multimodal learning,

460–461
json files for image captioning, 422–425
Jupyter Notebook environment, 623–624

K
K-fold cross-validation, 149–150
k-means clusters for autoencoders, 452
Keras Functional API

constants, 372
encoder-decoder model, 379–384
import statements, 371
introduction, 368–371
programming example, 371–387
reading files, 373
training and testing models, 385–387

Kernel in convolutional layers, 177
Kernel size

AlexNet, 173
convolutional layers, 178–179, 181, 183,

192–193, 195–197
depthwise separable convolutions, 232
GoogLeNet, 210
VGGNet, 206–207

Kernel trick for support vector machines, 533
Keys

alignment vectors, 401
multi-head attention, 410–411
self-attention, 409

L
L1 regularization, 166–167, 169–170
L2 regularization, 166–167, 169–170
Labeling datasets, 92
Language-independent representation in

sequence-to-sequence learning, 366–367
Language models. See Neural language models
Language models vs. computational complexity

reduction, 344–346
Late fusion in multimodal learning, 461–462
Layers

AlexNet, 172
alignment vectors, 401–403

INDEx

676

Layers (Continued)
autoencoders, 453–454
backpropagation, 81
CBOW model, 346–347
cheat sheet, 659
combining, 181–185, 245–246
continuous skip-gram model, 348–349
convolutional neural networks, 175–179
digit classification, 102, 121
ELMo, 573
Fast R-CNN, 544–545
GloVe, 356–361
GoogLeNet, 211, 213
house prices example, 162–163
image captioning, 424, 433–436
LSTM, 278–280
Mask R-CNN, 560–561
multiple perceptrons, 19
neural language models, 344–346
neural machine translation, 379–384
optimized continuous skip-gram model, 350
output units, 154–155
regularization, 167–168
ResNet, 215–222
RNNs, 242–245
self-attention, 408
semantic segmentation, 549–550, 554
sequence-to-sequence learning, 366–368
transfer learning, 228
Transformer, 411
unrolling, 246–247
vanishing gradients, 136–141
VGGNet, 206–209
word embeddings, 316–319
word2vec, 352–355

LDA (linear discriminant analysis), 533
leaky ReLU function, 139–140
Learning algorithm

analytic motivation, 49–50
geometric description, 51
initialization statements, 8–9
intuitive explanation, 37–41
linear regression as, 519–523
multiclass classification, 101
perceptrons, 7–15
ResNet, 216–217
training loops, 10
weight decay, 166

Learning curve plots, 481–482
Learning parameter tweaking, 143–146
Learning problem solutions with gradient

descent, 44–48
Learning process with saturated neurons, 125

Learning rate
gradient descent, 46
learning algorithm, 8

Leibniz notation, 68
LeNet, 171, 201
__len__() method, 431
Linear algebra

cheat sheet, 660
perceptron implementation, 20–21

Linear classification
plots, 53
xOR, 528–530

Linear discriminant analysis (LDA), 533
Linear output units, 154–155, 159–160
Linear regression

coefficients, 523–525
curvature modeling, 522–523
as machine learning algorithm, 519–523
multivariate, 521–522
R-CNN, 543
univariate, 520–521

Linear separability, 15–16, 32, 56
load_data function, 455
load_img function, 224
Loading

CIFAR-10 dataset, 191–192, 488
digit classification datasets, 119–120
GloVe embeddings, 356–357
MNIST dataset, 94, 119, 465

Logistic function
backpropagation, 269
gradient computation, 70
gradient descent, 61–67

Logistic output units, 154–155
Logistic regression

classification with, 525–527
support vector machines, 532–533
xOR classification, 528–530

Logistic sigmoid function
activation function, 136
backpropagation, 269–270
binary classification problems, 155–156
classification with, 526–527
digit classification, 121
LSTM, 273, 275
saturated output neurons, 130–133

Logistic sigmoid neurons, 615
Logistic sigmoid units, 453
Logit function, 155
Long short-term memory (LSTM), 265–266

activation functions, 277–278
alternative view, 280–281
cell networks, 278–280

INDEx

677

character-based embedding, 572
concluding remarks, 282–283
ELMo, 572–574
gradient health, 267–272
GRUs, 613–615
highway networks, 282
image captioning, 433–434
introduction, 272–277
neural language models, 322
neural machine translation, 379–384
programming example, 291–298
PyTorch vs. TensorFlow, 635
sequence-to-sequence learning,

366–368
skip connections, 282

Longer-term text prediction, 287–289
Loss functions

autoencoders, 451, 457
backpropagation, 269
convolutional layers, 200
digit classification, 122–124
GPT, 581
gradient computation, 70–71
logistic regression, 527
multiclass classification, 103–104, 158
multitask learning, 471
neural machine translation, 383–384
output units, 154–155
PyTorch vs. TensorFlow, 635
saturated neurons, 130–136
tweaking, 144–145
weight decay, 166

LSTM. See Long short-term memory (LSTM)

M
Machine learning algorithm, linear regression

as, 519–523
MAE (mean absolute error)

autoencoders, 457–458
book sales forecasting problem, 259–260

Magnitude of vectors, 44
Many-to-many networks in text autocompletion,

301
Many-to-one networks in text autocompletion,

301
Mask R-CNN, 559–561
MASK tokens in BERT, 585
Masked language model task in BERT, 582–583
Masked self-attention mechanism in GPT, 578
Masking words in RoBERTa, 587
Mathematical convolution, 607–611
Mathematical representation for recurrent

layers, 243–244

matmul function, 601
matplotlib package, 622
Matrices

binary classifiers, 534–535
convolutional layers, 177
dot products, 29
extending vectors to, 24–25
linear regression, 525
matrix-matrix multiplication, 26–30
matrix-vector multiplication, 25–26
mini-batch implementation, 602–606
neural machine translation, 375
recurrent layers, 243–244
single, 599–602
summary, 28–29
tensors, 30
word2vec, 353–354

Max pooling
AlexNet, 173
backpropagation, 228–229
character-based embedding, 571
convolutional layers, 183, 197–199
Fast R-CNN, 544–545
Faster R-CNN, 547–548
GoogLeNet, 211–214
ResNet, 218
semantic segmentation, 554, 556
VGGNet, 206–209

