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Foreword

Artificial intelligence (AI) has seen impressive progress over the last decade. 
Humanity’s dream of building intelligent machines that can think and act like 
us, only better and faster, seems to be finally taking off. To enable everyone to 
be part of this historic revolution requires the democratization of AI knowledge 
and resources. This book is timely and relevant toward accomplishing these lofty 
goals.

Learning Deep Learning by Magnus Ekman provides a comprehensive instructional 
guide for both aspiring and experienced AI engineers. In the book, Magnus shares 
the rich hands-on knowledge he has garnered at NVIDIA, an established leader in 
AI. The book does not assume any background in machine learning and is focused 
on covering significant breakthroughs in deep learning over the last few years. 
The book strikes a nice balance and covers both important fundamentals such as 
backpropagation and the latest models in several domains (e.g., GPT for language 
understanding, Mask R-CNN for image understanding).

AI is a trinity of data, algorithms, and computing infrastructure. The launch of the 
ImageNet challenge provided a large-scale benchmark dataset needed to train 
large neural networks. The parallelism of NVIDIA GPUs enabled the training of 
such large neural networks. We are now in the era of billion, and even trillion, 
parameter models. Building and maintaining large-scale models will soon be 
deemed a prerequisite skill for any AI engineer. This book is uniquely placed to 
teach such skills. It provides in-depth coverage of large-scale models in multiple 
domains.

The book also covers emerging areas such as neural architecture search, which 
will likely become more prevalent as we begin to extract the last ounce of 
accuracy and hardware efficiency out of current AI models. The deep learning 
revolution has almost entirely occurred in open source. This book provides 
convenient access to code and datasets and runs through the code examples 
thoroughly. There is extensive program code available in both TensorFlow and 
PyTorch, the two most popular frameworks for deep learning.
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I do not think any book on AI will be complete without a discussion of ethical 
issues. I believe that it is the responsibility of every AI engineer to think critically 
about the societal implications around the deployment of AI. The proliferation of 
harassment, hate speech, and misinformation in social media has shown how 
poorly designed algorithms can wreak havoc on our society. Groundbreaking 
studies such as the Gender Shades project and Stochastic Parrots have shown 
highly problematic biases in AI models that are commercially deployed at scale. I 
have advocated for banning the use of AI in sensitive scenarios until appropriate 
guidelines and testing are in place (e.g., the use of AI-based face recognition 
by law enforcement). I am glad to see the book cover significant developments 
such as model cards that improve accountability and transparency in training 
and maintaining AI models. I am hoping for a bright, inclusive future for the AI 
community.

—Dr. Anima Anandkumar
Bren Professor, Caltech

Director of ML Research, NVIDIA
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Foreword

By training I am an economist. Prior to my work in technical education, I spent 
years teaching students and professionals well-developed frameworks for 
understanding our world and how to make decisions within it. The methods and 
skills you will discover in Learning Deep Learning by Magnus Ekman parallel the 
tools used by economists to make forecasts and predictions in a world full of 
uncertainty. The power and capabilities of the deep learning techniques taught in 
this book have brought amazing advances in our ability to make better predictions 
and inferences from the data in the world around us.

Though their future benefits and importance can sometimes be exaggerated, 
there is no doubt the world and industry have been greatly affected by deep 
learning (DL) and its related supersets of machine learning (ML) and artificial 
intelligence (AI). Applications of these technologies have proven durable and are 
profound. They are with us everywhere: at home and at work, in our cars, and on 
our phones. They influence how we travel, how we communicate, how we shop, 
how we bank, and how we access information. It is very difficult to think of an 
industry that has not or will not be impacted by these technologies.

The explosion in the use of these technologies has uncovered two important 
gaps in knowledge and areas of opportunity for those who endeavor to learn. 
First is the technical skillset required to develop useful applications. And second, 
importantly, is an understanding of how these applications can address problems 
and opportunities in the world around us. This book helps to address both gaps. 
For these reasons, Learning Deep Learning has arrived in the right place at the 
right time.

As NVIDIA’s education and training arm, the Deep Learning Institute exists 
to help individuals and organizations grow their understanding of DL and 
other computing techniques so they can find creative solutions to challenging 
problems. Learning Deep Learning is the perfect addition to our training library. 
It is accessible to those with basic skills in statistics and calculus, and it doesn’t 
require the reader to first wade through tangential topics. Instead, Ekman focuses 
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on the building blocks of DL: the perceptron, other artificial neurons, deep neural 
networks (DNNs), and DL frameworks. Then he gradually layers in additional 
concepts that build on each other, all the way up to and including modern natural 
language processing (NLP) architectures such as Transformer, BERT, and GPT. 

Importantly, Ekman uses a learning technique that in our experience has proven 
pivotal to success—asking readers to think about using DL techniques in practice. 
Simple yet powerful coding examples and exercises are provided throughout the 
book to help readers apply their understanding. At the same time, explanations 
of the underlying theory are present, and those interested in deepening their 
knowledge of relevant concepts and tools without getting into programming code 
will benefit. Plenty of citations with references for further study of a specific topic 
are also provided.

For all these reasons, Learning Deep Learning is a very good place to start one’s 
journey to understanding the world of DL. Ekman’s straightforward approach 
to helping the reader understand what DL is, how it was developed, and how 
it can be applied in our ever-changing world is refreshing. He provides a 
comprehensive yet clear discussion of the technology and an honest assessment 
of its capabilities and its limitations. And through it all, he permits the reader to 
dream, just a bit, about where DL may yet take us. That is exciting. It is why this 
economist finds this book so timely and important, and why I think you will too.

—Dr. Craig Clawson
Director, NVIDIA Deep Learning Institute
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Preface

Deep learning (DL) is a quickly evolving field, which has demonstrated amazing 
results in performing tasks that traditionally have been performed well only by 
humans. Examples of such tasks are image classification, generating natural 
language descriptions of images, natural language translation, speech-to-text, 
and text-to-speech conversion.

Learning Deep Learning (this book, hereafter known as LDL) quickly brings you up 
to speed on the topic. It teaches how DL works, what it can do, and gives you some 
practical experience, with the overall objective of giving you a solid foundation for 
further learning.

You will learn about the perceptron and other artificial neurons. They are the 
fundamental building blocks of deep neural networks that have enabled the 
DL revolution. You will learn about fully connected feedforward networks 
and convolutional networks. You will apply these networks to solve practical 
problems, such as predicting housing prices based on a large number of variables 
or identifying to which category an image belongs. Figure P-1 shows examples of 
such categories and images.

You will also learn about ways to represent words from a natural language using 
an encoding that captures some of the semantics of the encoded words. You will 
then use these encodings together with a recurrent neural network to create 
a neural-based natural language translator. This translator can automatically 
translate simple sentences from English to French or other similar languages, as 
illustrated in Figure P-2.

In this book, we use green text boxes like this one to highlight concepts that we 
find extra important. The intent is to ensure that you do not miss key concepts. 
Let us begin by pointing out that we find Deep Learning important. 
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Finally, you will learn how to build an image-captioning network that combines 
image and language processing. This network takes an image as an input and 
automatically generates a natural language description of the image.

What we just described represents the main narrative of LDL. Throughout this 
journey, you will learn many other details. In addition, we end with a medley of 
additional important topics. We also provide appendixes that dive deeper into a 
collection of the discussed topics.

Airplane

Automobile

Bird

Cat

Deer

Dog

Frog

Horse

Ship

Truck

Figure P-1 Categories and example images from the CIFAR-10 dataset 
(Krizhevsky, 2009). This dataset will be studied in more detail in Chapter 7.  
(Image source: https://www.cs.toronto.edu/~kriz/cifar.html)

Figure P-2 A neural network translator that takes a sentence in English as input 
and produces the corresponding sentence in French as output

I am a student Je suis étudiant
Deep
Neural

Network

https://www.cs.toronto.edu/~kriz/cifar.html
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What Is Deep Learning?
We do not know of a crisp definition of what DL is, but one attempt is that DL is 
a class of machine learning algorithms that use multiple layers of computational 
units where each layer learns its own representation of the input data. These 
representations are combined by later layers in a hierarchical fashion. This definition 
is somewhat abstract, especially given that we have not yet described the concept 
of layers and computational units, but in the first few chapters, we provide many 
more concrete examples of what this means.

A fundamental part of DL is the deep neural network (DNN), a namesake of 
the biological neuron, by which it is loosely inspired. There is an ongoing 
debate about how closely the techniques within DL do mimic activity in a 
brain, where one camp argues that using the term neural network paints the 
picture that it is more advanced than it is. Along those lines, they recommend 
using the terms unit instead of artificial neuron and just network instead of 
neural network. No doubt, DL and the larger field of artificial intelligence (AI) 
have been significantly hyped in mainstream media. At the time of writing this 
book, it is easy to get the impression that we are close to creating machines 
that think like humans, although lately, articles that express some doubt are 
more common. After reading this book, you will have a more accurate view of 
what kind of problems DL can solve. In this book, we choose to freely use the 
words neural network and neuron but recognize that the algorithms presented 
are more tied to machine capabilities than to how an actual human brain 
works.

In this book, we use red text boxes like this one when we feel the urge to state 
something that is somewhat beside the point, a subjective opinion or of similar 
nature. You can safely ignore these boxes altogether if you do not find them 
adding any value to your reading experience.

Let us dive into this book by stating the opinion that it is a little bit of a buzz 
killer to take the stance that our cool DNNs are not similar to the brain. This is 
especially true for somebody picking up this book after reading about machines 
with superhuman abilities in the mainstream media. To keep the illusion alive, 
we sometimes allow ourselves to dream a little bit and make analogies that 
are not necessarily that well founded, but to avoid misleading you, we try not to 
dream outside of the red box.
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To put DL and DNNs into context, Figure P-3 shows how they relate to the machine 
learning (ML) and AI fields. DNN is a subset of DL. DL in turn is a subset of the 
field of ML, which in turn is a subset of the greater field of AI.

In this book, we choose not to focus too much on the exact definition of DL and  
its boundaries, nor do we go into the details of other areas of ML or AI. Instead,  
we focus on details of what DNNs are and the types of tasks to which they can  
be applied.

Brief History of Deep Neural Networks
In the last couple of sections, we loosely referred to networks without describing 
what a network is. The first few chapters in this book discuss network 
architectures in detail, but at this point, it is sufficient to think of a network as 

Deep neural network (DNN) is a subset of DL.

DL is a subset of machine learning (ML), which is a subset of artificial 
intelligence (AI).

Figure P-3 Relationship between artificial intelligence, machine learning, deep 
learning, and deep neural networks. The sizes of the different ovals do not 
represent the relative size of one field compared to another.

Artificial intelligence
(AI)

Machine learning
(ML)

Deep learning
(DL)

Deep Neural Networks
(DNN)
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an opaque system that has inputs and outputs. The usage model is to present 
something, for example, an image or a text sequence, as inputs to the network, 
and the network will produce something useful on its outputs, such as an 
interpretation of what the image contains, as in Figure P-4, or a natural language 
translation in a different language, as was shown in Figure P-2.

As previously mentioned, a central piece of a neural network is the artificial neuron. 
The first model of an artificial neuron was introduced in 1943 (McCulloch and Pitts, 
1943), which started the first wave of neural network research. The McCulloch 
and Pitts neuron was followed in 1957 by the Rosenblatt perceptron (Rosenblatt, 
1958). A key contribution from the perceptron was its associated automated 
learning algorithm that demonstrated how a system could learn desired behavior. 
Details of how the perceptron works are found in Chapter 1. The perceptron has 
some fundamental limitations, and although it was shown that these limitations 
can be overcome by combining multiple perceptrons into a multilayer network, the 
original learning algorithm did not extend to multilayer networks. According to a 
common narrative, this resulted in neural network research falling out of fashion. 
This is often referred to as the first AI winter, which was allegedly caused by a book 
by Minsky and Papert (1969). In this book, they raised the absence of a learning 
algorithm for multilayer networks as a serious concern.

This topic and narrative are controversial. Olazaran (1996) has studied whether 
the statements of Minsky and Papert had been misrepresented. Further, 
Schmidhuber (2015) pointed out that there did exist a learning algorithm for 
multilevel networks (Ivakhnenko and Lapa, 1965) four years before the book by 
Minsky and Papert was published.

Figure P-4 A deep neural network as an opaque system that can take an image as 
an input and then output an indication of what type of object is in the image

Opaque
system

Dog

We note that in the days of Rosenblatt’s publications, they were certainly 
not shy about comparing their work with the human brain. In reading about 
the Rosenblatt perceptron (Rosenblatt, 1958), we see that the first paper he 
references is called “Design for a Brain.”
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The second wave of neural network research was initiated in the 1980s. It was 
heavily influenced by a paper that described the backpropagation algorithm for 
automatic training of multilayer networks (Rumelhart et al., 1986). Rumelhart 
and colleagues showed that this algorithm could be used to overcome the 
limitations of the perceptron. In the study, they explicitly pointed out that they 
believed this addressed the concerns raised by Minsky and Papert. Rumelhart 
and colleagues popularized the backpropagation algorithm in the context 
of neural networks, but it was not the first occurrence of the algorithm in 
the literature. The algorithm was applied to a similar problem domain in 
1970 (Linnainmaa, 1970). Werbos (1981) described it in the context of neural 
networks in 1981.

Details of how this algorithm works are found in Chapter 3. An important 
outcome of this second wave of neural network research was the development 
of LeNet in 1989. It was a convolutional neural network (CNN), which was shown 
to be able to recognize handwritten zip codes (LeCun et al., 1990). It built on 
Fukushima’s Neocognitron (Fukushima, 1980), which we believe is the first 
published CNN.

An enhanced version of LeNet was later used by major US banks to read 
handwritten checks, and it thereby became one of the first big commercial 
applications of neural networks. Convolutional neural networks are described in 
detail in Chapter 7. Despite the progress, neural networks fell out of fashion yet 
again, partly because the limited computational capability at the time prevented 
the networks from scaling to larger problems and partly because other traditional 
ML approaches were perceived as better alternatives. 

The third wave of neural network research was enabled by a combination of 
algorithmic progress, availability of massive datasets, and the ability to use 
graphics processing units (GPU) for general purpose computing. From an outsider 
perspective, all this came together in 2012. At that point, the field had been 
rebranded as DL and was popularized in large part due to AlexNet (Krizhevsky 
et al., 2012), which was a CNN that scored significantly higher than any other 
participant in a computer vision competition known as the ImageNet challenge.

In reality, this third wave was enabled by persistent research groups who had 
continued to perform neural network research in the 1990s and first decade 
of the 2000s. These insiders started using the term deep networks in 2006. 
Further, the ImageNet challenge was not the first competition in which neural 
networks, some of which were GPU accelerated, beat more traditional techniques. 
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For example, Graves and colleagues (2009) won competitions in handwriting 
recognition with a neural network in 2009. Similarly, Ciresan and colleagues 
(2011) used a GPU accelerated network for image classification in 2011.

This work was shortly followed by similar breakthroughs in other fields, which 
have led to the DL boom that is still ongoing as of the writing of this book. The rest 
of this book will describe some of these key findings and how they can be applied 
in practice. For a more detailed description of the history of DL, we recommend 
Schmidhuber’s (2015) overview.

Is This Book for You?
There are already many books on this topic, and different people like to 
approach subjects in different ways. In this book, we try to cut to the chase 
while still providing enough background to give you a warm fuzzy feeling that 
you understand why the techniques work. We decided to not start the book with 
an overall introduction to the field of traditional ML. Although we believe that 
anybody who wants to get serious about DL needs to also master traditional 
ML, we do not believe that it is necessary to first learn about traditional ML 
before learning the basics of DL. We even believe that having to first get through 
multiple chapters that do not directly discuss DL can be a barrier to entry for 
many people.

In this book, we use yellow text boxes like this one to highlight things that 
we otherwise do not discuss or explore in detail but nonetheless think are 
important for you to learn at some point. We believe that an important part of 
learning about a new topic is to not only acquire some basic skills but also get 
some insights into what the next steps are. We use the yellow boxes to signal 
to you that at this point it is perfectly fine to ignore a certain topic, but it will be 
important to learn as a next step.

Let us now begin by stating that it is important to know about traditional ML if 
you want to get serious about DL, but you can wait to learn about traditional ML 
until you have gotten a taste of DL.
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Apart from deciding whether to include traditional ML as a topic, any author of a 
book on DL needs to take a position on whether to include code examples and how 
deeply to dive into the mathematics. Our view is that because DL is an applied 
field, a book on this topic needs to contain a good mix of theory and practice, 
so code examples are necessary. We also believe that many topics in DL are 
inherently mathematical, and it is necessary to include some of the mathematics 
to provide a good description of how things work. With that background, we try to 
describe certain concepts from different angles using a good mix of elements:

• Figures

• Natural language (English) descriptions

• Programming code snippets

• Mathematical formulas

Readers who master all of the preceding might find some descriptions redundant, 
but we believe that this is the best way of making the book accessible to a large 
audience.

This book does not aim to include details about all the most recent and advanced 
techniques in the DL field. Instead, we include concepts and techniques that we 
believe are fundamental to understanding the latest developments in the field. 
Some of the appendixes describe how some major architectures are built on 
these concepts, but most likely, even better architectures will emerge. Our goal is 
to give you enough knowledge to enable you to continue learning by reading more 
recent research papers. Therefore, we have also decided to sprinkle references 
throughout the book to enable you to follow up on topics that you find extra 

Not starting the book with traditional ML techniques is an attempt to avoid one 
of the buzz killers that we have found in other books. One very logical, and 
therefore typical, way of introducing DL is to first describe what ML is and, 
as such, to start with a very simple ML technique, namely, linear regression. 
It is easy, as an excited beginner, to be a little disheartened when you expect 
to learn about cool techniques to classify cat images and instead get stuck 
reading a discussion about fitting a straight line to a set of random data points 
using mathematics that seem completely unrelated to DL. We instead try to 
take the quickest, while still logical, path to getting to image classification to 
provide you with some instant satisfaction, but you will notice that we still 
sneak in some references and comparisons to linear regression over time.
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interesting. However, it has been our intention to make the book self-contained 
so that you should never need to look up a reference to be able to follow the 
explanations in the book. In some cases, we include references to things that we 
do not explain but mention only in passing. In those cases, we try to make it clear 
that it is meant as future reading instead of being a central element of the book.

Is DL Dangerous?
There are plenty of science fiction books and movies that depict AI as a threat 
against humanity. Machines develop a form of consciousness and perceive 
humans as a threat and therefore decide to destroy us. There have also been 
thought experiments about how an AI accidentally destroys the human species as 
a side effect of trying to deliver on what it is programmed to do. One example is 
the paperclip maximizer (Bostrom, 2003), which is programmed with the goal of 
making as many paper clips as possible. In order to do so, it might kill all human 
beings to free up atoms needed to make paper clips. The risk that these exact 
scenarios will play out in practice is probably low, but researchers still see future 
powerful AIs as a significant risk.

More urgently, DL has already been shown to come with serious unintended 
consequences and malignant use. One example is a study of a commercially 
available facial recognition system (Buolamwini and Gebru, 2018) used by law 
enforcement. Although the system achieved 99% accuracy on lighter-skinned 
men, its accuracy on darker-skinned women was only 65%, thereby putting them 
at much greater risk of being incorrectly identified and possibly wrongly accused 
of crimes. An example of malignant use of DL is fake pornography (Dickson, 2019) 
whereby the technology is used to make it appear as if a person (often a celebrity) 
is featured in a pornographic video.

DL learns from data created by humans and consequently runs the risk of 
learning and even amplifying human biases. This underscores the need for 
taking a responsible approach to DL and AI. Historically, this topic has largely 
been neglected, but more recently started to receive more attention. A powerful 
demonstration can be found on the website of the Algorithmic Justice League 
(Buolamwini, n.d.) with a video showing how a face detection system fails to detect 
the face of a dark-skinned woman (Buolamwini) until she puts on a white mask. 

The references in the book are strictly for future reading and should not be 
necessary to read to be able to understand the main topics of the book.



PREFACE

xxxiv

Another example is the emergence of algorithmic auditing, where researchers 
identify and report human biases and other observed problems in commercial 
systems (Raji and Buolamwini, 2019). Researchers have proposed to document 
known biases and intended use cases of any released system to mitigate these 
problems. This applies both to the data used to create such systems (Gebru, et al., 
2018) and to the released DL model itself (Mitchell et al., 2018). Thomas suggests a 
checklist of questions to guide DL practitioners throughout the course of a project 
to avoid ethical problems (Thomas, 2019). We touch on these topics throughout the 
book. We also provide resources for further reading in Chapter 18.

Choosing a DL Framework
As a practitioner of DL, you will need to decide what DL framework to use. A DL 
framework provides functionality that handles much of the low-level details 
when implementing DL models. Just as the DL field is rapidly evolving, so are the 
different frameworks. To mention a few, Caffe, Theano, MXNet, Torch, TensorFlow, 
and PyTorch have all been influential throughout the current DL boom. In addition 
to these full-fledged frameworks, there are specialized frameworks such as Keras 
and TensorRT. Keras is a high-level API that makes it easier to program for some of 
these frameworks. TensorRT is an inference optimizer and runtime engine that can 
be used to run models built and trained by many of the mentioned frameworks.

As of the writing of this book, our impression is that the two most popular full-
fledged frameworks are TensorFlow and PyTorch, where TensorFlow nowadays 
includes native support for the Keras API. Another significant framework is 
MXNet. Models developed in either of these frameworks can be deployed using 
the TensorRT inference engine.

Deciding on what DL framework to use can be viewed as a life-changing 
decision. Some people would say that it is comparable to choosing a text 
editor or a spouse. We do not share that belief but think that the world is big 
enough for multiple competing solutions. We decided to provide programming 
examples in both TensorFlow and PyTorch for this book. The TensorFlow 
examples are printed in the book itself, but equivalent examples in PyTorch, 
including detailed descriptions, can be found on the book’s website. We suggest 
that you pick a framework that you like or one that makes it easy to collaborate 
with people you interact with.
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The programming examples in this book are provided in a TensorFlow version 
using the Keras API (printed in the book) as well as in a PyTorch version (online). 
Appendix I contains information about how to install TensorFlow and PyTorch, 
as well as a description of some of the key differences between the two 
frameworks.

Prerequisites for Learning DL
DL combines techniques from a number of different fields. If you want to get 
serious about DL, and particularly if you want to do research and publish your 
findings, over time you will need to acquire advanced knowledge within the scope 
of many of these skillsets. However, we believe that it is possible to get started 
with DL with little or partial knowledge in these areas. The sections that follow 
list the areas we find important, and in each section, we list the minimum set of 
knowledge that we think you need in order to follow this book.

STATISTICS AND PROBABILITY THEORY

Many DL problems do not have exact answers, so a central theme is probability 
theory. As an example, if we want to classify objects in an image, there is often 
uncertainty involved, such as how certain our model is that an object of a specific 
category, such as a cat, is present in the picture. Further, we might want to 
classify the type of cat—for example, is it a tiger, lion, jaguar, leopard, or snow 
leopard? The answer might be that the model is 90% sure that it is a jaguar, but 
there is a 5% probability that it is a leopard and so on. This book does not require 
deep knowledge in statistics and probability theory. We do expect you to be able 
to compute an arithmetic mean and understand the basic concept of probability. 
It is helpful, although not strictly required, if you know about variance and how to 
standardize a random variable.

LINEAR ALGEBRA

As you will learn in Chapter 1, the fundamental building block in DL is based on 
calculating a weighted sum of variables, which implies doing many additions 
and multiplications. Linear algebra is a field of mathematics that enables us to 
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describe such calculations in a compact manner. This book frequently specifies 
formulas containing vectors and matrices. Further, calculations involve

• Dot products

• Matrix-vector multiplications

• Matrix-matrix multiplications

If you have not seen these concepts in the past, you will need to learn about them 
to follow the book. However, Chapter 1 contains a section that goes through these 
concepts. We suggest that you read that first and then assess whether you need 
to pick up a book about linear algebra.

CALCULUS

As you will learn in Chapters 2 and 3, the learning part in DL is based on 
minimizing the value of a function known as a loss function or error function. The 
technique used to minimize the loss function builds on the following concepts 
from calculus:

• Computing the derivative of a function of a single variable

• Computing partial derivatives of a function of multiple variables 

• Calculating derivatives using the chain rule of calculus

However, just as we do for linear algebra, we provide sections that go through the 
basics of these concepts. These sections are found in Chapters 2 and 3.

NUMERICAL METHODS FOR CONSTRAINED AND UNCONSTRAINED 
OPTIMIZATION

In DL, it is typically not feasible to find an analytical solution when trying to 
minimize the loss function. Instead, we rely on numerical optimization methods. 
The most prevalent method is an iterative method known as gradient descent. 
It is helpful if you already know something about iterative methods and finding 
extreme points in continuous functions. However, we do not require prior 
knowledge of gradient descent, and we describe how it works before using it in 
Chapter 3. 



PREFACE

xxxvii

PYTHON PROGRAMMING

It is hard to do anything except specific DL applications without some 
knowledge about programming in general. Further, given that the most 
popular DL frameworks are based on Python, it is highly recommended to 
acquire at least basic Python skills to enable trying out and modifying code 
examples. There are many good books on the topic of programming, and 
if you have basic programming skills, it should be relatively simple to get 
started with Python by just following tutorials at python.org. It is possible for 
nonprogrammers to read this book and just skip the coding sections, but if you 
intend to apply your DL skills in practice, you should learn the basics of Python 
programming.

You do not need to learn everything about Python to get started with DL. Many 
DL applications use only a small subset of the Python language, extended with 
heavy use of domain-specific DL frameworks and libraries. In particular, many 
introductory examples make little or no use of object-oriented programming 
constructs. A specific module that is used frequently is the NumPy (numerical 
Python) module that, among other things, provides data types for vectors and 
matrices. It is also common to use pandas (Python Data Manipulation Library) 
to manipulate multidimensional data, but we do not make use of pandas in 
this book. 

The following Python constructs are frequent in most of the code examples in 
the book:

• Integer and floating point datatypes

• Lists and dictionaries

• Importing and using external packages

• NumPy arrays

• NumPy functions

• If-statements, for-loops, and while-loops

• Defining and calling functions

• Printing strings and numerical datatypes

http://python.org
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• Plotting data with matplotlib

• Reading from and writing to files

In addition, many of the programming examples rely on constructs provided by 
a DL framework (TensorFlow in the book and PyTorch provided online). There is 
no need to know about these frameworks up front. The functionality is gradually 
introduced in the descriptions of the code examples. The code examples become 
progressively harder throughout the book, so if you are a beginner to coding, you 
will need to be prepared to spend some time honing your coding skills in parallel 
with reading the book.

DATA REPRESENTATION

Much of the DL mechanics are handled by highly optimized ML frameworks. 
However, your input data first needs to be converted into suitable formats that can 
be consumed by these frameworks. As such, you need to know something about 
the format of the data that you will use and, when applicable, how to convert it 
into a more suitable format. For example, for images, it is helpful to know the 
basics about RGB (red, green, blue) representation. Similarly, for the cases that 
use text as input data, it is helpful to know something about how characters are 
represented by a computer. In general, it is good to have some insight into how 
raw input data is often of low quality and needs to be cleaned. You will often 
find missing or duplicated data entries, timestamps from different time zones, 
and typos originating from manual processing. For the examples in this book, 
this is typically not a problem, but it is something you need to be aware of in a 
production setting.

About the Code Examples
You will find much overlap between the code examples in this book and code 
examples found in online tutorials as well as in other DL books (e.g., Chollet 2018; 
Glassner, 2018). Many of these examples have evolved from various published 
research papers in combination with publicly available datasets. (Datasets are 
described in more detail in Chapter 4.) In other words, we want to stress that we 
have not made up these examples from scratch, but they are heavily inspired by 
previously published work. However, we have done the actual implementation 
of these examples, and we have put our own touch on them to follow the 
organization of this book.
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The longer code examples are broken up into smaller pieces and presented step 
by step interspersed throughout the text in the book. You should be able to just 
copy/paste or type each code snippet into a Python interpreter, but it is probably 
better to just put all code snippets for a specific code example in a single file and 
execute in a noninteractive manner. The code examples are also available for 
download both as regular Python files and as Jupyter notebooks at https://github 
.com/NVDLI/LDL/. See Appendix I for more details.

In most chapters, we first present a basic version of a code example, and then we 
present results for variations of the program. We do not provide the full listings 
for all variations, but we try to provide all the necessary constructs in the book to 
enable you to do these variations yourself. 

DL algorithms are based on stochastic optimization techniques. As such, the 
results from an experiment may vary from time to time. That is, when you run a 
code example, you should not expect to get exactly the same result that is shown 
in the book. However, the overall behavior should be the same. 

Another thing to note is that the chosen format, where we intersperse code 
throughout the book and explain each snippet, results in certain restrictions, such 
as minimizing the length of each program, and we have also tried to maintain 

Modifying the code is left as an exercise for the reader. Hah, we finally got to 
say that! 

Seriously, we do believe that modifying existing code is a good way of getting 
your hands dirty. However, there is no need to exactly recreate the variations 
we did. If you are new to programming, you can start with just tweaking 
existing parameter values instead of adding new code. If you already have more 
advanced coding skills, you can consider defining your own experiments based 
on what you find extra interesting.

We were tempted to not provide downloadable versions of the code examples 
but instead force you to type them in yourself. After all, that is what we had to 
do in the 1980s when typing in a code listing from a computer magazine was 
a perfectly reasonable way of obtaining a new game. The youth of today with 
their app stores simply do not know how lucky they are.

https://github.com/NVDLI/LDL/
https://github.com/NVDLI/LDL/
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a linear flow and to not heavily modularize the code into classes and functions 
in most cases. Thus, instead of using sound coding practices to make the code 
examples easy to extend and maintain, focus is on keeping the examples small 
and readable.

Another thing to consider is what kind of development environment is needed to 
follow this book. In our opinion, anybody who wants to do serious work in DL will 
need to get access to a hardware platform that provides specific acceleration for 
DL—for example, a suitable graphics processing unit (GPU). However, if you do not 
have access to a GPU-based platform just yet, the code examples in the first few 
chapters are small enough to be run on a somewhat modern central processing 
unit (CPU) without too much pain. That is, you can start with a vanilla setup using 
the CPU for the first few chapters and then spend the resources needed to get 
access to a GPU-accelerated platform1 when you are getting to Chapter 7.

Instructions on how to set up a machine with the necessary development 
environment can be found in Appendix I, which also contains links to the code 
examples and datasets used in this book.

How to Read This Book
This book is written in a linear fashion and is meant to be read from beginning 
to end. We introduce new concepts in each chapter and frequently build on and 
refer back to discussions in previous chapters. It is often the case that we try 
to avoid introducing too many new concepts at once. This sometimes results in 
logically similar concepts being introduced in different chapters. However, we do 
sometimes take a step back and try to summarize a group of related techniques 
once they have all been introduced. You will see this for hidden units in Chapter 5, 

1. Nothing prevents you from running all programming examples on a CPU, but in some cases, you 
might need to do it overnight.

Medium term, you should get access to a GPU accelerated platform, but you can 
live with a standard CPU for the beginning of the book.

That is a lame excuse for writing ugly code, but whatever works. . .
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output units in Chapter 6, and techniques to address vanishing and exploding 
gradients in Chapter 10.

Readers who are complete beginners to neural networks and DL (the core target 
audience of the book) will likely find the first four chapters more challenging to 
get through than the remainder of the book. We introduce many new concepts. 
There is a fair amount of mathematical content, and we implement a neural 
network from scratch in Python. We encourage you to still try to get through these 
four chapters, but we also think it is perfectly fine to skim through some of the 
mathematical equations if you find them challenging. In Chapter 5, we move on 
to using a DL framework, and you will find that it will handle many of the details 
under the hood, and you can almost forget about them.

APPENDIXES

This book ends with a number of appendixes. Appendixes A through D could have 
been included as regular chapters in the book. However, we wanted to avoid 
information overload for first-time readers. Therefore, we decided to put some 
of the material in appendixes instead because we simply do not think that you 
need to learn those concepts in order to follow the narrative of the book. Our 
recommendation if you are a complete beginner to ML and DL is to read these 
appendixes last.

If you feel that you already know the basics about ML or DL, then it can make 
sense for you to read the first four appendixes interspersed among other 
chapters during your first pass through the book. Appendix A can be read after 
Chapter 3. Appendix B logically follows Chapter 8. Appendix C naturally falls after 
Chapter 13. Finally, Appendix D extends topics presented in Chapter 15.

Alternatively, even if you are a beginner but want to learn more details about a 
specific topic, then do go ahead and read the appendix that relates to that topic in 
the order just presented.

Appendixes E through H are shorter and focus on providing background or 
additional detail on some very specific topics. Appendix I describes how to set 
up a development environment and how to access the programming examples. 
Appendix J contains cheat sheets that summarize many of the concepts described 
throughout the book.2

2. Larger versions of these cheat sheets can be downloaded from http://informit.com/
title/9780137470358.

http://informit.com/title/9780137470358
http://informit.com/title/9780137470358
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GUIDANCE FOR READERS WHO DO NOT WANT TO READ ALL OF 
THIS BOOK

We recognize that some readers want to read this book in a more selective 
manner. This can be the case if you feel that you already have some of the 
basic skills or if you just want to learn about a specific topic. In this section, we 
provide some pointers for such readers, but this also means that we use some 
terminology that has not yet been introduced. If you are not interested in cherry 
picking chapters to read, then feel free to skip this section.

Figure P-5 illustrates three different envisioned tracks to follow depending on 
your interests. The leftmost track is what we just described, namely, to read the 
book from beginning to end.

If you are very interested in working with images and computer vision, 
we suggest that you read Appendix B about object detection, semantic 
segmentation, and instance segmentation. Further, the last few chapters of the 
book focus on natural language processing, and if that does not interest you, 
then we suggest that you skip Chapters 12 through 17. You should still skim 
Chapters 9 through 11 about recurrent neural networks. This track is shown in 
the middle of the figure.

If you want to focus mostly on language processing, then you can select the 
rightmost track. We suggest that you just skim Chapter 8 but do pay attention 
to the description of skip connections because it is referenced in later chapters. 
Then read Chapters 9 through 13, followed by Appendix C, then Chapters 14 and 
15, and conclude with Appendix D. These appendixes contain additional content 
about word embeddings and describe GPT and BERT, which are important 
network architectures for language processing tasks.

Overview of Each Chapter and Appendix
This section contains a brief overview of each chapter. It can safely be skipped if 
you just want to cut to the chase and get started with LDL!

CHAPTER 1 – THE ROSENBLATT PERCEPTRON

The perceptron, a fundamental building block of a neural network, is introduced. 
You will learn limitations of the perceptron, and we show how to overcome 
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Figure P-5 Three different tracks to follow when reading this book
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prediction.
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Consider reading

Appendix C: Additional
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Computer
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these limitations by combining multiple perceptrons into a network. The chapter 
contains some programming examples of how to implement a perceptron and its 
learning algorithm.

CHAPTER 2 – GRADIENT-BASED LEARNING

We describe an optimization algorithm known as gradient descent and the theory 
behind the perceptron learning algorithm. This is used as a stepping-stone in the 
subsequent chapter that describes the learning algorithm for multilevel networks. 

CHAPTER 3 – SIGMOID NEURONS AND BACKPROPAGATION

We introduce the backpropagation algorithm that is used for automatic learning 
in DNNs. This is both described in mathematical terms and implemented as a 
programming example used to do binary classification.

CHAPTER 4 – FULLY CONNECTED NETWORKS APPLIED TO 
MULTICLASS CLASSIFICATION

This chapter describes the concept of datasets and how they can be divided into a 
training set and a test set. It also touches on a network’s ability to generalize. We 
extend the neural network architecture to handle multiclass classification, and 
the programming example then applies this to the task of classifying handwritten 
digits. This programming example is heavily inspired by an example created by 
Nielsen (2015).

CHAPTER 5 – TOWARD DL: FRAMEWORKS AND NETWORK TWEAKS

The example from the previous chapter is reimplemented using a DL framework. 
We show how this framework vastly simplifies the code and enables us to model 
many variations on our network. Chapter 5 also introduces many techniques that 
are needed to enable training of deeper networks.

CHAPTER 6 – FULLY CONNECTED NETWORKS APPLIED TO 
REGRESSION

In this chapter, we study how a network can be used to predict a numerical value 
instead of classification problems studied in previous chapters. We do this with 
a programming example in which we apply the network to a regression problem 
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where we are trying to predict sales prices of houses based on a number of 
variables.

CHAPTER 7 – CONVOLUTIONAL NEURAL NETWORKS APPLIED TO 
IMAGE CLASSIFICATION

You will learn about the one type of network that initiated the DL boom in 2012, 
namely, the convolutional neural network, or just convolutional network. A CNN 
can be used in multiple problem domains, but it has been shown to be especially 
effective when applied to image classification/analysis. We explain how it works 
and walk through a programming example that uses a CNN to classify a more 
complex image dataset. In this example, instead of just distinguishing between 
different handwritten digits, we identify more complex object classes such as 
airplanes, automobiles, birds, and cats.

CHAPTER 8 – DEEPER CNNs AND PRETRAINED MODELS

Here we describe deeper CNNs such as GoogLeNet, VGG, and ResNet. As 
a programming example, we show how to download a pretrained ResNet 
implementation and how to use it to classify your own images.

CHAPTER 9 – PREDICTING TIME SEQUENCES WITH RECURRENT 
NEURAL NETWORKS

One limitation of the networks described in the previous chapters is that they 
are not well suited to handle data of different input lengths. Important problem 
domains such as text and speech often consist of sequences of varying lengths. 
This chapter introduces the recurrent neural network (RNN) architecture, which 
is well suited to handle such tasks. We use a programming example to explore 
how this network architecture can be used to predict the next data point in a time 
series.

CHAPTER 10 – LONG SHORT-TERM MEMORY

We discuss problems that prevent RNNs from learning long-term dependencies. 
We describe the long short-term memory (LSTM) technique that enables better 
handling of long sequences.
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CHAPTER 11 – TEXT AUTOCOMPLETION WITH LSTM AND BEAM 
SEARCH

In this chapter, we explore how to use LSTM-based RNNs for longer-term 
prediction and introduce a concept known as beam search. We illustrate it with 
a programming example in which we build a network that can be used for 
autocompletion of text. This is a simple example of natural language generation 
(NLG), which is a subset of the greater field of natural language processing (NLP).

CHAPTER 12 – NEURAL LANGUAGE MODELS AND WORD 
EMBEDDINGS

The example in the previous chapter is based on individual characters instead of 
words. In many cases, it is more powerful to work with words and their semantics 
instead of working with individual characters. Chapter 12 introduces the concepts 
language models and word encodings in a vector space (also known as embedding 
space) that can be used to capture some important relationships between words. 
As code examples, we extend our autocompletion example to work with words 
instead of characters and explore how to create word vectors in an embedding 
space. We also discuss how to build a model that can do sentiment analysis on 
text. This is an example of natural language understanding (NLU), which is yet 
another subfield of NLP.

CHAPTER 13 – WORD EMBEDDINGS FROM word2vec AND GloVe

In this chapter, we discuss two popular techniques for creating word embeddings. 
We download a set of existing embeddings and show how they capture various 
semantic relationships between words.

CHAPTER 14 – SEQUENCE-TO-SEQUENCE NETWORKS AND NATURAL 
LANGUAGE TRANSLATION

At this point, we introduce a network known as a sequence-to-sequence network, 
which is a combination of two recurrent neural networks. A key property of such 
a network is that its output sequence can be of a different length than the input 
sequence. We combine this type of network with the word encodings studied in 
the previous chapter. We build a natural language translator that takes a word 
sequence in one language (e.g., French) as an input and outputs a word sequence 
in a different language (e.g., English). Further, the output might be a different 
number of words and in a different word order than the input word sequence. The 
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sequence-to-sequence model is an example of an architecture known as encoder-
decoder architecture.