Maximum-likelihood estimation, 133
maxout function, 139–140
Maxout units, 156
Mean absolute error (MAE)

autoencoders, 457–458
book sales forecasting problem, 259–260

Mean squared error (MSE)
backpropagation, 269
book sales forecasting problem,

259–260
convolutional layers, 200
gradient computation, 70–71
gradient descent, 45
linear output units, 154–155, 160
linear regression, 523–524
multitask learning, 471

Mean squared error (MSE) loss function for
saturated output neurons, 130–134

Means in datasets, 107
Measurement bias, 509
Megatron-LM, 591
Metric cosine distance in sentiment analysis of

text, 339–340
Metrics for binary classifiers, 533–537
Mini-batch gradient descent, 114–115

INDEx

678

Mini-batch implementation for matrices,
602–606

MLP. See Multilevel perceptrons
MNIST learning. See Modified National Institute

of Standards and Technology (MNIST)
dataset

MobileNets network, 234
Modalities in multimodal learning. See

Multimodal learning
Model cards, 506
Modified National Institute of Standards and

Technology (MNIST) dataset
bias in, 97
contents, 93
description, 625–626
exploring, 94–96
loading, 94, 119, 465
multimodal learning, 465
multitask learning, 475
outlier detection program, 452, 457–459

Modified National Institute of Standards and
Technology (MNIST) learning

forward pass, backward pass, and weight
adjustment functions, 109–111

initialization section, 104–105
neuron instantiation and initialization,

107–108
progress reporting, 108–109
reading datasets, 105–107
training loop, 112–114

Modified neurons in gradient descent, 60–66
Momentum in gradient descent, 141
Movie Reviews Dataset, 334
MSE. See Mean squared error (MSE)
Multi-head attention, 407, 410–411
Multiclass classification

concluding remarks, 115–116
datasets used in, 92–100
digit classification, 102–103
example, 104–114
initialization statements, 104–105
introduction, 91–92
learning algorithm, 101
loss function, 103–104
mini-batch gradient descent, 114–115
multitask learning, 473–477
neuron instantiation and initialization,

107–108
output units, 154–158
progress reporting, 108–109
reading datasets, 105–107
training and inference, 100–101
training loop, 112–114

Multidimensional arrays in house prices
example, 164

Multidimensional functions in gradient descent,
46–48

Multidimensional tensors, 30
Multilevel networks

gradient computation, 69–80
gradient descent, 60–66

Multilevel perceptrons, 19
Multimodal learning, 459

alignment, 463
classification networks, 467–468
co-learning, 463–464
experiments, 468–469
fusion, 461–462
initialization statements, 465–466
programming example, 465–469
representation, 460–461
taxonomies, 459–464
training and testing, 466–467
translation, 462–463

Multiple dimensions in neural language models,
329–332

Multiple input variables in book sales
forecasting problem, 263–264

Multiple neurons per layer in
backpropagation, 81

Multiple perceptrons, combining, 17–20
Multiplication

matrix, 29
matrix-matrix, 26–30
matrix-vector, 25–26

Multitask learning, 469–470
benefits, 470
implementing, 471
initialization statements, 474–475
inputs, 476–477
programming example, 473–477
variations, 472–473

Multivariate linear regression, 521–522

N
n-gram model language model

vs. neural language models, 311–312
overview, 307–309

n-grams
character-based embedding, 567–571
FastText, 566–567

Naïve models
binary classifiers, 536
network tuning, 478

Naïve prediction code for book sales forecasting
problem, 255–256, 260

INDEx

679

Naïve solution for object detection, 540–541
Names for weights, 69
NAND gates

learning algorithm, 8, 11
two-input example, 5

NAS. See Neural architecture search (NAS)
Natural language processing (NLP)

BERT tasks, 584, 586
cheat sheet, 666
Transformer, 407

Natural language translation
concluding remarks, 391
encoder-decoder model, 366–368
experimental results, 387–389
intermediate representation, 389–391
Keras Functional API, 368–371
language model examples, 313
programming example, 371–387
sequence-to-sequence networks, 363–365
use case, 306–307

Nearest neighbor interpolation, 550–551
Negative samples

FastText, 566
optimized continuous skip-gram model,

350
Nesterov momentum in gradient descent, 141
Network architectures, 87–89
Network-in-network architecture in GoogLeNet,

210
Networks

backpropagation, 87–89
constants and variables, 48
creating, 120–122
digit classification, 102–103
fully connected, 154–160
learning algorithm, 7
LSTM, 278–280
multiclass classification, 101
parameter tweaking, 143–146
saturated neurons and vanishing gradients,

124–126
training and inference, 100–101
tuning, 477–482

Neural architecture search (NAS)
components, 482–483
evaluating, 487–488
implementing, 493–494
implications, 500–501
initialization statements, 488–489
model evaluation, 497–498
model generation, 490–491
programming example, 488–501
search space, 483–484

search strategy, 484–487
tensorflow model, 492–493

Neural language models
concluding remarks, 342
examples, 307–312
GPT, 578–582
human biases, 332–333
inference models, 325
initialization section, 319–320
programming example, 319–329
sentiment analysis of text, 334–341
subtraction, 329–332
training examples, 320–322
training process, 323
use cases, 304–307
word embeddings, 303–304, 315–319

Neural machine translation
encoder-decoder model, 379–384
programming example, 371–387
tokens, 372–377
training sets and test sets, 378, 385–387

Neural machine translator (NMT), 395, 405
Neural networks. See Deep neural networks
Neural style transfer, 515
neuron_w() function, 83
Neurons

artificial, 2–3
biological, 1–2
instantiation and initialization, 107–108
saturated, 124–126

Newton-Raphson method, 593
gradient descent, 597
optimization problems, 595–597
root-finding, 594–596

Next-sentence prediction task in BERT,
583–584

NLP (natural language processing)
BERT tasks, 584, 586
cheat sheet, 666
Transformer, 407

NMT (neural machine translator), 395, 405
No Fly List, 507
no_grad() function, 634
Nonlinear activation functions, 138
Nonlinear functions in LSTM, 273
Nonnormalized vectors, 339–340
Nonparallel data in multimodal learning, 464
Nonsaturating neurons in vanishing gradients,

270, 272
norm() function, 327
Normalization

ResNet, 221
saturated neurons, 126–129

INDEx

680

Normalization (Continued)
Transformer, 411
vanishing gradients, 270, 272

Normalized vectors in sentiment analysis of
text, 339–340

NotNext category in BERT, 583–585
numpy() function, 633
numpy package

arrays, 260
contents, 20
versions, 622

O
Object detection, 539–540

Fast R-CNN, 544–546
Faster R-CNN, 546–549
instance segmentation, 559–561
overview, 540–542
R-CNN, 542–543