CHAPTER 15 – ATTENTION AND THE TRANSFORMER

In this chapter, we describe a technique known as attention, which can improve 
the accuracy of encoder-decoder architectures. We describe how it can be used 
to improve the neural machine translator from the previous chapter. We also 
describe the attention-based Transformer architecture. It is a key building block 
in many NLP applications.

CHAPTER 16 – ONE-TO-MANY NETWORK FOR IMAGE CAPTIONING

We describe in this chapter how a one-to-many network can be used to create 
textual descriptions of images and how to extend such a network with attention. 
A programming example implements this image-captioning network and 
demonstrates how it can be used to generate textual descriptions of a set of 
pictures.

CHAPTER 17 – MEDLEY OF ADDITIONAL TOPICS

Up until this point, we have organized topics so that they build on each other. In 
this chapter, we introduce a handful of topics that we did not find a good way of 
including in the previous chapters. Examples of such topics are autoencoders, 
multimodal learning, multitask learning, and neural architecture search.

CHAPTER 18 – SUMMARY AND NEXT STEPS

In the final chapter, we organize and summarize the topics discussed in earlier 
chapters to give you a chance to confirm that you have captured the key concepts 
described in the book. In addition to the summary, we provide some guidance to 
future reading tailored according to the direction you want to take—for example, 
highly theoretical versus more practical. We also discuss the topics of ethical AI 
and data ethics.

APPENDIX A – LINEAR REGRESSION AND LINEAR CLASSIFIERS

The focus of this book is DL. Our approach to the topic is to jump straight into 
DL without first describing traditional ML techniques. However, this appendix 
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does describe very basic ML topics so you can get an idea of how some of the 
presented DL concepts relate to more traditional ML techniques. This appendix 
logically follows Chapter 3.

APPENDIX B – OBJECT DETECTION AND SEGMENTATION

In this appendix, we describe techniques to detect and classify multiple objects 
in a single image. It includes both coarse-grained techniques that draw bounding 
boxes around the objects and fine-grained techniques that pinpoint the individual 
pixels in an image that correspond to a certain object. This appendix logically 
follows Chapter 8.

APPENDIX C – WORD EMBEDDINGS BEYOND word2vec AND GloVe

In this appendix, we describe some more elaborate techniques for word 
embeddings. In particular, these techniques can handle words that did not exist 
in the training dataset. Further, we describe a technique that can handle cases 
in which a word has a different meaning depending on its context. This appendix 
logically follows Chapter 13.

APPENDIX D – GPT, BERT, AND RoBERTa

This appendix describes architectures that build on the Transformer. These 
network architectures have resulted in significant improvements in many NLP 
tasks. This appendix logically follows Chapter 15.

APPENDIX E – NEWTON-RAPHSON VERSUS GRADIENT DESCENT

In Chapter 2, we introduce a mathematical concept technique known as gradient 
descent. This appendix describes a different method, known as Newton-Raphson, 
and how it relates to gradient descent.

APPENDIX F – MATRIX IMPLEMENTATION OF DIGIT CLASSIFICATION 
NETWORK

In Chapter 4, we include a programming example implementing a neural network 
in Python code. This appendix describes two different optimized variations of that 
programming example.
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APPENDIX G – RELATING CONVOLUTIONAL LAYERS TO 
MATHEMATICAL CONVOLUTION

In Chapter 7, we describe convolutional neural networks. They are based on, 
and named after, a mathematical operation known as convolution. This appendix 
describes this connection in more detail.

APPENDIX H – GATED RECURRENT UNITS

In Chapter 10, we describe a network unit known as long short-term memory 
(LSTM). In this appendix, we describe a simplified version of this unit known as 
gated recurrent unit (GRU).

APPENDIX I – SETTING UP A DEVELOPMENT ENVIRONMENT

This appendix contains information about how to set up a development 
environment. This includes how to install a deep learning framework and where 
to find the code examples. It also contains a brief section about key differences 
between TensorFlow and PyTorch, which are the two DL frameworks used for the 
code examples in this book.

APPENDIX J – CHEAT SHEETS

This appendix contains a set of cheat sheets that summarize much of the content 
in this book. They are also available for download in a different form factor: 
http://informit.com/title/9780137470358.

Register your copy of Learning Deep Learning on the InformIT site for convenient 
access to updates and/or corrections as they become available. To start 
the registration process, go to informit.com/register and log in or create an 
account. Enter the product ISBN (9780137470358) and click Submit. Look 
on the Registered Products tab for an Access Bonus Content link next to this 
product, and follow that link to access any available bonus materials. If you 
would like to be notified of exclusive offers on new editions and updates, please 
check the box to receive email from us. 

http://informit.com/title/9780137470358
http://informit.com/register
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Chapter 1

The Rosenblatt 
Perceptron

This chapter describes the Rosenblatt perceptron and shows how it can be used. 
Chapters 3 and 5 describe how the perceptron has been modified over time to 
enable more advanced networks. The perceptron is an artificial neuron, that is, a 
model of a biological neuron. Therefore, it makes sense to first briefly describe 
the parts of a biological neuron, as shown in Figure 1-1.

A biological neuron consists of one cell body, multiple dendrites, and a single 
axon. The connections between neurons are known as synapses. The neuron 
receives stimuli on the dendrites, and in cases of sufficient stimuli, the neuron 
fires (also known as getting activated or excited) and outputs stimulus on its 

Figure 1-1 A biological neuron (Source: Glassner, A., Deep Learning: From Basics 
to Practice, The Imaginary Institute, 2018.)
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axon, which is transmitted to other neurons that have synaptic connections to 
the excited neuron. Synaptic signals can be excitatory or inhibitory; that is, some 
signals can prevent a neuron from firing instead of causing it to fire.

The perceptron consists of a computational unit, a number of inputs (one of which is 
a special bias input, which is detailed later in this chapter), each with an associated 
input weight and a single output. The perceptron is shown in Figure 1-2.

The inputs are typically named x
0
, x

1
, . . ., x

n
 in the case of n general inputs (x

0
 being 

the bias input), and the output is typically named y. The inputs and output loosely 
correspond to the dendrites and the axon. Each input has an associated weight 
(w

i
, where i = 0, . . ., n), which historically has been referred to as synaptic weight 

because it in some sense represents how strong the connection is from one neuron 
to another, but nowadays it is typically just called weight or input weight. For the 
perceptron, the output can take on only one of two values, −1 or 1, but this constraint 
will be relaxed to a range of real values for other types of artificial neurons 
discussed in later chapters. The bias input is always 1. Each input value is multiplied 
by its corresponding weight before it is presented to the computational unit (the 
dashed rectangle with rounded corners in Fig. 1-2), which loosely corresponds to 
the cell body of a biological neuron.1 The computational unit computes the sum of 
the weighted inputs and then applies a so-called activation function, y = f(z), where z 
is the sum of the weighted inputs. The activation function for a perceptron is the sign 
function, also known as the signum function,2 which evaluates to 1 if the input is 0 or 
higher and −1 otherwise. The sign function is shown in Figure 1-3.

1. hereafter, we do not discuss biological neurons, so any future reference to a neuron refers to an 
artificial neuron. Further, we often refer to a perceptron as a neuron because the perceptron is just a 
special type of neuron, and we often prefer the more generic name neuron except for when we detail 
properties that apply only to the perceptron.
2. The signum function should not be confused with the sigmoid function that is used for other neurons 
than perceptrons, as described in later chapters.

+

wn

w1
w2

w0

x0 = 1
(bias)

x1

x2

xn

z
SIGN

y

Figure 1-2 The perceptron
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To summarize, the perceptron will output −1 if the weighted sum is less than zero, 
and otherwise it will output 1. Written as an equation, we have the following:

y ,  wheref z( )=

 
0

z w x
i

n

i i∑=
=

1,   0

1,   0
f z

z

z
( ) =

− <
≥







1 (bias  term)0x =

Figure 1-3 Sign (or signum) function. The figure uses variable names typically 
used for generic functions (y is a function of x). In our perceptron use case, the 
input to the signum function is not x but the weighted sum z.

A perceptron is a type of artificial neuron. It sums up the inputs to compute 
an intermediate value z, which is fed to an activation function. The perceptron 
uses the sign function as an activation function, but other artificial neurons 
use other functions.
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We note how the bias term x
0
 is special in that it always is assigned the value 1. 

Its corresponding weight w
0
 is treated just like any other weight. Code Snippet 1-1 

implements this function programmatically in Python. The first element of x 
represents the bias term and thus must be set to 1 by the caller of the function.

At this point, the special bias input might seem odd, but we show later in this 
chapter how varying the bias weight is equivalent to adjusting the threshold at 
which the perceptron changes its output value.

Example of a Two-Input Perceptron
A simple example provides an idea of how the perceptron works in practice. Let 
us study a perceptron with two inputs in addition to the bias input. Without any 
justification (at this point), we set the weights to w

0
 = 0.9, w

1
 = −0.6, and w

2
 = −0.5. 

See Figure 1-4.

now let us see how this perceptron behaves for all input combinations assuming 
that each of the two inputs can take on only the values −1.0 and 1.0. If you want 
to get your hands dirty, you can paste Code Snippet 1-1 into a Python interpreter 

# First element in vector x must be 1.

# Length of w and x must be n+1 for neuron with n inputs.

def compute_output(w, x):
    z = 0.0

    for i in range(len(w)):

        z += x[i] * w[i] # Compute sum of weighted inputs

    if z < 0: # Apply sign function

        return -1

    else:

        return 1

Code Snippet 1-1 Python Implementation of Perceptron Function

We said in the preface that you should learn Python, so if you have not yet, now 
is a good time for you to start going over that Python tutorial. 
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window (see Appendix I) and then call the function with the chosen weights and 
different x-input combinations. Remember that the first x-input should always be 
1.0 because it represents the bias term. You should end up with the following if 
you call the function four times with all different combinations of x-inputs:

>>> compute_output([0.9, -0.6, -0.5], [1.0, -1.0, -1.0])

1

>>> compute_output([0.9, -0.6, -0.5], [1.0, -1.0, 1.0])

1

>>> compute_output([0.9, -0.6, -0.5], [1.0, 1.0, -1.0])

1

>>> compute_output([0.9, -0.6, -0.5], [1.0, 1.0, 1.0])

-1

To explore this behavior in more detail, we show the four different combinations 
in Table 1-1.

The table shows the inputs and the outputs, the intermediate values after 
applying the weights, as well as the sum before applying the activation function. 
note what happens if we interpret the inputs and outputs as Boolean values, 
where −1 represents False and +1 represents True. The perceptron with 
these specific weights implements a NAND gate! Paraphrasing nielsen, this is 
comforting because we know that by combining multiple NAND gates, we can 
build any logical function, but it is also kind of disappointing because we thought 
that neural networks were going to be something much more exciting than just 
Boolean logic (nielsen, 2015). 

+

x0 = 1
(bias)

x1

x2

z
SIGN

y

w0 = +0.9

w1 = –0.6

w2 = –0.5

Figure 1-4 Perceptron with two inputs (in addition to the bias input) and defined 
weights
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As we soon will see, it turns out that neural networks are different from Boolean 
logic. This difference becomes clear in later chapters, where we demonstrate the 
amazing things that neural networks can achieve. meantime, we can list some 
specific differences:

• Perceptron inputs are not limited to Boolean values. In addition, although 
perceptrons are limited to outputting only one of two values, other neuron 
models can output a range of real numbers.

• In our simple example, the perceptron has only two inputs and implements a 
basic logical function. In the networks we study later in the book, each neuron 
has many more inputs, often more than what is typical for a logic gate. Each 
neuron can also implement more complex functions than AND and OR.

• We know of a learning algorithm that can be used to automatically design 
neural networks by learning from examples. Curiously, the resulting networks 

We said in the Preface that we would avoid starting with traditional machine 
learning techniques in favor of jumping straight to the more recent stuff, and 
now we start talking about basic binary logic gates instead. not cool! Seems 
like an epic fail, but bear with us. At least we are already talking about neurons, 
and we will soon move on to more impressive ways of using them.

Table 1-1 Behavior of a Perceptron with Two Inputs*

X0 X1 X2 W0*X0 W1*X1 W2*X2 Z Y

1 −1

(False)

−1

(False)

0.9 0.6 0.5 2.0 1

(True)

1 1

(True)

−1

(False)

0.9 −0.6 0.5 0.8 1

(True)

1 −1

(False)

1

(True)

0.9 0.6 −0.5 1.0 1

(True)

1 1

(True)

1

(True)

0.9 −0.6 −0.5 −0.2 −1

(False)

*The values of the inputs and output can also be interpreted as Boolean values.
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tend to generalize and learn behavior that makes sense for not-yet-observed 
examples (this statement may seem fairly abstract, but the next section 
introduces the perceptron learning algorithm, and Chapter 4, “Fully Connected 
networks Applied to multiclass Classification,” discusses generalization).

The Perceptron Learning Algorithm
In the previous example, we somewhat arbitrarily picked the three weights, and we 
ended up with a perceptron that behaves like a NAND gate if we view the inputs as 
Boolean values. By inspecting Table 1-1, it should be fairly easy to convince yourself 
that the chosen weights are not the only ones that result in this outcome. For 
example, you can see that the z-value is far enough from zero in all cases, so you 
should be able to adjust one of the weights by 0.1 in either direction and still end 
up with the same behavior. This raises the questions of how we came up with these 
weights in the first place and whether there is a general approach for determining 
the weights. This is where the perceptron learning algorithm comes into play.

We first describe the algorithm itself and apply it to a couple of problems. These 
experiments provide some understanding of how the algorithm works but also 
reveal some of the limitations of the perceptron. We then show that it is possible 
to overcome these limitations and examine the perceptron from other angles. 
In Chapter 2, “Gradient-Based Learning,” we describe a somewhat more formal 
reasoning behind what the algorithm does. 

The perceptron learning algorithm is what is called a supervised learning 
algorithm. The notion of supervision implies that the model that is being trained 
(in this case, the perceptron) is presented with both the input data and the desired 
output data (also known as ground truth). Think of it as a teacher presenting the 
question and answer to the model with the expectation that the model will learn 
that a certain input is associated with a corresponding output. The opposite of 
supervised learning is unsupervised learning in which the learning algorithm is 
responsible for finding patterns in the data by itself. An example of this concept 
is an algorithm that can find structure in natural language text. We study this 
concept in more detail in Chapter 11, “Text Autocompletion with LSTm and Beam 
Search,” where we train a model to do autocompletion of text. 

The term model is often used as a synonym for a network. That is, when we 
talk about training a model, it is the same thing as coming up with weights for a 
network consisting of one or more neurons.
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In our example, we have four sets of input/output data, each corresponding to one 
row in Table 1-1. The algorithm works as follows:

1. Randomly initialize the weights.

2. Select one input/output pair at random.

3. Present the values x
1
, . . ., x

n
 to the perceptron to compute the output y.

4. If the output y is different from the ground truth for this input/output pair, 
adjust the weights in the following way:

a. If y < 0, add hx
i
 to each w

i
.

b. If y > 0, subtract hx
i
 from each w

i
.

5. Repeat steps 2, 3, and 4 until the perceptron predicts all examples correctly.

The perceptron has certain limitations to what it can predict, so for some sets of 
input/output pairs, the algorithm will not converge. however, if it is possible to 
come up with a set of weights that enables the perceptron to represent the set 
of input/output pairs, then the algorithm is guaranteed to converge by finding 
these weights. The arbitrary constant h is known as the learning rate3 and can 
be set to 1.0, but setting it to a different value can lead to faster convergence of 
the algorithm. The learning rate is an example of a hyperparameter, which is not 
a parameter that is adjusted by the learning algorithm but can still be adjusted. 
For a perceptron, the weights can be initialized to 0, but for more complex neural 
networks, that is a bad idea. Therefore, we initialize them randomly to get into 
that habit. Finally, in step 4, it might seem like all the weights will be adjusted 
by the same amount, but remember that the input x

i
 is not limited to take on the 

two values −1 and 1. It could well be 0.4 for one input and 0.9 for another, so the 
actual weight adjustment will vary.

We now walk through a Python implementation of this algorithm and apply it to 
our NAND example. Code Snippet 1-2 shows the initialization code where we first 
import a library for randomization and then initialize variables for the training 
examples and perceptron weights.

3. Some descriptions of the perceptron learning algorithm do not include the learning rate parameter, 
but since learning rate is an important parameter for the learning algorithm used for more 
complicated networks, we choose to introduce it here.
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note how each input example consists of three values, but the first value is 
always 1.0 because it is the bias term. Code Snippet 1-3 restates the perceptron 
output computation that was shown in Code Snippet 1-1.

import random

def show_learning(w):
    print('w0 =', '%5.2f' % w[0], ', w1 =', '%5.2f' % w[1],

          ', w2 =', '%5.2f' % w[2])

# Define variables needed to control training process.

random.seed(7) # To make repeatable

LEARNING_RATE = 0.1

index_list = [0, 1, 2, 3] # Used to randomize order

# Define training examples.

x_train = [(1.0, -1.0, -1.0), (1.0, -1.0, 1.0),

    (1.0, 1.0, -1.0), (1.0, 1.0, 1.0)] # Inputs

y_train = [1.0, 1.0, 1.0, -1.0] # Output (ground truth)

# Define perceptron weights.

w = [0.2, -0.6, 0.25] # Initialize to some "random" numbers

# Print initial weights.

show_learning(w)

Code Snippet 1-2 Initialization Code for our Perceptron Learning Example

# First element in vector x must be 1.

# Length of w and x must be n+1 for neuron with n inputs.

def compute_output(w, x):
    z = 0.0

    for i in range(len(w)):

        z += x[i] * w[i] # Compute sum of weighted inputs

    if z < 0: # Apply sign function

        return -1

    else:

        return 1

Code Snippet 1-3 Perceptron Function as Shown in Code Snippet 1-1
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Code Snippet 1-4 contains the perceptron training loop. It is a nested loop in 
which the inner loop runs through all four training examples in random order. For 
each example, it computes the output and adjusts and prints the weights if the 
output is wrong. The weight adjustment line contains a subtle detail that makes 
it look slightly different than how we described the algorithm. Instead of using an 
if statement to determine whether to use addition or subtraction to adjust the 
weights, the adjustment value is multiplied by y. The value of y will either be −1 
or +1, and consequently results in selecting between addition and subtraction for 
the update. The outer loop tests whether the perceptron provided correct output 
for all four examples and, if so, terminates the program.

If we paste the three snippets together into a single file and then run it in a Python 
interpreter, the output will look something like the following:

w0 = 0.20 , w1 = -0.60 , w2 =  0.25

w0 = 0.30 , w1 = -0.50 , w2 =  0.15

w0 = 0.40 , w1 = -0.40 , w2 =  0.05

w0 = 0.30 , w1 = -0.50 , w2 = -0.05

w0 = 0.40 , w1 = -0.40 , w2 = -0.15

# Perceptron training loop.

all_correct = False

while not all_correct:

    all_correct = True

    random.shuffle(index_list) # Randomize order

    for i in index_list:

        x = x_train[i]

        y = y_train[i]

        p_out = compute_output(w, x) # Perceptron function

        if y != p_out: # Update weights when wrong

            for j in range(0, len(w)):

                w[j] += (y * LEARNING_RATE * x[j])

            all_correct = False

            show_learning(w) # Show updated weights

Code Snippet 1-4 Perceptron Training Loop
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note how the weights are gradually adjusted from the initial values to arrive at 
weights that produce the correct output. most code examples in this book make 
use of random values, so your results might not exactly match our results.

In addition to the described Python implementation, we also provide a 
spreadsheet that performs the same calculations. We find that directly modifying 
weights and input values in a spreadsheet is often a good way to build intuition. 
The location from which to download the spreadsheet can be found in the 
programming examples section in Appendix I.

now that we have seen that this algorithm can learn the NAND function, we will 
explore a little bit more in depth what it learned. up until now, we have restricted 
ourselves to making each input take on just one of two values (either −1 or 1). 
however, there is nothing that prevents us from presenting any real number on 
the two inputs. That is, we can present any combination of two real numbers 
to the perceptron, and it will produce either −1 or 1 on its output. one way to 
illustrate this is to make a chart of a 2D coordinate system where one axis 
represents the first input (x

1
), and the other axis represents the second input (x

2
). 

For each point in this coordinate system, we can write a “+” or a “−” depending on 
what value the perceptron outputs. Such a chart is plotted in Figure 1-5.

Figure 1-5 output of a perceptron as a function of two inputs x
1
 and x

2
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This chart is different than plotting the function y = f(x
1
, x

2
) in a traditional manner. A 

traditional plot of a function that takes two values as inputs and produces one value 
as an output would produce a 3D chart where some kind of surface is plotted as a 
function of the two inputs (this is shown later under “Geometrical Interpretation of 
the Perceptron”). Figure 1-5 is different in that instead of plotting the output value 
on its own axis (the z-axis in a 3D chart), we simply show the numeric values as 
symbols (+ and −) on the chart, which is simple to do because there are only two 
possible values (−1 and 1), and they also happen to fall in a nice simple pattern.

As you can see from the figure, the perceptron divides the 2D space into two regions, 
separated by a straight line, where all input values on one side of the line produce 
the output −1, and all input values on the other side of the line produce the output +1. 
A natural question is how we came up with the chart in the first place. one brute-
force way of doing this is to test all combinations of (x

1
, x

2
) pairs and record the 

output from the perceptron. For the purpose of this discussion, this would be a fine 
way to do things, but if you are interested, it is simple to derive the equation for the 
line that separates the two regions. We know that the line represents the boundary 
between negative and positive output values of the perceptron. This boundary is 
exactly where the weighted sum of the inputs is zero, because the sign function will 
change its value when its input is zero. That is, we have

0 0 0 1 1 2 2w x w x w x+ + =

We want to rewrite this equation so that x
2
 is a function of x

1
, because x

2
 is plotted 

on the y-axis, and normally when plotting a straight line, we do y = f(x). We insert 1 
for x

0
, solve the equation for x

2
, and arrive at

 2
1

2
1

0

2

x
w

w
x

w

w
= − −

In other words, it is a straight line with slope −w
1
/w

2
 and a y-intercept of −w

0
/w

2
.

now that we are familiar with this type of chart, we can look at the learning 
process in more detail. We replace the initialization code in our program by 
the extended version shown in Code Snippet 1-5. In this code snippet, we 
have extended the show_learning() function to produce a plot like the one 
described previously. In addition to the changes in Code Snippet 1-5, we need to 
add the following code line at the end of the program:

plt.show()

We do not describe details of the plot routine because it is uninteresting and is not 
built upon later in the book.
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Code Snippet 1-5 Extended Version of Initialization Code with Function to Plot the 
output

import matplotlib.pyplot as plt

import random

# Define variables needed for plotting.

color_list = ['r-', 'm-', 'y-', 'c-', 'b-', 'g-']

color_index = 0

def show_learning(w):
    global color_index

    print('w0 =', '%5.2f' % w[0], ', w1 =', '%5.2f' % w[1],

          ', w2 =', '%5.2f' % w[2])    

    if color_index == 0:

        plt.plot([1.0], [1.0], 'b_', markersize=12)

        plt.plot([-1.0, 1.0, -1.0], [1.0, -1.0, -1.0],

                 'r+', markersize=12)

        plt.axis([-2, 2, -2, 2])

        plt.xlabel('x1')

        plt.ylabel('x2')

    x = [-2.0, 2.0]

    if abs(w[2]) < 1e-5:

        y = [-w[1]/(1e-5)*(-2.0)+(-w[0]/(1e-5)), 

            -w[1]/(1e-5)*(2.0)+(-w[0]/(1e-5))]

    else:

        y = [-w[1]/w[2]*(-2.0)+(-w[0]/w[2]), 

            -w[1]/w[2]*(2.0)+(-w[0]/w[2])]

    plt.plot(x, y, color_list[color_index])

    if color_index < (len(color_list) - 1):

        color_index += 1

# Define variables needed to control training process.

random.seed(7) # To make repeatable

LEARNING_RATE = 0.1

index_list = [0, 1, 2, 3] # Used to randomize order
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The resulting plot is shown in Figure 1-6, where the four input points are shown 
as three plus signs and one minus sign. The red line corresponds to the initial 
set of weights that do not correctly divide the chart between the plus and minus 
signs. For each weight update, we plot another line in the following color order: 
magenta, yellow, cyan, and blue. The blue line correctly divides the chart with 
all plus signs on one side and the minus sign on the other side, so the learning 
algorithm terminates.

Figure 1-6 Learning process progressing in the following order: red, magenta, 
yellow, cyan, blue

# Define training examples.

x_train = [(1.0, -1.0, -1.0), (1.0, -1.0, 1.0), 

    (1.0, 1.0, -1.0), (1.0, 1.0, 1.0)] # Inputs

y_train = [1.0, 1.0, 1.0, -1.0] # Output (ground truth)

# Define perceptron weights.

w = [0.2, -0.6, 0.25] # Initialize to some "random" numbers

# Print initial weights.

show_learning(w)
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We have now shown that the perceptron can learn to do a simple classification 
task, namely, to determine if a two-value input pair belongs to one class or 
another. It is not as advanced as distinguishing between a dog and a cat, but we 
need to learn to walk before we can run.

Limitations of the Perceptron
In Chapter 2, we look at the learning algorithm in more detail to justify why it 
works. however, you might have noticed4 that we just ran into a big limitation 
of the perceptron. Let us take a moment to understand this limitation and its 
implications.

We saw that the two-input perceptron learns how to draw a straight line between 
two groups of data points. That is exciting, but what happens if a straight line 
cannot separate the data points? We explore this scenario using a different 
Boolean function, namely, the exclusive OR, also known as XOR. Its truth table is 
shown in Table 1-2.

Figure 1-7 shows these four data points on the same type of chart that we studied 
before, illustrating how the algorithm tries to learn how to draw a line between 
the plus and minus signs. The top chart shows what it looks like after 6 weight 
updates and the bottom chart, after 30 weight updates—where we have also run 
out of colors and the algorithm never converges.

It is trivial to solve the problem with a curved line but is not possible with a 
straight line. This is one of the key limitations of the perceptron. It can solve 

4. It is perfectly fine if you did not notice this. It is far from obvious when you see it the first time.

Table 1-2 Truth Table for a Two-Input XOR Gate

X0 X1 Y

False False False

True False True

False True True

True True False
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classification problems only where the classes are linearly separable, which in 
two dimensions (two inputs) means that the data points can be separated by a 
straight line. Thus, it seems we need to either come up with a different model of a 
neuron or combine multiple of them to solve the problem. In the next section, we 
explore the latter solution.

Figure 1-7 Perceptron attempting to learn XOR. Top: After 6 weight adjustments. 
Bottom: After 30 weight adjustments.
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Combining multiple Perceptrons
As shown previously, a single perceptron can separate the chart into two regions, 
illustrated by drawing a straight line on the chart. That means that if we add 
another perceptron, we can draw another straight line. Figure 1-8 shows one 
such attempt: one line separates one of the minuses from all other data points. 
Similarly, the other line separates the other minus also from all other data points. 
If we somehow can output 1 only for the data points between the two lines, then 
we have solved the problem.

Another way to look at it is that each of the two perceptrons will fire correctly 
for three out of four data points; that is, both of them almost do the right thing. 
They both incorrectly categorize one data point, but not the same one. If we 
could combine the output of the two, and output 1 only when both of them 
compute the output as a 1, then we would get the right result. So, we want to do 
an AND of their outputs, and we know how to do that. We just add yet another 
perceptron that uses the outputs of the two previous perceptrons as its inputs. 
The architecture of this two-level neural network and the weights are shown in 
Figure 1-9.

Table 1-3 shows the output of each of the three neurons. Looking at x
1
, x

2
, and y

2
, it 

is clear that the neural network implements the XOR function.

Figure 1-8 XOR output values isolated by two lines
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This neural network is one of the simplest examples of a fully connected 
feedforward network. Fully connected means that the output of each neuron in one 
layer is connected to all neurons in the next layer. Feedforward means that there 

Table 1-3 Input and output Values Showing That the network Implements the XOR 
Function

X0 X1 X2 Y0 Y1 Y2

1 −1

(False)

−1

(False)

1.0 −1.0 −1.0 
(False)

1 1

(True)

−1

(False)

1.0 1.0 1.0  
(True)

1 −1

(False)

1

(True)

1.0 1.0 1.0  
(True)

1 1

(True)

1

(True)

−1.0 1.0 −1.0 
(False)

y0

0.6

P0

0.6

y1

P1

P2
0.6

–0.6
x1

–0.5

0.6
x2

Bias: 0.9

Bias: 0.2

Bias: –0.9

y2

Input layer Hidden layer Output layer

Figure 1-9 Two-level feedforward network implementing XOR function
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are no backward connections, or, using graph terminology, it is a directed acyclic 
graph (DAG). The figure also highlights the concept of layers. A multilevel neural 
network has an input layer, one or more hidden layers, and an output layer. The 
input layer does not contain neurons but contains only the inputs themselves; 
that is, there are no weights associated with the input layer. note that the single 
perceptron we looked at also had an input layer, but we did not explicitly draw 
it. In Figure 1-9, the output layer has only one neuron, but in general, the output 
layer can consist of more than one neuron. Similarly, the network in the figure has 
only a single hidden layer (with two neurons), but a deep neural network (Dnn) 
has more than one hidden layer and typically many more neurons in each layer. 
The weights (including bias) in the figure are spelled out, but in most cases, it is 
just assumed that they are there, and they are not shown. A feedforward network 
is also known as a multilevel perceptron even when it is built from neuron models 
that are not perceptrons, which can be somewhat confusing.

This XOR example is starting to get close to our definition of deep learning 
(DL): DL is a class of machine learning algorithms that use multiple layers of 
computational units where each layer learns its own representation of the input 
data. These representations are combined by later layers in a hierarchical fashion. 
In the preceding example, we did have multiple (two) layers. The neurons in the 
first layer had their own representation (the output from the hidden layer) of 
the input data, and these representations were combined hierarchically by the 
output neuron. A missing piece is that each layer learns its own representation. In 
our example, the network did not learn the weights, but we came up with them. A 
valid question is how we came up with all these weights. The answer is that we 
picked them carefully. The weights for the first perceptron already implemented a 
NAND function. We then picked weights for the second perceptron in the first layer 
to implement an OR function, and finally we picked the weights for the perceptron 
in the second layer to implement an AND function. By doing this, we arrived at the 
Boolean function for XOR:

( )A B A B( )⋅ ⋅ +

In a fully connected network, a neuron in one layer receives inputs from all 
other neurons in the immediately preceding layer. A feedforward network 
or multilevel perceptron has no cycles. The input layer has no neurons. The 
outputs of neurons in a hidden layer are not visible (they are hidden) outside 
of the network. Dnns have multiple hidden layers. The output layer can have 
multiple neurons.
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Although we are just assuming −1 and +1 as input values in this discussion, the 
neural network that we have created can take any real numbers as inputs, and 
it will output 1 for all the points between the two lines in Figure 1-8. We chose 
the weights carefully to make the neural network behave the way we wanted, 
which was possible for this specific example but is nontrivial for the general 
case. Is there such an algorithm for a multilevel neural network? As described 
in the Preface, minsky and Papert (1969) did not think so. however, it turns out 
that history proved the doubters wrong. The back-propagation algorithm was 
applied to various problem types from at least 1970 (Linnainmaa, 1970) and 
was popularized for neural networks in 1986 (Rumelhart, hinton, and Williams, 
1986). We cover this algorithm in detail in Chapter 3, “Sigmoid neurons and Back-
Propagation,” but first we explore the perceptron a little bit more.

Implementing Perceptrons with 
Linear Algebra

Knowledge of linear algebra is handy when working with neural networks. 
We now introduce some basic concepts and describe how they relate to the 
perceptron and why this knowledge is useful. In particular, we show how we can 
describe the input examples and perceptron weights as vectors and matrices 
and how parts of the perceptron calculations are equivalent to dot products, 
matrix-vector multiplications, and matrix multiplications. Computing dot products, 
matrix-vector multiplications, and matrix multiplications efficiently is important 
in many scientific fields, so much effort has been spent on creating efficient 
implementations of these operations. For example, if you program in Python, there 
is a package known as numPy, which is used for scientific computations. It has 
specific functions for the above-mentioned operations. under the hood, numPy 
makes use of the Basic Linear Algebra Subprograms (BLAS), which is heavily 
optimized to run as fast as possible on the platform where it is run. Further, if you 
have a graphics processing unit (GPu) capable of running CuDA, there is the CuDA 
BLAS (cuBLAS) library that enables numPy to perform these operations efficiently 
on the GPu,5 which can give you orders of magnitude speedup compared to 
running on a CPu.

5. modern DL frameworks make use of a library known as cuDnn, which is specifically developed to 
accelerate neural network computations by offloading them to the GPu.
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If you already know linear algebra, you will find that much of this section 
describes basic mathematical concepts. If this is the case, you should focus on 
how the perceptron weights and inputs map to these basic concepts. If you have 
some linear algebra knowledge but have not used these skills for a while, we 
think this section will serve as a good refresher. If you have never seen linear 
algebra before, then we recommend that you start with reading this section. This 
is likely sufficient for many readers, whereas others might want to pursue more 
in-depth descriptions of the topic.

VECToR noTATIon

In the previous sections, we saw examples of a large number of variables, such as 
multiple inputs (x) and corresponding weights (w) for each neuron, intermediate 
representations (z), and outputs (y). Common for all these variables is that they 
consist of a single value, which also is known as a scalar variable. It is often the 
case that we have a number of variables that kind of belong together, such as all 
the input variables x

0
, x

1
, . . ., x

n
 for a single neuron. one way to look at things is 

that each of these individual variables is only one component of the overall input. 
A more compact notation to use in this case is to arrange these scalar values into 
a vector variable:

�
=





















     

0

1x

x

x

xn

Specifying mathematical problems in vector or matrix form enables you 
to take advantage of efficient mathematics library implementations, and in 
particular to offload computations to the GPU.

We start variable subscripts at 0 because that is how it is done in most 
programming languages. The typical convention in linear algebra is to start 
indexing at 1, but we will continue using 0 to stay consistent and avoid any 
confusion when translating formulas into code.
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Similarly, we can arrange the weight variables into a single weight vector 
variable:

�
=





















       

0

1

w

w

wn

w

If you are a programmer, then a vector should be a familiar concept, although it is 
typically known as an array. The vectors shown so far are also known as column 
vectors, because they are arranged vertically as a column. We can also arrange 
the elements horizontally into a row vector. We use the transpose operation to 
convert a column vector into a row vector. The vector x and its transpose are 
shown here:

x

x

x

x x x

n

T
n     ,                  

0

1
0 1x x

�
=





















= …





In the field of linear algebra, mathematical operations have been defined for 
vectors and other related structures. one example is vector addition, which can 
be used to add one vector to another vector with the same number of elements. 
Vector addition is an element-wise operation. Element 0 of both vectors are added 
together to form element 0 of the output vector, element 1 of both vectors are 
added together to form element 1 of the output vector, and so on:

� � �
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+ =

+

+
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0

1

0

1

0 0

1 1

a

a

a

b

b

b

a b

a b

a bn n n n

a b a b

We use lowercase bold italic letters to denote vectors in this book.
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All of this enables a compact way of describing operations on the elements in the 
vectors. This is just an abstraction. We hide the individual elements when writing 
down the equations, but when we need to perform the computations, we are 
still working on each individual value (although, as previously mentioned, some 
hardware implementations can do the operations efficiently in parallel).

DoT PRoDuCT

Another important operation on two vectors is the dot product. The dot product is 
defined only if the two vectors are of equal length, just like vector addition. It is 
computed by multiplying element 0 of the two vectors, then multiplying element 1 
of the two vectors and so on, and finally adding all of these products:

∑⋅ = + +…+ =
=

   0 0 1 1
0

w x w x w x w xn n
i

n

i iw x

These computations might seem familiar. It is exactly how we compute the 
weighted sum z in our perceptron. That is, assuming that we have arranged the 
inputs into a vector x (where the first element is 1) and the weights into a vector w 
(where the first element is the bias weight), then we can write the perceptron 
equation as

( )= ⋅y sign w x

It is almost as if the dot product was invented to implement perceptrons. Just as 
with the vector addition, the dot product did not eliminate any of the computations 
but only simplified the notation. however, in practice, it also enabled us to call 
an efficient library implementation of the computation instead of a loop-based 
implementation of the weighted sum. Code Snippet 1-6 shows how we can write 
our perceptron function using the numPy dot-product functionality. We also 
changed the code to use the numPy sign function instead of implementing it with 
an if statement.

import numpy as np

def compute_output_vector(w, x):
    z = np.dot(w, x)

    return np.sign(z)

Code Snippet 1-6 our Perceptron Function Rewritten using Vector notation
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ExTEnDInG ThE VECToR To A 2D mATRIx

The vector concept is a special case of the more general concept of a multidimen-
sional structure where the dimension of a vector is 1. A multidimensional structure 
in two dimensions is known as a matrix and is described next. An example of a 
matrix A with m+1 rows and n+1 columns is shown here:6

 

00 01 0

10 11 1

0 1

� � � �
A

a a a

a a a

a a a

n

n

m m mn

=

…
…

…



















The numbering of elements in a matrix is somewhat different than if you refer to 
coordinates in a 2D coordinate system (an xy chart). In particular, the elements 
in the vertical direction are numbered in increasing order going downward in a 
matrix, whereas an increasing y-value in an xy chart is increasing going upward. 
In addition, in an xy chart, we state the horizontal coordinate (x) first and the 
vertical coordinate (y) second, whereas for a matrix, we state the row first and the 
column second. As an example, element a

01
 is the top element second from the 

left in a matrix, and the coordinate (x=0, y=1) is the leftmost element and second 
from the bottom in an xy chart.

Why do we want to use this 2D structure when working with neurons? It is seldom 
the case that we work with a single neuron or a single input example. We just 
saw how the weights (w) for a single neuron can be represented by a vector. 
This means that we can represent the weights for n neurons with n vectors 
by arranging them in a matrix. Similarly, we seldom work with a single input 
example (x), but we have a whole set of input examples. Just as for multiple 
neurons, we can represent a set of input examples as a set of vectors that can be 
arranged in a matrix structure.

Just as we can transpose a vector, we can also transpose a matrix. We do 
this by flipping the matrix along its diagonal; that is, element ij, where i is the 

6. Just as we do for vectors, in this book we start with a subscript of 0 for matrices to keep it 
consistent with programming in Python. The convention in mathematical texts on the topic is to start 
with a subscript of 1.