Offload computations, 21
OLS (ordinary least squares) in linear

regression, 523
One-hot encoding

character-based embedding, 570
multiclass classification, 101, 107
text, 285–287, 292–294, 297
word embeddings, 312, 316–317, 321–322

One-to-many case in text autocompletion,
301

One-to-many networks for image captioning.
See Image captioning

Online classes, 517–518
Online learning, 114–115
Online shopping sites, 515
Optimization problems

gradient-based learning, 41–44
Newton-Raphson method, 595–597

OR functions, 15
Ordinary least squares (OLS) in linear

regression, 523
Out-of-vocabulary words

character-based embedding, 567–572
FastText, 567
GPT, 581
wordpieces, 564, 583

Outlier detection
autoencoders, 451
programming example, 452–459

Output activation in LSTM, 276, 278
Output error in backpropagation, 77
Output neurons, saturated, 130–136
Output sequences in text autocompletion,

300–302

Output units, 139
concluding remarks, 170
linear unit for regression, 159–160
logistic unit for binary classification, 155
multitask learning, 471
overview, 154–155
softmax unit for multiclass classification,

156–158
Output word embedding in word2vec, 353–354
Outputs

autoencoders, 448, 453–454
axons, 1
BERT, 584–585
book sales forecasting problem, 261–262
cheat sheet, 664
digit classification, 121
fully connected networks, 154–160
learning algorithm, 8–12
multiple perceptrons, 17–20
neural language models, 327
perceptrons, 2
plots, 53
RNNs, 243
two-input example, 5
xOR example, 86–87

Overfitting
convolutional layers, 197
datasets, 98–100
ResNet, 216
validation sets for, 148

P
Packages in Python, 622–623
pad_sequences() function, 377
Padding

AlexNet, 173
convolutional layers, 179, 183–184, 192
neural language models, 321
neural machine translation, 376–377
time series data, 264
VGGNet, 207

Pandas, xxxvii
Parallel data in multimodal learning, 464
Parameter reductions in depthwise separable

convolutions, 232–234
Parameter sharing in multitask learning, 472
Partial derivatives

gradient-based learning, 42–44
gradient computation, 73–75

Passes
backpropagation, 60, 75–80
Fast R-CNN, 544
MNIST learning, 109–111

INDEx

681

word2vec, 352
xOR example, 85–86

Pattern identification, 54–57
PCA (principal component analysis)

autoencoders, 452
natural language translation, 389–390

Perceptrons. See Rosenblatt perceptron
Perplexity metric in neural language models,

323
Phrase embedding, 390
pillow package, 622
Pixels in digit classification, 102–103
Planes

3D plots, 31–32
learning algorithm geometric description, 51
multivariate linear regression, 521–522

Plots
gradient-based learning, 52–54
perceptrons, 30–32

Pointwise convolutions, 232
Pooling
GlobalAveragePooling2D, 434
max pooling. See Max pooling
unpooling, 553–555, 557

Positional embeddings in BERT, 585
Positional encoding in Transformer, 414–415
Postpadding in neural machine translation, 376
Precision metric for binary classifiers, 535
predict() function

neural language models, 324
text autocompletion, 297

Predictions
house prices, 161–165
neural language models, 324
next-sentence prediction task, 583–584
text. See Text autocompletion
time sequences in RNNs. See Recurrent

Neural networks (RNNs)
Prepadding in neural machine translation,

376
preprocess_input function, 225
Pretrained models, 205

backpropagation, 228–229
concluding remarks, 235–236
data augmentation, 229–231
depthwise separable convolutions, 232–234
EfficientNets, 234–235
GoogLeNet, 210–215
mistakes, 231
programming example, 223–226
ResNet, 215–223
transfer learning, 226–228
VGGNet, 206–209

Pretraining
GPT, 578–579
RoBERTa, 587–588

Principal component analysis (PCA)
autoencoders, 452
natural language translation, 389–390

Probabilistic FastText embeddings, 575
Programming environments, 623–624
Programming examples, 624–625
Progress reporting in learning process,

108–109
Project Gutenberg, 627
Projection layers in word embeddings, 316
pt_framework directory, 624
PULSE model, 509–511
PyCharm IDE, 624
PyDev extension, 624
Python Data Manipulation Library, xxxvii
Python language

development environments, 622–623
dictionaries, 294
function definitions, 120
learning algorithm, 8–12
perceptron implementation, 4
versions, 622

PyTorch framework
GPU acceleration, 629
programming example, 118–124
vs. TensorFlow, 631–636

Q
Queries

alignment vectors, 401
multi-head attention, 410–411
self-attention, 409

Question answering in multitask learning,
473–477

R
R-CNN (region-based CNN), 541–543
Random restart hill climbing, 485
Random searches

algorithm implementation, 493–494
NAS, 484–486

Reading datasets in MNIST learning, 105–107
Recall metric for binary classifiers, 535
Receiver operating characteristic (ROC) curves,

536
Receiver operating characteristic (ROC) space,

535
Receptive fields

convolutional layers, 178, 183
GoogLeNet, 210

INDEx

682

Recommender systems, 515
Recourse, need for, 506–507
Rectified linear unit (ReLU) activation function

alignment vectors, 403
book sales forecasting problem, 258
convolutional layers, 192, 200
cross-entropy loss function, 144
He initialization, 127
LSTM, 273
ResNet, 217
vanishing gradients, 137–140
VGGNet, 208

Recurrent dropout, 265
Recurrent layers in PyTorch vs. TensorFlow,

635
Recurrent neural networks (RNNs)

alternative view, 246–247
alternatives to, 406–407
backpropagation through time, 248–250
bidirectional, 298–300
book sales forecasting problem, 258–262
combining layers, 245–246
concluding remarks, 265–266
dataset considerations, 264
description, 88–89
feedforward networks, 241–242
gradient issues, 267–268, 271–272
GRUs, 613, 616–619
image captioning, 419–421
introduction, 237–240
LSTM, 275, 278–279
LSTM cells, 273
mathematical representation, 243–244
programming example, 251–264
simple form, 242–243
text encoding, 286–287

Refinement branch in Mask R-CNN, 560
Region-based CNN (R-CNN), 541–543
Region of interest (ROI)

align layer in Mask R-CNN, 561
pooling layers in Fast R-CNN, 544–545

Region proposal networks (RPNs) in Faster
R-CNN, 546–548

Regions in learning algorithm, 12
Regression

classification with, 525–527
coefficients, 523–525
concluding remarks, 170
curvature modeling, 522–523
linear output units, 154–155, 159–160
as machine learning algorithm, 519–523
multitask learning, 471
multivariate, 521–522

object detection, 540
R-CNN, 543
support vector machines, 532–533
univariate, 520–521
xOR classification, 528–530

Regularization
cheat sheet, 662
convolutional layers, 195–197
data augmentation, 229–231
datasets, 99
for generalization, 166–168
house prices example, 169–170

Reinforcement learning
NAS, 487
overview, 513

ReLU. See Rectified linear unit (ReLU) activation
function

Representation bias, 509
Representation in multimodal learning,

460–461
Reset-after GRU implementation, 614,

616–617
Reset-before GRU implementation, 614,

616–617
reset_states() function, 324
reshape() function, 636
Residual networks. See ResNet
ResNet

Mask R-CNN, 561
pretrained models, 215–223
programming example, 223–226

ResNext, 561
Reward functions in reinforcement learning,

513
RMSProp variation in gradient descent,

141–143
RNNs. See Recurrent neural networks (RNNs)
RoBERTa (Robustly Optimized BERT Pretraining

Approach), 586–589
ROC (receiver operating characteristic) curves,

535–536
ROI (region of interest)

align layer in Mask R-CNN, 561
pooling layers in Fast R-CNN, 544–545

Root-finding method, 594–596
Rosenblatt perceptron

bias term, 33–34
combining, 17–20
components, 2
concluding remarks, 34–35
description, 3
dot products, 23, 29
geometric interpretation, 30–32

INDEx

683

gradient-based learning. See Gradient-based
learning

introduction, 1–4
learning algorithm, 7–15
limitations, 15–16
linear algebra implementation, 20–21
matrices, 24–25, 28–29
matrix-matrix multiplication, 26–30
matrix-vector multiplication, 25–26
Python implementation, 4
two-input example, 4–7
vector notation, 21–23, 28–29

Row vectors, 22
RPNs (region proposal networks) in Faster

R-CNN, 546–548

S
S-shaped function

gradient descent, 61, 63–64, 66–67
vanishing gradients, 248

Sales forecasting problem. See Book sales
forecasting problem

Saturated neurons
avoiding, 126–129
cross-entropy loss function, 130–136
vanishing gradients, 124–126

Scalar variables, 21
Sci-kit learn framework, 148
Searches

NAS. See Neural architecture search (NAS)
text prediction, 289–291, 297
word-based language model, 305–307

Segment embeddings in BERT, 584–585
Segmentation, 539–540

instance, 559–561
semantic. See Semantic segmentation

Self-attention
GPT, 578
overview, 407–410

Semantic segmentation, 540, 549–550
checkerboard artifacts, 555–556
deconvolution and unpooling, 553–554
deconvolution networks, 557–558
U-Net, 558–559
upsampling techniques, 550–552

Sensitivity in binary classifiers, 534
Sensitivity metric for binary classifiers,

534–536
Sentence embedding, 390
Sentence order prediction (SOP) in RoBERTa,

588
Sentence vectors in autoencoders,

449–450

Sentiment analysis of text, 334
bag-of-n-grams, 337–338
bag-of words, 334–338
GPT, 581
similarity metrics, 338–340

SEP tokens in BERT, 584–585
Sequence-to-sequence networks

attention technique, 395–406
concluding remarks, 391
encoder-decoder model, 366–368
experimental results, 387–389
intermediate representation, 389–391
Keras Functional API, 368–371
natural language translation, 363–365
programming example, 371–387

sequences_to_matrix() function, 341
Sequential API, 634–635
Sequential class, 121
Sequential prediction

concluding remarks, 265–266
feedforward networks, 241–242
introduction, 237–240
programming example, 250–264
RNNs. See Recurrent neural networks (RNNs)
unrolling in time, 246–247

SGD (stochastic gradient descent)
description, 114
network training, 121
vs. true gradient descent, 50

Shingles, 337
Sibling networks

Fast R-CNN, 545
Faster R-CNN, 547–548

Sigmoid function for gradient descent, 61–64
Sigmoid neurons

backpropagation. See Backpropagation
Glorot initialization, 127

Sign functions
gradient computation, 70
gradient descent, 61
perceptrons, 2–3

Signum function, 2–3
Similarity metrics in sentiment analysis of text,

338–340
Single matrices, 599–602
Skip connections

LSTM, 282
NAS, 484
ResNet, 216–221
Transformer, 412
vanishing gradients, 271–272

Skip-gram model, 309
Skip-grams in word2vec, 355

INDEx

684

Sliding windows in Faster R-CNN, 548
Soft attention, 405–406
Soft parameter sharing, 472
Softmax activation function in GPT, 580
softmax function, 182
Softmax layers

alignment vectors, 401–403
BERT, 585
character-based embedding, 572
continuous skip-gram model, 348
ELMo, 573
GoogLeNet, 212
neural language models, 345–346
text encoding, 286–287
text prediction, 288–289

Softmax output units, 154–158
softplus function, 139–140
SOP (sentence order prediction) in RoBERTa,

588
Source hidden state for alignment vectors, 400
sparse_categorical_crossentropy

function, 383–384
Sparse connections in convolutional neural

networks, 185–190
Sparsely connected neurons, 176, 179
Special symbols in wordpieces, 565–566
Speech recognition, 306, 516
Spoken language models, 516
Spreadsheet support, 625
Stacking convolutional layers, 184
stand_alone directory, 624
Standard deviation for datasets, 107
Standardize data, 256–258, 260
Standardizing data, 106–107
START tokens

GPT, 580
natural language translation, 363–365
neural machine translation, 372–377, 384
sequence-to-sequence learning, 366

State handling in PyTorch vs. TensorFlow, 635
Statistical language models, 304–307
Steepest ascent hill climbing in NAS, 485
step() method, 632
Stimuli for dendrites, 1
Stochastic gradient descent (SGD)

description, 114
network training, 121
vs. true gradient descent, 50

Stochastic hill climbing, 494
STOP tokens

GPT, 580
natural language translation, 363–365
neural machine translation, 372–375