We use italic uppercase letters to denote matrices in this book.
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column and j is the row, becomes element ji. An example for a 2×2 matrix is 
shown here:

1 2
3 4

        1 3
2 4

A AT=






=






now that we know the basics of the matrix, we are ready to move on to some 
important matrix operations. 

mATRIx-VECToR muLTIPLICATIon

using the preceding concepts, we are now ready to define matrix-vector 
multiplication: 

A

a a a

a a a

a a a

x

x

x

a x a x a x

a x a x a x

a x a x a x

n
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m m mn n

n n

n n

m m mn n
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0 0 1 1
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+ +…+



















It is defined only for cases where the number of columns in the matrix matches 
the number of elements in the vector. It results in a vector with the same number 
of elements as there are rows in the matrix. The elements in this resulting vector 
are defined as

0

y a xi
j

n

ij j∑=
=

We recognize the sum as the dot product between two vectors, as previously 
described; that is, a slightly different view of the matrix is to consider each of 
the m+1 rows of the matrix as row vectors (a transposed vector). In that case, 
the matrix-vector multiplication can be viewed as doing m+1 dot products of the 
matrix rows and the x-vector, as shown here:
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now let us look at how to use matrix-vector multiplication in the context of 
perceptrons. Assume that we have m+1 perceptrons, each having n inputs plus 
the bias input. Further, we have a single input example consisting of n+1 values, 
where the first element in the input vector is 1 to represent the bias input value. 
now assume that we arrange the vectors for the perceptrons’ weights into a 
matrix W, so we have

�
=





















      

0

1W

T

T

m
T

w

w

w

where each wi is a multielement vector corresponding to a single neuron. We can 
now compute the weighted sums for all m+1 perceptrons for the input example x 
by multiplying the matrix by the vector:

= Wz x

The vector z will now contain m+1 elements, where each element represents the 
weighted sum for a single neuron presented with the input example.

mATRIx-mATRIx muLTIPLICATIon

Let us now introduce matrix-matrix multiplication of two matrices, A and B:

C AB= =

00 01 0

10 11 1

0 1

00 01 0

10 11 1

0 1

00 01 0

10 11 1

0 1
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a a a

a a a

a a a

b b b
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The number of columns in the first matrix A must match the number of rows in 
the second matrix B. The elements of the resulting matrix C are defined as

0 0 1 1c a b a b a bij i j i j in nj= + +…+
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or, alternatively,

0

c a bij
k

n

ik kj∑=
=

Again, we recognize this sum as a dot product. That is, if we view each of the m+1 
rows of matrix A as a row vector and each of the p+1 columns of matrix B as a 
column vector, then the matrix multiplication results in (m+1) × (p+1) dot products. 
In other words, we compute all the dot products between all row-vectors in 
matrix A and all column-vectors in matrix B. To make this abundantly clear, we 
can write the definition in a slightly different form. We state the two matrices A 
and B as being collections of vectors, and the elements of the resulting matrix are 
computed as dot products between these vectors:

�

�

� � � �
�
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Similarly, to what we did with matrix-vector multiplication, we can use matrix-
matrix multiplication in the context of perceptrons. Assume that we have m+1 
perceptrons, each having n inputs (+ bias input) just as in the previous example. 
Further, we have p+1 input examples, each consisting of n+1 values. As always, 
we assume that the first element in each input vector is 1 to represent the bias 
input value. now assume that in addition to the matrix W, which represents 
the perceptrons’ weights, we arrange the vectors for the input examples into 
matrix X:

�
( )=





















= …      ,      

0

1
0 1W X

T

T

m
T

p

w

w

w

x x x

All of this can be somewhat heavy to get through if you are not well versed in 
linear algebra, but familiarity with these notations will be very helpful for your 
future work with DL.
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In this example, both w
i
 and x

i
 refer to multielement vectors. We can now compute 

the weighted sums for all m+1 perceptrons for all p+1 input examples by 
multiplying the two matrices:

Z WX=

The matrix Z will now contain (m+1) × (p+1) elements, where each element 
represents the weighted sum for a single neuron presented with a single input 
example. To make this more concrete, matrix W corresponds to the two neurons 
in the first layer of our XOR network previously shown in Figure 1-9. matrix X 
contains all four input examples. The resulting matrix WX contains the weighted 
sum for the two neurons for all four input examples:

0.9 0.6 0.5
0.2 0.6 0.6

 00 01 02

10 11 12

W
w w w

w w w
=









 = − −





1 1 1 1
1 1 1 1
1 1 1 1

00 01 02 03

10 11 12 13

20 21 22 23

X

x x x x

x x x x

x x x x

=

















= − −
− −















  2 1 0.8 0.2
1 0.2 0.2 1.4

WX = −
−







The computation resulting in the value 2 for the upper left element in the resulting 
matrix is

0.9 1 0.6 1 0.5 1 200 00 01 10 02 20w x w x w x ( )( ) ( )( ) ( )( )+ + = + − − + − − =

The other values can be computed following the same pattern. We simply 
compute the dot products between row vectors in W and column vectors in X.

SummARY oF VECToR AnD mATRIx oPERATIonS uSED FoR 
PERCEPTRonS

The preceding discussion described how linear algebra operations map to 
various combinations of input examples and number of perceptrons. Table 1-4 
summarizes the mappings.

none of the preceding exercises have simplified or eliminated any computations, 
but the notation enables computations to be computed efficiently in parallel on 
a GPu.
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DoT PRoDuCT AS A mATRIx muLTIPLICATIon

Before moving on from matrices and vectors, we want to introduce one more 
common notation. We note that a vector can be viewed as the special case of a 
matrix with a single column. This implies that we can formulate our dot product 
of two vectors as a matrix multiplication. Assume that we have vectors a and b as 
follows:
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That is, if we transpose vector a so it becomes a matrix with a single row, we can 
now do matrix multiplication between aT and b and thereby omit the dot product 
operator. This is a common notation with which it is good to be familiar.

ExTEnDInG To muLTIDImEnSIonAL TEnSoRS

Vectors and matrices are special cases of the more generalized concept of a 
tensor, which is equivalent to the programming concept of a multidimensional 

Table 1-4 Combinations of Perceptrons and Input Examples and the 
Corresponding Linear Algebra operation

NUMBER OF PERCEPTRONS
NUMBER OF INPUT 
EXAMPLES

LINEAR ALGEBRA 
OPERATION

one one Dot product

multiple one matrix-vector multiplication

multiple multiple matrix-matrix multiplication
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array. In other words, if we extended a matrix to another dimension, we would call 
the resulting entity a 3D tensor. Tensors can show up in cases where the input 
data itself is multidimensional, such as in a color image. It consists of a 2D array 
of pixel values, and each pixel consists of three components (red, green, and blue, 
or RGB for short). That is, the input data itself is 3D, and if we have a collection of 
images as input values, then we can organize all of these as a 4D tensor. This can 
be tricky at first and often takes some time to get used to. The greatest challenge 
is to keep track of all the indices correctly. In the end, all the computations are 
typically reduced to a large number of dot products.

Geometric Interpretation of the 
Perceptron

Previously in this chapter, we visualized the decision boundary created by a two-
input perceptron. In that type of chart, we identified all the coordinates where the 
perceptron would output −1 and all the coordinates where the perceptron would 
output +1. Another way of visualizing what the perceptron does is to plot z as a 
function of x

1
 and x

2
. This takes the form of a 3D chart, as shown in Figure 1-10.

We can see that the z-value in the perceptron forms a plane. The actual output 
(y) of the perceptron will take on the value of −1 for any point on the plane that is 
less than 0, whereas it will be +1 for any point that is greater than or equal to 0. If 
you look at this chart from above and draw a line where the z-value of the plane 

Figure 1-10 3D plot of two-input perceptron decision surface
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is 0, you will end up with the same type of chart that we previously looked at in 
Figure 1-5.

The positioning and the orientation of the plane are determined by the three 
weights. The bias weight (w

0
) determines where the plane will cross the z-axis 

at the point where both x
1
 and x

2
 equal 0; that is, changing w

0
 causes the plane 

to move up or down on the z-axis. This is shown in the two upper charts in 
Figure 1-11, where the left chart is the same as in Figure 1-10, but in the 
right chart, we changed w

0
 from −0.2 to 0.0. The two other weights (w

1
 and w

2
) 

determine the slope of the plane in the two different dimensions. If the weights 
are 0, then the plane will be parallel to the x

1
 and x

2
 axes, while a positive or 

negative value will cause the plane to tilt. This is shown in the two lower charts 

Figure 1-11 Decision surface defined by two-input perceptron. The surface 
orientation changes as the weights are modified.
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in Figure 1-11, where in addition to setting w
0
 to 0, we set w

1
 to 0 in the lower left 

chart and all weights to 0 in the lower right chart and end up with a level plane.

This whole discussion has been centered on a perceptron with two inputs (in 
addition to the bias input) because it makes it possible to visualize the function. 
Adding more inputs is straightforward, but visualizing it is much harder because 
humans are inherently bad at visualizing more than three dimensions. The trick 
is to not even try to visualize but instead try to understand it from a mathematical 
point of view.

An example of this is that, as previously mentioned, the perceptron has the 
restriction that it can distinguish between two classes only if they are linearly 
separable, which for a two-input perceptron (two dimensions) means that they 
can be separated by a straight line. For a three-input neuron (three dimensions), it 
means that they can be separated by a plane. We do not delve into details here, but 
for readers who are already familiar with linear algebra, we point out that for the 
general case of a perceptron with n inputs (n dimensions), two classes are linearly 
separable if they can be separated by an n−1 dimensional hyperplane. This is a fairly 
abstract discussion, but do not worry if you have a hard time following it. Knowing 
about hyperplanes is not required to be able to understand the rest of the book.

Finally, there is also a geometric interpretation of the computation performed 
by the perceptron. The perceptron computes a dot product between the two 
vectors w and x, and we then apply the sign function to the result. Instead of 
implementing the dot product as a weighted sum, the dot product of the two 
vectors can also be computed as

θ⋅ =       ( )cosw x w x

where q is the angle between the vectors w and x. Since both  and w x  are 
positive, the angle between the two vectors will determine the output of the 
perceptron (an angle greater than 90 degrees will cause −1, and an angle less 
than 90 degrees will cause +1 as output).

It turns out that we can use the geometric definition of the dot product to reason 
about what weights will maximize the weighted sum for a given input, but you 
can safely ignore this for now if it is the first time you have seen this definition 
of the dot product. 
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understanding the Bias Term
our description of the perceptron includes the use of a bias term that we did not 
justify further. In addition, taking a closer look at our equations for the perceptron, 
a couple of things stick out:

y , wheref z( )=

 
0

z w x
i

n

i i∑=
=

1,   0

1,   0
f z

z

z
( ) =

− <
≥







1 (bias term)0x =

In particular, the output values of −1 and 1 and the threshold of 0 seem like they 
have been chosen somewhat arbitrarily. If you are familiar with digital electronics, 
it might feel more natural if the output values were 0 and 1, and you might also feel 
that a threshold of 0.5 is more appropriate. We will get back to that in Chapter 3, but 
for now, we focus on the threshold, which is often denoted by q (Greek letter theta). 
We could make our perceptron more general by replacing the activation function 
with the following, where the threshold is simply a parameter q :

1,  

1,  
f z

z

z

θ
θ

( ) =
− <

≥







Looking more closely at the condition that needs to be fulfilled for the output to 
take on the value 1, we have

   z θ≥

This can be rewritten as

       0z θ− ≥

That is, as long as we subtract the threshold from z, we can keep our 
implementation that uses 0 as its threshold. Looking carefully at our original 
description of the perceptron, it turns out that we were a little bit sneaky and 
did this all along by including the bias term x

0
 in the sum that computes z. That 

is, the rationale for the bias term in the first place was to make the perceptron 
implement an adjustable threshold value. It might seem like we should have 
subtracted the bias, but it does not matter because we have the associated 
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weight w
0
, which can be both positive and negative. That is, by adjusting w

0
, our 

perceptron can be made to implement any arbitrary threshold q. To be crystal 
clear, if we want the perceptron to use a threshold of q, then we set w

0
 to be −q.

Finally, if we ignore the activation function for a moment, we can consider how 
the bias term affects just the weighted sum z. We saw in the previous section how 
changing w

0
 resulted in the plane sliding up and down along the z-axis. To make it 

even simpler, consider the lower-dimensional case where we have a straight line 
instead of a plane. The bias term is simply the intercept term b in the equation for 
a straight line:

y mx b= +

What we just described in this section does not change how we use the 
perceptron. It is just a justification for why we implemented it the way we did in 
the first place. It is also helpful to know when reading other texts that might use 
an explicit threshold instead of a bias term.

Concluding Remarks on the Perceptron
In this chapter, we introduced the perceptron and looked at it from a couple 
of different angles. We showed how it can be used to implement a logical 
function, starting with NAND. A key reason for starting by using the perceptron 
to implement logical functions is that it quickly leads to one of the perceptron’s 
limitations, as we saw when trying to implement the XOR function. This then 
explained the need for connecting multiple perceptrons into a network.

In reality, when working with neural networks and DL, we typically do not think 
about the perceptron or other neurons in terms of logical gates. A perhaps more 
common view of looking at the perceptron is as a binary classifier. We feed the 
perceptron an input example consisting of a vector of input values. The perceptron 
classifies this input example as belonging to one of two classes. The vector of 
input values typically contains many more variables than two. For example, in 
a medical setting, the values in the vector might represent data about a patient, 
such as age, sex, and various laboratory results. The task for the perceptron is to 
classify whether the input values indicate that the patient has a specific medical 
condition. In reality, because of the limitations of the perceptron, this classifier 
would likely not be very good. Instead, just as for the XOR example, it is likely that 
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a network of neurons would do better. We will see plenty of examples of such 
networks in the remainder of this book.

We also introduced the perceptron learning algorithm and showed how it learns 
a simple task. however, we never described why it works. That is the main 
topic of Chapter 2, which will also serve as a steppingstone for describing the 
backpropagation algorithm used to train multilevel networks in Chapter 3.
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Chapter 2

Gradient-Based 
Learning

In this chapter, we describe how the perceptron learning algorithm works, which we 
then build upon in Chapter 3, “Sigmoid Neurons and Backpropagation,” by extending 
it to multilevel networks. These two chapters contain more mathematical content 
than other chapters in this book, but we also describe the concepts in an intuitive 
manner for readers who do not like reading mathematical formulas.

Intuitive Explanation of the Perceptron 
Learning Algorithm

In Chapter 1, “The Rosenblatt Perceptron,” we presented and used the perceptron 
learning algorithm, but we did not explain why it works. Let us now look at what 
the learning algorithm does. To refresh our memory, the weight adjustment step 
in the perceptron learning algorithm is first restated in Code Snippet 2-1, where 

for i in range(len(w)):

   w[i] += (y * LEARNING_RATE * x[i])

Code Snippet 2-1 Weight Update Step of Perceptron Learning Algorithm
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w is an array representing the weight vector, x is an array representing the input 
vector, and y is the desired output.

If an example is presented to the perceptron and the perceptron correctly predicts 
the output, we do not adjust any weights at all (the code that ensures this is not 
shown in the snippet). This makes sense because if the current weights already 
result in the correct output, there is no good reason to adjust them.

In the cases where the perceptron predicts the outputs incorrectly, we need to 
adjust the weights as shown in Code Snippet 2-1, and we see that the weight 
adjustment is computed by combining the desired y value, the input value, and 
a parameter known as LEARNING_RATE. We now show why the weights are 
adjusted the way they are. Let us consider three different training examples 
where x

0
 represents the bias input that is always 1:

Training example 1: x
0
 = 1, x

1
 = 0, x

2
 = 0, y = 1

Training example 2: x
0
 = 1, x

1
 = 0, x

2
 = 1.5, y = −1

Training example 3: x
0
 = 1, x

1
 = −1.5, x

2
 = 0, y = 1

We further know that the z-value (the input to the signum function) for our 
perceptron is computed as

z w x w x w x0 0 1 1 2 2= + +

For training example 1, the result is

z w w w w1 0 00 1 2 0= + + =

Clearly, w
1
 and w

2
 do not affect the result, so the only weight that makes sense to 

adjust is w
0
. Further, if the desired output value is positive (y = 1), then we would 

want to increase the value of w
0
. On the other hand, if the desired output value 

is negative (y = −1), then we want to decrease the value of w
0
. Assuming that the 

LEARNING_RATE parameter is positive, Code Snippet 2-1 does exactly this when it 
adjusts w

i
 by adding a value that is computed as y * LEARNING_RATE * x[i], 

where x
1
 and x

2
 are zero for training example 1 and thus only w

0
 will be adjusted.

doing the same kind of analysis for training example 2, we see that only w
0
 and 

w
2
 will be adjusted, both in a negative direction because y is −1 and x

0
 and x

2
 are 

positive. Further, the magnitude of the adjustment for w
2
 is greater than for w

0
 

since x
2
 is greater than x

1
.

Similarly, for training example 3, only w
0
 and w

1
 will be adjusted, where w

0
 will 

be adjusted in a positive direction and w
1
 will be adjusted in a negative direction 

because y is positive and x
1
 is negative.
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To make this even more concrete, we compute the adjustment value for each 
weight for the three training examples, with an assumed learning rate of 0.1. They 
are summarized in Table 2-1.

We make a couple of observations:

• The adjustment of the bias weight depends only on the desired output value 
and will thus be determined by whether the majority of the training examples 
have positive or negative desired outputs.1

• For a given training example, only the weights that can significantly affect 
the output will see a significant adjustment, because the adjustments are 
proportional to the input values. In the extreme, where an input value is 0 for a 
training example, its corresponding weight will see zero adjustment.

This makes much sense. In a case where more than 50% of the training examples 
have the same output value, adjusting the bias weight toward that output value 
will make the perceptron be right more than 50% of the time if all other weights 
are 0. It also makes sense to not adjust weights that do not have a big impact on 
a given training example, which will likely do more harm than good because the 
weight could have a big impact on other training examples. 

In Chapter 1, we described how the z-value of a two-input (plus bias term) 
perceptron creates a plane in a 3d space (where x

1
 is one dimension, x

2
 the 

second, and the resulting value z is the third). One way to visualize the perceptron 
learning algorithm is to consider how it adjusts the orientation of this plane. Every 

1. Only training examples that are incorrectly predicted will cause an adjustment. Thus, a case with 
many training examples with positive outputs can still result in a negative bias weight if many of 
the positive training examples already are correctly predicted and thus do not cause any weight 
adjustments.

Table 2-1 Adjustment values for Each Weight for the Three Training Examples

W0 CHANGE W1 CHANGE W2 CHANGE

Example 1 1*1*0.1 = 0.1 1*0*0.1 = 0 1*0*0.1 = 0

Example 2 (−1)*1*0.1 = −0.1 (−1)*0*0.1 = 0 (−1)*1.5*0.1 = −0.15

Example 3 1*1*0.1 = 0.1 1*(−1.5)*0.1 = −0.15 1*0*0.1 = 0
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update will adjust the bias weight. This will push the overall plane upward for 
positive training examples and downward for negative training examples. 

For example, close to the z-axis (x
1
 and x

2
 are small), the bias weight is all that 

counts. For cases that are further away from the z-axis, the angle of the plane 
becomes a more significant lever. Thus, for mispredicted learning examples 
where the x

1
 value is big, we make a big change to the weight that determines the 

tilt angle in the x
1
 direction, and the same applies for cases with big x

2
 values but 

in the orthogonal direction. A point on the plane that is located directly on the x
2
 

axis will not move as we rotate the plane around the x
2
 axis, which is what we do 

when we adjust the weight corresponding to the x
1
 value.

An attempt at illustrating this is shown in Figure 2-1, with w
0
 = 1.0, w

1
 = −1.0, and 

w
2
 = −1.0, which are weights that we could imagine would result from repeatedly 

applying the weight adjustments from Table 2-1. 

Looking at the plane, we can now reason about how it satisfies the three training 
examples. Because w

0
 = 1.0, the output will be positive when x

1
 and x

2
 are close 

to zero (z = 1.0 when x
1
 and x

2
 are 0), which will ensure that training example 1 is 

correctly handled. We further see that w
1
 is chosen so that the plane is slanted in 

a direction that z increases as x
1
 decreases. This ensures that training example 

3 is taken care of because it has a negative x
1
 value and wants a positive output. 

Finally, w
2
 is chosen so that the plane is slanted in a direction (around its other 

axis) that z increases as x
2
 decreases. This satisfies training example 2 with its 

positive x
2
 input and desired negative output value.

Figure 2-1 Example of weights that correctly predicts all three training examples
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We believe that the reasoning is sufficient to give most people an intuitive idea 
of why the learning algorithm works the way it does. It also turns out that for 
cases that are linearly separable (i.e., cases where a perceptron has the ability 
to distinguish between the two classes), this learning algorithm is guaranteed to 
converge to a solution. This is true regardless of the magnitude of the learning 
rate parameter. In other words, the value of this parameter will only affect how 
quickly the algorithm converges.

To prepare ourselves for the learning algorithm for multilevel networks, we would 
now like to arrive at an analytical explanation of why we adjust the weights the 
way that we do in the perceptron learning algorithm, but we will first go through 
some concepts from calculus and numerical optimization that we will build upon.

derivatives and Optimization Problems
In this section, we briefly introduce the mathematical concepts that we use in this 
chapter. It is mostly meant as a refresher for readers who have not used calculus 
lately, so feel free to skip to the next section if that does not apply to you. We start 
by briefly revisiting what a derivative is. Given a function

y f x( )=

the derivative of y with respect to x tells us how much the value of y changes 
given a small change in x. A few common notations are

,    ,   y f x
dy

dx
( )′ ′

The first notation (y') can be somewhat ambiguous if y is a function of multiple 
variables, but in this case, where y is only a function of x, the notation is 
unambiguous. Because our neural networks typically are functions of many 
variables, we will prefer the two other notations.

Figure 2-2 plots the value of an arbitrary function y = f(x). The plot also illustrates 
the derivative f'(x) by plotting the tangent line in three different points. The tangent 
to a curve is a straight line with the same slope (derivative) as the curve at the 
location where the line touches the curve.

We can make a couple of observations. First, the derivative at the point that 
minimizes the value of y is 0 (the tangent is horizontal). Second, as we move 
further away from the minimum, the derivative increases (it decreases if we move 
in the other direction). We can make use of these observations when solving an 
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optimization problem in which we want to find what value of the variable x will 
minimize2 the value of the function y. Given an initial value x and its corresponding 
y, the sign of the derivative indicates in what direction to adjust x to reduce the 
value of y. Similarly, if we know how to solve x for 0, we will find an extreme point 
(minimum, maximum, or saddle point)3 of y.

As we saw in Chapter 1, we typically work with many variables. Therefore, before 
moving on to how to apply these concepts to neural networks, we need to extend 
them to two or more dimensions. Let us assume that we have a function of two 
variables, that is, y = f(x

0
, x

1
), or alternatively, y = f(x),where x is a 2d vector. This 

function can be thought of as a landscape that can contain hills and valleys,4 as in 
Figure 2-3.

We can now compute two partial derivatives:

   
0 1

y

x
and

y

x

∂
∂

∂
∂

2. We assume that the optimization problem is a minimization problem. There are also maximization 
problems, but we can convert a maximization problem into a minimization problem by negating the 
function we want to maximize.
3. We worry only about minima in this book. Further, it is worth noting that these extreme points may 
well be local extremes. That is, there is no guarantee that a global minimum is found.
4. It can also contain discontinuities, asymptotes, and so on.

Figure 2-2 Plot showing a curve y = f(x) and its derivative at the minimum value 
and in two other points
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A partial derivative is just like a normal derivative, but we pretend that all but 
one of the variables are constants. The one variable that we want to compute the 
derivative with respect to is the only variable that is not treated as a constant. 
A simple example is if we have the function y = ax

0
 + bx

1
, in which case our two 

partial derivatives become

0

y

x
a

∂
∂

=

1

y

x
b

∂
∂

=

If we arrange these partial derivatives in a vector, we get

  0

1

y

y

x

y

x

∇ =

∂
∂
∂
∂



















which is called the gradient of the function—that is, the gradient is a derivative 
but generalized to a function with multiple variables. The symbol ∇ (upside-down 
Greek letter delta) is pronounced “nabla.”

Figure 2-3 Plot of function of two variables and the direction and slope of 
steepest ascent in three different points
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The gradient has a geometric interpretation. Being a vector, the gradient consists 
of a direction and a magnitude.5 The direction is defined in the same dimensional 
space as the inputs to the function. That is, in our example, this is the 2d space 
represented by the horizontal plane in Figure 2-3. For our example gradient, the 
direction is (a, b). Geometrically, this direction indicates where to move from a 
given point (x

0
, x

1
) in order for the resulting function value (y) to increase the most. 

That is, it is the direction of the steepest ascent. The magnitude of the gradient 
indicates the slope of the hill in that direction.

The three arrows in Figure 2-3 illustrate both the direction and the slope of the 
steepest ascent in three point. Each arrow is defined by the gradient in its point, 
but the arrow does not represent the gradient vector itself. Remember that the 
direction of the gradient falls in the horizontal plane, whereas the arrows in the 
figure also have a vertical component that illustrates the slope of the hill in that 
point.

There is nothing magic about two input dimensions, but we can compute partial 
derivatives of a function of any number of dimensions and create the gradient by 
arranging them into a vector. however, this is not possible to visualize in a chart.

Solving a Learning Problem with  
Gradient descent

One way to state our learning problem is to identify the weights that, given the 
input values for a training example, result in the network output matching the 
desired output for that training example. mathematically, this is the same as 
solving the following equation:

y ŷ 0− =

where y is the desired output value and ŷ (pronounced “y hat”) is the value 
predicted by the network. In reality, we do not have just a single training example 
(data point), but we have a set of training examples that we want our function 

5. This explanation assumes that you are familiar with the direction and magnitude of vectors. The 
magnitude can be computed using the distance formula that is derived from the Pythagorean theorem. 
details of this theorem can be found in texts about linear algebra.
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to satisfy. We can combine these multiple training examples into a single error 
metric by computing their mean squared error (mSE):6

1
ˆ             (     )

1

( ) ( ) 2

m
y y mean squared error

i

m
i i∑( )−

=

The notation with a superscript number inside parentheses is used to distinguish 
between different training examples. It is not an indication to raise y to the 
power of i. Looking closer, it seems like using mSE presents a problem. For 
most problems, the mSE is strictly greater than 0, so trying to solve it for 0 is 
impossible. Instead, we will treat our problem as an optimization problem in 
which we try to find weights that minimize the value of the error function.

In most deep learning (dL) problems, it is not feasible to find a closed form 
solution7 to this minimization problem. Instead, a numerical method known as 
gradient descent is used. It is an iterative method in which we start with an initial 
guess of the solution and then gradually refine it. Gradient descent is illustrated 
in Figure 2-4, where we start with an initial guess x

0
. We can insert this value into 

6. We will later see that mSE is not necessarily a great error function for some neural networks, but 
we use it for now because many readers are likely familiar with it.
7. A closed form solution is a solution found by analytically solving an equation to find an exact 
solution. An alternative is to use a numerical method. A numerical method often results in an 
approximate solution.

Figure 2-4 Gradient descent in one dimension
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f(x) and compute the corresponding y as well as its derivative. Assuming that we 
are not already at the minimum value of y, we can now come up with an improved 
guess x

1
 by either increasing or decreasing x

0
 slightly. The sign of the derivative 

indicates whether we should increase or decrease x
0
. A positive slope (as in the 

figure), indicates that y will decrease if we decrease x. We can then iteratively 
refine the solution by repeatedly doing small adjustments to x.

In addition to indicating in what direction to adjust x, the derivative provides an 
indication of whether the current value of x is close to or far away from the value 
that will minimize y. Gradient descent makes use of this property by using the 
value of the derivative to decide how much to adjust x. This is shown in the update 
formula used by gradient descent:

( )1x x f xn n nη= − ′+

where h (Greek letter eta) is a parameter known as the learning rate. We see that 
the step size depends on both the learning rate and the derivative, so the step 
size will decrease as the derivative decreases. The preceding figure illustrates the 
behavior of gradient descent using a learning rate (h) of 0.3. We see how the step 
size decreases as the derivative gets closer to 0. As the algorithm converges at 
the minimum point, the fact that the derivative approaches 0 implies that the step 
size also approaches 0.

If the learning rate is set to too large a value, gradient descent can also overshoot 
the solution and fail to converge. Further, even with a small step size, the 
algorithm is not guaranteed to find the global minimum because it can get stuck 
in a local minimum. however, in practice, it has been shown to work well for 
neural networks.

If you have encountered numerical optimization problems before, chances are 
that you have used a different iterative algorithm known as the Newton-Raphson 
or Newton’s method. If you are curious about how it relates to gradient descent, 
you can find a description in Appendix E.

GRAdIENT dESCENT FOR mULTIdImENSIONAL FUNCTIONS

The preceding example worked with a function of a single variable, but our 
neural networks are functions of many variables, so we need the ability to 

Gradient descent is a commonly used learning algorithm in dL.
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minimize multidimensional functions. Extending it to more dimensions is 
straightforward. As described in the section “derivatives and Optimization 
Problems,” a gradient is a vector consisting of partial derivatives and indicates 
the direction in the input space that results in the steepest ascent for the 
function value. Conversely, the negative gradient is the direction of steepest 
descent, or the direction of the quickest path to reducing the function value. 
Therefore, if we are at the point x = (x

0
, x

1
) and want to minimize y, then we 

choose our next point as

x

x
y0

1

η










− ∇

where ∇y is the gradient. This generalizes to functions of any number of 
dimensions. In other words, if we have a function of n variables, then our gradient 
will consist of n partial derivatives, and we can compute the next step as

η− ∇yx

where both x and ∇y are vectors consisting of n elements. Figure 2-5 shows 
gradient descent for a function of two input variables. The function value y 
gradually decreases as we move from point 1 to point 2 and 3.

Figure 2-5 Gradient descent for a function of two variables
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It is worth noting again that the algorithm can get stuck in a local minimum. There 
are various ways of trying to avoid this, some of which are mentioned in later 
chapters but are not discussed in depth in this book.

We are now almost ready to apply gradient descent to our neural networks. First, 
we need to point out some pitfalls related to working with the multidimensional 
functions implemented by neural networks.

Constants and variables in a Network
A key idea when applying gradient descent to our neural network is that we 
consider input values (x) to be constants, with our goal being to adjust the 
weights (w), including the bias input weight (w

0
). This might seem odd given our 

description of gradient descent, where we try to find input values that minimize a 
function. At first sight, for the two-input perceptron, it seems like x

1
 and x

2
 would 

be considered input values. That would be true if we had a perceptron with fixed 
weights and a desired output value and the task at hand was to find the x-values 
that result in this output value given the fixed weights. however, this is not what 
we are trying to do with our learning algorithm. The purpose of our learning 
algorithm is to, given a fixed input (x

1
, x

2
), adjust the weights (w

0
, w

1
, w

2
) so that 

the output value takes on the value we want to see. That is, we treat x
1
 and x

2
 as 

constants (x
0
 as well, but that is always the constant 1, as stated earlier), while we 

treat w
0
, w

1
, and w

2
 as variables that we can adjust.

To make it more concrete, if we are training a network to distinguish between a 
dog and a cat, the pixel values would be the inputs (x) to the network. If it turned 
out that the network incorrectly classified a picture of a dog as being a cat, we 
would not go ahead and adjust the picture to look more like a cat. Instead, we 
would adjust the weights of the network to try to make it correctly classify the dog 
as being a dog.

during learning, not the inputs (x) but the weights (w) are considered to be the 
variables in our function.
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Analytic Explanation of the Perceptron 
Learning Algorithm

Now we have the tools needed to explain why the perceptron learning algorithm 
is defined the way it is. Starting with the two-input perceptron, we have the 
following variables:

w

w

w

x

x

x

y,          ,        
0

1

2

0

1

2

w x=

















=

















The weight vector w is initialized with arbitrary values. This is our first guess at 
what the weights should be. We also have a given input combination x (where x

0
 

is 1) and its desired output value (y), also known as the ground truth. Let us first 
consider the case where the current weights result in an output of +1 but the 
ground truth is −1. This means that the z-value (the input to the signum function) 
is positive and we want to drive it down toward (and below) 0. We can do this by 
applying gradient descent to the following function:8

    w w w0 0 1 1 2 2z x x x= + +

where x
0
, x

1
, x

2
 are constants and the weights are treated as variables. First, we 

need to compute the gradient, which consists of the three partial derivatives with 
respect to w

0
, w

1
, and w

2
. Remember that when computing a partial derivative, all 

the variables except for the one that we are taking the derivative with respect to 
are constants, so the gradient simply turns out to be

 

0

1

2
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∂
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∂
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8. In this description of the single perceptron case, we do not formally define an error function that 
we want to minimize but instead simply identify that we want to reduce the z-value to get the desired 
output and then use gradient descent to accomplish this. We will use an error function in the next 
chapter.
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Given the current weight vector w, and the gradient ∇z, we can now compute a 
new attempt at w that will result in a smaller z-value by using gradient decent. 
Our new w will be

η− ∇zw

which expands to the following for each component of the vector w:

0 0

1 1

2 2

w x

w x

w x

η
η
η

−
−
−

















This is exactly the update rule for the perceptron learning algorithm. That is, the 
perceptron learning algorithm is equivalent to applying gradient descent to the 
perceptron function.9

If the learning case we considered instead had a ground truth of +1 and our 
current weight results in −1, then we can multiply all terms by −1 to still make it 
a minimization problem, and the only difference will be that the gradient will have 
a different sign, which again makes gradient descent equivalent to the perceptron 
learning algorithm.

At this point, it is worth pointing out that what we have described so far is an 
algorithm known as stochastic gradient descent (SGd). The distinction between 
stochastic and true gradient descent is that, with true gradient descent, we would 
compute the gradient as the mean value of the gradients for all individual training 
examples, whereas with SGd, we approximate the gradient by computing it for only a 
single training example. There are also hybrid approaches in which you approximate 
the gradient by computing a mean of some, but not all, training examples. This 
approach is studied more in later chapters, but for now we will continue using SGd.

We stated the gradient descent algorithm for this problem in vector form. This 
form applies to any number of dimensions (i.e., it can be used for perceptrons 
with any number of inputs).

9. This statement is not strictly correct: There are some subtleties with respect to the perceptron 
function not being differentiable in all points, but for the purpose of this discussion, we can ignore that.

Gradient descent requires you to compute the gradient for all input examples 
before updating the weights, but stochastic gradient descent only requires you 
to compute the gradient for a single input example.
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Geometric description of the Perceptron 
Learning Algorithm

Finally, we offer a geometric explanation to how the perceptron learning 
algorithm works for readers who think visually. Given that we are limited to three 
dimensions when plotting, we can only visualize a function with two adjustable 
parameters. This corresponds to a single-input perceptron, which has w

0
 and w

1
 

as adjustable parameters. Given a specific input example (x
0
, x

1
), where x

0
 = 1.0 as 

always, our weighted sum z is now a function of the two weights w
0
 and w

1
. The 

independent variables w
0
 and w

1
 together with the resulting variable z will define 

a plane oriented in a 3d space. All points on this plane with a positive z-value 
will result in an output value of +1 for the given input values (x

0
, x

1
), whereas a 

negative z-value will result in an output value of −1 for the given input.

Let us assume that with the current input values and weights, the z-value is 
positive, but the ground truth is negative. The perceptron learning algorithm will 
simply adjust the weights w

0
 and w

1
 so that the z-value moves to a different point 

on this plane, and the point that we move to will be in the direction that the plane 
is tilted. you can envision that if we place a ball on the point corresponding to (w

0
, 

w
1
) and let it roll, it will roll straight toward the point that the perceptron learning 

algorithm will end up with in the next iteration. This is illustrated in Figure 2-6.

Figure 2-6 visualization of weight adjustment for a perceptron when desired 
output is −1
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Revisiting different Types of 
Perceptron Plots

At this point, we have introduced a number of different plots using two and three 
dimensions. In some cases, we treated the perceptron inputs (x) as independent 
variables, and in some cases, we instead switched to making the plot a function 
of the weights (w). To avoid confusion, we revisit four charts in Figure 2-7 and 
explain how they relate to each other. The perceptron is presented with an input 
vector x and produces a single output y. Internally, it has a weight vector w and 

(A) (B)

(C) (D)

Figure 2-7 (A) Weighted sum z as function of weights w
0
, w

1
 for one-input 

perceptron. (B) Weighted sum z as function of inputs x
1
, x

2
 for two-input 

perceptron. (C) Perceptron output y as function of weighted sum z. (d) decision 
boundary for two-input perceptron acting as a binary classifier.
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computes a weighted sum of x and w. We call the weighted sum z and use it as 
input to a sign function that produces the output y.

Figure 2-7(A) shows the weighed sum z as a function of two weights w
0
 and w

1
. 

This type of chart is used to understand how the perceptron behavior will change 
if we adjust its internal weights (w). The chart assumes a specific input vector 
x (x

0
 = 1.0, x

1
 = 0.3). The weight w

0
 is the bias weight, and x

0
 is not a true input 

but is always set to 1.0. That implies that this chart represents a single-input 
perceptron. We cannot plot this type of chart for perceptrons with two or more 
inputs.

Figure 2-7(B) shows the weighted sum z as a function of two inputs x
1
 and x

2
. This 

type of chart is used to understand how a perceptron behavior will change when 
different input values (x) are presented to its inputs. The chart assumes a specific 
set of weights (w

0
 = −0.2, w

1
 = −0.2 , w

2
 = −0.15). Both x

1
 and x

2
 are real inputs, so 

the chart represents a two-input perceptron. That is, when we plot z as a function 
of the inputs, we can represent a perceptron with more inputs than can be done 
when we plot z as a function of the weights. This naturally follows from the fact 
that the bias input x

0
 is always 1.0 (treated as a constant), whereas the bias 

weight w
0
 is adjustable (treated as a variable). 

Charts A and B visualize the weighted sum z. The two remaining charts visualize 
the output y as a dependent variable. Figure 2-7(C) simply shows the output y as 
a function of the weighted sum z. This chart applies to all perceptrons regardless 
of their weights or number of inputs. As such, the chart might seem somewhat 
uninteresting, but we see in Chapter 3 how we can replace the sign function by a 
different function to create a different type of artificial neuron.

Finally, Figure 2-7(d) visualizes the output y as a function of two inputs x
1
 and 

x
2
. At a first glance, this can be confusing when comparing to Figure 2-7(B), 

which also represents a two-input perceptron. Why must one chart be 3d when 
another chart can get away with being 2d? The explanation is that the 2d chart 
exploits the fact that the output has only two possible values (−1 and +1), and the 
regions that take on these two different values are clearly separated. Instead of 
plotting the output value on its own dimension, we indicate the output value for 
each point with plus and minus signs. We further draw a line representing the 
boundary between the two regions. The equation for this line can be derived from 
the perceptron function. This type of plot is very common when looking at any 
binary classification problem. The perceptron is just one out of many techniques 
for binary classification. It belongs to a class of techniques known as linear 
classifiers. Appendix A describes some other linear classifiers and uses the same 
type of chart to describe their behavior.
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This is about as far as we can get in terms of visualizing the behavior of a 
perceptron. In reality, we often work with many more dimensions, so the 
attempts at visualizing the process break down. Instead, we will need to trust the 
mathematics and the formulas we have introduced.

Using a Perceptron to Identify Patterns
Before moving on to extending the learning algorithm to multilevel networks, we 
will sidetrack a little and look at a different use case for the perceptron. So far, 
we have studied cases in which the perceptron implements simple two-input 
logical functions. That is, the perceptron was used to classify data points as 
belonging to one of two classes, as long as the classes are linearly separable. 
This is an example of binary classification. An important case for this is to use the 
perceptron to identify a specific pattern. In such a case, we use the perceptron to 
classify inputs as either belonging to a specific class of interest or not belonging 
to that class. That is, we are still doing binary classification, but the other class 
is “everything else.” Along these lines, we could envision a perceptron that works 
as a cat identifier. If we present an image of a cat to the perceptron, it will fire, but 
if we present any other image to the perceptron, it will not fire. If the perceptron 
does not fire, the only thing we know is that the image was not of a cat, but 
that does not mean we know what it is. It could be a dog, a boat, a mountain, or 
anything else. Now, before getting too excited about creating our cat-detecting 
perceptron, we point out that given the severe limitations of a single perceptron, 
it is not possible to build a good cat identifier from a single perceptron. We need 
to combine multiple perceptrons, as we did to solve the XOR problem, and that 
is something we will do in future chapters. For now, let us consider just a single 
perceptron and use it to identify some simpler image patterns.