Streaming services recommender systems, 515
Strides

AlexNet, 173
convolutional layers, 178–179, 183–184,

191–192, 195, 198
GoogLeNet, 211
semantic segmentation, 554–555
VGGNet, 206–207

StyleGAN model, 510–511
Subscripts for variables, 21
Subtraction in neural language models,

329–332
Subwords in wordpieces, 564
summary() function, 163
Supervised learning, 7, 513
Support vector machines (SVMs)

classification with, 531–533
R-CNN, 543

Support vector regression, 533
SVMs. See Support vector machines
Symbols in wordpieces, 564–566
Symmetric digital for gradient descent, 65
Synapses in biological neurons, 1
Synaptic weight, 2
Systems installation, 628–629

T
Tacotron speech recognition, 516
tanh function. See Hyperbolic tangent (tanh)

function
Target hidden states in alignment vectors, 402
Taxonomies, 459–464
Tensor processing unit (TPU) pods, 591
TensorBoard, 145
TensorFlow framework

considerations, 630–631
programming example, 118–124
vs. PyTorch, 631–636

Tensorflow model, 492–493
Tensors

book sales forecasting problem, 257–258
multidimensional, 30

Terminator Genisys, 231
Test datasets

convolutional layers, 176
digit classification, 119
information leakage, 100
multiclass classification, 98–100, 105–107
neural machine translation, 378
overfitting, 148–149
time series, 264

Test errors
convolutional layers, 194–197, 200

INDEx

685

house prices example, 165
multiclass classification, 98–101
network tuning, 479
regularization for, 166
ResNet, 216

Test images in CIFAR-10 dataset, 173–175
Testing and test examples

autoencoders, 457–458
house prices example, 164
multiclass classification, 113
multimodal learning, 466–467
neural machine translation, 385–387

Text autocompletion, 285
autoregressive models, 287–289
bidirectional RNNs, 298–300
character mappings, 293
concluding remarks, 302
initialization statements, 292–293
input and output sequences, 300–302
natural language sentences, 240
programming example, 291–298
text encoding, 285–287
training examples, 293–294
training model, 295–296

Text prediction and beam search, 289–291
Text sentiment analysis, 334–341
Text-To-Text Transfer Transformer (T5), 591
text_to_word_sequence() function

neural language models, 320
neural machine translation, 372

tf_framework directory, 624
Thought vectors, 366–367
3D plots for perceptrons, 30–32
Thresholds in bias term, 33
Time in backpropagation through, 248–250
Time sequences. See Recurrent Neural

networks (RNNs)
Timesteps in natural language translation,

364–365
to() function, 633
to_categorical() function, 119–120, 377
tokenize() function

image captioning, 429
neural machine translation, 373–374

Tokenizer class, 321
Tokens

BERT, 584–585
GPT, 580
image captioning, 429–430
natural language translation, 363–365
neural machine translation, 372–377, 384
sequence-to-sequence learning, 366

torch.no_grad() function, 633

TPU (tensor processing unit) pods, 591
train() function, 634
Training

algorithm cheat sheet, 661
autoencoders, 450, 453–454
book sales forecasting problem, 261
BPTT, 248
CBOW model, 347
convolutional layers, 192–193
digit classification, 122–123
image captioning, 439–443
multiclass classification, 100–101
multimodal learning, 466–467
multitask learning, 472
NAS, 487
PyTorch vs. TensorFlow functions, 631–632,

634
word embeddings, 323

Training data and datasets
collecting, 481–482
convolutional layers, 176
digit classification, 119
image captioning, 422, 431–432
multiclass classification, 98–100
networks, 92–100
neural machine translation, 378
overfitting, 148–149
reading, 105–107
RoBERTa, 587
time series, 264

Training errors
convolutional layers, 194–197
house prices example, 165
multiclass classification, 98–101
network tuning, 478–479, 481–482
regularization for, 166
ResNet, 215–216

Training examples
book sales forecasting problem, 251–253,

256–259
learning algorithm, 38–40
MNIST dataset, 95
multiclass classification, 113
multimodal learning, 464
natural language translation, 364–365
optimized continuous skip-gram model,

350–351
text autocompletion, 293–294
word embeddings, 316, 320–322
xOR example, 83, 86

Training loops
learning algorithm, 10
mini-batch implementation, 605–606

http://torch.no_grad(

INDEx

686

Training loops (Continued)
MNIST learning, 112–114
xOR example, 85–86

Training model
neural machine translation, 385–387
text autocompletion, 295–296

Transfer learning
multimodal learning, 464
multitask learning, 470
pretrained models, 226–228

Transformer, 393
architecture, 411–415
cheat sheet, 666
concluding remarks, 415–416
GPT, 578–581
image captioning, 422
models based on, 590–591
positional encoding, 414–415
recurrent layers, 407
self-attention, 409

Transformer-xL, 590–591
Translation in multimodal learning, 462–463
Translation invariance in convolutional layers,

175–176, 179
Transpose operation

matrices, 24–25
vector notation, 22

Transposed convolution in semantic
segmentation, 553–554

True negatives (TNs) in binary classifiers, 534
True positives (TPs) in binary classifiers,

534–535
Trunks in multitask learning, 471
Tuning networks, 477–482
tweak_model() function, 495–496
2D matrices, extending vectors to, 24–25
Two-input perceptron example, 4–7
Type I errors in binary classifiers, 534
Type II errors in binary classifiers, 534

U
U-Net, 558–559
ULMFiT (Universal Language Model Fine-

tuning), 589
Unbiased estimators for linear output units, 160
Uniform random searches in NAS, 486
United States Census Bureau data

book sales forecasting problem,
250–251

datasets, 626–627
Univariate linear regression, 520–521
Universal Language Model Fine-tuning

(ULMFiT), 589

Unlabeled data
autoencoders, 451–452
transfer learning, 228

Unpooling in semantic segmentation, 553–555,
557

Unrolling in time, 246–247
Unsupervised learning, 513
Update gates in GRUs, 615
Upsampling techniques

semantic segmentation, 550–552
U-Net, 558–559

Use cases for language models, 304–307

V
VAEs (variational autoencoders), 513–515
Validation datasets, 100
Validation sets, overfitting, 148
Vanishing gradients

activation function, 250
avoiding, 136–141
CEC, 277–278
mitigating, 267–272
RNNs, 273
S-shaped activation functions, 248
saturated neurons, 124–126