In this example, we analyze a small part of a larger image. We arbitrarily choose 
to just look at 9 pixels that are arranged in a 3×3 grid. Further, to keep things 
simple, we assume that a pixel can take on only one of three intensities: white 
(1.0), gray (0.0), or black (−1.0). This is done to limit the number of training 
examples. Further, a training example will only consist of combinations of black 
and white pixels or black and gray pixels. There are no training examples with a 
combination of gray and white pixels or with black, gray, and white pixels. That is, 
we have 29 = 512 examples that are black and white and 29 = 512 examples that 
are black and gray. These two sets overlap at only one place: each contains an 
image of all-black pixels. So, to be precise, we end up with 1,023 unique training 
examples.
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The task for the perceptron is to signal +1 as output for the specific example that 
we want it to be able to identify and to signal −1 for all others. To illustrate this, 
we trained five perceptrons. Each perceptron was trained to identify a specific 
pattern. The training process consisted of repeatedly presenting all input patterns 
in random order to the perceptron. We used a ground truth of +1 for the pattern 
that we wanted the perceptron to learn to identify and −1 for all other examples. 
Figure 2-8 shows the results.

The five columns correspond to the five different perceptrons. The top row in the 
figure shows the pattern that we wanted each perceptron to identify. The score 
under each pattern is the input value to the sign function in the perceptron after it 
had been trained (i.e., the weighted sum of the inputs when we present the target 

Target
pattern

Highest
scoring
pattern

Lowest
scoring
pattern

Score: 

0.6 0.2 0.2 −.4 −.6 −.4 −.2 0 0 0.2 −.2 0.8 0.2 0 0

0.2 0.2 0.2 −1 −.6 −.4 0.2 0 0 0.8 −.2 0.4 0.2 −.2 0

0.6 0.2 0.2 −.4 −.4 −.4 0 −.2 0.2 0.4 −.4 0.2 0 0 0.2

Weigh
matrix

Score: 

Score: 

Bias weight: −2.6

9.99e−16

−5.2

9.99e−16

−4.2

0.39

0.39

−8.8

−0.2

−1.0

−1.8

−1.0

−7.0

0.2

0.2

−3.4

−2.8

−1.2

−1.8

−2.0

Pattern 1 Pattern 2 Pattern 3 Pattern 4 Pattern 5

Figure 2-8 Five example patterns, the resulting weights, and highest- and lowest-
scoring patterns
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pattern to the trained perceptron). The second row shows the highest scoring 
pattern (we simply presented all combinations to the trained neuron and recorded 
which patterns resulted in the highest score) and its score. If the highest-scoring 
pattern is identical to the target pattern, then that means that our classifier is 
successful at identifying the target pattern. This does not necessarily mean that it 
does not make any mistakes. For example, a perceptron could output a high score 
on all patterns, in which case it signals many false positives. The third row shows 
the lowest-scoring pattern and its score. The bottom row shows the weights after 
training, including the bias weight.

We make the following observations:

• The perceptron is successful at identifying the black-and-white patterns (1, 2, 
and 4). Looking at the weights for these cases, they kind of mimic the pattern. 
Intuitively, this makes much sense if you think about it. If a pixel is white (1.0), you 
want to multiply it by a positive value to end up with a high score, and if a pixel is 
black (−1.0), you want to multiply it by a negative value to end up with a high score. 

• For the all-white case, the target example barely brings the score above 0. This 
also makes sense because it implies that other examples that have many, but 
not all, white pixels will still not be able to get above 0; that is, the number of 
false positives is limited.

• Even if the input pattern is perfectly symmetric (e.g., all white or all black), the 
resulting weight pattern is not necessarily symmetric. This is a result of the 
random initialization of the weights and the algorithm finding one out of many 
working solutions.

• We see that the perceptron is not successful in perfectly identifying cases 
in which some of the pixels are gray. In these cases, the algorithm never 
converged, and we stopped after a fixed number of iterations. Apparently, these 
are not linearly separable10 from the other examples. To identify such patterns, 
we will need to combine multiple neurons as we did for the XOR problem.

10. We have mentioned linear separability a fair number of times, which might give the impression 
that it is a very important concept to understand. however, the remainder of this book focuses on 
multilevel networks, which do not suffer from the limitation related to linear separability. Therefore, 
you do not need to worry much about this concept for the remainder of the book.

We can formalize the discussion about false positives and introduce the two 
concepts precision and recall. This is described in Appendix A.
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• From these examples, it starts getting clear that the perceptron is more 
powerful than a simple NAND gate. In particular, it can work with real-valued 
inputs, and we can change its behavior by applying a training algorithm.

This concludes our experiment with the perceptron as a pattern (also known as 
feature) identifier, but we use these pattern identifiers as building blocks in future 
chapters for more advanced image analysis in multilevel networks.

Concluding Remarks on Gradient-Based 
Learning

This chapter continued to focus on the individual perceptron. We discussed more 
details of how the perceptron learning algorithm works, from both an intuitive 
perspective and a more mathematical perspective. As a part of the mathematical 
description of the perceptron learning algorithm, we introduced how to minimize 
a function with gradient descent. In addition to describing the learning algorithm, 
we explored how to use the perceptron as a pattern detector.

It is now time to shift focus from the single perceptron to multilevel networks. 
The key topic in the next chapter is how to extend the learning algorithm to such 
networks. The algorithm used to train multilevel networks is based on gradient 
descent and builds nicely on what you have learned in this chapter.

In Chapter 1, we briefly described how the dot product can be stated in terms 
of the angle between the two vectors. For two vectors of a given length, the dot 
product is maximized when the angle between the two vectors is 0. That is, if 
the two vectors are of the same length, the dot product is maximized if the two 
vectors are identical. Therefore, it makes total sense that the weight vector 
mimics the input pattern.
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Chapter 3

Sigmoid Neurons and 
Backpropagation

In this chapter, we describe the basic learning algorithm, which virtually all 
neural-network learning algorithms are variations of. This algorithm is based on a 
technique known as backpropagation (or just backprop) and was introduced in the 
context of neural networks in the mid-1980s. It was a significant step on the path 
to deep learning (DL). Our impression is that even to many DL practitioners, this 
algorithm can be a little bit of a mystery because much of it is hidden under the 
hood of modern DL frameworks. Still, it is crucial to know the basics of how the 
algorithm works.

At the highest level, the algorithm consists of three simple steps. First, present 
one or more training examples to the neural network. Second, compare the output 
of the neural network to the desired value. Finally, adjust the weights to make the 
output get closer to the desired value. It is as simple as that! It is exactly what 
we did in the perceptron learning algorithm, and we used gradient descent to 
determine how much to adjust the weights. For a single perceptron, computing 
the partial derivatives was trivial. For a multilevel network with multiple neurons 
per layer, it can be hairy. This is where backprop comes to the rescue. It is a 
simple and efficient way to compute partial derivatives with respect to weights in 
a neural network.
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Before describing how it works, it is worth pointing out a terminology 
inconsistency that can be confusing. Our description states that we use backprop 
to compute the partial derivatives that are needed by gradient descent to train 
the network. An alternative naming convention is to refer to the overall training 
algorithm as the backpropagation algorithm. regardless of which terminology we 
use, the overall process consists of the following passes:

• The forward pass, where we present a learning example to the network and 
compare the network output to the desired value (the ground truth).

• The backward pass, where we compute the partial derivatives with respect to 
the weights. These derivatives are then used to adjust the weights to make the 
network output get closer to the ground truth.

Throughout this chapter, we build up the description of how the learning 
algorithm for a multilevel network works, and in the final section, we present a 
code example for implementing it to solve the XOR problem.

modified Neurons to Enable gradient 
Descent for multilevel Networks

When we applied gradient descent to the perceptron, we sort of ignored the 
activation function, that is, the sign function that is applied to the z-value to arrive 
at the y-value. We did this by using gradient descent to drive z in the desired 
direction, which we knew would implicitly affect y. That trick cannot be used 
when working with a multilayer network where the outputs from the activation 
functions in one layer are used as inputs to the next layer. This is one reason 
that it was nontrivial to extend the perceptron learning algorithm to multilayer 
networks.

A key requirement to be able to apply gradient descent is that the function that 
it is applied to is differentiable, because we need to compute the gradient. The 

The backpropagation algorithm consists of a forward pass in which training 
examples are presented to the network. It is followed by a backward pass in 
which weights are adjusted using gradient descent. The gradient is computed 
using the backpropagation algorithm.
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sign function does not fulfill that requirement due to its discontinuity at zero. 
rumelhart, hinton, and Williams (1986) addressed this when they presented 
the backpropagation algorithm for multilevel networks. They replaced the sign 
function with an S-shaped function. One example of such a function is shown in 
Figure 3-1, which shows the hyperbolic tangent (tanh) function.

The reason that such a function was chosen is obvious when comparing its shape 
to the sign function. Its shape mimics the sign function, but it is a continuous 
function and thereby differentiable everywhere. It seems like it is the best of both 
worlds because the sign function works well for perceptrons, but differentiability 
is needed for learning.

Another S-shaped function that is important to DL is the logistic function, shown in 
Figure 3-2. To avoid confusion, we should point out something about terminology. 
Strictly speaking, both tanh and the logistic function belong to a class of functions 
known as sigmoid functions. In older texts on neural networks, sigmoid function 
is commonly used to refer to either the tanh function or the logistic function. 
however, nowadays the DL field uses sigmoid function to refer only to the logistic 
function. In this book, we interchangeably use the terms logistic function, sigmoid 
function, and logistic sigmoid function when referring to said function, and we call 
out tanh separately. The scales of the axes are different for the charts of the tanh 

Figure 3-1 hyperbolic tangent (tanh) function. Note how it is symmetric around 0 
on both axes.
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function and the logistic function, so although the curves look similar, they are 
different.

Before discussing these two functions in more detail, we first introduce their 
mathematical definitions:

  :   tanh
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Each function can be stated in a couple of different forms, and you may well run 
into all of them in other texts on the subject. At a first glance, these definitions 
might look scary, and it seems magical that anybody could come up with the idea 
to use these functions when simulating neurons. however, the mathematical 
definition is less important, and it is the shape that was the driving force. 
If you study the asymptotes (the output value when x goes to the extreme), 

Figure 3-2 Logistic sigmoid function. Note how it is symmetric around 0 on the 
x-axis and around 0.5 on the y-axis. The scale of both the x-axis and the y-axis is 
different than in Figure 3-1.
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it is fairly easy to convince yourself1 that as x approaches infinity, the tanh 
function approaches +1, and as x approaches negative infinity, the tanh function 
approaches −1, just like the sign function. If we do the same exercise for the 
logistic sigmoid function, we see that it also approaches +1 as x approaches 
infinity, whereas it instead approaches 0 as x approaches negative infinity.

1. One way of doing this is to play with a spreadsheet and insert different values of x, then look at how 
the values vary for the various exponential functions and the result of combining them.

We note that both functions are combinations of exponential functions. The 
shape of an exponential function is similar to a half S as shown in Figure 3-3. 
If you think about it a little bit, it seems intuitive that it is possible to combine 
exponential functions to create an S-shape. In particular, an exponential taking 
x as an argument will dominate for positive x but will be close to 0 for negative 
x. On the contrary, an exponential taking −x as an argument will exhibit the 
opposite behavior.

Figure 3-3 Exponential function shaped like the lower half of an S
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We mentioned earlier that the two S-shaped functions are differentiable. Before 
going into more details of the functions themselves, let us first present their 
derivatives:

Derivative of hyperbolic tangent x tanh x      :   tanh 1 2( ) ( )′ = −

Derivative of logistic sigmoid function S x S x S x        :    1( )( ) ( ) ( )′ = −

One key property for both of these functions is that their derivatives can be 
computed from the function values even if the x-values are not available. 
Specifically, tanh'(x) is a function of tanh(x), and similarly, S'(x) is a function of S(x). 
To make it more concrete, for tanh, if we have computed y = tanh(x) for a specific 
x, then the derivative of the tanh function for that same x can easily be computed 
as 1 – y2. We will make use of that property later in this chapter.

Let us now look closer at the differences between tanh and the logistic sigmoid 
function. Figure 3-4 shows both functions plotted in the same chart. We noted 
that the tanh function is more similar to the sign function in that it approaches 
−1 as x approaches negative infinity, whereas the logistic function bottoms out 
at 0. We also noted in Chapter 1, “The rosenblatt Perceptron,” that if you have a 
background in digital electronics, it might feel more comfortable to use a function 
with the output range 0 to 1 instead of −1 to +1. Another observation is that a 
range from 0 to 1 can make more sense if we want to interpret the output as a 

Figure 3-4 Chart comparing the tanh function and the logistic sigmoid functions
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probability—for example, how probable it is that the input to the network is a 
picture of a cat.

In addition to the output range, there are some subtle differences to consider, 
namely, the different threshold values (i.e., where the function is centered in the 
x-direction). Table 3-1 shows three different combinations of threshold value and 
output range.

From Figure 3-4 and Table 3-1, we can see that both the tanh and logistic sigmoid 
functions are symmetric around 0 on the x-axis, so their threshold is 0. For 
the case where the output range is 0 to 1, you may think that a threshold of 0.5 
(which we call symmetric digital) is more intuitive. To illustrate why, consider 
what happens if you connect multiple neurons after each other. Further assume 
that the input to the first neuron is close to its threshold value, and therefore the 
output of the neuron will fall in the middle of the output range. For both the tanh 
and symmetric digital neuron, this means that the subsequent neuron will get an 
input that is close to its threshold value, and again, its output will be in the middle 
of the output range. On the other hand, in the case of the logistic sigmoid function, 
the second neuron will get an input that is well above its threshold. Therefore, at a 
first glance, it seems like a neural net based on neurons using the logistic sigmoid 
function would be biased toward outputting +1.

The reasoning above ignores two important details. First, the weights can be 
both positive and negative. Thus, if we have initialized the weights randomly 
and each neuron is fed by the output from multiple neurons, then even if all the 
inputs to a neuron in a subsequent layer are close to 0.5, their weighted sum 
(the input to the activation function) will be close to 0 because about half of the 
inputs will be multiplied by a negative weight and half will be multiplied by a 
positive weight. That is, in practice, the symmetric digital function will be biased 
toward outputting −1, whereas the logistic sigmoid function would be close to the 
middle of its output range. Note that tanh works the same either way. The second 

Table 3-1 Three Alternative Activation Functions

SIGN/TANH LOGISTIC SIGMOID SYMMETRIC DIGITAL

Max output 1 1 1

Min output −1 0 0

Threshold 0 0 0.5
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detail to consider is the bias input. Let us assume a case where all the weights 
are positive. Even in this case, it is possible to set the bias weight for the logistic 
sigmoid function to a value at which the output from the previous layer, combined 
with the bias, will result in an input to the activation function that is close to the 
threshold value. As described in Chapter 1, changing the bias term is equivalent 
to picking a threshold. This means that as long as the bias weight is initialized (or 
learned) properly, this entire threshold discussion is moot. Neither of the neurons 
has a fixed threshold, but the threshold can be adjusted by changing the bias 
weight.

Which Activation Function Should 
We use?

This discussion has taken for granted that the activation function should be fairly 
similar to the sign function but should be differentiable. This is all influenced by 
history and the all-or-nothing activation (either the neuron fires or it does not 
fire) described by both mcCulloch-Pitts (1943) and rosenblatt (1958). rosenblatt 
mentioned that there were other ideas as well, and it turns out that there are other 
powerful activation functions that are much different from the sign function. Some 
of them are not even differentiable in all points even though that was assumed 
to be a strict requirement in 1986 when the learning algorithm for multilevel 
networks was introduced. various examples of these more modern activation 
functions are introduced in Chapter 5, “Toward DL: Frameworks and Network 
Tweaks,” and Chapter 6, “Fully Connected Networks Applied to regression,” but for 
now we limit ourselves to the logistic sigmoid function and tanh, and an obvious 
question, then, is which one to pick. As you will see later in this book, this is just 
one of many similar questions, and there are multiple alternative implementations 
to choose among. In general, there are no right or wrong answers, but the solution 
is to experiment and pick whatever method is best for the specific problem that 
you are working on. however, there are often heuristics that can point you in the 
right direction as a starting point for these experiments.

When using an S-shaped function as an activation function, we recommend 
starting with tanh for hidden layers because their output will be centered around 
0, which coincides with the threshold of the next layer.2 For the output layer, 
we recommend using the logistic sigmoid function so it can be interpreted as a 

2. Assuming that the bias weight is initialized to 0 or randomly with an average of 0.



FuNCTION COmPOSITION AND ThE ChAIN ruLE

67

probability. We will also see that this function works well with a different type of 
loss function introduced in Chapter 5.

The discussion about input and output ranges and their relationships to threshold 
values focused on the behavior during the forward pass. It turns out that these 
design choices also influence how easy it is for the backpropagation algorithm 
to adjust the weights to their desired values. We do not go into details about this, 
but some further discussions about the difference between the logistic sigmoid 
function and tanh and how they affect the network training process can be found 
in a paper by LeCun, Bottou, Orr, and müller (1998).

Function Composition and the Chain rule
A central theme in the backpropagation algorithm is to compute the derivative 
of a composite function using the chain rule. In this section, we provide a brief 
introduction to composite functions and the chain rule. As with the section about 
partial derivatives and optimization problems in Chapter 2, “gradient-Based 
Learning,” this section mainly targets readers who feel rusty with respect to these 
topics, so feel free to skip to the next section if that does not apply to you.

Function composition is used to combine two or more functions into a new 
function by using the output value of one function as input value to the next 
function. Assume that we have two functions:

f x and g x,      ( ) ( )

Further assume that we use the output of function g(x) as an input to function f(x). 
Then we can combine them into the composite function

h x f g x( )( ) ( )=

A common alternative notation is to use the composition operator:

,          � �h x f g x or just h f g( ) ( )= =

There exist a large number of activation functions where some, but not all, 
are S-shaped functions. Two popular choices are tanh and the logistic sigmoid 
function. When picking between the two, choose tanh for hidden layers and 
logistic sigmoid for the output layer.
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The notation with the composition operator is generally preferrable when 
composing multiple functions to avoid all the nested parentheses. In most cases, 
we use this notation for function composition.

The reason that we bring up function composition is that a multilayer neural 
network can be written as a composite function. We will see details of that in 
the next section, but before that, we also need to describe how to compute the 
derivative for composite functions. The derivative will be needed when applying 
gradient descent to a multilevel network. The chain rule states how we can 
compute the derivative of a composition of functions. If we have

�h f g=

then the derivative is

( )�h f g g′ = ′ ′

Stated differently, if we have

  and   ,  so   �z f y y g x z f g x( ) ( ) ( )= = =

then

  
z

x

z

y

y

x

∂
∂

=
∂
∂

⋅
∂
∂

which is also known as Leibniz’s notation. We will use this notation when applying 
the chain rule.

In these examples, we only used functions of a single variable. When applying 
these concepts to neural networks, we will generally work with functions with 
multiple variables. As an example, assume two input variables for both our 
functions g(x

1
, x

2
) and f(x

3
, x

4
). Further assume that the output of g is used as the 

second argument to function f. We get the composite function

,  ,  ,  ,   1 2 3 3 1 2�h x x x f g f x g x x( )( ) ( )= =

Just as we did in the Chapter 2, we want to compute partial derivatives of this 
resulting multivariate function. This is done by treating all other variables as 
constants, as described in the previous chapter. For the function h that we just 
described, this implies that we will need to use the chain rule to compute the 
partial derivatives with respect to variables x

1
 and x

2
. When computing the 

partial derivative with respect to x
3
, g is treated as a constant and we only need 

to consider the derivative of function f. Detailed examples of this are found in the 
next section where we do these computations for a neural network.
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using Backpropagation to Compute 
the gradient

It is now time to explore how to apply gradient descent to a multilevel network. To 
keep it simple, we begin with one of the simplest multilevel networks that we can 
think of, with only a single neuron in each layer. We assume two inputs to the first 
neuron. The network is shown in Figure 3-5.

We have named the two neurons g and F, where g has three adjustable weights, 
and F has two adjustable weights. In total, we have a network with five adjustable 
weights. We want a learning algorithm to automatically find values for these 
weights that result in the network implementing the desired functionality. The 
figure also contains something that looks like a neuron to the very right, but this 
is not a part of the network. Instead, it represents a function needed to determine 
how right or wrong the network is, which is needed for learning. (This is described 
in more detail shortly).

We use a weight-naming convention whereby the first letter in the subscript 
represents the source layer and the second letter represents the destination 
layer (the layer that the weight is a part of). The digit represents the input number, 
where 0 is the bias input. That is, w

xg2
 means input number 2 to the g-neuron, 

which receives its input from layer x. For consistency, we use the same naming 

G F

wxg1

wxg0 wgf0

wgf1

wxg2

X1

X2

Input layer Hidden layer Output layer

E

1.0 1.0

Error

ytruth

Error function

Network output

Figure 3-5 Simple two-layer network used to explain backpropagation. The last 
unit (dashed) is not a part of the network but represents the error function that 
compares the output to ground truth.
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convention for the bias term as for the other terms, although technically it does 
not have a source layer.

The perceptron studied in Chapter 2 used the sign function as its activation 
function. As already noted, the sign function is not differentiable in all points. 
In this chapter, we use activation functions that are differentiable in all points. 
Neuron g uses tanh as an activation function, and neuron F uses S (the logistic 
sigmoid function). This means that a small change to any of the five weights will 
result in only a small change to the output. When we used a sign function, a small 
change in a weight would not change anything until the change was big enough to 
make one perceptron flip, in which case all bets were off because it could easily 
flip dependent neurons as well.

Taking a step back, our neural network implements the following function:

ˆ tanh0 1 0 1 1 2 2y S w w w w x w xgf gf xg xg xg( )( )= + + +

We know of an algorithm (gradient descent) that can be used to minimize a 
function. To make use of this algorithm we want to define an error function, also 
known as a loss function, which has the property that if it is minimized, then the 
overall network produces the results that we desire. Defining and minimizing 
error functions is not unique to neural networks but is used in many other 
contexts as well. One popular error function that comes to mind is the mean 
squared error (mSE), which we introduced in Chapter 2, and you might already 
have been familiar with because it is used for linear regression. The way to 
compute it is to, for each learning example, subtract the predicted value from the 
ground truth and square this difference, or stated as a mathematical formula:

 
1

( ˆ )
1

( ) ( ) 2MSE
m

y y
i

m
i i∑= −

=

We promised in the preface to not start the book with linear regression, but 
sometimes we still have to mention it. At least we waited until Chapter 3. For 
the purpose of this chapter, there is no need to know anything about linear 
regression, but if you are interested, then you can read more in Appendix A.

remember that error function and loss function are two names for the same 
thing.
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In other words, mSE is the mean (sum divided by m) of the squared error ˆ 2
y y( )−  

for all m training examples. In Chapter 5, we will learn that using mSE as an error 
function with this type of neural network is not optimal, but we will use it for 
now just to keep things familiar and simple. That is, assuming a single training 
example, we want to minimize our loss function ˆ 2

y y( )− , where ŷ was defined 
above and y is a part of the training example. The following equation combines the 
formula for mSE with the network function to arrive at the expression of the error 
function that we want to minimize for a single learning example:

( ( )( )= − + + +Error w w w w x w xgf gf xg xg xgy S tanh0 1 0 1 1 2 2

2

We know that we can minimize this function using gradient descent by computing 
the gradient of the loss function (∇Error) with respect to our weights w, then 
multiplying this gradient by the learning rate (h), and then subtract this result 
from the initial guess of our weights. That seems straightforward enough, except 
that computing the gradient of our loss function seems a little bit scary.

One brute-force way to solve this problem would be to compute the gradient 
numerically. We could present an input example to the network and compute and 
record the output. Then we add Δw to one of the weights and compute the new 
output and can now compute Δy. An approximation of the partial derivative is now 
Δy/Δw. Once we have repeated this procedure for all weights, we have computed 
the gradient. unfortunately, this is an extremely computationally intensive way of 
computing our gradient. We need to run through the network n+1 times, where n 
is the number of weights in the network (the +1 is necessary because we need the 
baseline output without any adjustments to the weights).

The backpropagation algorithm solves this problem in an elegant way by 
computing the gradient analytically in a computationally efficient manner. The 

There are multiple loss functions to choose among. We use mSE for historical 
reasons in this section, but in reality, it is not a good choice in combination with 
a sigmoid activation function.

A key thing to remember here is that because we want to adjust the weights, 
we view the weights w as variables, and we view the inputs x as constants; 
that is, the gradient is computed with respect to w and not with respect to x.
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starting point is to decompose our equation into smaller expressions. We start 
with a function that computes the input to the activation function of neuron g:

,   ,    0 1 2 0 1 1 2 2z w w w w w x w xg xg xg xg xg xg xg( ) = + +

Next is the activation function for neuron g:

g z tanh zg g( ) ( )=

It is followed by the input to the activation function of neuron F:

,   ,  0 1 0 1z w w g w w gf gf gf gf gf( ) = +

This in turn is followed by the activation function of neuron F:

f z S zf f( ) ( )=

Finally, we conclude with the error function:

2

2

e f
y f( ) ( )=

−

Looking closely at the formulas, you might wonder where the 2 in the 
denominator of the error (e) came from. We added that to the formula because 
it will simplify the solution further down. This is legal to do because the values 
of variables that will minimize an expression do not change if we divide the 
expression by a constant.

Overall, the error function that we want to minimize can now be written as a 
composite function:

, , , ,0 1 0 1 2Error w w w w w e f z g zgf gf xg xg xg f g� � � �( ) =

That is, e is a function of f, which is a function of z
f
 , which is a function of g, 

which is a function of z
g
. Function z

f
 is not only a function of g but also of the two 

variables w
gf0

 and w
gf1

. That was already shown further up in the definition of z
f
. 

Similarly, z
g
 is a function of the three variables w

xg0
, w

xg1
, and w

xg2
.

Now that we have stated our error function as a composition of multiple functions, 
we can make use of the chain rule. We use that to compute the partial derivative 

Again, note that this formula contains neither x nor y because they are not 
treated as variables but as constants for a given training example.
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of the error function e with respect to the input variables w
gf0

, w
gf1

, w
xg0

, w
xg1

, and 
w

xg2
. Let us start with the first one: We compute the partial derivative of e with 

respect to the variable w
gf0

. We do this by simply regarding the other variables as 
constants, which also implies that the function g is a constant, and we then have a 
function

  0� �Error e f z wf gf( )=

Applying the chain rule now yields:

                        (1)
0 0

e

w

e

f

f

z

z

wgf f

f

gf

∂
∂

=
∂
∂

⋅
∂
∂

⋅
∂

∂

Doing the same exercise, but with respect to w
gf1

, yields

                        (2)
1 1

e

w

e

f

f

z

z

wgf f

f

gf

∂
∂

=
∂
∂

⋅
∂
∂

⋅
∂

∂

moving on to w
xg0

, w
xg1

, and w
xg2

 results in expressions with two more functions in 
the composite function because the functions g and z

g
 are no longer treated as 

constants:

  � � � �Error e f z g zf g=

The resulting partial derivatives are

    (3)
0 0

e

w

e

f

f

z

z

g

g

z

z

wxg f

f

g

g

xg

∂
∂

=
∂
∂

⋅
∂
∂

⋅
∂
∂

⋅
∂
∂

⋅
∂

∂

    (4)
1 1

e

w

e

f

f

z

z

g

g

z

z

wxg f

f

g

g

xg

∂
∂

=
∂
∂

⋅
∂
∂

⋅
∂
∂

⋅
∂
∂

⋅
∂

∂

    (5)
2 2

e

w

e

f

f

z

z

g

g

z

z

wxg f

f

g

g

xg

∂
∂

=
∂
∂

⋅
∂
∂

⋅
∂
∂

⋅
∂
∂

⋅
∂

∂

One thing that sticks out when looking at the five partial derivatives is that there 
are a whole lot of common subexpressions. For example, the first two factors are 
the same in each of the five formulas, and three of the formulas share yet another 
two factors. This provides some intuition for why the backpropagation algorithm 
is an efficient way of computing the gradient. Instead of being recomputed over 
and over, these subexpressions are computed once and then reused for each 
partial derivative where they are needed.

Now let us attempt to compute one of the partial derivatives in practice. We start 
with number (1) above.
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2 2(y )

2
( 1)

2

e

f

y f

f

f
y f

( )
( )∂

∂
=

∂
−

∂
=

−
⋅ − = − −

( )( ) ( )∂
∂

=
∂

∂
= ′

f

z

S z

z
S z

f

f

f
f

( )
1

0

0 1

0

z

w

w w g

w
f

gf

gf gf

gf

∂
∂

=
∂ +

∂
=

Combining the three together, we get

(y ) ( )
0

e

w
f S z

gf
f

∂
∂

= − − ⋅ ′

There are three key observations here. First, we have all the values y, f, and 
z

f
 because y comes from the training example and the others were computed 

when doing the forward pass through the network. Second, the derivative of S is 
possible to compute because we consciously chose S as an activation function. 
This would not have been the case if we had stuck with the sign function. Third, 
not only can we compute the derivative of S but, as we saw earlier in this chapter, 
the derivative is a function of S itself. Therefore, we can compute the derivative 
from the value f that was computed during the forward pass. We revisit these 
three observations later in the chapter in a numerical example.

Let us now compute the partial derivative with respect to w
gf1

, that is, number (2) 
presented earlier. The only difference compared to (1) is the third factor, which 
becomes

( )

1

0 1

1

z

w

w w g

w
gf

gf

gf gf

gf

∂
∂

=
∂ +

∂
=

Combining this with the first two factors yields

(y ) ( )
1

e

w
f S z g

gf
f

∂
∂

= − − ⋅ ′ ⋅

Note the negative sign for −(y − f). Some texts simply flip the position of the two 
terms to get rid of it. In addition, some code implementations of the algorithm 
omit it and later compensate by using + instead of − when adjusting the weights 
further down.
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This is the same as we had for w
gf0

 but multiplied by g, which is the output of 
neuron g that we already computed during the forward pass.

We can do similar exercises for the remaining three partial derivatives and arrive 
at all five derivatives that the gradient consists of (Equation 3-1).

0

e

w
y f S z

gf
f( )( )∂

∂
= − − ⋅ ′  (1)

1

e

w
y f S z g

gf
f( )( )∂

∂
= − − ⋅ ′ ⋅  (2)

0
1

e

w
y f S z w tanh z

xg
f gf g( )( )( )∂

∂
= − − ⋅ ′ ⋅ ⋅ ′  (3)

1
1 1

e

w
y f S z w tanh z x

xg
f gf g( )( )( )∂

∂
= − − ⋅ ′ ⋅ ⋅ ′ ⋅  (4)

 
2

1 2

e

w
y f S z w tanh z x

xg
f gf g( )( )( )∂

∂
= − − ⋅ ′ ⋅ ⋅ ′ ⋅  (5)

Equation 3-1 All five partial derivatives of the gradient

The derivative of tanh, like the derivative of S, is also simple to compute. Looking 
at the preceding equations, we can see a pattern. We start with the derivative 
of the error function and then multiply that by the derivative of the activation 
function for the output neuron. Let us call this product the error for the output 
neuron (neuron F). Now, the partial derivative with respect to an input weight for 
that neuron is obtained by multiplying the neuron error by the input value to that 
weight. In the case of the bias weight, the input value is 1, so the partial derivative 
is simply the neuron error. For the other weight, we multiply the neuron error by 
the output of the preceding neuron, which is the input to the weight.

moving to the next (preceding) layer, we take the error for the output neuron, 
multiply it by the weight connecting to the preceding neuron, and multiply the 
result by the derivative of the activation function for the preceding neuron. We call 
this the error of the preceding neuron (neuron g). These computations propagate 
the error backward from the output of the network toward the beginning of the 
network, hence the name backpropagation algorithm. The full learning algorithm is 
shown in Figure 3-6.

So, as described, we start by applying the input example to the network to 
compute the current error. This is known as the forward pass. During this pass, 
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we also store the outputs (y) for all neurons because we will use them during the 
backward pass. We then start the backward pass during which we propagate the 
error backward and compute and store an error term for each neuron. We need 
the derivative to compute this error term, and the derivative for each neuron 
can be computed from the stored output (y) for the neuron. Finally, we can use 
this error term together with the input values to the layer to compute the partial 
derivatives that are used to adjust the weights. The input values to a hidden layer 
are the output values from the preceding layer. The input values to the first layer 
are simply the x-values from the training example.

G F

wxg1

wgf1

wgf0wxg0

wxg2

X1

E

1.0 1.0

Error

ytruth

Network output

1. Forward pass: Compute and store activation function output (y) for each neuron and finally
the error

yg yf ErrorResulting stored variables:

Compute the derivative eʹ(yf) of the error function. Compute (back propagate)
the error for each neuron by multiplying the error from the subsequent neuron
(that it feeds) by the weight to that neuron and then multiply by the derivative
of its own activation function. (e.g. the error for neuron G is errorg = errorf * 
wgf1 * gʹ(zg) where gʹ(zg) is the derivative of the activation function for neuron G).
This derivative can be computed from the stored output of the activation
function.

2. Backward pass:

Resulting stored variables: errorg errorf  eʹ(yf)

3. Update weights:For each weight, subtract (learning_rate * input * error) where input is the input
value to that weight (from network input or output from preceding neuron) and
error is the error term for the neuron the weight belongs to (e.g., for weight wgf1
the adjustment will be –(learning_rate * yg * errorf ) where yg is the output of
neuron G). 

X2

Figure 3-6 Network learning algorithm based on gradient descent using 
backpropagation to compute gradient
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Looking at the formula for a single component of the gradient, we can see that 
there are a number of things that determine how much to adjust the weight when 
the gradient is later used for gradient descent:

• The overall error—this makes sense in that a big error should lead to a big 
adjustment.

• All the weights and derivatives on the path from the weight in question to the 
error in the end of the network—this makes sense because if one or more 
weights or derivatives on this path will suppress the effect of this weight 
change, then it is not helpful to change it.

• The input to the weight in question—this makes sense because if the input to 
the weight is small, then adjusting the weight will not have much of an effect.

The current value of the weight to adjust is not a part of the formula. Overall, 
these observations make intuitive sense for how to identify which weights should 
get significant adjustments.

To make this more concrete, we now walk through a numerical example for 
the forward pass, backward pass, and weight adjustment for a single training 
example:

  :   0.3;  0.6;  0.1;  0.2;  0.50 1 2 0 1Initial weights w w w w wxg xg xg gf gf= = = − = − =

  :   0.9;  0.1;  1.01 2Training example x x ytruth= − = =

  0.1Learning rate lr= =

Backpropagation consists of the following steps:

Compute the derivative of the error function with respect to network output, 
and call this the output error. multiply this output error by the derivative of 
the activation function of the output neuron, and call this the error term for 
that neuron. The partial derivative with respect to any weight of that neuron 
is the error term times the input value to the weight. The error term for the 
preceding neuron is the error term for the current neuron times the weight 
between the two neurons times the derivative of the activation function of the 
preceding neuron.
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FOrWArD PASS

We compute the output of neuron g by applying the tanh activation function to the 
weighted sum of the inputs, namely the bias term and the two x-values:

tanh 0 1 1 2 2y w w x w xg xg xg xg( )= + +

tanh 0.3 0.6 0.9 0.1 0.1 0.25( )( ) ( )= + ⋅ − + − ⋅ = −

We then compute the output of neuron F by applying the logistic activation 
function to the weighted sum of the inputs to this neuron, which is simply the bias 
term and the output from neuron g:

S 0.2 0.5 0.25 0.420 1y w w y Sf gf gf g( ) ( )( )= + = − + ⋅ − =

We conclude the forward pass with computing the mSE between the desired 
output and the actual output to see how well the current weights work, but we will 
not use this computation for the backward pass.

2

1.0 0.42

2
0.17

2 2

MSE
y yf( ) ( )=

−
=

−
=

BACkWArD PASS

We start the backward pass with computing the derivative of the error function:

1.0 0.42 0.58MSE y yf( ) ( )′ = − − = − − = −

We then compute the error term for neuron F. The general way of doing this is 
to multiply the just-computed error term (for the layer that follows the current 
neuron) by the weight that connects this error to the current neuron and then 
multiply by the derivative of the activation function for the current neuron. This 
last layer is a little bit special in that there is no weight that connects the output 
to the error function (i.e., the weight is 1). Thus, the error term for neuron F is 
computed as

    0.58 0.42 1 0.42 0.14Error term f MSE yf ( )= ′ ⋅ ′ = − ⋅ ⋅ − = −

In this formula, we computed the derivative of the logistic sigmoid function as 
1S S( )⋅ − .

We then move on to do the same computation for neuron g, where we now 
multiply the just-computed error term for neuron F by the weight that connects 
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neuron F to neuron g and then multiply by the derivative of the activation function 
for neuron g:

        0.14 0.5 1 ( 0.24) 0.0661
2Error term g Error term f w ygf g ( )= ⋅ ⋅ ′ = − ⋅ ⋅ − − = −

In this formula, we computed the derivative of the tanh function as (1 − tanh2).

WEIghT ADJuSTmENT

We are now ready to adjust the weights. We compute the adjustment value for a 
weight by multiplying the learning rate by the input value to the weight and then 
multiply by the error term for the neuron that follows the weight. The input values 
to the bias weights are 1. Note that for the weight connecting g to F, the input 
value is the output of neuron g (−0.25):

1     0.1 1 0.066 0.00660w lr Error term gxg ( )∆ = − ⋅ ⋅ = − ⋅ ⋅ − =

    0.1 0.9 0.066 0.00601 1w lr x Error term gxg ( ) ( )∆ = − ⋅ ⋅ = − ⋅ − ⋅ − = −

    0.1 0.1 0.066 0.000662 2w lr x Error term gxg ( )∆ = − ⋅ ⋅ = − ⋅ ⋅ − =

1     0.1 1 0.14 0.0140w lr Error term fgf ( )∆ = − ⋅ ⋅ = − ⋅ ⋅ − =

    0.1 0.25 0.14 0.00351w lr y Error term fgf g ( ) ( )∆ = − ⋅ ⋅ = − ⋅ − ⋅ − = −

We included a negative sign in the deltas above, so the updated weights can now 
be computed by simply adding the deltas to the existing weights:

0.3 0.0066 0.30660wxg = + =

0.6 0.0060 0.59401wxg = − =

0.1 0.00066 0.09932wxg = − + = −

0.2 0.014 0.18590wgf = − + = −

0.5 0.0035 0.49651wgf = − =

Figure 3-7 shows the network annotated with key values computed during the 
forward and backward passes. The green and red arrows indicate the direction 
(green = positive, red = negative) and magnitude (wider is greater) of the resulting 
weight adjustments.

We can gain some intuition by looking at the magnitude and direction of the 
weight adjustments. Considering neuron g, we see that the weights for the 
bias term and the x

1
 input are adjusted by an order of magnitude more than the 

weight for x
2
 (0.0066 and −0.0060 for the bias and x

1
 weights vs. 0.00066 for 
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the x
2
 weight). This makes sense because the magnitude of the bias input and 

x
1
 is greater than the magnitude for x

2
, and thus these two weights are more 

significant levers. Another observation is that the output is less than the desired 
output, so we want to increase the output of the network. This property, together 
with the sign of the input values that feed each weight, will determine the 
direction that the weight is adjusted. For example, the bias weight is increased, 
whereas the weight corresponding to input x

1
 is decreased because the x

1
 input is 

a negative value.

Just as for the perceptron learning algorithm, we provide a spreadsheet that 
replicates the computations. In addition, this spreadsheet contains multiple 
iterations of the algorithm. We recommend playing with that spreadsheet to get a 
better understanding of the computations and gain some intuition. The location of 
the spreadsheet can be found under “Programming Examples” in Appendix I.

The number of computations needed to compute the entire gradient is about the 
same as the number of computations that are needed for one forward pass. There 
is one derivative per neuron in the network and one multiplication per weight. 
This can be compared with the N+1 times the forward pass that would have been 
needed if we computed the gradient numerically using the brute-force method that 
we envisioned before describing the backpropagation algorithm. This makes it clear 
that the backpropagation algorithm is an efficient way of computing the gradient.

yg = 
–0.25

delta =
0.014

yf =
0.42

delta =
–0.0060

x1 =
–0.9

delta =
0.00066

X2 =
0.1

Input layer Hidden layer Output layer

delta =
–0.0034

MSE =
0.17

1.0

1.0

Error

1.0

Error function

Network output

Errorg = 
–0.066

Errorf =
–0.14

MSE' =
–0.58

delta =
0.0066

Figure 3-7 Network annotated with numbers computed during forward and 
backward passes. A green arrow represents a positive weight adjustment, and 
red represents a negative adjustment. The width of the arrow indicates the 
magnitude of the adjustment. Note that the actual weights are not shown in the 
figure; only the adjustment value (delta) is shown.
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Backpropagation with multiple Neurons 
per Layer

The network in the previous example was simple in that there was only a 
single path from each weight to the output of the network. Let us now consider 
networks that are a bit more complex with more layers, more neurons per 
layer, and even multiple outputs. These kinds of networks are shown in 
Figure 3-8.

The only difference for backpropagation in such networks is that when 
computing the error term for a neuron, we need to add up the weighted errors 
from all subsequent neurons instead of just a single weighted error term, as we 
did in our previous example. To clarify, for the leftmost network in Figure 3-8, 
when computing the error term for neuron m, we add together the weighted 
errors from O and P. Similarly, for the network in the middle, we add together 
the weighted errors from O, P, and Q. Finally, in the rightmost network, the 
network has two output neurons (r and S). The error function will need to be 
a function of both of these outputs to be able to compute error terms for both 
r and S. Then we use the weighted errors for r and S when computing the 
error terms for O, P, and Q. We will see examples of multioutput networks in 
Chapter 4, “Fully Connected Networks Applied to multiclass Classification,” but 
first we go over a programming example in which we apply backpropagation to 
a single-output network.

O P

M N

x1 x1 x1x2 x2 x2

Q

W1

O Q

M N

R

w1

P O Q

M N

R

w1

P

S

Network output Network output Network outputs

Figure 3-8 more complex networks. In this figure, the inputs are at the bottom, 
and layers are stacked vertically instead of horizontally. This is a common way to 
draw neural networks.
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Programming Example: Learning the XOR 
Function

Now we have gotten to the point where it is time to check if the learning algorithm 
for multilevel feedforward networks works in practice. We use it to solve the XOR 
problem presented in Chapter 1, and we use the same three-neuron network 
that we used when we manually came up with a solution for the XOR problem. 
The network in Figure 3-9 shows neurons N

0
, N

1
, and N

2
. We have omitted the 

bias inputs and not stated the weights in the figure. We use tanh as an activation 
function for N

0
 and N

1
 and the logistic sigmoid function as an activation function 

for the output neuron N
2
, and we use mSE as the loss function.

The initialization code in Code Snippet 3-1 is similar to what we did for the 
perceptron example in Code Snippet 1-2. One thing to note is that we have started 
to use NumPy arrays so that we can make use of some NumPy functionality. 
The same holds for our random number generator (we call np.random.seed 
instead of just random.seed).

N1

N2

N0X1

X2

Figure 3-9 Network used to learn XOR problem. 

import numpy as np

np.random.seed(3) # To make repeatable

LEARNING_RATE = 0.1

index_list = [0, 1, 2, 3] # Used to randomize order

# Define training examples.

x_train = [np.array([1.0, -1.0, -1.0]),

Code Snippet 3-1 Init Code for XOR Learning Example
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For the training examples, we have now changed the ground truth to be between 
0.0 and 1.0 because, as previously described, we have decided to use the logistic 
sigmoid function as an activation function for the output neuron, and its output 
range does not go to −1.0 as the perceptron did.

Next, we declare variables to hold the state of our three neurons in Code Snippet 
3-2. A real implementation would typically be parameterized to be able to choose 
number of inputs, layers, and number of neurons in each layer, but all of those 
parameters are hardcoded in this example to focus on readability.

These are all the state variables that we need for each neuron for both the 
forward pass and the backward pass: weights (n_w), output (n_y),3 and error 
term (n_error). We arbitrarily initialize the input weights to random numbers 
between −1.0 and 1.0, and we set the bias weights to 0.0. The reason to randomly 
initialize the input weights is to break the symmetry. If all neurons start with the 
same initial weights, then the initial output of all neurons in a layer would also be 
identical. This in turn would lead to all neurons in the layer behaving the same 
during backpropagation, and they would all get the same weight adjustments. 

3. In our mathematical formulas, y refers to the ground truth, and ŷ refers to the output of the 
network. By contrast, in our code examples, y (and variations thereof, such as n_y in this case) will 
generally refer to the network output. The ground truth is typically called y_train or sometimes 
train_label.

def neuron_w(input_count):
    weights = np.zeros(input_count+1)

    for i in range(1, (input_count+1)):

        weights[i] = np.random.uniform(-1.0, 1.0)

    return weights

n_w = [neuron_w(2), neuron_w(2), neuron_w(2)]

n_y = [0, 0, 0]

n_error = [0, 0, 0]

Code Snippet 3-2 variables Needed to Track State of Neurons

           np.array([1.0, -1.0, 1.0]),

           np.array([1.0, 1.0, -1.0]),

           np.array([1.0, 1.0, 1.0])]

y_train = [0.0, 1.0, 1.0, 0.0] # Output (ground truth)
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That is, we do not get any benefit from having multiple neurons in a layer. The 
bias weight does not need to be randomly initialized because it is sufficient to 
randomize the regular input weights to break the symmetry.

Code Snippet 3-3 starts with a function to print all the nine weights of the network 
(each print statement prints a three-element weight vector). The forward_
pass function first computes the outputs of neurons 0 and 1 with the same inputs 
(the inputs from the training example) and then puts their outputs into an array, 
together with a bias value of 1.0, to use as input to neuron 2. That is, this function 
defines the topology of the network. We use tanh for the neurons in the first layer 
and the logistic sigmoid function for the output neuron.

Initializing bias weights to 0.0 is a common strategy.

reading all this code can be pretty dull. We forgive you if you quickly skim 
it, as long as you pay attention to two things. First, not that much code is 
required to build a simple neural network. When we later move on to using a DL 
framework, amazing things can be done with even less code.

def show_learning():
    print('Current weights:')

    for i, w in enumerate(n_w):

        print('neuron ', i,  ': w0 =', '%5.2f' % w[0], 

              ', w1 =', '%5.2f' % w[1], ', w2 =', 

              '%5.2f' % w[2])    

    print('----------------')

def forward_pass(x):
    global n_y

    n_y[0] = np.tanh(np.dot(n_w[0], x)) # Neuron 0

    n_y[1] = np.tanh(np.dot(n_w[1], x)) # Neuron 1

    n2_inputs = np.array([1.0, n_y[0], n_y[1]]) # 1.0 is bias

    z2 = np.dot(n_w[2], n2_inputs)

    n_y[2] = 1.0 / (1.0 + np.exp(-z2))

Code Snippet 3-3 helper Functions for Backpropagation
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The backward_pass function starts by computing the derivative of the error 
function and then computes the derivative of the activation function for the output 
neuron. The error term of the output neuron is computed by multiplying these two 
together. We then continue to backpropagate the error to each of the two neurons 
in the hidden layer. This is done by computing the derivatives of their activation 
functions and multiplying these derivatives by the error term from the output 
neuron and by the weight to the output neuron.

Finally, the adjust_weights function adjusts the weights for each of the three 
neurons. The adjustment factor is computed by multiplying the input by the 
learning rate and the error term for the neuron in question.

With all these pieces in place, the only remaining piece is the training loop shown 
in Code Snippet 3-4, which is somewhat similar to the training loop for the 
perceptron example in Code Snippet 1-4.

def backward_pass(y_truth):
    global n_error

    error_prime = -(y_truth - n_y[2]) # Derivative of loss-func

    derivative = n_y[2] * (1.0 - n_y[2]) # Logistic derivative

    n_error[2] = error_prime * derivative

    derivative = 1.0 - n_y[0]**2 # tanh derivative

    n_error[0] = n_w[2][1] * n_error[2] * derivative

    derivative = 1.0 - n_y[1]**2 # tanh derivative

    n_error[1] = n_w[2][2] * n_error[2] * derivative

def adjust_weights(x):
    global n_w

    n_w[0] -= (x * LEARNING_RATE * n_error[0])

    n_w[1] -= (x * LEARNING_RATE * n_error[1])

    n2_inputs = np.array([1.0, n_y[0], n_y[1]]) # 1.0 is bias

    n_w[2] -= (n2_inputs * LEARNING_RATE * n_error[2])

# Network training loop.

all_correct = False

while not all_correct: # Train until converged

    all_correct = True

Code Snippet 3-4 Training Loop to Learn the XOR Function with Backpropagation
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We pick training examples in random order, call the functions forward_pass, 
backward_pass, and adjust_weights, and then print out the weights with 
the function show_learning. We adjust the weights regardless whether the 
network predicts correctly or not. Once we have looped through all four training 
examples, we check whether the network can predict them all correctly, and if 
not, we do another pass over them in random order.

We want to point out a couple of issues before running the program. First, you 
might get a different result than our example produces given that the weights are 
initialized randomly. Similarly, there is no guarantee that the learning algorithm 
for a multilevel network will ever converge, and there are multiple reasons for 
this. It could be that the network itself simply cannot learn the function, as we saw 
in Chapter 2 when trying to learn XOR with a single perceptron. Another reason 
convergence might fail is if the parameters and initial values for the learning 
algorithm are initialized in a way that somehow prevents the network from 
learning. That is, you might need to tweak the learning rate and initial weights to 
make the network learn the solution.

Now let us run the program and look at the output. here are the final printouts 
from our experiment:

Current weights:

neuron  0 : w0 =  0.70 , w1 =  0.77 , w2 =  0.76

    np.random.shuffle(index_list) # Randomize order

    for i in index_list: # Train on all examples

        forward_pass(x_train[i])

        backward_pass(y_train[i])

        adjust_weights(x_train[i])

        show_learning() # Show updated weights

    for i in range(len(x_train)): # Check if converged

        forward_pass(x_train[i])

        print('x1 =', '%4.1f' % x_train[i][1], ', x2 =',

              '%4.1f' % x_train[i][2], ', y =', 

              '%.4f' % n_y[2])

        if(((y_train[i] < 0.5) and (n_y[2] >= 0.5))

                or ((y_train[i] >= 0.5) and (n_y[2] < 0.5))):

            all_correct = False
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neuron  1 : w0 =  0.40 , w1 = -0.58 , w2 = -0.56

neuron  2 : w0 = -0.43 , w1 =  1.01 , w2 =  0.89

----------------

x1 = -1.0 , x2 = -1.0 , y = 0.4255

x1 = -1.0 , x2 =  1.0 , y = 0.6291

x1 =  1.0 , x2 = -1.0 , y = 0.6258

x1 =  1.0 , x2 =  1.0 , y = 0.4990

The last four lines show the predicted output y for each x1, x2 combination, and 
we see that it implements the XOR function, since the output is greater than 0.5 
when only one of the inputs is positive, which is exactly the XOR function.

Just as for the example that described backpropagation, we provide a 
spreadsheet that includes the mechanics of backpropagation for solving this XOR 
problem so that you can gain some insight through hands-on experimentation.

We did it! We have now reached the point in neural network research that was 
state-of-the art in 1986!

Network Architectures
Before moving on to solving a more complex classification problem in Chapter 4, 
we want to introduce the concept of network architectures. Network architecture is 
simply a name for how multiple units/neurons are connected when we build more 
complex networks.

Three key architectures are fundamental in most contemporary neural network 
applications:

• Fully connected feedforward network. We introduced this type of network when 
we solved the XOR problem. We learn more about fully connected feedforward 

This was two years after the release of the first Terminator movie where 
a thinking machine was traveling back in time. meanwhile, the research 
community is solving XOR, and we can conclude that more complicated AI was 
still science fiction at the time.
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networks in the next couple of chapters. As previously mentioned, there are 
no backward connections (also known as loops or cycles) in a feedforward 
network.

• Convolutional neural network (CNN). The key property of convolutional networks 
is that individual neurons do not have their own unique weights; they use the 
same weights as other neurons in the same layer. This is a property known as 
weight sharing. From a connectivity perspective, a CNN is similar to the fully 
connected feedforward network, but it has considerably fewer connections 
than a fully connected network. Instead of being fully connected, it is sparsely 
connected. CNNs have been shown to excel on image classification problems 
and therefore represent an important class of neural networks. The feature 
identifier described in Chapter 2 that recognized a pattern in a 3×3 patch of an 
image plays a central role in CNNs.

• Recurrent neural network (RNN). As opposed to the feedforward network, the 
rNN has backward connections; that is, it is not a directed acyclic graph (DAg), 
because it contains cycles. We have not yet shown any examples of recurrent 
connections, but they are studied in more detail in Chapter 9, “Predicting Time 
Sequences with recurrent Neural Networks.”

Figure 3-10 shows illustrations of the three network types.

Fully connected Convolutional Recurrent

Figure 3-10 Three types of network architectures. Neurons in a convolutional 
network do not have unique weights but use the same weights (weight sharing) as 
other neurons in the same layer (not shown in the figure).
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We discuss these architectures in more detail in later chapters. For now, it is 
helpful to know that the CNN has fewer connections than the fully connected 
network, whereas the rNN has more connections and some additional elements 
(the squares in the figure) needed to feed back the output to the input.

It is often the case that networks are hybrids of these three architectures. For 
example, some layers of a CNN are often fully connected, but the network is still 
considered to be a CNN. Similarly, some layers of an rNN might not have any 
cycles, as seen in Figure 3-10. Finally, you can build a network from a combination 
of fully connected layers, convolutional layers, and recurrent layers to tap into 
properties of each type of architecture.

Concluding remarks on Backpropagation
This chapter contained a lot of mathematical formulas, and you might have found 
it challenging to get through. however, there is no need to worry even if you 
did not read it all in detail. The rest of the book is less heavy on the formulas, 
and there will be more focus on different network architectures with a lot of 
programming examples.

Taking a step back, it is worth considering the overall effect of all the equations. We 
started with randomly initialized weights for the network. We then ran an example 
through it and hoped that its output value would match the ground truth. Needless 
to say, with weights selected at random, this is typically not the case. The next step 
was therefore to identify in what direction and by how much to modify each weight 
to make the network perform better. To do this, we needed to know how sensitive 
the output was to a change in each weight. This sensitivity is simply the definition 
of a partial derivative of the output with respect to the weight. That is, all in all, 
we needed to calculate a partial derivative corresponding to each weight. The 
backpropagation algorithm is a mechanical and efficient way of doing this.

In Chapter 4, we extend our multilevel network to be able to handle the case 
of multiple outputs. That will be the last time in this book that we implement 
the backpropagation algorithm in detail. After that, we move on to using a DL 
framework, which implements the details under the hood.

Fully connected, convolutional, and recurrent networks are three key network 
architectures. more complex networks often consist of combinations of these 
three architectures.
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Chapter 4

Fully Connected 
Networks Applied 
to Multiclass 
Classification

In the first three chapters, we used our neural network to solve simple problems 
that set a foundation for learning deep learning (DL). We reviewed the basic 
workings of a neuron, how multiple neurons can be connected, and how to devise 
a suitable learning algorithm. Combining this knowledge, we built a network that 
can act as an XOR gate—something that arguably can be done in a simpler way.

In this chapter, we finally get to the point where we build a network that does 
something nontrivial. We show how to build a network that can take an image of 
a handwritten digit as input, identify which one of the ten digits 0 through 9 the 
image represents, and present this information on its outputs.

Before showing how to build such a network, we introduce some concepts that 
are central to both traditional machine learning (ML) and deep learning (DL), 
namely, datasets and generalization.
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the programming example also provides more details on how to modify both 
the networks and the learning algorithm to handle the case of multiclass 
classification. this modification is needed because recognizing handwritten digits 
implies that each input example needs to be classified as belonging to one of ten 
classes.

Introduction to Datasets used When 
training networks

as we saw in the previous chapters, we train a neural network by presenting 
an input example to the network. We then compare the network output to the 
expected output and use gradient descent to adjust the weights to try to make 
the network provide the correct output for a given input. a reasonable question is 
from where to get these training examples that are needed to train the network. 
For our previous toy examples this was not an issue. a two-input XOR gate has 
only four input combinations, so we could easily create a list of all combinations. 
this assumes that we interpret the input and output values as binary variables, 
which typically would not be the case but was true in our toy example.

In real applications of DL, obtaining these training examples can be a big 
challenge. one of the key reasons that DL has gained so much traction lately is 
that large online databases of images, videos, and natural language text have 
made it possible to obtain large sets of training data. If a supervised learning 
technique is used, it is not sufficient to obtain the input to the network. We also 
need to know the expected output, the ground truth, for each example. the 
process of associating each training input with an expected output is known as 
labeling, which is often a manual process. that is, a human must add a label to 
each example, detailing whether it is a dog, a cat, or a car. this process can be 
tedious because we often need many thousands of examples to achieve good 
results.

starting to experiment with DL might be hard if the first step involved putting 
together a large collection of labeled training examples. Fortunately, other 
people have already done so and have made these examples publicly available. 
this is where the concept of datasets comes in. a (labeled) dataset consists 
of a collection of labeled training examples that can be used for training 
ML models. In this book, we will become familiar with a handful of different 
datasets within the fields of images, historical housing-price data, and natural 
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languages. a section about datasets would not be complete without mentioning 
the classic Iris Dataset (Fisher, 1936), which is likely the first widely available 
dataset. It contains 150 instances of iris flowers, each instance belonging to 
one of three iris species. Each instance consists of four measurements (sepal 
length and width, petal length and width) of the particular plant. the Iris Dataset 
is extremely small and simple, so instead we start with a more complicated, 
although still simple, dataset: the Modified national Institute of standards and 
technology (MnIst) database of handwritten digits, also known simply as the 
MnIst dataset.

the MnIst dataset contains 60,000 training images and 10,000 test images. 
(We detail the differences between training and test images later in the chapter.) 
In addition to the images, the dataset consists of labels that describe which 
digit each image represents. the original images are 32×32 pixels, and the 
outermost two pixels around each image are blank, so the actual image content 
is found in the centered 28×28 pixels. In the version of the dataset that we use, 
the blank pixels have been stripped out, so each image is 28×28 pixels. Each 
pixel is represented by a grayscale value ranging from 0 to 255. the source of 
the handwritten digits is a mix of employees at the american Census Bureau 
and american high school students. the dataset was made available in 1998 
(LeCun, Bottou, Bengio, et al., 1998). some of the training examples are shown in 
Figure 4-1.

Figure 4-1 Images from the MnIst dataset. (source: LeCun, y., L. Bottou,  
y. Bengio, and P. haffner. "gradient-Based Learning applied to Document 
recognition" in Proceedings of the IEEE vol. 86, no. 11 (nov. 1998), pp. 2278–2324.)
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EXPLorIng thE DatasEt

We start with getting our hands dirty by exploring the dataset a little bit. First, you 
need to download it according to the instructions in appendix I under “MnIst.” the 
file format is not a standard image format, but it is easy to read the files using the 
idx2numpy library.1 Code snippet 4-1 shows how we load the files into numPy 
arrays and then print the dimensions of these arrays.

the output follows:

dimensions of train_images:  (60000, 28, 28)

dimensions of train_labels:  (60000,)

1. our understanding is that this library is not available on all platforms. Many online programming 
examples use a comma-separated value (CsV) version of the MnIst dataset instead. Consult the 
book’s website, http://www.ldlbook.com, for additional information.

import idx2numpy

TRAIN_IMAGE_FILENAME = '../data/mnist/train-images-idx3-ubyte'

TRAIN_LABEL_FILENAME = '../data/mnist/train-labels-idx1-ubyte'

TEST_IMAGE_FILENAME = '../data/mnist/t10k-images-idx3-ubyte'

TEST_LABEL_FILENAME = '../data/mnist/t10k-labels-idx1-ubyte'

 

# Read files.

train_images = idx2numpy.convert_from_file(

    TRAIN_IMAGE_FILENAME)

train_labels = idx2numpy.convert_from_file(

    TRAIN_LABEL_FILENAME)

test_images = idx2numpy.convert_from_file(TEST_IMAGE_FILENAME)

test_labels = idx2numpy.convert_from_file(TEST_LABEL_FILENAME)

 

# Print dimensions.

print('dimensions of train_images: ', train_images.shape)

print('dimensions of train_labels: ', train_labels.shape)

print('dimensions of test_images: ', test_images.shape)

print('dimensions of test_images: ', test_labels.shape)

Code Snippet 4-1 Load the MnIst Dataset and Inspect Its Dimensions

http://www.ldlbook.com
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dimensions of test_images:  (10000, 28, 28)

dimensions of test_images:  (10000,)

the image arrays are 3D arrays where the first dimension selects one of the 
60,000 training images or 10,000 test images. the other two dimensions 
represent the 28×28 pixel values (integers between 0 and 255). the label arrays 
are 1D arrays where each element corresponds to one of the 60,000 (or 10,000) 
images. Code snippet 4-2 prints out the first training label and image pattern, and 
the resulting output follows.

label for first training example:  5

---beginning of pattern for first training example---

 

 

 

 

 

                        * * * * * * * * * * * *         

                * * * * * * * * * * * * * * * *   

              * * * * * * * * * * * * * * * *     

              * * * * * * * * * * *       

# Print one training example.

print('label for first training example: ', train_labels[0])

print('---beginning of pattern for first training example---')

for line in train_images[0]:

    for num in line:

        if num > 0:

            print('*', end = ' ')

        else:

            print(' ', end = ' ')

    print('')

print('---end of pattern for first training example---')

Code Snippet 4-2 Print out one training Example
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                * * * * * * * * *       

                  * * * * *           

                      * * * *         

                      * * * *         

                        * * * * * *       

                          * * * * * *      

                            * * * * * *       

                              * * * * *       

                                  * * * *     

                            * * * * * * *     

                        * * * * * * * *       

                    * * * * * * * * *      

                * * * * * * * * * *       

            * * * * * * * * * *        

        * * * * * * * * * *           

        * * * * * * * *           

 

 

 

---end of pattern for first training example---

as shown from the example, it is straightforward to load and use this dataset.

huMan BIas In DatasEts

Because ML models learn from input data, they are susceptible to the garbage-in/
garbage-out (gIgo) problem. It is therefore important to ensure that any used 
dataset is of high quality. a subtle problem to look out for is if the dataset suffers 
from human bias (or any other kind of bias). For example, a popular dataset 
available online is the CelebFaces attributes (Celeba) dataset (Liu et al., 2015), 
which is derived from the CelebFaces dataset (sun, Wang, and tang, 2013). It 
consists of a large number of images of celebrities’ faces. given how resource 
intensive it is to create a dataset, using a publicly available dataset makes sense. 
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however, this dataset is biased in that it contains a larger proportion of white, 
young-looking individuals than is representative of society. this bias can have 
the effect that a model trained on this dataset does not work well for older or  
dark-skinned individuals.

Even if you have good intentions, you must actively consider the unintended 
consequences. a dataset that is influenced by structural racism in society can 
result in a model that discriminates against minorities.

to illustrate this point, it is worth noting that even a simple dataset like MnIst is 
susceptible to bias. the handwritten digits in MnIst originate from the american 
Census Bureau employees and american high school students. not surprisingly, 
the digits will therefore be biased toward how people in the united states write 
digits. In reality, there are slight variations in the handwriting style across 
different geographical regions in the world. In particular, in some European and 
Latin american countries, it is common to add a second horizontal line when 
writing the digit 7. If you explore the MnIst dataset, you will see that although 
such examples are included, they are far from the majority of the examples of the 
digit 7 (only two of the 16 examples in Figure 4-1 have a second horizontal line). 
that is, as expected, the dataset is biased toward how people in the united states 
write these digits. therefore, it may well be that a model trained on MnIst works 
better for people in the united states than for people from countries that use a 
different style for the digit 7.

although this example likely is harmless in most cases, it serves as a reminder 
of how easy it is to overlook problems with the input data. Consider a self-driving 
car where the model needs to distinguish between a human being and a less 
vulnerable object. If the model has not been trained on a diverse dataset with 
enough representation of minority groups, then it can have fatal consequences.

note that a good dataset does not necessarily reflect the real world. using the 
self-driving car example, it is very important that the car can handle rare but 
dangerous events, such as an airplane emergency landing on the road. therefore, 
a good dataset might well contain an overrepresentation of such events compared 
to what is present in the real world. this is somewhat different from human bias 
but is another example of how easy it is to make mistakes when selecting the 
dataset and how such mistakes can lead to serious consequences. gebru and 
colleagues (2018) proposed datasheets for datasets to address this problem. 
Each released dataset should be accompanied by a datasheet that describes its 
recommended use and other details.
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traInIng sEt, tEst sEt, anD gEnEraLIZatIon

a reasonable question to ask is why we would go through the convoluted process 
of building a neural network to create a function that correctly predicts the output 
for a set of labeled examples. after all, it would be much simpler to just create a 
lookup table based on all the training examples. this brings us to the concept of 
generalization. the goal for an ML model is not just to provide correct predictions 
for data that it has been trained on; the more important goal is to provide correct 
predictions for previously unseen data. therefore, we typically divide our dataset 
into a training dataset and a test dataset. the training dataset is used to train the 
model, and the test dataset is used to later evaluate how well the model was able 
to generalize to previously unseen data. If it turns out that the model does well on 
the training dataset but does poorly on the test dataset, then that is an indication 
that the model has failed to learn the general solution needed to solve similar but 
not identical examples. For example, it might have memorized only the specific 
training examples. to make this more concrete, consider the case of teaching 
children addition. you can tell them that 1 + 1 = 2 and 2 + 2 = 4 and 3 + 2 = 5, and 
they might later successfully repeat the answer when asked, What is 3 + 2? yet be 
unable to answer, What is 1 + 3? or even What is 2 + 3? (reversing the order of 3 
and 2 compared to the training examples). this would indicate that the child has 
memorized the three examples but not understood the concept of addition.

We can monitor the training error and test error during training to establish 
whether the model is learning to generalize; see Figure 4-2.

In general, the training error will show a downward trend until it finally flattens 
out. the test error, on the other hand, will often show a u-curve where it 
decreases in the beginning but then at some point starts increasing again. If it 
starts increasing while the training error is still decreasing, then that is a sign 
that the model is overfitting to the training data. that is, it learns a function 
that does really well on the training data but that is not useful on not-yet-seen 
data. Memorizing individual examples from the training set is one strong form 
of overfitting, but other forms of overfitting also exist. overfitting is not the only 

We think that even somebody who knows addition and multiplication typically 
uses memorized answers for many small numbers and invoke generalized 
knowledge only for large numbers. on the other hand, we could argue that this 
is an example of deep learning whereby we hierarchically combine simpler 
representations into the final answer.
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reason for lack of generalization. It can also be that the training examples are 
simply not representative of the examples in the test set or, more important, the 
examples it will be used on in production.

an effective technique to avoid overfitting is to increase the size of the training 
dataset, but there exist a number of other techniques, collectively known as 
regularization techniques, which are designed to reduce or avoid overfitting. one 
obvious method is early stopping. simply monitor the test error during training 
and stop when it starts to increase. It is often the case that the error fluctuates 
during training and is not strictly moving in one direction or another, so it is not 
necessarily obvious when it is time to stop. one approach to determining when 
to stop is to save the weights of the model at fixed intervals during training 
(i.e., create checkpoints of the model along the way). at the end of training, 
identify the point with the lowest test error from a chart like the one in Figure 4-2, 
and reload the corresponding model.

Figure 4-2 how training error and test error can evolve during learning process

the goal is for the network to learn to generalize. If the network does well on 
the training set but not on the test set, then that indicates overfitting to the 
training set. We increase the training dataset size or employ regularization 
techniques to avoid overfitting. one such technique is early stopping.
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hyPErParaMEtEr tunIng anD tEst sEt InForMatIon LEakagE

It is extremely important to not leak information from the test set during the 
training process. Doing so can lead to the model memorizing the test set, and 
we end up with an overly optimistic assessment of how good our model is 
compared to how the model will perform in production. Information leakage can 
happen in subtle ways. When training a model, there is sometimes a need to tune 
various parameters that are not adjusted by the learning algorithm itself. these 
parameters are known as hyperparameters, and we have already encountered 
a few examples: learning rate, network topology (number of neurons per layer, 
number of layers, and how they are connected), and type of activation function. 
hyperparameter tuning can be either a manual or an automated process. If we 
change these hyperparameters on the basis of how the model performs on the 
test set, then the test set risks influencing the training process. that is, we have 
introduced information leakage from the test set to the training process.

one way to avoid such leakage is to introduce an intermediate validation dataset. 
It is used for evaluating hyperparameter settings before doing a final evaluation 
on the test dataset. In our examples in this book, we keep it simple and only do 
manual tuning of hyperparameters, and we do not use a separate validation set. 
We recognize that by not using a validation set we run the risk of getting somewhat 
optimistic results. We discuss hyperparameter tuning and the validation dataset 
concept in more detail in Chapter 5, “toward DL: Frameworks and network tweaks.”

training and Inference
our experiments and discussion so far have focused on the process of training 
the network. We have interleaved testing of the network in the training process 
to assess how well the network is learning. the process of using the network 
without adjusting the weights is known as inference because the network is used 
to infer a result.

using a validation set for hyperparameter tuning is an important concept. see 
“using a Validation set to avoid overfitting,” in Chapter 5.

Training refers to coming up with the weights for the network and is typically 
done before deploying it into production. In production, the network is often 
used only for inference.
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It is often the case that the training process is done only before the network is 
deployed in a production setting, and once the network is deployed, it is used only 
for inference. In such cases, training and inference may well be done on different 
hardware implementations. For instance, training might be done on servers in 
the cloud, and inference might be done on a less powerful device such as a phone 
or tablet.

Extending the network and Learning 
algorithm to Do Multiclass Classification

In the programming example in Chapter 3, our neural network had only a single 
output, and we saw how we could use that to identify a certain pattern. now we 
want to extend our network to be able to indicate to which of ten possible classes 
a pattern belongs. one naïve way of doing that would be to simply create ten 
different networks. Each of them is responsible for identifying one specific digit 
type. It turns out that this is a somewhat inefficient approach. regardless of what 
digit we want to classify, there are some commonalities among the different 
digits, so it is more efficient if each “digit identifier” shares many of the neurons. 
this strategy also forces the shared neurons to generalize better and can reduce 
the risk of overfitting.

one way of arranging a network to do multiclass classification is to create one 
output neuron per class and teach the network to output a one-hot encoded 
number. one-hot encoding implies that only one of the outputs is excited (hot) at 
any one point in time. one-hot encoding is an example of a sparse encoding, which 
means that most of the signals are 0. readers familiar with binary numbers 
might find this inefficient and wonder if it would make more sense to use binary 
encoding, to reduce the number of output neurons, but that is not necessarily the 
most suitable encoding for a neural network.

Binary encoding is an example of a dense encoding, which means that we have 
a good mix of 1s and 0s. We discuss sparse and dense encodings further in 
Chapter 12, “neural Language Models and Word Embeddings.” In Chapter 6, “Fully 
Connected networks applied to regression,” we describe how to use a variation 
of one-hot encoding to make the network express various levels of certainty in 
its classification when it is unsure to which class an example belongs. For now, 
one-hot serves the purpose for the example we are interested in.
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network for Digit Classification
this section presents the network architecture we use in our handwritten digit 
classification experiment. this architecture is far from optimal for this task, but 
our goal is to quickly get our hands dirty and demonstrate some impressive 
results while still relying only on the concepts that we have learned so far. Later 
chapters explore more advanced networks for image classification.

as previously described, each image contains 784 (28×28) pixels, so our network 
needs to have 784 input nodes. these inputs are fed to a hidden layer, which we 
have arbitrarily chosen to have 25 neurons. the hidden layer feeds an output 
layer consisting of ten neurons, one for each digit that we want to recognize. We 
use tanh as an activation function for the hidden neurons and the logistic sigmoid 
function for the output layer. the network is fully connected; that is, each neuron 
in one layer connects to all neurons in the next layer. With only a single hidden 
layer, this network does not qualify as a deep network. at least two hidden layers 
are needed to call it DL, although that distinction is irrelevant in practice. the 
network is illustrated in Figure 4-3.

one thing that seems odd in Figure 4-3 is that we are not explicitly making use of 
information about how the pixels are spatially related to each other. Would it not 
be beneficial for a neuron to look at multiple neighboring pixels together? the 
way they are laid out in the figure as a 1D vector instead of a 2D grid, it appears 
that information related to which pixels are neighboring each other is lost. 
two pixels neighboring each other in the y-direction are separated by 28 input 
neurons. this is not completely true. In a fully connected network, there is no such 
thing as pixels being “separated.” all 25 hidden neurons see all 784 pixels, so all 
pixels are equally close to each other from the perspective of a single neuron. 

H0 H3

x1 x2

Y0

H1

Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9

x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x773 x774 x775 x776 x777 x778 x779 x780 x781 x782 x783 x784

H24H4 H6H5 H7 H8 H23H22H21H20H19H18H17

Figure 4-3 network for digit classification. a large number of neurons and 
connections have been omitted from the figure to make it less cluttered. In reality, 
each neuron in a layer is connected to all the neurons in the next layer.
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We could just as well have arranged the pixels and neurons in a 2D grid, but it 
would not have changed the actual connections. however, it is true that we are 
not communicating any prior knowledge about which pixels are neighboring each 
other, so if it truly is beneficial to somehow take the spatial relationship between 
pixels into account, then the network will have to learn this by itself. In Chapter 7, 
“Convolutional neural networks applied to Image Classification,” we learn about 
how to design networks in a way that does take the pixel location into account.

Loss Function for Multiclass 
Classification

When we solved the XOR problem, we used mean squared error (MsE) as our loss 
function. We can do the same in this image classification problem but must modify 
our approach slightly to account for our network having multiple outputs. We can 
do that by defining our loss (error) function as the sum of the squared error for 
each individual output:
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where m is the number of training examples and n is the number of outputs. that 
is, in addition to the outer sum that computes the mean, we have now introduced 
an inner sum in the formula, which sums up the squared error for each output. to 
be perfectly clear, for a single training example, we end up with the following:
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where n is the number of outputs and y jˆ  refers to the output value of neuron y
j
. 

to simplify our derivative later, we can play the same trick as before and divide 
by 2 because minimizing a loss function that is scaled by 0.5 will result in the 
same optimization process as minimizing the unscaled loss function:
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In this formula, we wrote the error function as a function of ŷ, which represents 
the output of the network. note that ŷ is now a vector because the assumed 
network has multiple output neurons. given this loss function, we can now 
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compute the error term for each of the n output neurons, and once that is done, 
the backpropagation algorithm is no different from what we did in Chapter 3. the 
following formula shows the error term for neuron y

1
 with output value ŷ1
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When computing the derivative of the loss function with respect to a specific 
output, all the other terms in the sum are constants (derivative is 0), which 
eliminates the sum altogether, and the error term for a particular neuron ended 
up being the same as in the single-output case. that is, the error term for neuron 
y

2
 is ˆ2 2y y( )− − , or in the general case, the error term for y

j
 is ˆy yj j( )− − .

If these formulas seem confusing, take heart: things become clear as we now 
dive into the programming example implementation and see how all of this works 
out in practice.

Programming Example: Classifying 
handwritten Digits

as mentioned in the preface, this programming example is heavily influenced by 
nielsen’s (2019) online book, but we have put our own personal touch on it to align 
with the organization of this book. our implementation of the image classification 
experiment is a modified version of the implementation of the XOR learning 
example in Chapter 3, so the code should look familiar. one difference is that 
Code snippet 4-3 contains some initializations where we now provide paths to 
the training and test datasets instead of defining the training values as hardcoded 
variables. We also tweaked the learning rate to 0.01 and introduced a parameter 
EPOCHS. We describe what an epoch is and discuss why we tweaked the learning 
rate later in the chapter. the dataset is assumed to be in the directory ../data/
mnist/, as described in the dataset section of appendix I.

Code Snippet 4-3 Initialization section for MnIst Learning

import numpy as np

import matplotlib.pyplot as plt

import idx2numpy
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We have also added a function to read the datasets from files, as shown in Code 
snippet 4-4. a common theme in our coding examples is that there is some data 
preprocessing required, which can be somewhat tedious, but unfortunately, there 
is no good way around it.

np.random.seed(7) # To make repeatable

LEARNING_RATE = 0.01

EPOCHS = 20

TRAIN_IMAGE_FILENAME = '../data/mnist/train-images-idx3-ubyte'

TRAIN_LABEL_FILENAME = '../data/mnist/train-labels-idx1-ubyte'

TEST_IMAGE_FILENAME = '../data/mnist/t10k-images-idx3-ubyte'

TEST_LABEL_FILENAME = '../data/mnist/t10k-labels-idx1-ubyte'

Code Snippet 4-4 read training and test Data from Files

# Function to read dataset.

def read_mnist():

    train_images = idx2numpy.convert_from_file(

        TRAIN_IMAGE_FILENAME)

    train_labels = idx2numpy.convert_from_file(

        TRAIN_LABEL_FILENAME)

    test_images = idx2numpy.convert_from_file(

        TEST_IMAGE_FILENAME)

    test_labels = idx2numpy.convert_from_file(

        TEST_LABEL_FILENAME)

 

    # Reformat and standardize.

    x_train = train_images.reshape(60000, 784)

    mean = np.mean(x_train)

    stddev = np.std(x_train)

    x_train = (x_train - mean) / stddev

    x_test = test_images.reshape(10000, 784)

    x_test = (x_test - mean) / stddev

 

    # One-hot encoded output.

    y_train = np.zeros((60000, 10))

    y_test = np.zeros((10000, 10))
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We already know the format of these files from the initial exercise where we 
explored the dataset. to simplify feeding the input data to the network, we 
reshape the images from two dimensions into a single dimension. that is, the 
arrays of images are now 2D instead of 3D. after this, we scale the pixel values 
and center them around 0. this is known as standardizing the data. In theory, this 
step should not be necessary because a neuron can take any numerical value 
as an input, but in practice, this scaling will be useful (we will explore why in 
Chapter 5). We first compute the mean and standard deviation of all the training 
values. We standardize the data by subtracting the mean from each pixel value 
and dividing by the standard deviation. this should be a familiar operation for 
anybody with a background in statistics. We do not go into the detail here but just 
mention what the overall idea is. By subtracting the mean from each pixel value, 
the new mean of all pixels will be 0. the standard deviation is a measure of how 
spread out the data is, and dividing by the standard deviation changes the range 
of the data values. this implies that if the data values were previously spread 
out (high and low values), then they will be closer to 0 after this operation. In our 
case, we started with pixel values between 0 and 255, and after standardization, 
we will end up with a set of floating-point numbers centered around and much 
closer to 0.

knowing about data distributions and how to standardize them is an important 
topic, but we believe that you can make progress without understanding the 
details at this point.

    for i, y in enumerate(train_labels):

        y_train[i][y] = 1

    for i, y in enumerate(test_labels):

        y_test[i][y] = 1

    return x_train, y_train, x_test, y_test

 

# Read train and test examples.

x_train, y_train, x_test, y_test = read_mnist()

index_list = list(range(len(x_train))) # Used for random order
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one thing to note is that we are using the mean and standard deviation from the 
training data even when we standardize the test data. at first, this might look 
like a bug, but it is intentional. the thinking here is that we want to apply exactly 
the same transformation to the test data as we do to the training data. a natural 
question is whether it would be better to compute the overall average of both 
training and test data, but that should never be done because you then introduce 
the risk of leaking information from the test data into the training process.

the next step is to one-hot encode the digit number to be used as a ground 
truth for our ten-output network. We one-hot encode by creating an array of ten 
numbers, each being 0 (using the numPy zeros function), and then set one of 
them to 1.