Variable length datasets in time series, 264
Variables

book sales forecasting problem, 263–264
Boston Housing dataset, 160–161
digit classification, 123
gradient-based learning, 43, 48
xOR example, 83–84

Variational autoencoders (VAEs), 513–515
VGGNet, 206–209
Vectors

attention technique, 395–398, 400–404
autoencoders, 449–450
BERT, 585
book sales forecasting problem, 251–252
CBOW model, 346–347
continuous skip-gram model, 349
dot products, 57
ELMo, 574
extending to matrices, 24–25
GloVe, 359–360
gradient descent, 47
gradients, 44
image captioning, 419–421, 424–426
multi-head attention, 410–411
natural language translation, 389–390
neural language models, 330–332
notation, 21–23
self-attention, 409

INDEx

687

sentiment analysis of text, 338–340
sequence-to-sequence learning,

366–367
summary, 28–29
support vector machines, 531–533
tensors, 30
word, 303–304, 316
word2vec, 353

Versions of Python, 622–623
VGG (Visual Geometry Group), 206
VGG19 network, 418–424
VGGNet-16 network

deconvolution networks, 557
Fast R-CNN, 544
Faster R-CNN, 546

view() function, 636
Virtual environment installation, 629
virtualenv tool, 629
Visual Geometry Group (VGG), 206
Vocabularies

FastText, 567
wordpieces, 564–565

W
W-shingling technique, 337
Weight decay in regularization, 166–167
Weight initialization for saturated neurons,

126–128
Weighted sums

batch normalization, 129
plots, 52–53

Weights and weight sharing
alignment vectors, 402
attention technique, 400, 405
audio filters, 611
backpropagation, 76–81, 269
backpropagation through time, 249
bias term, 33–34
character-based embedding, 569
convolutional layers, 176, 191, 229
convolutional neural networks, 88, 185–190
datasets, 99
depthwise separable convolutions,

232–233
dot products, 23
ELMo, 574–575
exploding gradients, 142
geometric interpretation, 31
gradient computation, 69–71
gradient descent, 44–45, 48, 65–66
GRUs, 615
input, 2–4
learning algorithm, 7–12, 14, 37–40

learning algorithm analytic motivation,
49–50

learning algorithm geometric description, 51
linear output units, 160
LSTM, 276, 279
matrix-matrix multiplication, 27–28
mini-batch implementation, 602–603
multi-head attention, 411
multiple perceptrons, 19–20
multitask learning, 471–472, 476
neural machine translation, 384
pattern identification, 55
perceptrons, 15–16
plots, 52–54
recurrent layers, 243–244, 246–247
ResNet, 216
self-attention, 408–409
semantic segmentation, 551, 554–555
synaptic, 2
transfer learning, 228
two-input example, 4–7
vanishing gradients, 250
VGGNet, 209
vector notation, 22
word embeddings, 317
word2vec, 352–353
xOR example, 84–85

Word embeddings, 303–304, 563–564
benefits and operation, 313–315
character-based method, 567–572
cheat sheet, 665
concluding remarks, 342
ELMo, 572–575
FastText, 566–567
GloVe, 356–362
human biases, 332–333
inference models, 325
initialization section, 319–320
language model examples, 307–312
language model use cases, 304–307
neural language models, 315–319
programming example, 319–329
related work, 575–576
sentiment analysis of text, 334–341
subtraction, 329–332
training examples, 320–322
training process, 323
word2vec. See word2vec algorithm
wordpieces, 564–566

Word-of-n-grams, 569
Word vectors, 303–304

GloVe, 359
neural language models, 316, 330–332

INDEx

688

word2vec algorithm, 343
autoencoder similarity, 450–451
CBOW model, 346–347
computational complexity, 344–346
concluding remarks, 361–362
continuous skip-gram model, 348–349,

352
evolution, 354–355
matrix form, 353–354
neural language models, 332
optimized continuous skip-gram model,

349–351
tweaking, 352–353
word embeddings, 344–351

Wordpieces
BERT, 583
overview, 564–566

X
xception module, 234
xLNet, 590–591
xOR functions

backpropagation, 82–87
linear classification, 528–530
multiple perceptrons, 17–19
perceptrons, 15–16

Y
YouTube videos, 507

Z
zero_grad() method, 632
Zero-shot task transfer, 581–582
zeros() function, 107

This page intentionally left blank

Learn
Innovate
Lead
Continue your dive into deep learning with NVIDIA.

 > Watch the recording of author Magnus Ekman’s
presentation from NVIDIA GTC21

 > Discover more resources, including teaching kits for
educators and code examples for developers

 > Explore learning and training opportunities from the
NVIDIA Deep Learning Institute

Visit: www.nvidia.com/dli-books

Ready to take the next step?
www.nvidia.com/dli

http://www.nvidia.com/dli-books
http://www.nvidia.com/dli

Addison-Wesley • Adobe Press • Cisco Press • Microsoft Press • Pearson IT Certification • Que • Sams • Peachpit Press

• Machine Learning and AI
• Analytics
• Hadoop and Spark
• R Programming
• Python Programming Language
• Visualization

Data Science
Books, eBooks & Video

No matter your role or job description, almost everyone
these days is expected to have some skills in data
science including data collection, data analysis, building
AI algorithms, programming with R, and more. We have
learning resources for every level of experience.

Visit informit.com/dataresources to read sample chapters,
shop, and watch video lessons from featured products.

http://informit.com/dataresources

Addison-Wesley • Adobe Press • Cisco Press • Microsoft Press • Pearson IT Certif ication • Que • Sams • Peachpit Press

Register Your Product at informit.com/register
Access additional benefits and save 35% on your next purchase

• Automatically receive a coupon for 35% off your next purchase, valid
for 30 days. Look for your code in your InformIT cart or the Manage
Codes section of your account page.

• Download available product updates.
• Access bonus material if available.*
• Check the box to hear from us and receive exclusive offers on new

editions and related products.

*Registration benefits vary by product. Benefits will be listed on your account page under
Registered Products.