Let us now move on to our implementation of the layer weights and the 
instantiation of our network in Code snippet 4-5. this is similar to the XOR 
example, but there are a couple of changes. Each neuron in the hidden layer will 
have 784 inputs + bias, and each neuron in the output layer will have 25 inputs + 
bias. the for loop that initializes the weights starts with i=1 and therefore does 
not initialize the bias weight but just leaves it at 0 as before. the range for the 
weights is different than in our XOR example (magnitude of 0.1 instead of 1.0). We 
discuss that further in Chapter 5.

Standard deviation is a measure of the spread of the data. a data point is 
standardized by subtracting the mean and dividing by the standard deviation.

you should apply exactly the same transformation to the test data as you apply 
to your training data. Further, never use the test data to come up with the 
transformation in the first place because that risks leaking information from 
the test data into the training process.

Code Snippet 4-5 Instantiation and Initialization of all neurons in the system

def layer_w(neuron_count, input_count):
    weights = np.zeros((neuron_count, input_count+1))

    for i in range(neuron_count):

        for j in range(1, (input_count+1)):

            weights[i][j] = np.random.uniform(-0.1, 0.1)

    return weights
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Code snippet 4-6 shows two functions that are used to report progress and to 
visualize the learning process. the function show_learning is called multiple 
times during training; it simply prints the current training and test accuracy and 
stores these values in two arrays. the function plot_learning is called at the 
end of the program and uses the two arrays to plot the training and test error 
(1.0 minus accuracy) over time.

 

# Declare matrices and vectors representing the neurons.

hidden_layer_w = layer_w(25, 784)

hidden_layer_y = np.zeros(25)

hidden_layer_error = np.zeros(25)

 

output_layer_w = layer_w(10, 25)

output_layer_y = np.zeros(10)

output_layer_error = np.zeros(10)

Code Snippet 4-6 Functions to report Progress on the Learning Process

chart_x = []

chart_y_train = []

chart_y_test = []

def show_learning(epoch_no, train_acc, test_acc):
    global chart_x

    global chart_y_train

    global chart_y_test

    print('epoch no:', epoch_no, ', train_acc: ',

          '%6.4f' % train_acc,

          ', test_acc: ', '%6.4f' % test_acc)

    chart_x.append(epoch_no + 1)

    chart_y_train.append(1.0 - train_acc)

    chart_y_test.append(1.0 - test_acc)

 

def plot_learning():
    plt.plot(chart_x, chart_y_train, 'r-',
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Code snippet 4-7 contains the functions for the forward and backward passes 
as well as for adjusting the weights. the forward_pass and backward_pass 
functions also implicitly define the topology of the network.

             label='training error')

    plt.plot(chart_x, chart_y_test, 'b-',

             label='test error')

    plt.axis([0, len(chart_x), 0.0, 1.0])

    plt.xlabel('training epochs')

    plt.ylabel('error')

    plt.legend()

    plt.show()

Code Snippet 4-7 Functions for Forward Pass, Backward Pass, and Weight 
adjustment

def forward_pass(x):
    global hidden_layer_y

    global output_layer_y

    # Activation function for hidden layer

    for i, w in enumerate(hidden_layer_w):

        z = np.dot(w, x)

        hidden_layer_y[i] = np.tanh(z)

    hidden_output_array = np.concatenate(

        (np.array([1.0]), hidden_layer_y))

    # Activation function for output layer

    for i, w in enumerate(output_layer_w):

        z = np.dot(w, hidden_output_array)

        output_layer_y[i] = 1.0 / (1.0 + np.exp(-z))

 

def backward_pass(y_truth):
    global hidden_layer_error

    global output_layer_error

    # Backpropagate error for each output neuron

    # and create array of all output neuron errors.

    for i, y in enumerate(output_layer_y):
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the forward_pass function contains two loops. the first one loops over all 
hidden neurons and presents the same input (the pixels) to them all. It also 
collects all the outputs of the hidden neurons into an array together with a bias 
term that can then be used as input to the neurons in the output layer. similarly, 
the second loop presents this input to each of the output neurons and collects all 
the outputs of the output layer into an array that is returned to the caller of the 
function.

        error_prime = -(y_truth[i] - y) # Loss derivative

        derivative = y * (1.0 - y) # Logistic derivative

        output_layer_error[i] = error_prime * derivative

    for i, y in enumerate(hidden_layer_y):

        # Create array weights connecting the output of

        # hidden neuron i to neurons in the output layer.

        error_weights = []

        for w in output_layer_w:

            error_weights.append(w[i+1])

        error_weight_array = np.array(error_weights)

        # Backpropagate error for hidden neuron.

        derivative = 1.0 - y**2 # tanh derivative

        weighted_error = np.dot(error_weight_array,

                                output_layer_error)

        hidden_layer_error[i] = weighted_error * derivative

 

def adjust_weights(x):
    global output_layer_w

    global hidden_layer_w

    for i, error in enumerate(hidden_layer_error):

        hidden_layer_w[i] -= (x * LEARNING_RATE

                              * error) # Update all weights

    hidden_output_array = np.concatenate(

        (np.array([1.0]), hidden_layer_y))

    for i, error in enumerate(output_layer_error):

        output_layer_w[i] -= (hidden_output_array

                              * LEARNING_RATE

                              * error) # Update all weights
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the backward_pass function is somewhat similar. It first loops through all 
the output neurons and computes the derivative of the loss function for each 
output neuron. In the same loop, it also computes the derivative of the activation 
function for each neuron. the error term for each neuron can now be calculated 
by multiplying the derivative of the loss function by the derivative of the activation 
function. the second loop in the function loops over all hidden neurons. For the 
hidden neurons, the error term is a little bit more complicated. It is computed as a 
weighted sum (computed as a dot product) of the backpropagated error from each 
of the output neurons, multiplied by the derivative of the activation function for the 
hidden neuron.

the adjust_weights function is straightforward, where we again loop over 
each neuron in each layer and adjust the weights using the input values and error 
terms.

Finally, Code snippet 4-8 shows the network training loop. Instead of training until 
it gets everything correct, as we did in the XOR example, we now train for a fixed 
number of epochs. an epoch is defined as one iteration through all the training 
data. For each training example, we do a forward pass followed by a backward 
pass, and then we adjust the weights. We also track how many of the training 
examples were correctly predicted. We then loop through all the test examples 
and just record how many were correctly predicted. We use the numPy argmax 
function to identify the array index corresponding to the greatest value; this 
decodes our one-hot encoded vector into an integer number. Before passing the 
input examples to forward_pass and adjust_weights, we extend each array 
with a leading 1.0 because these functions expect a bias term of 1.0 as the first 
entry in the array.

We do not do any backward pass or weight adjustments for the test data. the 
reason for this is that we are not allowed to train on the test data because that 
will result in an optimistic assessment of how well the network works. at the end 
of each epoch, we print out the current accuracy for both the training data and the 
test data.

the numPy function argmax() is a convenient way to find the element that the 
network predicts as being most probable.
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We run the program and get periodic progress printouts. here are the first lines:

epoch no: 0 , train_acc:  0.8563 , test_acc:  0.9157

epoch no: 1 , train_acc:  0.9203 , test_acc:  0.9240

epoch no: 2 , train_acc:  0.9275 , test_acc:  0.9243

epoch no: 3 , train_acc:  0.9325 , test_acc:  0.9271

epoch no: 4 , train_acc:  0.9342 , test_acc:  0.9307

epoch no: 5 , train_acc:  0.9374 , test_acc:  0.9351

as before, your results might be slightly different due to random variations. When 
the program completes, it produces a chart, as shown in Figure 4-4. We see that 

# Network training loop.

for i in range(EPOCHS): # Train EPOCHS iterations

    np.random.shuffle(index_list) # Randomize order

    correct_training_results = 0

    for j in index_list: # Train on all examples

        x = np.concatenate((np.array([1.0]), x_train[j]))

        forward_pass(x)

        if output_layer_y.argmax() == y_train[j].argmax():

            correct_training_results += 1

        backward_pass(y_train[j])

        adjust_weights(x)

 

    correct_test_results = 0

    for j in range(len(x_test)): # Evaluate network

        x = np.concatenate((np.array([1.0]), x_test[j]))

        forward_pass(x)

        if output_layer_y.argmax() == y_test[j].argmax():

            correct_test_results += 1

    # Show progress.

    show_learning(i, correct_training_results/len(x_train),

                  correct_test_results/len(x_test))

plot_learning() # Create plot

Code Snippet 4-8 training Loop for MnIst
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both the training and the test error are decreasing over time, and the test error 
does not yet start to increase at the right side of a chart. that is, we do not seem 
to have a significant problem with overfitting. We do see that the training error is 
lower than the test error. this is common and not a reason for concern as long as 
the gap is not too big.

as shown from the progress printouts and the chart, the test error quickly falls 
below 10% (accuracy is above 90%); that is, our simple network can classify more 
than nine of ten images correctly. this is an amazing result given how simple the 
program is! Consider how lengthy a program you would need to write if you did 
not use an ML algorithm but instead tried to hardcode information about what 
defines the ten different digits. the beauty of ML is that instead of hardcoding this 
information yourself, the algorithm discovers this information from the training 
examples. In the case of a neural network, this information is encoded into the 
network weights.

Figure 4-4 training and test error when learning to classify digits

We do not know how lengthy a program with a hardcoded approach would be, 
as we are lazy and have not bothered to try to write one. We just assume that it 
would be long because other people claim that this is the case.
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now sit back and relax for a moment, and think about what you have learned. 
you have gone from the description of the single neuron to connecting multiple 
neurons and applying a learning algorithm that results in a system that can 
classify handwritten digits!

Mini-Batch gradient Descent
so far, we have been using stochastic gradient descent (sgD) as opposed to true 
gradient descent. as previously described, the distinction is that for sgD we 
compute the gradient for a single training example before updating the weights, 
whereas for true gradient descent, we would loop through the entire dataset 
and compute the average of the gradients for all training examples. there is a 
clear trade-off here. Looping through the entire dataset gives us a more accurate 
estimate of the gradient, but it requires many more computations before we 
update any weights. It turns out that a good happy medium is to use a small set 
of training examples known as a mini-batch. this enables more frequent weight 
updates (less computation per update) than true gradient descent while still 
getting a more accurate estimate of the gradient than when using just a single 
example. Further, modern hardware implementations, and in particular graphics 
processing units (gPus), do a good job of computing a full mini-batch in parallel, 
so it does not take more time than computing just a single example.

the terminology is confusing here. the true gradient descent method uses 
batches (the entire training dataset) and is also known as batch gradient descent. 
at the same time, there is the hybrid between batch and stochastic gradient 
descent that uses mini-batches, but the size of a mini-batch is often referred 
to as batch size. Finally, sgD technically refers only to the case where a single 
training example is used (mini-batch size = 1) to estimate the gradient, but the 
hybrid approach with mini-batches is often also referred to as sgD. thus, it is 
not uncommon to read statements such as “stochastic gradient descent with a 
 mini-batch size of 64.” the mini-batch size is yet another parameter that can be 
tuned, and as of the writing of this book, anything close to the range of 32 to 256 
makes sense to try. Finally, sgD (mini-batch size of 1, to be clear) is sometimes 
referred to as online learning because it can be used in an online setting where 

the dataset used in this example was released in 1998. this was one year after 
Judgment Day in Terminator 2, when the war against the machines started and 
3 billion human lives ended. that is, there is still some difference between fact 
and fiction.
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training examples are produced one by one instead of all being collected up front 
before learning begins.

From an implementation perspective, a mini-batch can be represented by a 
matrix because each individual training example is an array of inputs and an 
array of arrays becomes a matrix. similarly, the weights for a single neuron can 
be arranged as an array, and we can arrange the weights for all neurons in a layer 
as a matrix. Computing the inputs to all activation functions for all neurons in the 
layer for all input examples in the mini-batch is then reduced to a single matrix-
matrix multiplication. as previously mentioned, this is only a change in notation, 
but it does lead to significant performance improvements on platforms that have 
highly efficient matrix multiplication implementations. If you are interested, we 
have extended our plain Python implementation of our neural network to use 
matrices and mini-batches in appendix F. It is perfectly fine to skip appendix F, 
though, because these kinds of optimizations are already done (better) in the 
tensorFlow framework that is used in Chapter 5.

Concluding remarks on Multiclass 
Classification

In this chapter, we implemented a network for handwritten digit classification. as 
opposed to the previous examples that all worked on binary classification, this 
was an example of a multiclass classification problem. the only real difference 
was to modify the network to have multiple output neurons and to define a 
suitable loss function. apart from that, no new mechanisms were needed to train 
the network.

We should point out that the way we added multiple output neurons and the 
chosen loss function in this chapter are not the best-known solutions. We aimed 
for keeping things simple. In the next two chapters, we learn about better ways 
of doing this, namely, using the softmax output unit and the categorical cross-
entropy loss function.

We also discussed the concept of dataset, a key part of enabling a model to learn. 
an important, and often overlooked, issue when selecting or creating a dataset is 
that it can pick up human biases, which may result in unintended consequences 
when using the trained model.
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you are now well on your way toward exploring the field of DL. these first four 
chapters have been challenging because we introduced a lot of new concepts 
and implemented everything from scratch in Python. We believe that you will find 
the next couple of chapters easier when we introduce a DL framework that does 
much of the heavy lifting with respect to the low-level details. at the same time, 
you can feel comfortable knowing that there is no magic going on. the framework 
just provides efficient and easy-to-use implementations of the concepts that are 
described in this book.
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Chapter 5

Toward DL: 
Frameworks and 
Network Tweaks

An obvious next step would be to see if adding more layers to our neural 
networks results in even better accuracy. However, it turns out getting deeper 
networks to learn well is a major obstacle. A number of innovations were needed 
to overcome these obstacles and enable deep learning (DL). We introduce the 
most important ones later in this chapter, but before doing so, we explain how to 
use a DL framework. The benefit of using a DL framework is that we do not need 
to implement all these new techniques from scratch in our neural network. The 
downside is that you will not deal with the details in as much depth as in previous 
chapters. You now have a solid enough foundation to build on. Now we switch 
gears a little and focus on the big picture of solving real-world problems using 
a DL framework. The emergence of DL frameworks played a significant role in 
making DL practical to adopt in the industry as well as in boosting productivity of 
academic research.
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Programming Example: moving to a 
DL Framework

In this programming example, we show how to implement the handwritten digit 
classification from Chapter 4, “Fully Connected Networks Applied to multiclass 
Classification,” using a DL framework. In this book, we have chosen to use the two 
frameworks TensorFlow and PyTorch. Both of these frameworks are popular and 
flexible. The TensorFlow versions of the code examples are interspersed throughout 
the book, and the PyTorch versions are available online on the book Web site.

TensorFlow provides a number of different constructs and enables you to 
work at different abstraction levels using different application programming 
interfaces (APIs). In general, to keep things simple, you want to do your work at 
the highest abstraction level possible because that means that you do not need 
to implement the low-level details. For the examples we will study, the keras API 
is a suitable abstraction level. keras started as a stand-alone library. It was not 
tied to TensorFlow and could be used with multiple DL frameworks. However, at 
this point, keras is fully supported inside of TensorFlow itself. see Appendix I for 
information about how to install TensorFlow and what version to use.

Appendix I also contains information about how to install PyTorch if that is your 
framework of choice. Almost all programming constructs in this book exist both 
in TensorFlow and in PyTorch. The section “key Differences between PyTorch 
and TensorFlow” in Appendix I describes some key differences between the two 
frameworks. You will find it helpful if you do not want to pick a single framework 
but want to master both of them.

The frameworks are implemented as Python libraries. That is, we still write our 
program as a Python program and we just import the framework of choice as 
a library. We can then use DL functions from the famework in our program. The 
initialization code for our TensorFlow example is shown in Code snippet 5-1.

Code Snippet 5-1 Import statements for our TensorFlow/keras Example

import tensorflow as tf

from tensorflow import keras

from tensorflow.keras.utils import to_categorical

import numpy as np

import logging
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As you can see in the code, TensorFlow has its own random seed that needs to 
be set if we want reproducible results. However, this still does not guarantee 
that repeated runs produce identical results for all types of networks, so for the 
remainder of this book, we will not worry about setting the random seeds. The 
preceding code snippet also sets the logging level to only print out errors while 
suppressing warnings.

We then load and prepare our mNIsT dataset. Because mNIsT is a common 
dataset, it is included in keras. We can access it by a call to keras.datasets.
mnist and load_data. The variables train_images and test_images will 
contain the input values, and the variables train_labels and test_labels 
will contain the ground truth (Code snippet 5-2).

Just as before, we need to standardize the input data and one-hot encode the 
labels. We use the function to_categorical to one-hot encode our labels 

# Load training and test datasets.

mnist = keras.datasets.mnist

(train_images, train_labels), (test_images,

                               test_labels) = mnist.load_data()

 

# Standardize the data.

mean = np.mean(train_images)

stddev = np.std(train_images)

train_images = (train_images - mean) / stddev

test_images = (test_images - mean) / stddev

 

# One-hot encode labels.

train_labels = to_categorical(train_labels, num_classes=10)

test_labels = to_categorical(test_labels, num_classes=10)

Code Snippet 5-2 Load and Prepare the Training and Test Datasets

tf.get_logger().setLevel(logging.ERROR)

tf.random.set_seed(7)

 

EPOCHS = 20

BATCH_SIZE = 1
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instead of doing it manually, as we did in our previous example. This serves 
as an example of how the framework provides functionality to simplify our 
implementation of common tasks.

We are now ready to create our network. There is no need to define variables for 
individual neurons because the framework provides functionality to instantiate 
entire layers of neurons at once. We do need to decide how to initialize the 
weights, which we do by creating an initializer object, as shown in Code 
snippet 5-3. This might seem somewhat convoluted but will come in handy when 
we want to experiment with different initialization values.

If you are not so familiar with Python, it is worth pointing out that functions can 
be defined with optional arguments, and to avoid having to pass the arguments 
in a specific order, optional arguments can be passed by first naming which 
argument we are trying to set. An example is the num_classes argument in the 
to_categorical function.

# Object used to initialize weights.

initializer = keras.initializers.RandomUniform(

    minval=-0.1, maxval=0.1)

# Create a Sequential model.

# 784 inputs.

# Two Dense (fully connected) layers with 25 and 10 neurons.

# tanh as activation function for hidden layer.

# Logistic (sigmoid) as activation function for output layer.

model = keras.Sequential([

    keras.layers.Flatten(input_shape=(28, 28)),

    keras.layers.Dense(25, activation='tanh',

                       kernel_initializer=initializer,

                       bias_initializer='zeros'),

    keras.layers.Dense(10, activation='sigmoid',

                       kernel_initializer=initializer,

                       bias_initializer='zeros')])

Code Snippet 5-3 Create the Network
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The network is created by instantiating a keras.Sequential object, which 
implies that we are using the keras sequential API. (This is the simplest API, and 
we use it for the next few chapters until we start creating networks that require a 
more advanced API.) We pass a list of layers as an argument to the Sequential 
class. The first layer is a Flatten layer, which does not do computations but only 
changes the organization of the input. In our case, the inputs are changed from a 
28×28 array into an array of 784 elements. If the data had already been organized 
into a 1D-array, we could have skipped the Flatten layer and simply declared 
the two Dense layers. If we had done it that way, then we would have needed to 
pass an input_shape parameter to the first Dense layer because we always 
have to declare the size of the inputs to the first layer in the network.

The second and third layers are both Dense layers, which means they are fully 
connected. The first argument tells how many neurons each layer should have, 
and the activation argument tells the type of activation function; we choose 
tanh and sigmoid, where sigmoid means the logistic sigmoid function. 
We pass our initializer object to initialize the regular weights using the 
kernel_initializer argument. The bias weights are initialized to 0 using the 
bias_initializer argument.

one thing that might seem odd is that we are not saying anything about the 
number of inputs and outputs for the second and third layers. If you think about it, 
the number of inputs is fully defined by saying that both layers are fully connected 
and the fact that we have specified the number of neurons in each layer along 
with the number of inputs to the first layer of the network. This discussion 
highlights that using the DL framework enables us to work at a higher abstraction 
level. In particular, we use layers instead of individual neurons as building blocks, 
and we need not worry about the details of how individual neurons are connected 
to each other. This is often reflected in our figures as well, where we work with 
individual neurons only when we need to explain alternative network topologies. 
on that note, Figure 5-1 illustrates our digit recognition network at this higher 
abstraction level. We use rectangular boxes with rounded corners to depict a 
layer of neurons, as opposed to circles that represent individual neurons.

We are now ready to train the network, which is done by Code snippet 5-4. We 
first create a keras.optimizer.SGD object. This means that we want to use 
stochastic gradient descent (sgD) when training the network. Just as with the 
initializer, this might seem somewhat convoluted, but it provides flexibility to 
adjust parameters for the learning process, which we explore soon. For now, 
we just set the learning rate to 0.01 to match what we did in our plain Python 
example. We then prepare the model for training by calling the model’s compile 
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function. We provide parameters to specify which loss function to use (where we 
use mean_squared_error as before), the optimizer that we just created and 
that we are interested in looking at the accuracy metric during training.

We finally call the fit function for the model, which starts the training process. 
As the function name indicates, it fits the model to the data. The first two 
arguments specify the training dataset. The parameter validation_data is 

Fully connected 25 tanh neurons

Fully connected 10
logistic neurons

Ten outputs representing ten classes

28x28 pixel input image

Flatten

Figure 5-1 Digit classification network using layers as building blocks

# Use stochastic gradient descent (SGD) with

# learning rate of 0.01 and no other bells and whistles.

# MSE as loss function and report accuracy during training.

opt = keras.optimizers.SGD(learning_rate=0.01)

 

model.compile(loss='mean_squared_error', optimizer = opt,

              metrics =['accuracy'])

 

# Train the model for 20 epochs.

# Shuffle (randomize) order.

# Update weights after each example (batch_size=1).

history = model.fit(train_images, train_labels,

                    validation_data=(test_images, test_labels),

                    epochs=EPOCHS, batch_size=BATCH_SIZE,

                    verbose=2, shuffle=True)

Code Snippet 5-4 Train the Network
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the test dataset. our variables EPOCHS and BATCH_SIZE from the initialization 
code determine how many epochs to train for and what batch size we use. We 
had set BATCH_SIZE to 1, which means that we update the weight after a single 
training example, as we did in our plain Python example. We set verbose=2 to 
get a reasonable amount of information printed during the training process and 
set shuffle to True to indicate that we want the order of the training data to be 
randomized during the training process. All in all, these parameters match what 
we did in our plain Python example.

Depending on what TensorFlow version you run, you might get a fair number of 
printouts about opening libraries, detecting the graphics processing unit (gPU), 
and other issues as the program starts. If you want it less verbose, you can set 
the environment variable TF_CPP_MIN_LOG_LEVEL to 2. If you are using bash, 
you can do that with the following command line:

export TF_CPP_MIN_LOG_LEVEL=2

Another option is to add the following code snippet at the top of your program.

import os

os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'

The printouts for the first few training epochs are shown here. We stripped out 
some timestamps to make it more readable.

Epoch 1/20

loss: 0.0535 - acc: 0.6624 - val_loss: 0.0276 - val_acc: 0.8893

Epoch 2/20

loss: 0.0216 - acc: 0.8997 - val_loss: 0.0172 - val_acc: 0.9132

Epoch 3/20

loss: 0.0162 - acc: 0.9155 - val_loss: 0.0145 - val_acc: 0.9249

Epoch 4/20

loss: 0.0142 - acc: 0.9227 - val_loss: 0.0131 - val_acc: 0.9307
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Epoch 5/20

loss: 0.0131 - acc: 0.9274 - val_loss: 0.0125 - val_acc: 0.9309

Epoch 6/20

loss: 0.0123 - acc: 0.9313 - val_loss: 0.0121 - val_acc: 0.9329

In the printouts, loss represents the mean squared error (msE) of the training 
data, acc represents the prediction accuracy on the training data, val_loss 
represents the msE of the test data, and val_acc represents the prediction 
accuracy of the test data. It is worth noting that we do not get exactly the same 
learning behavior as was observed in our plain Python model. It is hard to know 
why without diving into the details of how TensorFlow is implemented. most likely, 
it could be subtle issues related to how initial parameters are randomized and 
the random order in which training examples are picked. Another thing worth 
noting is how simple it was to implement our digit classification application using 
TensorFlow. Using the TensorFlow framework enables us to study more advanced 
techniques while still keeping the code size at a manageable level.

We now move on to describing some techniques needed to enable learning in 
deeper networks. After that, we can finally do our first DL experiment in the next 
chapter.

The Problem of saturated Neurons and 
vanishing gradients

In our experiments, we made some seemingly arbitrary changes to the learning 
rate parameter as well as to the range with which we initialized the weights. For 
our perceptron learning example and the XOR network, we used a learning rate 
of 0.1, and for the digit classification, we used 0.01. similarly, for the weights, we 
used the range −1.0 to +1.0 for the XOR example, whereas we used −0.1 to +0.1 
for the digit example. A reasonable question is whether there is some method to 
the madness. our dirty little secret is that we changed the values simply because 
our networks did not learn well without these changes. In this section, we discuss 
the reasons for this and explore some guidelines that can be used when selecting 
these seemingly random parameters.
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To understand why it is sometimes challenging to get networks to learn, we 
need to look in more detail at our activation function. Figure 5-2 shows our 
two s-shaped functions. It is the same chart that we showed in Figure 3-4 in 
Chapter 3, “sigmoid Neurons and Backpropagation.”

one thing to note is that both functions are uninteresting outside of the shown 
z-interval (which is why we showed only this z-interval in the first place). Both 
functions are more or less straight horizontal lines outside of this range.

Now consider how our learning process works. We compute the derivative of the 
error function and use that to determine which weights to adjust and in what 
direction. Intuitively, what we do is tweak the input to the activation function 
(z in the chart in Fig. 5-2) slightly and see if it affects the output. If the z-value is 
within the small range shown in the chart, then this will change the output (the 
y-value in the chart). Now consider the case when the z-value is a large positive or 
negative number. Changing the input by a small amount (or even a large amount) 
will not affect the output because the output is a horizontal line in those regions. 
We say that the neuron is saturated.

saturated neurons can cause learning to stop completely. As you remember, when 
we compute the gradient with the backpropagation algorithm, we propagate the 
error backward through the network, and part of that process is to multiply the 
derivative of the loss function by the derivative of the activation function. Consider 

Figure 5-2 The two s-shaped functions tanh and logistic sigmoid



CHAPTEr 5 ToWArD DL: FrAmEWorks AND NETWork TWEAks

126

what the derivatives of the two activation functions above are for z-values of 
significant magnitude (positive or negative). The derivative is 0! In other words, no 
error will propagate backward, and no adjustments will be done to the weights. 
similarly, even if the neuron is not fully saturated, the derivative is less than 0. 
Doing a series of multiplications (one per layer) where each number is less than 
0 results in the gradient approaching 0. This problem is known as the vanishing 
gradient problem. saturated neurons are not the only reason for vanishing 
gradients, as we will see later in the book.

Initialization and Normalization 
Techniques to Avoid saturated Neurons

We now explore how we can prevent or address the problem of saturated 
neurons. Three techniques that are commonly used—and often combined—are 
weight initialization, input standardization, and batch normalization.

WEIgHT INITIALIZATIoN

The first step in avoiding saturated neurons is to ensure that our neurons are 
not saturated to begin with, and this is where weight initialization is important. It 
is worth noting that, although we use the same type of neurons in our different 
examples, the actual parameters for the neurons that we have shown are much 
different. In the XOR example, the neurons in the hidden layer had three inputs 
including the bias, whereas for the digit classification example, the neurons in 
the hidden layer had 785 inputs. With that many inputs, it is not hard to imagine 
that the weighted sum can swing far in either the negative or positive direction 
if there is just a little imbalance in the number of negative versus positive inputs 
if the weights are large. From that perspective, it kind of makes sense that if 
a neuron has a large number of inputs, then we want to initialize the weights 
to a smaller value to have a reasonable probability of still keeping the input 
to the activation function close to 0 to avoid saturation. Two popular weight 
initialization strategies are glorot initialization (glorot and Bengio, 2010) and He 
initialization (He et al., 2015b). glorot initialization is recommended for tanh- and 

Saturated neurons are insensitive to input changes because their derivative is 
0 in the saturated region. This is one cause of the vanishing gradient problem 
where the backpropagated error is 0 and the weights are not adjusted.
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sigmoid-based neurons, and He initialization is recommended for reLU-based 
neurons (described later). Both of these take the number of inputs into account, 
and glorot initialization also takes the number of outputs into account. Both glorot 
and He initialization exist in two flavors, one that is based on a uniform random 
distribution and one that is based on a normal random distribution.

We have previously seen how we can initialize the weights from a uniform 
random distribution in TensorFlow by using an initializer, as was done in Code 
snippet 5-4. We can choose a different initializer by declaring any one of the 
supported initializers in keras. In particular, we can declare a glorot and a He 
initializer in the following way:

initializer = keras.initializers.glorot_uniform()

initializer = keras.initializers.he_normal()

Parameters to control these initializers can be passed to the initializer 
constructor. In addition, both the glorot and He initializers come in the two flavors 
uniform and normal. We picked uniform for glorot and normal for He because 
that is what was described in the publications where they were introduced.

If you do not feel the need to tweak any of the parameters, then there is no 
need to declare an initializer object at all, but you can just pass the name of the 
initializer as a string to the function where you create the layer. This is shown 
in Code snippet 5-5, where the kernel_initializer argument is set to 
'glorot_uniform'.

We do not go into the formulas for Glorot and He initialization, but they are 
good topics well worth considering for further reading (glorot and Bengio, 
2010; He et al., 2015b).

model = keras.Sequential([

        keras.layers.Flatten(input_shape=(28, 28)),

        keras.layers.Dense(25, activation='tanh',

                           kernel_initializer='glorot_uniform',

                           bias_initializer='zeros'),

        keras.layers.Dense(10, activation='sigmoid',

                           kernel_initializer='glorot_uniform',

                           bias_initializer='zeros')])

Code Snippet 5-5 setting an Initializer by Passing Its Name as a string
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We can separately set bias_initializer to any suitable initializer, but as 
previously stated, a good starting recommendation is to just initialize the bias 
weights to 0, which is what the 'zeros' initializer does.

INPUT sTANDArDIZATIoN

In addition to initializing the weights properly, it is important to preprocess the 
input data. In particular, standardizing the input data to be centered around 0 and 
with most values close to 0 will reduce the risk of saturating neurons from the 
start. We have already used this in our implementation; let us discuss it in a little 
bit more detail. As stated earlier, each pixel in the mNIsT dataset is represented 
by an integer between 0 and 255, where 0 represents the blank paper and a 
higher value represents pixels where the digit was written.1 most of the pixels 
will be either 0 or a value close to 255, where only the edges of the digits are 
somewhere in between. Further, a majority of the pixels will be 0 because a digit 
is sparse and does not cover the entire 28×28 image. If we compute the average 
pixel value for the entire dataset, then it turns out that it is about 33. Clearly, if we 
used the raw pixel values as inputs to our neurons, then there would be a big risk 
that the neurons would be far into the saturation region. By subtracting the mean 
and dividing by the standard deviation, we ensure that the neurons get presented 
with input data that is in the region that does not lead to saturation.

BATCH NormALIZATIoN

Normalizing the inputs does not necessarily prevent saturation of neurons for 
hidden layers, and to address that problem Ioffe and szegedy (2015) introduced 
batch normalization. The idea is to normalize values inside of the network as well 
and thereby prevent hidden neurons from becoming saturated. This may sound 
somewhat counterintuitive. If we normalize the output of a neuron, does that not 
result in undoing the work of that neuron? That would be the case if it truly was 
just normalizing the values, but the batch normalization function also contains 
parameters to counteract this effect. These parameters are adjusted during 
the learning process. Noteworthy is that after the initial idea was published, 
subsequent work indicated that the reason batch normalization works is different 
than the initial explanation (santurkar et al., 2018).

1. This might seem odd because a value of 0 typically represents black and a value of 255 typically 
represents white for a grayscale image. However, that is not the case for this dataset.

Batch normalization (Ioffe and szegedy, 2015) is a good topic for further 
reading.
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There are two main ways to apply batch normalization. In the original paper, the 
suggestion was to apply the normalization on the input to the activation function 
(after the weighted sum). This is shown to the left in Figure 5-3.

This can be implemented in keras by instantiating a layer without an activation 
function, followed by a BatchNormalization layer, and then apply an 
activation function without any new neurons, using the Activation layer. This is 
shown in Code snippet 5-6.

However, it turns out that batch normalization also works well if done after 
the activation function, as shown to the right in Figure 5-3. This alternative 
implementation is shown in Code snippet 5-7.

Figure 5-3 Left: Batch normalization as presented by Ioffe and szegedy (2015). The 
layer of neurons is broken up into two parts. The first part is the weighted sums for 
all neurons. Batch normalization is applied to these weighted sums. The activation 
function (tanh) is applied to the output of the batch normalization operation. 
right: Batch normalization is applied to the output of the activation functions.

keras.layers.Dense(64),

keras.layers.BatchNormalization(),

keras.layers.Activation('tanh'),

Code Snippet 5-6 Batch Normalization before Activation Function

keras.layers.Dense(64, activation='tanh'),

keras.layers.BatchNormalization(),

Code Snippet 5-7 Batch Normalization after Activation Function
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Cross-Entropy Loss Function to mitigate 
Effect of saturated output Neurons

one reason for saturation is that we are trying to make the output neuron get to 
a value of 0 or 1, which itself drives it to saturation. A simple trick introduced by 
LeCun, Bottou, orr, and müller (1998) is to instead set the desired output to 0.1 or 
0.9, which restricts the neuron from being pushed far into the saturation region. 
We mention this technique for historical reasons, but a more mathematically 
sound technique is recommended today.

We start by looking at the first couple of factors in the backpropagation algorithm; 
see Chapter 3, Equation 3-1(1) for more context. The formulas for the msE loss 
function, the logistic sigmoid function, and their derivatives for a single training 
example are restated here:2
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We then start backpropagation by using the chain rule to compute the derivative 
of the loss function and multiply by the derivative of the logistic sigmoid function 
to arrive at the following as the error term for the output neuron:
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We chose to not expand S'(z
f
) in the expression because it makes the formula 

unnecessarily cluttered. The formula reiterates what we stated in one of the 
previous sections: that if S'(z

f
) is close to 0, then no error will backpropagate 

through the network. We show this visually in Figure 5-4. We simply plot the 
derivative of the loss function and the derivative of the logistic sigmoid function 
as well as the product of the two. The chart shows these entities as functions 
of the output value y (horizontal axis) of the output neuron. The chart assumes that 
the desired output value (ground truth) is 0. That is, at the very left in the chart, 
the output value matches the ground truth, and no weight adjustment is needed. 

2. In the equations in Chapter 3, we referred to the output of the last neuron as f to avoid confusing it 
with the output of the other neuron, g. In this chapter, we use a more standard notation and refer to 
predicted value (the output of the network) as ŷ .
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As we move to the right in the chart, the output is further away from the ground 
truth, and the weights need to be adjusted. Looking at the figure, we see that the 
derivative of the loss function (blue) is 0 if the output value is 0, and as the output 
value increases, the derivative increases. This makes sense in that the further away 
from the true value the output is, the larger the derivative will be, which will cause 
a larger error to backpropagate through the network. Now look at the derivative 
of the logistic sigmoid function. It also starts at 0 and increases as the output 
starts deviating from 0. However, as the output gets closer to 1, the derivative is 
decreasing again and starts approaching 0 as the neuron enters its saturation 
region. The green curve shows the resulting product of the two derivatives 
(the error term for the output neuron), and it also approaches 0 as the output 
approaches 1 (i.e., the error term becomes 0 when the neuron saturates).

Looking at the charts, we see that the problem arises from the combination of 
the derivative of the activation function approaching 0, whereas the derivative of 
the loss function never increases beyond 1, and multiplying the two will therefore 
approach 0. one potential solution to this problem is to use a different loss 
function whose derivative can take on much higher values than 1. Without further 
rationale at this point, we introduce the function in Equation 5-1 that is known as 
the cross-entropy loss function:

    :   (ŷ)   y ln ˆ 1 y ln 1 ŷCross entropy loss e y( )( ) ( ) ( )= − ⋅ + − ⋅ −

Equation 5-1 Cross-entropy loss function

1. Derivative of MSE loss
 increases as network output

moves further away from
ground truth.

The resulting error term for the3. T
tput neuron (green curve)out
zero(!) when the network outputis z
the opposite if ground truth.is t

2. Derivative of output neuron2
ogistic function initiallyl
ncreases as the network outputi
moves away from ground truthm
but decreases as neuron entersb
saturation region.s

Network output is
opposite of ground truth
(output value results from
a weighted sum z >>0).

Output neuron error term (green curve) is well behaved
in the range where network output matches ground truth
and up to a point where it is moderately far away.

Network output matches
ground truth
(output value results from
a weighted sum z << 0).

Figure 5-4 Derivatives and error term as function of neuron output when ground 
truth y (denoted y_target in the figure) is 0
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substituting the cross-entropy loss function into our expression for the error term 
of the output neuron yields Equation 5-2:
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Equation 5-2 Derivative of cross-entropy loss function and derivative of logistic 
output unit combined into a single expression

We spare you from the algebra needed to arrive at this result, but if you squint 
your eyes a little bit and remember that the logistic sigmoid function has some 
ex terms, and we know that ln(ex) = x and the derivative of ln(x) = x−1, then it does 
not seem farfetched that our seemingly complicated formulas might end up 
as something as simple as that. Figure 5-5 shows the equivalent plot for these 
functions. The y-range is increased compared to Figure 5-4 to capture more of 
the range of the new loss function. Just as discussed, the derivative of the cross-
entropy loss function does increase significantly at the right end of the chart, 
and the resulting product (the green line) now approaches 1 in the case where 
the neuron is saturated. That is, the backpropagated error is no longer 0, and the 
weight adjustments will no longer be suppressed.

Although the chart seems promising, you might feel a bit uncomfortable to just 
start using Equation 5-2 without further explanation. We used the msE loss 
function in the first place, you may recall, on the assumption that your likely 
familiarity with linear regression would make the concept clearer. We even stated 
that using msE together with the logistic sigmoid function is not a good choice. 

Derivative of cross-entropy
loss increases steeply
toward infinity as network
output moves further away
from ground truth.

The resulting error term for the
output neuron (green curve)
is no longer zero when output is
opposite of ground truth.

Figure 5-5 Derivatives and error term when using cross-entropy loss function. 
ground truth y (denoted y_target in the figure) is 0, as in Figure 5-4.



Cross-ENTroPY Loss FUNCTIoN To mITIgATE EFFECT oF sATUrATED oUTPUT NEUroNs

133

We have now seen in Figure 5-4 why this is the case. still, let us at least give you 
some insight into why using the cross-entropy loss function instead of the msE 
loss function is acceptable. Figure 5-6 shows how the value of the msE and cross-
entropy loss function varies as the output of the neuron changes from 0 to 1 in the 
case of a ground truth of 0. As you can see, as y moves further away from the true 
value, both msE and the cross-entropy function increase in value, which is the 
behavior that we want from a loss function.

Intuitively, by looking at the chart in Figure 5-6, it is hard to argue that one function 
is better than the other, and because we have already shown in Figure 5-4 that 
msE is not a good function, you can see the benefit of using the cross-entropy loss 
function instead. one thing to note is that, from a mathematical perspective, it does 
not make sense to use the cross-entropy loss function together with a tanh neuron 
because the logarithm for negative numbers is not defined.

Figure 5-6 value of the mean squared error (blue) and cross-entropy loss 
(orange) functions as the network output ŷ  changes (horizontal axis). The 
assumed ground truth is 0.

As further reading, we recommend learning about information theory and 
maximum-likelihood estimation, which provides a rationale for the use of the 
cross-entropy loss function.
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In the preceding examples, we assumed a ground truth of 0. For completeness, 
Figure 5-7 shows how the derivatives behave in the case of a ground truth of 1.

The resulting charts are flipped in both directions, and the msE function shows 
exactly the same problem as for the case when ground truth was 0. similarly, the 
cross-entropy loss function solves the problem in this case as well.

Figure 5-7 Behavior of the different derivatives when assuming a ground truth 
of 1. Top: mean squared error loss function. Bottom: Cross-entropy loss function.
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ComPUTEr ImPLEmENTATIoN oF THE Cross-ENTroPY 
Loss FUNCTIoN

If you find an existing implementation of a code snippet that calculates the cross-
entropy loss function, then you might be confused at first because it does not 
resemble what is stated in Equation 5-1. A typical implementation can look like 
that in Code snippet 5-8. The trick is that, because we know that y in Equation 5-1 
is either 1.0 or 0.0, the factors y and (1-y) will serve as an if statement and 
select one of the ln statements.

Apart from what we just described, there is another thing to consider when 
implementing backpropagation using the cross-entropy loss function in a 
computer program. It can be troublesome if you first compute the derivative of 
the cross-entropy loss (as in Equation 5-2) and then multiply by the derivative 
of the activation function for the output unit. As shown in Figure 5-5, in certain 
points, one of the functions approaches 0 and one approaches infinity, and 
although this mathematically can be simplified to the product approaching 1, due 
to rounding errors, a numerical computation might not end up doing the right 
thing. The solution is to analytically simplify the product to arrive at the combined 
expression in Equation 5-2, which does not suffer from this problem.

In reality, we do not need to worry about these low-level details because we are 
using a DL framework. Code snippet 5-9 shows how we can tell keras to use the 
cross-entropy loss function for a binary classification problem. We simply state 
loss='binary_crossentropy' as an argument to the compile function.

def cross_entropy(y_truth, y_predict):
        if y_truth == 1.0:

            return -np.log(y_predict)

        else:

            return -np.log(1.0-y_predict)

Code Snippet 5-8 Python Implementation of the Cross-Entropy Loss Function

model.compile(loss='binary_crossentropy',

              optimizer = optimizer_type,

              metrics =['accuracy'])

Code Snippet 5-9 Use Cross-Entropy Loss for a Binary Classification Problem in 
TensorFlow
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In Chapter 6, “Fully Connected Networks Applied to regression,” we detail 
the formula for the categorical cross-entropy loss function, which is used for 
multiclass classification problems. In TensorFlow, it is as simple as stating 
loss='categorical_crossentropy'.

Different Activation Functions to Avoid 
vanishing gradient in Hidden Layers

The previous section showed how we can solve the problem of saturated neurons 
in the output layer by choosing a different loss function. However, this does not 
help for the hidden layers. The hidden neurons can still be saturated, resulting 
in derivatives close to 0 and vanishing gradients. At this point, you may wonder 
if we are solving the problem or just fighting symptoms. We have modified 
(standardized) the input data, used elaborate techniques to initialize the weights 
based on the number of inputs and outputs, and changed our loss function 
to accommodate the behavior of our activation function. Could it be that the 
activation function itself is the cause of the problem?

How did we end up with the tanh and logistic sigmoid functions as activation 
functions anyway? We started with early neuron models from mcCulloch 
and Pitts (1943) and rosenblatt (1958) that were both binary in nature. Then 
rumelhart, Hinton, and Williams (1986) added the constraint that the activation 
function needs to be differentiable, and we switched to the tanh and logistic 
sigmoid functions. These functions kind of look like the sign function yet are still 
differentiable, but what good is a differentiable function in our algorithm if its 
derivative is 0 anyway?

Based on this discussion, it makes sense to explore alternative activation 
functions. one such attempt is shown in Figure 5-8, where we have complicated 
the activation function further by adding a linear term 0.2*x to the output to 
prevent the derivative from approaching 0.

Although this function might well do the trick, it turns out that there is no good 
reason to overcomplicate things, so we do not need to use this function. We 
remember from the charts in the previous section that a derivative of 0 was a 
problem only in one direction because, in the other direction, the output value 
already matched the ground truth anyway. In other words, it is fine with a 
derivative of 0 on one side of the chart. Based on this reasoning, we can consider 
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the rectified linear unit (reLU) activation function in Figure 5-9, which has been 
shown to work for neural networks (glorot, Bordes, and Bengio, 2011).

Now, a fair question is how this function can possibly be used after our entire 
obsession with differentiable functions. The function in Figure 5-9 is not 

Figure 5-8 modified tanh function with an added linear term

Figure 5-9 rectified linear unit (reLU) activation function
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differentiable at x = 0. However, this does not present a big problem. It is true 
that from a mathematical point of view, the function is not differentiable in 
that one point, but nothing prevents us from just defining the derivative as 
1 in that point and then trivially using it in our backpropagation algorithm 
implementation. The key issue to avoid is a function with a discontinuity, like 
the sign function. Can we simply remove the kink in the line altogether and use 
y = x as an activation function? The answer is that this does not work. If you 
do the calculations, you will discover that this will let you collapse the entire 
network into a linear function and, as we saw in Chapter 1, “The rosenblatt 
Perceptron,” a linear function (like the perceptron) has severe limitations. 
It is even common to refer to the activation function as a nonlinearity, which 
stresses how important it is to not pick a linear function as an activation 
function.

An obvious benefit with the reLU function is that it is cheap to compute. The 
implementation involves testing only whether the input value is less than 0, 
and if so, it is set to 0. A potential problem with the reLU function is when 
a neuron starts off as being saturated in one direction due to a combination 
of how the weights and inputs happen to interact. Then that neuron will not 
participate in the network at all because its derivative is 0. In this situation, the 
neuron is said to be dead. one way to look at this is that using reLUs gives the 
network the ability to remove certain connections altogether, and it thereby 
builds its own network topology, but it could also be that it accidentally kills 
neurons that could be useful if they had not happened to die. Figure 5-10 
shows a variation of the reLU function known as leaky ReLU, which is defined 
so its derivative is never 0.

The activation function should be nonlinear and is even often referred to as a 
nonlinearity instead of activation function.

given that humans engage in all sorts of activities that arguably kill their brain 
cells, it is reasonable to ask whether we should prevent our network from 
killing its neurons, but that is a deeper discussion.
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All in all, the number of activation functions we can think of is close to unlimited, 
and many of them work equally well. Figure 5-11 shows a number of important 
activation functions that we should add to our toolbox. We have already seen tanh, 
reLU, and leaky reLU (xu, Wang, et al., 2015). We now add the softplus function 
(Dugas et al., 2001), the exponential linear unit also known as elu (shah et al., 
2016), and the maxout function (goodfellow et al., 2013). The maxout function is 
a generalization of the reLU function in which, instead of taking the max value 
of just two lines (a horizontal line and a line with positive slope), it takes the max 
value of an arbitrary number of lines. In our example, we use three lines, one with 
a negative slope, one that is horizontal, and one with a positive slope.

All of these activation functions except for tanh should be effective at fighting 
vanishing gradients when used as hidden units. There are also some alternatives 
to the logistic sigmoid function for the output units, but we save that for Chapter 6.

Figure 5-10 Leaky rectified linear unit (reLU) activation function

The tanh, ReLU, leaky ReLU, softplus, elu, and maxout functions can all be 
considered for hidden units, but tanh has a problem with vanishing gradients.

There is no need to memorize the formulas for the activation functions at this 
point, but just focus on their shape.
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Figure 5-11 Important activation functions for hidden neurons. Top row: tanh, 
reLU. middle row: leaky reLU, softplut. Bottom row: elu, maxout.
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We saw previously how we can choose tanh as an activation function for the 
neurons in a layer in TensorFlow, also shown in Code snippet 5-10.

If we want a different activation function, we simply replace 'tanh' with one of 
the other supported functions (e.g., 'sigmoid', 'relu', or 'elu'). We can also 
omit the activation argument altogether, which results in a layer without an 
activation function; that is, it will just output the weighted sum of the inputs. We 
will see an example of this in Chapter 6.

variations on gradient Descent to 
Improve Learning

There are a number of variations on gradient descent aiming to enable better and 
faster learning. one such technique is momentum, where in addition to computing 
a new gradient every iteration, the new gradient is combined with the gradient 
from the previous iteration. This can be likened with a ball rolling down a hill 
where the direction is determined not only by the slope in the current point but 
also by how much momentum the ball has picked up, which was caused by the 
slope in previous points. momentum can enable faster convergence due to a more 
direct path in cases where the gradient is changing slightly back and forth from 
point to point. It can also help with getting out of a local minimum. one example of 
a momentum algorithm is Nesterov momentum (Nesterov, 1983).

Another variation is to use an adaptive learning rate instead of a fixed learning 
rate, as we have used previously. The learning rate adapts over time on the 
basis of historical values of the gradient. Two algorithms using adaptive learning 

keras.layers.Dense(25, activation='tanh',

                   kernel_initializer=initializer,

                   bias_initializer='zeros'),

Code Snippet 5-10 setting the Activation Function for a Layer

Nesterov momentum, AdaGrad, RMSProp, and Adam are important variations 
(also known as optimizers) on gradient descent and stochastic gradient descent.
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rate are adaptive gradient, known as AdaGrad (Duchi, Hazan, and singer, 2011), 
and RMSProp (Hinton, n.d.). Finally, adaptive moments, known as Adam (kingma 
and Ba, 2015), combines both adaptive learning rate and momentum. Although 
these algorithms adaptively modify the learning rate, we still have to set an 
initial learning rate. These algorithms even introduce a number of additional 
parameters that control how the algorithms perform, so we now have even more 
parameters to tune for our model. However, in many cases, the default values 
work well.

Finally, we discussed earlier how to avoid vanishing gradients, but there can also 
be a problem with exploding gradients, where the gradient becomes too big in 
some point, causing a huge step size. It can cause weight updates that completely 
throw off the model. gradient clipping is a technique to avoid exploding gradients 
by simply not allowing overly large values of the gradient in the weight update 
step. gradient clipping is available for all optimizers in keras.

Code snippet 5-11 shows how we set an optimizer for our model in keras. The 
example shows stochastic gradient descent with a learning rate of 0.01 and no 
other bells and whistles.

We do not go into the details of how to implement momentum and adaptive 
learning rate; we simply use implementations available in the DL framework. 
Understanding these techniques is important when tuning your models, 
so consider exploring these topics. You can find them summarized in Deep 
Learning (goodfellow, Bengio, and Courville, 2016), or you can read the original 
sources (Duchi, Hazan, and singer, 2011; Hinton, n.d.; kingma and Ba, 2015; 
Nesterov, 1983).

Gradient clipping is used to avoid the problem of exploding gradients.

opt = keras.optimizers.SGD(lr=0.01, momentum=0.0, decay=0.0,

                           nesterov=False)

model.compile(loss='mean_squared_error', optimizer = opt,

              metrics =['accuracy'])

Code Snippet 5-11 setting an optimizer for the model
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Just as we can for initializers, we can choose a different optimizer by declaring any 
one of the supported optimizers in Tensorflow, such as the three we just described:

opt = keras.optimizers.Adagrad(lr=0.01, epsilon=None)

opt = keras.optimizers.RMSprop(lr=0.001, rho=0.8, epsilon=None)

opt = keras.optimizers.Adam(lr=0.01, epsilon=0.1, decay=0.0)

In the example, we freely modified some of the arguments and left out others, 
which will then take on the default values. If we do not feel the need to modify the 
default values, we can just pass the name of the optimizer to the model compile 
function, as in Code snippet 5-12.

We now do an experiment in which we apply some of these techniques to our 
neural network.

Experiment: Tweaking Network and 
Learning Parameters

To illustrate the effect of the different techniques, we have defined five different 
configurations, shown in Table 5-1. Configuration 1 is the same network that 
we studied in Chapter 4 and at beginning of this chapter. Configuration 2 is the 
same network but with a learning rate of 10.0. In configuration 3, we change the 
initialization method to glorot uniform and change the optimizer to Adam with 
all parameters taking on the default values. In configuration 4, we change the 
activation function for the hidden units to reLU, the initializer for the hidden layer 
to He normal, and the loss function to cross-entropy. When we described the 
cross-entropy loss function earlier, it was in the context of a binary classification 
problem, and the output neuron used the logistic sigmoid function. For multiclass 
classification problems, we use the categorical cross-entropy loss function, 
and it is paired with a different output activation known as softmax. The details 
of softmax are described in Chapter 6, but we use it here with the categorical 

model.compile(loss='mean_squared_error', optimizer ='adam',

              metrics =['accuracy'])

Code Snippet 5-12 Passing the optimizer as a string to the Compile Function
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cross-entropy loss function. Finally, in configuration 5, we change the mini-batch 
size to 64.

modifying the code to model these configurations is trivial using our DL 
framework. In Code snippet 5-13, we show the statements for setting up the 
model for configuration 5, using reLU units with He normal initialization in the 
hidden layer and softmax units with glorot uniform initialization in the output 
layer. The model is then compiled using categorical cross-entropy as the loss 
function and Adam as the optimizer. Finally, the model is trained for 20 epochs 
using a mini-batch size of 64 (set to BATCH_SIZE=64 in the init code).

Table 5-1 Configurations with Tweaks to our Network

CONFIGURATION
HIDDEN 
ACTIVATION

HIDDEN 
INITIALIZER

OUTPUT 
ACTIVATION

OUTPUT 
INITIALIZER

LOSS 
FUNCTION OPTIMIZER

MINI-
BATCH 
SIZE

Conf1 tanh Uniform 0.1 sigmoid Uniform 0.1 msE sgD 
lr=0.01

1

Conf2 tanh Uniform 0.1 sigmoid Uniform 0.1 msE sgD 
lr=10.0

1

Conf3 tanh glorot 
uniform

sigmoid glorot uniform msE Adam 1

Conf4 reLU He normal softmax glorot uniform CE Adam 1

Conf5 reLU He normal softmax glorot uniform CE Adam 64

Note: CE, cross-entropy; msE, mean squared error; sgD, stochastic gradient descent.

Code Snippet 5-13 Code Changes Needed for Configuration 5

model = keras.Sequential([

    keras.layers.Flatten(input_shape=(28, 28)),

    keras.layers.Dense(25, activation='relu',

                      kernel_initializer='he_normal',

                      bias_initializer='zeros'),

    keras.layers.Dense(10, activation='softmax',
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If you run this configuration on a gPU-accelerated platform, you will notice that 
it is much faster than the previous configuration. The key here is that we have a 
batch size of 64, which results in 64 training examples being computed in parallel, 
as opposed to the initial configuration where they were all done serially.

The results of the experiment are shown in Figure 5-12, which shows how the test 
errors for all configurations evolve during the training process.

                       kernel_initializer='glorot_uniform',

                       bias_initializer='zeros')])

model.compile(loss='categorical_crossentropy',

                    optimizer = 'adam',

                    metrics =['accuracy'])

history = model.fit(train_images, train_labels,

                    validation_data=(test_images, test_labels),

                    epochs=EPOCHS, batch_size=BATCH_SIZE,

                    verbose=2, shuffle=True)

We use matplotlib to visualize the learning process. A more powerful approach 
is to use the TensorBoard functionality that is included in TensorFlow. We highly 
recommend that you get familiar with TensorBoard when you start building and 
tuning your own models.

Figure 5-12 Error on the test dataset for the five configurations
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Configuration 1 (red line) ends up at an error of approximately 6%. We spent a 
nontrivial amount of time on testing different parameters to come up with that 
configuration (not shown in this book).

Configuration 2 (green) shows what happens if we set the learning rate to 10.0, 
which is significantly higher than 0.01. The error fluctuates at approximately 70%, 
and the model never learns much.

Configuration 3 (blue) shows what happens if, instead of using our tuned 
learning rate and initialization strategy, we choose a “vanilla configuration” with 
glorot initialization and the Adam optimizer with its default values. The error is 
approximately 7%.

For Configuration 4 (purple), we switch to using different activation functions and 
the cross-entropy error function. We also change the initializer for the hidden 
layer to He normal. We see that the test error is reduced to 5%.

For Configuration 5 (yellow), the only thing we change compared to Configuration 
4 is the mini-batch size: 64 instead of 1. This is our best configuration, which ends 
up with a test error of approximately 4%. It also runs much faster than the other 
configurations because the use of a mini-batch size of 64 enables more examples 
to be computed in parallel.

Although the improvements might not seem that impressive, we should recognize 
that reducing the error from 6% to 4% means removing one-third of the error 
cases, which definitely is significant. more important, the presented techniques 
enable us to train deeper networks.

Hyperparameter Tuning and 
Cross-validation

The programming example showed the need to tune different hyperparameters, 
such as the activation function, weight initializer, optimizer, mini-batch size, and 
loss function. In the experiment, we presented five configurations with some 
different combinations, but clearly there are many more combinations that we 
could have evaluated. An obvious question is how to approach this hyperparameter 
tuning process in a more systematic manner. one popular approach is known as 
grid search and is illustrated in Figure 5-13 for the case of two hyperparameters 
(optimizer and initializer). We simply create a grid with each axis representing a 
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single hyperparameter. In the case of two hyperparameters, it becomes a 2D grid, 
as shown in the figure, but we can extend it to more dimensions, although we can 
only visualize, at most, three dimensions. Each intersection in the grid (represented 
by a circle) represents a combination of different hyperparameter values, and 
together, all the circles represent all possible combinations. We then simply run an 
experiment for each data point in the grid to determine what is the best combination.

What we just described is known as exhaustive grid search, but needless to say, it 
can be computationally expensive as the number of combinations quickly grows 
with the number of hyperparameters that we want to evaluate. An alternative is to 
do a random grid search on a randomly selected a subset of all combinations. This 
alternative is illustrated in the figure by the green dots that represent randomly 
chosen combinations. We can also do a hybrid approach in which we start with 
a random grid search to identify one or a couple of promising combinations, and 
then we can create a finer-grained grid around those combinations and do an 
exhaustive grid search in this zoomed-in part of the search space. grid search is 
not the only method available for hyperparameter tuning. For hyperparameters 
that are differentiable, it is possible to do a gradient-based search, similar to the 
learning algorithm used to tune the normal parameters of the model.

Figure 5-13 grid search for two hyperparameters. An exhaustive grid search 
would simulate all combinations, whereas a random grid search might simulate 
only the combinations highlighted in green.
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Implementing grid search is straightforward, but a common alternative is to 
use a framework known as sci-kit learn.3 This framework plays well with keras. 
At a high level, we wrap our call to model.fit() into a function that takes 
hyperparameters as input values. We then provide this wrapper function to sci-kit 
learn, which will call it in a systematic manner and monitor the training process. 
The sci-kit learn framework is a general mL framework and can be used with both 
traditional mL algorithms as well as DL.

UsINg A vALIDATIoN sET To AvoID ovErFITTINg

The process of hyperparameter tuning introduces a new risk of overfitting. 
Consider the example earlier in the chapter where we evaluated five 
configurations on our test set. It is tempting to believe that the measured error 
on our test dataset is a good estimate of what we will see on not-yet-seen data. 
After all, we did not use the test dataset during the training process, but there 
is a subtle issue with this reasoning. Even though we did not use the test set to 
train the weights of the model, we did use the test set when deciding which set of 
hyperparameters performed best. Therefore, we run the risk of having picked a 
set of hyperparameters that are particularly good for the test dataset but not as 
good for the general case. This is somewhat subtle in that the risk of overfitting 
exists even if we do not have a feedback loop in which results from one set of 
hyperparameters guide the experiment of a next set of hyperparameters. This 
risk exists even if we decide on all combinations up front and only use the test 
dataset to select the best performing model.

We can solve this problem by splitting up our dataset into a training dataset, a 
validation dataset, and a test dataset. We train the weights of our model using the 
training dataset, and we tune the hyperparameters using our validation dataset. 
once we have arrived at our final model, we use our test dataset to determine 
how well the model works on not-yet-seen data. This process is illustrated in 
the left part of Figure 5-14. one challenge is to decide how much of the original 
dataset to use as training, validation, and test set. Ideally, this is determined on 
a case-by-case basis and depends on the variance in the data distribution. In 
absence of any such information, a common split between training set and test 
set when there is no need for a validation set is 70/30 (70% of original data used 
for training and 30% used for test) or 80/20. In cases where we need a validation 
set for hyperparameter tuning, a typical split is 60/20/20. For datasets with 
low variance, we can get away with a smaller fraction being used for validation, 
whereas if the variance is high, a larger fraction is needed.

3. https://scikit-learn.org

https://scikit-learn.org
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Cross-vALIDATIoN To ImProvE UsE oF TrAININg DATA

one unfortunate effect of introducing the validation set is that we can now use 
only 60% of the original data to train the weights in our network. This can be 
a problem if we have a limited amount of training data to begin with. We can 
address this problem using a technique known as cross-validation, which avoids 
holding out parts of the dataset to be used as validation data but at the expense 
of additional computation. We focus on one of the most popular cross-validation 
techniques, known as k-fold cross-validation. We start by splitting our data into a 
training set and a test set, using something like an 80/20 split. The test set is not 
used for training or hyperparameter tuning but is used only in the end to establish 
how good the final model is. We further split our training dataset into k similarly 
sized pieces known as folds, where a typical value for k is a number between 
5 and 10.

We can now use these folds to create k instances of a training set and validation 
set by using k − 1 folds for training and 1 fold for validation. That is, in the case of 
k = 5, we have five alternative instances of training/validations sets. The first one 
uses folds 1, 2, 3, and 4 for training and fold 5 for validation, the second instance 
uses folds 1, 2, 3, and 5 for training and fold 4 for validation, and so on.

Let us now use these five instances of train/validation sets to both train the 
weights of our model and tune the hyperparameters. We use the example 
presented earlier in the chapter where we tested a number of different 
configurations. Instead of training each configuration once, we instead train each 
configuration k times with our k different instances of train/validation data. Each 
of these k instances of the same model is trained from scratch, without reusing 
weights that were learned by a previous instance. That is, for each configuration, 
we now have k measures of how well the configuration performs. We now 
compute the average of these measures for each configuration to arrive at a 
single number for each configuration that is then used to determine the best-
performing configuration.

Now that we have identified the best configuration (the best set of hyperparameters), 
we again start training this model from scratch, but this time we use all of the 
k folds as training data. When we finally are done training this best-performing 
configuration on all the training data, we can run the model on the test dataset to 
determine how well it performs on not-yet-seen data. As noted earlier, this process 
comes with additional computational cost because we must train each configuration 
k times instead of a single time. The overall process is illustrated on the right side of 
Figure 5-14.
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We do not go into the details of why cross-validation works, but for more 
information, you can consult The Elements of statistical Learning (Hastie, 
Tibshirani, and Friedman, 2009).

Concluding remarks on the Path 
Toward Deep Learning

This chapter introduced the techniques that are regarded as enablers of the DL 
revolution that started with the AlexNet paper (krizhevsky, sutskever, and Hinton, 
2012). In particular, the emergence of large datasets, the introduction of the reLU 

Train the model weights only using
the training set. Evaluate the

resulting model on validation set.

Model good 
enough?

Split data into training, validation,
and test datasets.
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parameters.
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DONE

Train the model weights for k instances of the same
model. Use di�erent combinations of k-1 folds as

input to each model instance. Evaluate each model
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all model instances.
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Figure 5-14 Tuning hyperparameters with a validation dataset (left) and using 
k-fold cross-validation (right)
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unit and the cross-entropy loss function, and the availability of low-cost gPU-
powered high-performance computing are all viewed as critical components that 
had to come together to enable deeper models to learn (goodfellow et al., 2016).

We also demonstrated how to use a DL framework instead of implementing our 
models from scratch. The emergence of these DL frameworks is perhaps equally 
important when it comes to enabling the adoption of DL, especially in the industry.

With this background, we are now ready to move on to Chapter 6 and build our 
first deep neural network!
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Chapter 6

Fully Connected 
Networks Applied 
to Regression

In Chapter 5, “Toward DL: Frameworks and Network Tweaks,” we introduced 
several activation functions that can be used for hidden units in the network. In 
this chapter, we describe a couple of alternative output units and describe the 
problem types for which they are suitable. In addition, we introduce you to another 
dataset known as the Boston Housing dataset (Harrison and Rubinfeld, 1978).

The code example in this chapter will apply a deep neural network (DNN) to the 
Boston Housing dataset to predict home values based on a number of different 
variables and compare it with a simpler model. Predicting a home value is a 
different type of problem than the classification problems that we have studied 
so far. Instead of predicting which one of a discrete number of classes an input 
example belongs to, we want to predict a real-valued number. This is known as a 
regression problem. If you are interested in first learning some basic traditional 
machine learning (ML) techniques for regression and classification, consider 
reading Appendix A at this point.

In Chapter 4, “Fully Connected Networks Applied to Multiclass Classification,” 
we briefly discussed overfitting (lack of generalization). We also introduced the 
concept of regularization techniques, which aim at improving generalization. In this 
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chapter, we see practical examples of overfitting and introduce some different 
regularization techniques that can be used to mitigate this problem. Finally, 
we experiment with using these techniques to enable even deeper and larger 
networks to generalize.

output units
We saw in Chapter 5 how hidden units can use activation functions other than 
the logistic sigmoid and tanh activation functions. However, we mainly kept using 
the unit based on the logistic sigmoid function as output unit for the network, 
although we did briefly mention the softmax unit as well. In this section, we 
describe the softmax unit in more detail and introduce yet another type of output 
unit. The rationale for using the alternative hidden units was to avoid vanishing 
gradients. In contrast, the output unit is chosen on the basis of the type of problem 
the network is applied to. Figure 6-1 summarizes how to use different types of 
hidden units and output units for three problem types.

The choice of loss function is tightly coupled to the choice of output unit, where 
each type of output unit has a corresponding recommended loss function. We 
describe three different output units in this chapter. First, the logistic output unit 
is used for binary classification problems. second, the softmax output unit is used 

Logistic output unit
Cross-entropy

Softmax output unit
Categorical cross-entropy

Linear output unit
Mean Squared Error

Hidden units:
ReLU, tanh, leaky ReLU,
elu, softplus, maxout

Output units:
Problem dependent

Input values

Binary classification Multiclass classification Regression

Figure 6-1 Types of unit to use for different networks and layers. The type of 
problem dictates the type of output unit and associated loss function. For the hidden 
layers, multiple alternatives are available. A good starting point is the rectified 
linear unit (ReLu). For some networks, other units result in better performance.
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for multiclass classification problems. Third, the linear output unit is used for 
regression problems. The recommended loss functions corresponding to these 
three units are cross-entropy loss, categorical cross-entropy loss, and mean 
squared error.

As described in Chapter 5, a number of alternatives exist for the hidden units. We 
recommend starting with rectified linear unit (ReLu) and then trying other units 
as a part of the hyperparameter tuning process.

LogIsTIC uNIT FoR BINARy CLAssIFICATIoN

We start by revisiting the output unit based on the logistic sigmoid function, so 
we describe all the output units in one place. We have seen multiple times that 
the logistic sigmoid function is an example of an s-shaped function. The output 
ranges from 0 to 1, and it is similar to a step function but without discontinuities.

The typical use case for the logistic sigmoid function as output unit is for binary 
classification problems. The logistic sigmoid function is
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The logistic sigmoid function expects a real-valued variable z (ranging from 
negative infinity to infinity) as its input. Because the output is between 0 and 1, 
we can interpret its output as a probability. The inverse of the logistic function is 
known as the logit function in the statistics literature. That is, the logit function 
converts a probability into a real-valued variable z. Therefore, the weighted sum z, 
which is the input to the logistic function, is sometimes referred to as a logit in the 
context of deep learning (DL).

As described in Chapter 5, the recommended loss function to use with this type of 
output neuron is the cross-entropy loss function:

-   :   ( ) y ln ˆ 1 y ln 1 ˆCross entropy loss e y y y( )( ) ( ) ( )= − ⋅ + − ⋅ −

Where ŷ is the output of the logistic sigmoid function and y is the desired output 
value.

The logistic sigmoid function is used for binary classification problems.
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soFTMAX uNIT FoR MuLTICLAss CLAssIFICATIoN

We now move on to the softmax unit. Its name makes it easy to confuse with 
the maxout and softplus units introduced in Chapter 5, but the softmax unit is 
unrelated to these apart from the words used in its name.

The softmax unit (goodfellow, Bengio, and Courville, 2016) is a generalization 
of the logistic sigmoid function but extended to multiple outputs. An important 
property of the logistic sigmoid function is that its output is always between 0 and 
1, which implies that we can interpret the output as a probability (a probability 
always needs to be between 0 and 1). For example, in a classification problem, 
an output of 0.7 can be interpreted as a 70% probability that the presented 
inputs represent an object belonging to the assumed class and a 30% probability 
that it does not. When we looked at multiclass classification in Chapter 5, we 
simply used ten instances of the logistic sigmoid unit. The output from each unit 
indicated whether or not the input example belonged to the class, and we simply 
looked for the unit with the highest value. A problem with this approach is that 
if we were to add up the outputs from all ten output units, we would most likely 
end up with cases in which this sum was either less than or greater than 1. That 
is, it is unclear how to interpret the outputs as probabilities. The definition of the 
softmax function ensures that the sum of all the outputs is always 1, and thereby 
we can interpret the output as a probability. For instance, if the output for digit 3 is 
close to 0.3, the output for digit 5 is close to 0.7, and all other outputs are close to 
0, then we can say that there is a 70% probability that the input example is 5 and a 
30% probability that the input example is 3. The formula for the softmax function 
in the case of n outputs is
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Softplus, maxout, and softmax are all different units. softplus and maxout 
units are typically used in hidden layers, whereas softmax is primarily used in 
the output layer.

The output from a logistic sigmoid unit can be interpreted as a probability for 
a binary classification problem, and the output from a softmax unit can be 
interpreted as a probability for a multiclass classification problem.
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In other words, we compute the exponential function of the logit representing the 
output in question and divide it by the sum of the exponential functions for all the 
logits. If you compute this function for each output and sum them, then it should 
be clear why they all add up to 1, because the sum of all the numerators is exactly 
the same sum as is already in the denominator.

one thing to note is that the softmax output unit is not a function isolated to a 
single neuron, but it is an output function applied to a layer of neurons. That is, 
we compute the weighted sum z for each neuron in the output layer, and then 
we apply the softmax function on each of these z-instances. As given by the 
preceding formula, the output value for each neuron is dependent not only on z 
for that neuron but also on z from all other neurons in the layer. This is how we 
ensure that the sum of all outputs equals 1. The softmax layer is shown at the 
top of Figure 6-2, where the yellow circles compute only the weighted sum for 
each neuron, and the activation functions are applied in the yellow rectangle that 
has access to the logits (z-values) for all the neurons. The effect of the softmax 
function is shown at the bottom of the figure. In this example, where several logits 

z1 z2 z3 z4

y1 y2 y3 y4

Fully connected
softmax layer

Previous hidden
layer

y1 + y2 + y3 + y4 = 1

Activation functions

Figure 6-2 Top: Fully connected softmax layer. Bottom: Relationship between 
z and softmax(z).
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are greater than 1, the corresponding outputs will be reduced to make the sum 
equal to 1.

The recommended loss function to use with this type of output neuron is the 
cross-entropy loss function for multiclass classification (Equation 6-1).

�Cross entropy loss e y y y
c

N

c c-   :   ( ) ln
1

∑ ( )= −
=

Equation 6-1 Cross-entropy loss function for multiclass classification 

where N is the number of outputs (classes). you can see that if you set N=2 and 
expand the sum, it results in the cross-entropy loss function for the binary case 
that we have used before.

There is a subtle interaction1 between the softmax output function and the 
cross-entropy loss function. The vector y

c
 is one-hot encoded so only a specific 

element, hereafter assumed to have index n, is nonzero. That implies that the 
sum in the cross-entropy loss function is reduced to the single term in the 
nth position. At first glance, this seems to imply that the values of the other 
outputs, corresponding to incorrect classes, do not matter. Those values will 
be multiplied by zero anyway, and the loss will be fully determined by the value 
of the nth element (that corresponds to the correct class). That seems odd. Is 
it not the role of the loss function to push all outputs in the right direction? It 
seems like that should include both rewarding the correct output (output n) 
and penalizing the incorrect ones. It turns out that this happens indirectly due 
to the presense of the softmax function. As described previously, the output 
value for each neuron in the softmax layer is dependent not only on z for that 
neuron but also on z from all other neurons in the layer. That implies that output 
n is dependent not only on the weights connected to neuron n but also on all 
other weights in the layer. Therefore, the partial derivatives corresponding to 
all the weights in the layer will be affected by the value of output n. As a 
result, all weights will be adjusted, even though only one of the output elements 
directly affects the overall loss function.

We saw an example of using the softmax function for multiclass classification in 
Chapter 5. We use it again in Chapter 7, “Convolutional Neural Networks Applied 
to Image Classification,” when we study image classification with convolutional 
networks.

1. If you are a first-time reader, you can safely ignore this interaction, but it is worth mentioning for 
completeness, if only to be revisited at a later point.
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LINEAR uNIT FoR REgREssIoN

We now introduce the output unit that is used for the programming example in 
this chapter. Both the logistic sigmoid function and the softmax function are used 
for classification problems, but in this chapter, we study a regression problem 
in which we want to predict a numerical value instead of a probability. In a 
regression problem, the output is not restricted to the range 0 to 1 as it is for the 
classification problem. To provide a concrete example, in this chapter, we want 
to predict the sales price of a home—a dollar amount. This can be done with a 
linear output unit, which is as simple as not having an activation function at all, or 
more formally, the activation function is y = z. That is, the output from the unit is 
the weighted sum itself. As previously stated, if neurons in multiple layers are all 
based on linear activation functions, then these multiple layers can be collapsed 
into a single linear function, which is a reason that the linear unit mostly makes 
sense to use as an output unit from the network. Figure 6-3 shows two networks 
using linear activation functions. The output from each neuron is simply the 
weighted sum and can take on any value instead of being restricted to a specific 
output range. The network to the left has two stacked linear layers. In the network 
to the right, the two linear layers have been collapsed into a single layer, and it 
behaves equivalently. Therefore, stacking linear layers does not make sense.

The linear output unit is used to predict a value not limited to the range 0 to 1. 
The linear neuron uses the identity function as an activation function; that is, its 
output is the weighted sum of the inputs.

Linear activation
functions

Non-linear
activation functions

Equivalent to
two layers with liner
activation functions

Linear activation: Output = weighted sum (z)

Figure 6-3 Left: Network where two layers have linear activation functions. 
The two layers in the dashed oval collapses into a single layer. Therefore, it is 
uncommon to stack linear layers. Right: Resulting simplified network.
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A linear unit does not have a problem with saturation, so there is no need to use 
the cross-entropy loss function. It can be shown that a good loss function is the 
mean squared error (MSE). This kind of makes sense because MsE is the error 
function used when doing linear regression, and that is exactly what a linear 
output unit is doing.

When predicting a value with a linear unit, accuracy is not a good metric. If you 
think about it, it is likely that no single test example will be exactly correctly 
predicted. For example, when predicting a price of a house, getting the exact 
dollar amount correct is extremely unlikely. Therefore, instead of computing how 
many of all predictions are correct, the real question is how close to the actual 
value each prediction is. From that perspective, a more meaningful metric when 
evaluating performance of the model is the mean absolute error.

The Boston Housing Dataset
The dataset used in this chapter is a small dataset originating from a 1978 
study about how house prices are related to clean air (Harrison and Rubinfeld, 
1978). It is broken up into a training set consisting of 404 examples and a test 
set consisting of 102 examples. Each example corresponds to a single house 
and consists of 13 input variables describing various aspects of the house and a 
single output variable corresponding to the price of the house. The input variables 
are shown in Table 6-1.

It can be shown that when using MsE as the loss function in the process of 
curve fitting a linear function, the estimated weights are unbiased estimators 
of the true weights, which is often a desirable property. For reading this book, 
you do not need to worry about knowing what an unbiased estimate is, but it 
can be considered for further reading. Both Deep Learning (goodfellow et al., 
2016) and The Elements of Statistical Learning (Hastie, Tibshirani, and Friedman, 
2009) discuss these topics in the context of machine learning.

Note the distinction between the loss function and the function used to 
evaluate how well the resulting model performs. The loss function is used by 
the learning algorithm, whereas other metrics, such as accuracy and mean 
absolute error, are more intuitive metrics for the user of the model.
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They are all numeric variables, and their ranges vary, so just as for the Modified 
National Institute of standards and Technology (MNIsT) dataset, we must 
standardize the input data before using it.

Programming Example: Predicting 
House Prices with a DNN

Like the MNIsT, the Boston Housing dataset is included in keras, so it is simple 
to access using keras.datasets.boston_housing. We standardize both 
the training and test data by using the mean and standard deviation from the 

Table 6-1 The 13 Input Variables for the Boston Housing Dataset

FEATURE DESCRIPTION

CRIM Per capita crime rate by town

ZN Proportion of residential land zoned for lots over 25,000 sq. ft.

INDUS Proportion of nonretail business acres per town

CHAS Charles River dummy variable (1 if tract bounds river; 0 otherwise)

NOX Nitric oxides concentration (parts per 10 million)

RM Average number of rooms per dwelling

AGE Proportion of owner-occupied units built prior to 1940

DIS Weighted distances to five Boston employment centers

RAD Index of accessibility to radial highways

TAX Full-value property-tax rate per $10,000

PTRATIO Pupil–teacher ratio by town

B 1,000(Bk − 0.63)^2, where Bk is the proportion of blacks by town

LSTAT Percentage lower status of the populations
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training data (Code snippet 6-1). The parameter axis=0 ensures that we 
compute the mean and standard deviation for each input variable separately. 
The resulting mean (and standard deviation) is a vector of means instead of a 
single value. That is, the standardized value of the nitric oxides concentration 
is not affected by the values of the per capita crime rate or any of the other 
variables.