InformIT.com—The Trusted Technology Learning Source
InformIT is the online home of information technology brands at Pearson, the world’s
foremost education company. At InformIT.com, you can:

• Shop our books, eBooks, software, and video training
• Take advantage of our special offers and promotions (informit.com/promotions)
• Sign up for special offers and content newsletter (informit.com/newsletters)
• Access thousands of free chapters and video lessons

Connect with InformIT—Visit informit.com/community

Photo by izusek/gettyimages

http://informit.com/register
http://InformIT.com
http://InformIT.com
http://informit.com/promotions
http://informit.com/newsletters
http://informit.com/community

	Cover
	Half Title
	Title Page
	Copyright Page
	Contents
	Foreword
	Foreword
	Preface
	Acknowledgments
	About the Author
	1 THE ROSENBLATT PERCEPTRON
	Example of a Two-Input Perceptron
	The Perceptron Learning Algorithm
	Limitations of the Perceptron
	Combining Multiple Perceptrons
	Implementing Perceptrons with Linear Algebra
	Vector Notation
	Dot Product
	Extending the Vector to a 2D Matrix
	Matrix-Vector Multiplication
	Matrix-Matrix Multiplication
	Summary of Vector and Matrix Operations Used for Perceptrons
	Dot Product as a Matrix Multiplication
	Extending to Multidimensional Tensors

	Geometric Interpretation of the Perceptron
	Understanding the Bias Term
	Concluding Remarks on the Perceptron

	2 GRADIENT-BASED LEARNING
	Intuitive Explanation of the Perceptron Learning Algorithm
	Derivatives and Optimization Problems
	Solving a Learning Problem with Gradient Descent
	Gradient Descent for Multidimensional Functions

	Constants and Variables in a Network
	Analytic Explanation of the Perceptron Learning Algorithm
	Geometric Description of the Perceptron Learning Algorithm
	Revisiting Different Types of Perceptron Plots
	Using a Perceptron to Identify Patterns
	Concluding Remarks on Gradient-Based Learning

	3 SIGMOID NEURONS AND BACKPROPAGATION
	Modified Neurons to Enable Gradient Descent for Multilevel Networks
	Which Activation Function Should We Use?
	Function Composition and the Chain Rule
	Using Backpropagation to Compute the Gradient
	Forward Pass
	Backward Pass
	Weight Adjustment

	Backpropagation with Multiple Neurons per Layer
	Programming Example: Learning the XOR Function
	Network Architectures
	Concluding Remarks on Backpropagation

	4 FULLY CONNECTED NETWORKS APPLIED TO MULTICLASS CLASSIFICATION
	Introduction to Datasets Used When Training Networks
	Exploring the Dataset
	Human Bias in Datasets
	Training Set, Test Set, and Generalization
	Hyperparameter Tuning and Test Set Information Leakage

	Training and Inference
	Extending the Network and Learning Algorithm to Do Multiclass Classification
	Network for Digit Classification
	Loss Function for Multiclass Classification
	Programming Example: Classifying Handwritten Digits
	Mini-Batch Gradient Descent
	Concluding Remarks on Multiclass Classification

	5 TOWARD DL: FRAMEWORKS AND NETWORK TWEAKS
	Programming Example: Moving to a DL Framework
	The Problem of Saturated Neurons and Vanishing Gradients
	Initialization and Normalization Techniques to Avoid Saturated Neurons
	Weight Initialization
	Input Standardization
	Batch Normalization

	Cross-Entropy Loss Function to Mitigate Effect of Saturated Output Neurons
	Computer Implementation of the Cross-Entropy Loss Function

	Different Activation Functions to Avoid Vanishing Gradient in Hidden Layers
	Variations on Gradient Descent to Improve Learning
	Experiment: Tweaking Network and Learning Parameters
	Hyperparameter Tuning and Cross-Validation
	Using a Validation Set to Avoid Overt fi ting
	Cross-Validation to Improve Use of Training Data

	Concluding Remarks on the Path Toward Deep Learning

	6 FULLY CONNECTED NETWORKS APPLIED TO REGRESSION
	Output Units
	Logistic Unit for Binary Classic fi ation
	Softmax Unit for Multiclass Classic fi ation
	Linear Unit for Regression

	The Boston Housing Dataset
	Programming Example: Predicting House Prices with a DNN
	Improving Generalization with Regularization
	Experiment: Deeper and Regularized Models for House Price Prediction
	Concluding Remarks on Output Units and Regression Problems

	7 CONVOLUTIONAL NEURAL NETWORKS APPLIED TO IMAGE CLASSIFICATION
	The CIFAR-10 Dataset
	Characteristics and Building Blocks for Convolutional Layers
	Combining Feature Maps into a Convolutional Layer
	Combining Convolutional and Fully Connected Layers into a Network
	Effects of Sparse Connections and Weight Sharing
	Programming Example: Image Classification with a Convolutional Network
	Concluding Remarks on Convolutional Networks

	8 DEEPER CNNs AND PRETRAINED MODELS
	VGGNet
	GoogLeNet
	ResNet
	Programming Example: Use a Pretrained ResNet Implementation
	Transfer Learning
	Backpropagation for CNN and Pooling
	Data Augmentation as a Regularization Technique
	Mistakes Made by CNNs
	Reducing Parameters with Depthwise Separable Convolutions
	Striking the Right Network Design Balance with EfficientNet
	Concluding Remarks on Deeper CNNs

	9 PREDICTING TIME SEQUENCES WITH RECURRENT NEURAL NETWORKS
	Limitations of Feedforward Networks
	Recurrent Neural Networks
	Mathematical Representation of a Recurrent Layer
	Combining Layers into an RNN
	Alternative View of RNN and Unrolling in Time
	Backpropagation Through Time
	Programming Example: Forecasting Book Sales
	Standardize Data and Create Training Examples
	Creating a Simple RNN
	Comparison with a Network Without Recurrence
	Extending the Example to Multiple Input Variables

	Dataset Considerations for RNNs
	Concluding Remarks on RNNs

	10 LONG SHORT-TERM MEMORY
	Keeping Gradients Healthy
	Introduction to LSTM
	LSTM Activation Functions
	Creating a Network of LSTM Cells
	Alternative View of LSTM
	Related Topics: Highway Networks and Skip Connections
	Concluding Remarks on LSTM

	11 TEXT AUTOCOMPLETION WITH LSTM AND BEAM SEARCH
	Encoding Text
	Longer-Term Prediction and Autoregressive Models
	Beam Search
	Programming Example: Using LSTM for Text Autocompletion
	Bidirectional RNNs
	Different Combinations of Input and Output Sequences
	Concluding Remarks on Text Autocompletion with LSTM

	12 NEURAL LANGUAGE MODELS AND WORD EMBEDDINGS
	Introduction to Language Models and Their Use Cases
	Examples of Different Language Models
	n-Gram Model
	Skip-Gram Model
	Neural Language Model

	Benefit of Word Embeddings and Insight into How They Work
	Word Embeddings Created by Neural Language Models
	Programming Example: Neural Language Model and Resulting Embeddings
	King - Man + Woman! = Queen
	King - Man + Woman ! = Queen
	Language Models, Word Embeddings, and Human Biases
	Related Topic: Sentiment Analysis of Text
	Bag-of-Words and Bag-of-N-Grams
	Similarity Metrics
	Combining BoW and DL

	Concluding Remarks on Language Models and Word Embeddings

	13 WORD EMBEDDINGS FROM word2vec AND GloVe
	Using word2vec to Create Word Embeddings Without a Language Model
	Reducing Computational Complexity Compared to a Language Model
	Continuous Bag-of-Words Model
	Continuous Skip-Gram Model
	Optimized Continuous Skip-Gram Model to Further Reduce Computational Complexity

	Additional Thoughts on word2vec
	word2vec in Matrix Form
	Wrapping Up word2vec
	Programming Example: Exploring Properties of GloVe Embeddings
	Concluding Remarks on word2vec and GloVe

	14 SEQUENCE-TO-SEQUENCE NETWORKS AND NATURAL LANGUAGE TRANSLATION
	Encoder-Decoder Model for Sequence- to-Sequence Learning
	Introduction to the Keras Functional API
	Programming Example: Neural Machine Translation
	Experimental Results
	Properties of the Intermediate Representation
	Concluding Remarks on Language Translation

	15 ATTENTION AND THE TRANSFORMER
	Rationale Behind Attention
	Attention in Sequence-to-Sequence Networks
	Computing the Alignment Vector
	Mathematical Notation and Variations on the Alignment Vector
	Attention in a Deeper Network
	Additional Considerations

	Alternatives to Recurrent Networks
	Self-Attention
	Multi-head Attention
	The Transformer
	Concluding Remarks on the Transformer

	16 ONE-TO-MANY NETWORK FOR IMAGE CAPTIONING
	Extending the Image Captioning Network with Attention
	Programming Example: Attention-Based Image Captioning
	Concluding Remarks on Image Captioning

	17 MEDLEY OF ADDITIONAL TOPICS
	Autoencoders
	Use Cases for Autoencoders
	Other Aspects of Autoencoders
	Programming Example: Autoencoder for Outlier Detection

	Multimodal Learning
	Taxonomy of Multimodal Learning
	Programming Example: Classic fi ation with Multimodal Input Data

	Multitask Learning
	Why to Implement Multitask Learning
	How to Implement Multitask Learning
	Other Aspects and Variations on the Basic Implementation
	Programming Example: Multiclass Classic fi ation and Question Answering with a Single Network

	Process for Tuning a Network
	When to Collect More Training Data

	Neural Architecture Search
	Key Components of Neural Architecture Search
	Programming Example: Searching for an Architecture for CIFAR-10 Classic fi ation
	Implications of Neural Architecture Search

	Concluding Remarks

	18 SUMMARY AND NEXT STEPS
	Things You Should Know by Now
	Ethical AI and Data Ethics
	Problems to Look Out For
	Checklist of Questions

	Things You Do Not Yet Know
	Reinforcement Learning
	Variational Autoencoders and Generative Adversarial Networks
	Neural Style Transfer
	Recommender Systems
	Models for Spoken Language

	Next Steps

	Appendix A: LINEAR REGRESSION AND LINEAR CLASSIFIERS
	Linear Regression as a Machine Learning Algorithm
	Univariate Linear Regression
	Multivariate Linear Regression
	Modeling Curvature with a Linear Function

	Computing Linear Regression Coefficients
	Classification with Logistic Regression
	Classifying XOR with a Linear Classifier
	Classification with Support Vector Machines
	Evaluation Metrics for a Binary Classifier

	Appendix B: OBJECT DETECTION AND SEGMENTATION
	Object Detection
	R-CNN
	Fast R-CNN
	Faster R-CNN

	Semantic Segmentation
	Upsampling Techniques
	Deconvolution Network
	U-Net

	Instance Segmentation with Mask R-CNN

	Appendix C: WORD EMBEDDINGS BEYOND word2vec AND GloVe
	Wordpieces
	FastText
	Character-Based Method
	ELMo
	Related Work

	Appendix D: GPT, BERT, AND RoBERTa
	GPT
	BERT
	Masked Language Model Task
	Next-Sentence Prediction Task
	BERT Input and Output Representations
	Applying BERT to NLP Tasks

	RoBERTa
	Historical Work Leading Up to GPT and BERT
	Other Models Based on the Transformer

	Appendix E: NEWTON-RAPHSON VERSUS GRADIENT DESCENT
	Newton-Raphson Root-Finding Method
	Newton-Raphson Applied to Optimization Problems

	Relationship Between Newton-Raphson and Gradient Descent

	Appendix F: MATRIX IMPLEMENTATION OF DIGIT CLASSIFICATION NETWORK
	Single Matrix
	Mini-Batch Implementation

	Appendix G: RELATING CONVOLUTIONAL LAYERS TO MATHEMATICAL CONVOLUTION
	Appendix H: GATED RECURRENT UNITS
	Alternative GRU Implementation
	Network Based on the GRU

	Appendix I: SETTING UP A DEVELOPMENT ENVIRONMENT
	Python
	Programming Environment
	Jupyter Notebook
	Using an Integrated Development Environment

	Programming Examples
	Supporting Spreadsheet

	Datasets
	MNIST
	Bookstore Sales Data from US Census Bureau
	Frankenstein from Project Gutenberg
	GloVe Word Embeddings
	Anki Bilingual Sentence Pairs
	COCO

	Installing a DL Framework
	System Installation
	Virtual Environment Installation
	GPU Acceleration
	Docker Container
	Using a Cloud Service

	TensorFlow Specific Considerations
	Key Differences Between PyTorch and TensorFlow
	Need to Write Our Own Fit/Training Function
	Explicit Moves of Data Between NumPy and PyTorch
	Explicit Transfer of Data Between CPU and GPU
	Explicitly Distinguishing Between Training and Inference
	Sequential versus Functional API
	Lack of Compile Function
	Recurrent Layers and State Handling
	Cross-Entropy Loss

	View/Reshape

	Appendix J: CHEAT SHEETS
	Works Cited
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