Code Snippet 6-1 DNN with Two Hidden Layers used to Predict House Prices

import tensorflow as tf

from tensorflow import keras

from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import Dense

import numpy as np

import logging

tf.get_logger().setLevel(logging.ERROR)

EPOCHS = 500

BATCH_SIZE = 16

# Read and standardize the data.

boston_housing = keras.datasets.boston_housing

(raw_x_train, y_train), (raw_x_test,

    y_test) = boston_housing.load_data()

x_mean = np.mean(raw_x_train, axis=0)

x_stddev = np.std(raw_x_train, axis=0)

x_train =(raw_x_train - x_mean) / x_stddev

x_test =(raw_x_test - x_mean) / x_stddev

# Create and train model.

model = Sequential()

model.add(Dense(64, activation='relu', input_shape=[13]))

model.add(Dense(64, activation='relu')) # We are doing DL!

model.add(Dense(1, activation='linear'))

model.compile(loss='mean_squared_error', optimizer='adam',

              metrics =['mean_absolute_error'])

model.summary()

history = model.fit(x_train, y_train, validation_data=(

    x_test, y_test), epochs=EPOCHS, batch_size=BATCH_SIZE,

    verbose=2, shuffle=True)
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We then create the model. Here we use a different syntax than in Chapter 5. There, 
the layers were passed as parameters to the constructor of the model. A different 
way of doing it is to first instantiate the model object without any layers, and 
then add them one by one using the member method add(). As long as we work 
with relatively few layers, the approach taken just depends on user preference, 
but for deep models with tens of layers, the code typically gets more readable 
and maintainable by adding the layers one by one. one example of this is a deep 
model of identical layers where the layers can be added to the model with a for 
loop, which makes for a much more compact model description.

We define our network to have two hidden layers, so we are now officially doing DL! 
A reasonable question is why we want more hidden layers. We previously saw that 
having at least one hidden layer is beneficial because it addresses the limitation 
related to linear separability that applies to a single-layer network, but we do 
not have an equally crisp reason for having multiple hidden layers. It can even 
be shown that, given enough neurons, it is sufficient with a single hidden layer to 
be able to approximate any continuous function. However, empirically it has been 
shown that adding more layers can lead to better-performing (from an accuracy 
perspective) networks. one way to think about this is that having more hidden 
layers can enable the network to hierarchically combine features at increasing 
abstraction levels. We will see more concrete examples of this in Chapter 7.

The two hidden layers in our network implementation have 64 ReLu neurons 
each, where the first layer is declared to have 13 inputs to match the dataset. 
The output layer consists of a single neuron with a linear activation function. We 
use MsE as the loss function and use the Adam optimizer. We tell the compile 
method that we are interested in seeing the metric mean absolute error. The 
distinction between the loss argument and the metrics argument is that the 
former is used by the backpropagation algorithm to compute the gradient, and the 
latter is just being printed out for our information.

We print out a summary of the model with model.summary() and then start 
training. After the training is done, we use our model to predict the price for 

# Print first 4 predictions.

predictions = model.predict(x_test)

for i in range(0, 4):

    print('Prediction: ', predictions[i],

          ', true value: ', y_test[i])
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the entire test set and then print out the first four predictions and the correct 
values so we can get an idea of how correct the model is. We end up with a mean 
absolute error of 2.511 on the test set, and the predictions for the first four test 
examples are as follows:

Prediction:  [7.7588124] , true value:  7.2

Prediction:  [19.762562] , true value:  18.8

Prediction:  [20.16102]  , true value:  19.0

Prediction:  [32.758865] , true value:  27.0

We note that they seem to make sense. The reason that the prediction value is 
within square brackets is that each element in the prediction array is an array 
itself with a single value in each array. We could have addressed that by indexing 
it like the following: predictions[i, 0].

A common theme when working with TensorFlow is that both input data and 
output data are in multidimensional arrays, and it sometimes takes a few tries to 
get it right.

As we can see, it was simple to create an initial model and do some reasonable 
predictions, but it is hard to say how good these predictions are. This brings us to 
a question that always makes sense to ask: Do we need DL to solve the problem? 
As we saw in Chapter 5, it can be nontrivial to tune a neural network. If there are 
simpler ways of solving the problem, then those are preferable. given that this is 
a regression problem, it is natural to compare it to simple linear regression,2 that 
is, just compute a weighted sum of all the inputs and a bias:

0 1 1 2 2 13 13y w w x w x w x�= + + + +

We can easily do that in our program3 by defining only a single layer having 
a single neuron with a linear activation function. We use just the output layer 
without any hidden layers, but we also need to define the number of inputs 
because the output layer is now also the first layer:

model.add(Dense(1, activation='linear', input_shape=[13]))

2. We think you can follow this discussion even if you are not familiar with linear regression, but if you 
do want some more background, consider reading Appendix A.
3. In this implementation, we use gradient descent to find a numerical solution to our linear regression 
problem. This might seem foreign to you if you have previously learned how to solve linear regression 
analytically using normal equations.
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We run the model and end up with a mean absolute error of 10.24 on the test set, 
and the first four predictions of the test set as follows:

Prediction:  0.18469143 , true value:  7.2

Prediction:  10.847551 , true value:  18.8

Prediction:  10.989416 , true value:  19.0

Prediction:  22.755947 , true value:  27.0

Clearly, our deep model did better than the linear model,4 which is encouraging! 
Now let us look at whether our model seems to generalize well. Figure 6-4 shows 
how the training and test errors are changing as a function of the number of 
training epochs.

We see that the training error is steadily decreasing, but the test error is flat. This 
is a clear indication of overfitting; that is, the model is memorizing the training 
data, but it does not manage to generalize to unseen data. We need techniques to 
modify our network to address this behavior, which is described next.

4. It is possible to improve the results from the linear regression model by first computing variations 
on the input variables. This is known as feature engineering. see Appendix A for more details.

Figure 6-4 Comparison between training and test errors for our three-layer DNN
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Improving generalization with 
Regularization

Techniques that are intended to improve generalization are collectively known 
as regularization techniques. specifically, a regularization technique is a 
technique that aims at reducing the gap between training error and test error. 
one regularization technique is early stopping (discussed in Chapter 4), but that 
technique is helpful only if the test error shows a u-shaped curve, that is, if the 
test error starts increasing after a certain time. This is not the case in our present 
example, and we therefore need to look at other techniques.

one common regularization technique is weight decay. Weight decay is 
implemented by adding a penalty term to the loss function:

-
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Loss cross entropy w
i

n
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=

where λ is a constant and w
0
, w

1
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n
 are the weights for all the neurons in 

the model. Because the learning algorithm tries to minimize the loss function, 
this error term provides incentive to minimize the weights. This results in 
decreasing weights that do not contribute significantly to solving the general 
problem. In particular, weights that are helpful only for specific input examples 
and not the general case will be decreased because they reduce the loss for 
only a small number of input examples, but the weight decay term causes them 
to increase the loss for all examples. That is how weight decay results in better 
generalization. The parameter λ affects how significant the regularization effect 
will be. The regularization technique shown in the preceding formula is known as 
L1 regularization.

A more common variation is to square the weights in the sum, which is known as 
L2 regularization:
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Although we use cross-entropy as the loss function in the examples, you can 
apply weight decay regularization to any loss function. similarly, weight decay 
not only is applicable to DL but is a common regularization technique applied to 
traditional ML techniques as well.
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Code snippet 6-2 shows how to add L2 regularization in keras. It is as simple 
as adding one import statement and then a single parameter to each layer 
where you want regularization to be applied. The example shows how to apply 
regularization to all layers, using a weight decay parameter λ = 0.1. It is common 
to not apply regularization to the bias weights, and keras makes that possible by 
breaking out the bias regularizer separately.

Dropout is another common regularization technique, specifically developed 
for neural networks (srivastava et al., 2014). It is done by randomly removing a 
subset of the neurons from the network during training. The subset of removed 
neurons varies throughout each training epoch. The number of removed neurons 
(the dropout rate) is controlled by a parameter, where a common value is 20%. 
When the network is later used for inference, all the neurons are used, but a 
scaling factor is applied to each weight to compensate for the fact that each 
neuron now receives inputs from more neurons than during training. Figure 6-5 
illustrates how dropping two neurons from a fully connected network results in a 
different network.

Weight decay is a common regularization technique. Two examples of weight 
decay are L1 and L2 regularization.

from tensorflow.keras.regularizers import l2

…

model.add(Dense(64, activation='relu',

                kernel_regularizer=l2(0.1),

                bias_regularizer=l2(0.1),

                input_shape=[13]))

model.add(Dense(64, activation='relu',

                kernel_regularizer=l2(0.1),

                bias_regularizer=l2(0.1)))

model.add(Dense(1, activation='linear',

                kernel_regularizer=l2(0.1),

                bias_regularizer=l2(0.1)))

Code Snippet 6-2 How to Add L2 Regularization to the Model

Dropout is an effective regularization technique for neural networks.
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Dropout forces units to be able to work with a random set of other units. Doing so 
prevents subsets of units from co-adapting to solve specific cases and has been 
shown to reduce overfitting. Code snippet 6-3 shows how to add dropout to a 
model in keras.

After we import the Dropout module, dropout is added as a layer after the layer 
where we want it to be applied. The Dropout layer will block connections from 
a subset of the neurons in the previous layer, which has the same effect as if the 
neuron were not there to begin with.

After drop-outBefore drop-out

Figure 6-5 Dropout

from tensorflow.keras.layers import Dropout

…

model.add(Dense(64, activation='relu', input_shape=[13]))

model.add(Dropout(0.2))

model.add(Dense(64, activation='relu'))

model.add(Dropout(0.2))

model.add(Dense(1, activation='linear'))

Code Snippet 6-3  How to Add Dropout to the Model
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Experiment: Deeper and Regularized 
Models for House Price Prediction

We now present the results of some experiments where regularization techniques 
are applied to the model. As previously stated, we saw that the three-layer model 
was significantly better than the linear model but suffered from overfitting. Those 
results are shown in the first two rows in Table 6-2, where the columns show the 
network topology (each number represents the number of neurons in a layer), 
which regularization technique is used, as well as the training and test errors.

The third row in the table (Configuration 3) shows what happens when we add 
L2 regularization to the model. We use a lambda of 0.1, and we can see that the 
training error increases, but unfortunately, the test error increases slightly as 
well.

The next row (Configuration 4) shows what happens if we use dropout (factor 
0.2) instead of L2 regularization. This is more effective and almost closes the gap 
between the training and test errors. This indicates that overfitting is no longer a 
big problem, and it makes sense to try a more complex model.

This is shown in the next row (Configuration 5), where we add another layer and 
increase the number of neurons to 128 in the first two layers. This improves the 
test error, but we see that the training error is reduced even more, so we now 
have problems with overfitting again.

Table 6-2 Experiments with Deeper Models and Regularization

CONFIGURATION TOPOLOGY REGULARIZATION
TRAINING 
ERROR

TEST  
ERROR

Conf1 1 None 10.15 10.24

Conf2 64/64/1 None 0.647 2.54

Conf3 64/64/1 L2=0.1 1.50 2.61

Conf4 64/64/1 Dropout=0.2 2.30 2.56

Conf5 128/128/64/1 Dropout=0.2 2.04 2.36

Conf6 128/128/64/1 Dropout=0.3 2.38 2.31
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In the final row of the table (Configuration 6), we increase the dropout factor to 
0.3, which both increases the training error and decreases the test error, and we 
have arrived at a model that generalizes well.

Concluding Remarks on output units and 
Regression Problems

In this chapter, we described the three most common types of output units and 
their associated loss functions. Whereas the types of hidden units typically are 
chosen in the process of tuning hyperparameters, the type of output unit is tightly 
coupled to the problem type.

When training DL models, it is common to run into overfitting. This can be 
addressed by regularizing the model. In this chapter, we described a number of 
regularization techniques and applied them to our programming example.

The programming example showed that it is often necessary to tweak parameters 
iteratively to get to a model that performs well on the test set. one thing to note 
is that our best configuration has more than 26,000 parameters. This can be 
compared to the linear regression case, which has one weight for each input 
feature plus a bias weight—14 in total in our example. From the perspective of 
predicting well, it clearly pays to have all of these parameters that the model 
learns by itself. However, it is much harder to understand a model with 26,000 
parameters than a model with 14 parameters, which illustrates a common 
problem with DL. We end up with a model that works well, but we do not know 
how it works.

overall, our impression is that, as the current DL boom started, the field 
transformed from being theoretical to being more empirical. In other words, 
focus has shifted from how something works to how well it works. Before the 
field could demonstrate impressive results, perhaps it had to produce elaborate 
mathematical analysis to justify its existence, whereas the more recent results 
are so impressive that people are happy to skip the math?
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Chapter 7

Convolutional Neural 
Networks Applied to 
Image Classification

Training of deep models with backpropagation has been demonstrated in 
various forms since at least 1990 (Hinton, Osindero, and Teh, 2006; Hinton and 
Salakhutdinov, 2006; LeCun et al., 1990; LeCun, Bottou, Bengio, et al., 1998). Still, 
a pivotal point for deep learning (DL) was in 2012 when AlexNet was published 
(Krizhevsky, Sutskever, and Hinton, 2012). It scored significantly better than any 
other contestant in the ImageNet classification challenge (Russakovsky  
et al., 2015) and greatly contributed to popularizing DL. AlexNet is an eight-layer 
network and uses convolutional layers, which were introduced by Fukushima 
(1980) and later used in LeNet (LeCun et al., 1990). Convolutional layers, and the 
resulting convolutional neural networks (CNNs), are important building blocks 
in DL. This chapter describes how they work. We start by introducing the overall 
AlexNet architecture to highlight a number of concepts that we then explain in 
more detail.

AlexNet is a convolutional neural network for image classification. It scored 
well on the ImageNet challenge in 2012 and has been attributed as a key 
reason for the DL boom that evolved over the next few years.
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The topology of the AlexNet CNN is shown in Figure 7-1. It consists of five 
convolutional layers (drawn as 3D blocks) followed by three fully connected layers 
(drawn as 2D rectangles). One somewhat confusing property is that the layers are 
split up horizontally, so each layer is represented as two blocks or rectangles. The 
reason for this is that, at the time, there was no graphics processing unit (gPu) 
that had enough memory to be able to run the entire network. The solution was to 
split up the network and map it to two gPus. Although important at the time, we 
ignore that detail in our discussion and focus on other properties of the network.

We make the following additional observations from the figure:

• The input image is 224×224 pixels, where each pixel has a depth of 3 
(represented by the 3 in the lower left corner of the figure), which represents 
the three color channels red, green, and blue (RgB).

• The convolutional layers have a 3D structure as opposed to the fully connected 
layers, which have a single dimension (vector).

• There are seemingly arbitrary mappings from sub-blocks of varying sizes 
in one layer to the next (marked 11×11, 5×5, 3×3), and there seems to be no 
method to the madness when it comes to how the dimensions of one layer 
relate to the dimensions of a subsequent layer.

Figure 7-1 Topology of the AlexNet convolutional network. (Source: Krizhevsky, A., 
Sutskever, I., and Hinton, g., “ImageNet Classification with Deep Convolutional Neural 
Networks,” Advances in Neural Information Processing Systems 25 [NIPS 2012], 2012.)
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• There is something called stride.

• There is something called max pooling.

• The output layer consists of 1,000 neurons (it says “1000” in the lower right 
corner of the figure).

In this chapter, we describe all of the above and additionally describe terminology 
such as kernel size (refers to the 11×11, 5×5, 3×3 items in the figure) and padding, 
which are important concepts to know when designing and training a CNN. Before 
going into these details, we introduce the input dataset that we use in this chapter.

The CIFAR-10 Dataset
The CIFAR-10 dataset consists of 60,000 training images and 10,000 test images, 
each belonging to one of the ten categories airplane, automobile, bird, cat, deer, 
dog, frog, horse, ship, and truck, as previously shown in Figure P-1 in the preface. 
Each image is 32×32 pixels, so altogether it might seem like the dataset is similar 
to the mNIST handwritten digit dataset studied in earlier chapters. However, 
the CIFAR-10 dataset is more challenging in that it consists of color images of 
everyday objects that are much more diverse than handwritten digits. Figure 7-2 

Figure 7-2 Image 100, belonging to the ship category in the CIFAR-10 dataset. 
(Source: Krizhevsky, A., Learning Multiple Layers of Features from Tiny Images, 
university of Toronto, 2009.)
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shows image number 100 (starting counting from 0) in the CIFAR-10 dataset. The 
figure shows a magnified version in which each of the 32×32 pixels can be clearly 
seen, and next to it, a more realistically sized version given the low resolution of 
the image.

When working with a new dataset, it always makes sense to explore it a little bit. 
The CIFAR-10 dataset is included in Keras. Code Snippet 7-1 shows how to access 
it and display the ship image shown in Figure 7-2.

In addition to displaying the image, the print statement should result in the 
following output, where 8 refers to the ship category:

Category:  [8]

Apparently, the train_labels variable is a 2D array (the 8 is enclosed within 
brackets, which indicates that train_labels[100] is still an array instead of 
a scalar value). We can explore this further, this time by just typing the following 
commands in a Python interpreter:

>>> import tensorflow as tf

>>> from tensorflow import keras

>>> import numpy as np

import tensorflow as tf

from tensorflow import keras

import numpy as np

import matplotlib.pyplot as plt

import logging

tf.get_logger().setLevel(logging.ERROR)

cifar_dataset = keras.datasets.cifar10

(train_images, train_labels), (test_images,

    test_labels) = cifar_dataset.load_data()

print('Category: ', train_labels[100])

plt.figure(figsize=(1, 1))

plt.imshow(train_images[100])

plt.show()

Code Snippet 7-1 Python Code to Access the CIFAR-10 Dataset and Display One of 
the Images
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>>> cifar_dataset = keras.datasets.cifar10

>>> (train_images, train_labels), (test_images,

...     test_labels) = cifar_dataset.load_data()

>>> train_labels.shape

(50000, 1)

>>> train_images.shape

(50000, 32, 32, 3)

>>> train_images[100][0][0]

array([213, 229, 242], dtype=uint8)

The output (50000, 1) from train_labels.shape confirms that it is a 
2D array. Looking at the output from train_images.shape, we see that it is 
50,000 instances of a 32×32×3 array, that is, 50,000 images where each image 
is 32×32 pixels and each pixel consists of three 8-bit integers that represent the 
RgB intensity. We inspect the color values for the pixel in the upper left corner for 
our ship picture with the statement train_images[100][0][0] and see that 
they are 213, 229, and 242.

We believe that this is a sufficient description of the dataset to be able to use it 
with our CNN, and you should now also have the required tools to examine the 
dataset further if you are interested.

Characteristics and Building Blocks for 
Convolutional Layers

Instead of beginning with the mathematical concept of convolution, we 
focus on gaining an intuitive understanding of the convolutional layer. For 
interested readers, Appendix g bridges the gap between this description and 
the mathematical definition. Perhaps the most important characteristic of a 
convolutional network is a property known as translation invariance.1 In the case 
of object classification in an image, this means that even if an object is shifted 
(translated) horizontally or vertically to a different position in the image, the 
network will still be able to recognize it. This is true regardless of where in the 

1. In this context, translation refers to the geometrical transformation of moving all points by a fixed 
distance in the same direction in a coordinate system.
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image the object was located in the training data. That is, even if the network was 
mostly trained with pictures of cats in the middle of the image, a convolutional 
network will still be able to classify the image as containing a cat when presented 
with an image with a cat in one of the corners. Translation invariance is achieved 
by employing weight sharing between neurons as well as making them sparsely 
connected. These concepts are described in this section.

We start by introducing the overall topology of a convolutional layer used for 
image processing. The fully connected layers we have studied so far have all 
been arranged in a single dimension, as an array of neurons. As Figure 7-4 
illustrates, a convolutional layer for image processing has a different topology, 
where the neurons are arranged in three dimensions. This also explains why the 
convolutional layers were illustrated as 3D blocks in Figure 7-1 that depicted 
AlexNet.

Translation is a geometric transformation known as an affine transformation. It 
changes the location of an object without changing its shape. In Figure 7-3, the 
blue rectangle represents a translated version of the red rectangle. Another 
common affine transformation is rotation, which changes the orientation of an 
object. The green rectangle represents a rotated version of the red rectangle. 
you can read more about affine transformations in Real-Time Rendering 
(Akenine-möller et al., 2018).

Rotation

Translation

Figure 7-3 Two examples of affine transformations

A key property of convolutional layers is translation invariance, and it is caused 
by weight sharing and a sparsely connected network topology.
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Two of the dimensions (width and height) correspond to the 2D nature of an 
image. In addition, the neurons are grouped into channels or feature maps in 
a third dimension. Just as for a normal fully connected layer, there are no 
connections between the neurons within a convolutional layer. That is, all the 
neurons in the 3D structure are decoupled from each other and are together 
considered to form a single layer. However, all the neurons within a single 
channel have identical weights (weight sharing). That is, all neurons with the 
same color in the figure are identical copies of each other, but they will receive 
different input values.

Now let us consider the behavior of each individual neuron. In Chapter 2, 
“gradient-Based Learning,” we showed how a neuron can be used as a pattern 
identifier. In that example, we envisioned a tiny image consisting of 3×3 pixels 
connecting to a neuron with nine inputs (one for each pixel) plus the bias input, 
and we used this neuron to identify certain patterns. We use this pattern identifier 
(also known as kernel or convolution matrix) as our smallest building block when 
describing the convolutional layer.

Width

Channels
(feature maps)

Height

Figure 7-4 Topology of a 2D convolutional layer. Somewhat unintuitively, a 2D 
convolutional layer is arranged in three dimensions: width, height, and channels.

Each neuron in a convolutional layer implements an operation known as a 
convolutional kernel. The weights are arranged in a 2D pattern and form a 
convolutional matrix.
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Although we work on larger images, each neuron will receive pixel values only 
from a subset of the image (e.g., a 3×3 region as for the pattern identifier). The 
region of pixels from which a neuron receives inputs is also known as its receptive 
field. One issue that we have not yet dealt with is how to handle images with 
multiple channels. As previously described, for a color image, each pixel value 
consists of three values, also known as color channels. A typical way of handling 
these color channels is to simply provide each neuron with connections from each 
channel, so a neuron with a kernel size of 3×3 now will have 3 × 3 × 3 = 27 inputs 
(plus bias).

Figure 7-5 illustrates three examples of how the receptive field of three distinct 
neurons can be arranged to cover a subset of the pixels for an image with three 
color channels.

The leftmost example assumes a neuron with a kernel size of 2×2, organized 
with a stride of 1. This means that the focus of each neuron is separated by only 
a single pixel. The example in the middle shows a similar scenario but with a 
stride of 2. One thing to note is that the larger the stride is, the fewer neurons are 
needed to cover the entire image. Finally, the rightmost example shows a kernel 
size of 3×3 and a stride of 2. A key observation here is that kernel size and stride 
are orthogonal parameters, but they do interact. For instance, if we choose a 

There are many instances of “three” in this sentence, but they are all decoupled. 
That is, we could have had four examples of how five neurons cover pixels in an 
image with three color channels.

2x2 kernel, stride = 2 3x3 kernel, stride = 2

Figure 7-5 Examples of how receptive fields of three different neurons can 
overlap or abut. The image consists of 6×8 pixels. Left: 2×2 kernel with stride 1 
needs 5×7 neurons to cover the full image. Center: 2×2 kernel with stride 2 needs 
3×4 neurons. Right: 3×3 kernel with stride 2 needs 3×4 neurons.
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kernel size of 2×2 and a stride of 3, then some of the pixels in the image will not 
be connected to any neuron, which seems unfortunate.

Note that even with a stride of 1, the number of neurons that are needed to cover 
all the pixels is slightly smaller than the number of pixels. That is, the resolution 
of the output of a convolutional layer will be lower than the image. This can be 
addressed by first padding the image with zeros around the edges, so the center of 
the edge and corner neurons end up centered above the edge and corner pixels. For 
example, with a kernel size of 3×3, we need to pad each edge with a single pixel, 
and with a kernel size of 5×5, we need to pad each edge with two pixels. We need 
not worry about the details because the DL framework will do that for us.

Let us now go back to Figure 7-4 and consider the behavior of all neurons in a single 
channel. This grid of neurons now creates something called a feature map for the 
image. Each neuron will act as a feature (pattern) identifier and fire if the particular 
feature is found in the location covered by that neuron’s receptive field. For example, 
if the weights of the neuron are such that the neuron will fire if it identifies a vertical 
line, then if there is a long vertical line in the image, all the neurons that are centered 
on this vertical line will fire. (We will see an example of that in the next section.) 
given that all neurons in the map use identical weights, it does not matter where in 
an image a feature appears. The feature map will be able to identify it regardless of 
the location. This is the source of the translation invariance property.

One more thing to note is that each neuron does not receive inputs from all 
pixels in the image. That is, it is not a fully connected network, but it is sparsely 
connected. Clearly, this is beneficial from an efficiency perspective because fewer 
connections will lead to fewer computations. It also seems intuitively wrong that 
a neuron should be so specialized that it needs to consider every single pixel in 
the image to classify an object. After all, the boat image in Figure 7-2 should be 
classified as a ship regardless of whether the sky is cloudy, the sun is visible, or 
the waves are higher on the water. Having one neuron for every such condition 
would not be efficient. From that perspective, having neurons that simply look at 
smaller pieces of the image does make sense.

The number of neurons needed to cover the image is primarily affected by 
the stride.

A neuron in a convolutional layer is sparsely connected.
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Combining Feature maps into a 
Convolutional Layer

The ability to detect only a single feature, such as a vertical line, would be very 
limiting. To classify different kinds of objects, the network also needs to be able 
to identify horizontal lines, diagonal lines, and perhaps colored blobs or other 
primitive building blocks. That is addressed by arranging the convolutional layer 
into multiple channels (feature maps). That is, similarly to how we described that 
an image has three channels (each corresponding to a color), a convolutional 
layer has multiple output channels. Each channel corresponds to a specific 
feature, such as a vertical line, a horizontal line, a diagonal line, or a purple blob.

We illustrate this in Figure 7-6 with a convolutional layer with four output 
channels. Each channel acts as a single feature map identifying a specific feature 
at any location in the image. The bottom-most channel can identify vertical lines. 
The next channel can identify horizontal lines, and the two top channels can 
identify diagonal lines, one channel for each orientation. Each channel consists 
of 3×6 neurons (indicated by the numbers 3 and 6 in the figure), but only excited 
neurons are explicitly drawn as black dots on each feature map. you can see how 
the excited neurons correspond to patterns in the input image that match the 
feature that the channel is capable of identifying.

Input
image

Vertical

Horizontal

Diagonal 1

Diagonal 2

One
convolutional

layer with
four output
channels

6

3

Figure 7-6 A single convolutional layer with four channels and 18 neurons for 
each channel. Each dot represents an excited neuron.
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The figure does not indicate the size of the kernels or the stride, but it appears 
that the number of neurons in each channel is smaller than the number of pixels 
in the input image, as the size of the four rectangles is smaller than the size of the 
input image rectangle. This is a common arrangement.

It is easy to get confused with the terminology here because each of these 
channels kind of seems like a “layer” of neurons, but the proper terminology 
is “channel” or “feature map,” and all the output channels together form a 
single convolutional layer. In the next section, we show how to stack multiple 
convolutional layers on top of each other. Each convolutional layer receives inputs 
from multiple input channels and produces multiple output channels. All the 
channels in a single convolutional layer have the same number of neurons, and all 
neurons in a channel share weights with one another. However, different channels 
in the same layer have different weights.

Although we have talked about explicit features that the channels will identify, 
such as horizontal lines, vertical lines, and diagonal lines, we do not need to 
explicitly define these features. The network will learn what features to look for 
during the training process.

Combining Convolutional and Fully 
Connected Layers into a Network

We have now seen the basic structure of a convolutional layer, and it is time 
to see how to combine multiple layers into a network. First, we note that the 
number of output channels for a convolutional layer is decoupled from the 
number of input channels. The number of input channels will affect the number 
of weights for each neuron in each output channel, but the number of output 
channels is simply a function of how many neurons we are willing to add to our 
convolutional layer. We can stack convolutional layers on top of each other, and 
the output channels of one layer feed the inputs of the next layer. In particular, if 
a convolutional layer has N channels, then the neurons in the subsequent layers 
will have N×M×M inputs (plus bias) where M×M is the kernel size. The feature 
maps for this subsequent layer now represent combinations of the features in 

A convolutional layer consists of multiple channels or feature maps. All 
neurons within the same channel share weights.



CHAPTER 7 CONvOLuTIONAL NEuRAL NETWORKS APPLIED TO ImAgE CLASSIFICATION

182

the previous layer. We can envision a feature classifier that combines the outputs 
from multiple channels and thereby fire on more complex geometries consisting 
of a combination of colored blobs and vertical, horizontal, and diagonal lines.

Figure 7-7 illustrates such a network, where the first convolutional layer identifies 
low-level features and the second convolutional layer then combines these 
features into more complex features. This is followed by a fully connected layer 
with a softmax function, used to classify the image as being one of N different 
classes, such as a dog or a peacock (we explore this in more detail shortly).

Other features
Blob of color z
Blob of color yy
Blob of color x

135 degree diagonal lineg g
45 degree diagonal line

Horizontal line
Vertical line

Eye
Nose
Ear
Tail

Dog Peacock

Input image

Convolutional
layer

Convolutional
layer

Fully connected layer
with softmax

Figure 7-7 Convolutional neural network built from two convolutional layers and 
one fully connected layer
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As you can see in the figure, the resolution (number of neurons per channel) of 
the first convolutional layer is lower than the resolution of the image. Further, the 
resolution in the second convolutional layer is lower than the resolution of the 
first convolutional layer. One way of achieving that is to use a stride greater than 
1, and another way is to use max pooling as described further down. First, let 
us consider why we want this to be the case. If you think about it, it makes much 
sense. As we get deeper into the network, the layers identify increasingly complex 
features. A more complex feature typically consists of more pixels. For example, 
a single pixel cannot represent a complex object like a nose (or if it does, it cannot 
be identified because the resolution is too low).

The arrangement in Figure 7-7 is aligned with this reasoning. Because of the way 
neurons are connected in a hierarchy, a single neuron in the top convolutional 
layer is affected by a large number of pixels in the input image. That is, the 
receptive field of a neuron in the top convolutional layer is greater than that of 
a neuron in the bottom convolutional layer, even if they have the same kernel 
size. That arrangement enables neurons in the top layer to detect more complex 
features.

A more detailed illustration of this is shown in Figure 7-8. To make it easier to 
visualize, the figure shows a 1D convolution and only a single channel in each 
convolutional layer. The input image consists of four pixels (green in the figure). 
The neurons in the first layer have kernel size of 3 and stride of 1. The neurons in 
the second layer have a kernel size of 2 and stride of 2, but their receptive fields 
are four pixels. These two receptive fields overlap to some extent. That is, each 
neuron in the output layer summarizes more than half of the input image.

BA Kernel size = 2
Stride = 2

Kernel size = 3
Stride = 1

Pixels (padded)

Receptive field
for neuron A

Receptive field
for neuron B

Figure 7-8 How the receptive field increases deeper into the network. Although 
the neurons in the topmost layer have a kernel size of only 2, their receptive fields 
are four pixels. Note the padding of the input layer.
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The figure also illustrates the concept of padding the input image (white 
circles), which in this case results in the output of the first layer having the 
same resolution as the input image before padding. In the figure, padding 
is applied only to the input image, but it can also be applied when stacking 
convolutional layers on top of each other. In fact, padding is often more 
important deeper into the network where the resolution is lower than for the 
input image.

Although we call the network a convolutional network, this does not mean that 
it consists only of convolutional layers. In particular, it is common to have one 
or more fully connected layers at the end of the network to combine all the 
features that the convolutional layers have extracted. given that the number of 
neurons in the later convolutional layers typically is smaller than in the first few 
layers, having some fully connected layers at the end is not too costly. It also 
gives the network more flexibility to discover less-regular structures than can 
be expressed by a convolutional layer. In the case of a classification problem, 
we typically want the last fully connected layer to have the same number of 
neurons as there are classes. We also want it to use the softmax output function 
so the output of the network can be interpreted as the probability that the image 
contains an object of the different classes.

Figure 7-9 illustrates how a neuron in the final fully connected layer can combine 
the features from the last convolutional layer. We first flatten the convolutional 
layer into a 1D array (a vector) because there is no concept of spatial dimensions 
for a fully connected layer. In the figure, this vector consists of 16 elements, as 
there are four channels with four neurons in each channel.

The figure shows how we think of a neuron that classifies the image as 
containing a peacock, by assigning high weights to all neurons that represent 
eyes and low weights to most other neurons. The thinking here is that the only 
animal that has a large number of eyes (or at least something that looks like 
eyes) is a peacock.

unless padding is used, the width and height of a layer will automatically be 
smaller than in the previous layer regardless of the stride. This is mostly a 
concern for deep into the network, where the width and height are small to 
begin with.
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Effects of Sparse Connections and 
Weight Sharing

Before moving on to our first CNN programming example, a few more things are 
worth mentioning about the effects of sparse connections and weight sharing in 
convolutional networks. There are two direct effects. First, sparse connections 
imply fewer computations per neuron (because each neuron is not connected to 
all neurons in the preceding layer). Second, weight sharing implies fewer unique, 
but not fewer total, weights per layer. With limited computer performance to 
simulate our network, the number of computations per neuron will determine 
the size of the networks we can build. Fewer computations per neuron enable 
us to build a network with more neurons than we could do with a fully connected 

EyeNoseEarTail

High
weights

Low
weights

Flattened convolutional layer

Peacock neuron in fully connected layer

Figure 7-9 How a neuron in the fully connected layer combines multiple features 
into an animal classification. (Source: Peacock image by Shawn Hempel, 
Shutterstock.)

Clearly, assuming that a peacock is the only creature with a lot of eyes, might 
be somewhat oversimplified, and the network might mistake a scary alien with 
17 eyes for a peacock. On the other hand, that could happen to a human too 
since most people do not expect to see a scary alien unless they happened to 
see a spaceship crash nearby.
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network. Fewer unique weights significantly limits the search space that our 
learning algorithm needs to consider. This enables the network to learn faster, 
assuming that a convolutional network is a good match for the problem type we 
are trying to solve. Image classification happens to be one problem type where 
this assumption is true.

Table 7-1 quantifies two properties for fully connected networks and 
convolutional networks. The first property is the number of unique weights 
for a layer, which affects how much memory is needed to store them as well 
as how big the search space is for the learning algorithm to navigate. A key 
property of the convolutional network is that the number of weights in a layer 
is only a function of the kernel size, the number of channels in the layer, 
and the number of channels in the previous layer. This is different than the 
fully connected network where the number of weights is a function of both 
the number of neurons in the layer as well as the number of neurons in the 
previous layer.

Both weight sharing and sparse connections reduce the number of unique 
weights and thereby the storage needed for the weights. However, only sparse 
connections reduce the amount of computation needed to evaluate the network. 
That is, even though multiple neurons share weights, we still need to compute 
the output of each of these neurons independently because they do not have the 
same input values. In addition, although the storage for the weights themselves 

Table 7-1 Comparison of Number of Weights and Number of Calculations for a 
Fully Connected Network and a Convolutional Network

PROPERTY FULLY CONNECTED CONVOLUTIONAL

Number of unique 
weights to store/learn

Product of

• Number of neurons in layer

• Number of neurons in previous 
layer

Product of

• Number of channels in layer

• Kernel size

• Number of channels in previous 
layer

Number of calculations 
to evaluate network

Product of

• Number of neurons in layer

• Number of neurons in previous 
layer

Product of

• Number of neurons in layer

• Kernel size

• Number of channels in previous 

layer

Note: The number of neurons in a convolutional layer depends on the number of channels as well as the stride.
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is reduced due to weight sharing, we still need to store the outputs for all the 
neurons from the forward pass to later be used in the backward pass of the 
learning algorithm. To summarize, the main advantages of convolutional layers 
are the reduced number of computations per neuron, the reduction in search 
space for the learning algorithm, and the reduction in storage required for the 
weights.

To make this discussion more concrete, we can compute the number of weights 
for a convolutional layer and compare it to the number of weights for a fully 
connected layer with the same number of neurons. In this example, we assume 
that the layer is applied to an image (i.e., it is the first layer in the network). We 
consider two different sizes of input images: One is the CIFAR-10 size of 32×32×3 
and the other is a higher resolution format of 640×480×3. We arbitrarily assume 
that the convolutional layer has 64 channels, and we assume a stride of 2 (i.e., the 
width and height of the layer is half of the width and height of the input image). 
In addition to looking at two different image sizes, we look at two different kernel 
sizes: 3×3 and 5×5. We start with computing a number of properties for this 
example in Table 7-2.

Sparse connections reduce the total number of weights and thereby reduce 
the number of computations, the number of weights to store, and the number 
of weights to learn. Weight sharing reduces the number of unique weights 
and thereby reduces the number of weights to store and to learn but not the 
number of computations.

Table 7-2 Calculations of a Number of Properties for the Network Example

PROPERTY COMPUTATION NOTES

Number of channels 64 Network parameter.

Weights for 3×3 kernel 3*3*3+1 = 28 The third factor (3) represents 
the three channels in the 
previous layer. The +1 is the bias 
weight.

Weights for 5×5 kernel 5*5*3+1 = 76 See above.

Continued
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We can now use these properties to compute the resulting number of unique 
weights and total weights both for a fully connected layer and a convolutional 
layer. This is shown in Table 7-3.

Table 7-3 Number of unique and Total Weights for a Fully Connected Layer 
Compared to a Convolutional Layer with Stride of 2 for Kernel Sizes 3×3 and 5×5

UNIQUE WEIGHTS 
CONVOLUTIONAL

TOTAL WEIGHTS 
CONVOLUTIONAL

UNIQUE WEIGHTS 
FULLY CONNECTED

TOTAL WEIGHTS 
FULLY CONNECTED

Image: 
32×32×3

3×3: 1,792

(28*64)

3×3: 458,752

(28*16,384)

50,348,032

(3,073*16,384)

50,348,032

(3,073*16,384)

5×5: 4,864

(76*64)

5×5: 1,245,184

(76*16,384)

PROPERTY COMPUTATION NOTES

Weight per fully connected 
neuron applied to low resolution 
image

32*32*3+1 = 3,073 See above.

Weight per fully connected 
neuron applied to high resolution 
image

640*480*3+1 = 921,601 See above

Neurons in layer for low 
resolution image

(32/2)*(32/2)*64 = 16,384 The denominator (2) represents 
the stride. The factor 64 
represents the number of 
channels.

Neurons in layer for high 
resolution image

(640/2)*(480/2)*64 = 
4,915,200

See above.

Note: These computed numbers are used in the next table (Table 7-3).

Table 7-2 Calculations of a Number of Properties for the Network  
Example (Continued)

Continued
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One key thing that sticks out is the small number of unique weights for the 
convolutional layer, and that the number is not dependent on the resolution of the 
input image. Clearly, it should be easier to train a network if the algorithm needs 
to figure out 2,000 to 5,000 weights instead of 50 million or 5 trillion(!) weights. 
This is especially true if the assumption that neurons should look only at local 
pixels is correct, in which case the learning algorithm would need to spend huge 
amounts of computational power to figure out that all but 5,000 of our 5 trillion 
weights should be zero!

The second thing that sticks out is that the total number of weights for the fully 
connected network is multiple orders of magnitude larger than that for the 
convolutional network. Therefore, evaluating the fully connected network requires 
considerably more compute performance.

As we move deeper into the network, the number of weights for a convolutional 
layer typically increases. Conversely, the number of weights for a fully connected 
layer typically decreases. Therefore, the benefit of using a convolutional layer in 
terms of reducing the number of weights is not as significant for the layers deep 
into the network. The reasons for these effects are the following: The width and 
the height of the layers tend to decrease deeper into the network, which reduces 
the number of weights for a fully connected subsequent layer but does not affect 
a convolutional layer. Further, layers deep inside the network often have many 
more channels than the three color channels from the input image. Layers with 
hundreds of channels are not unusual. The number of weights in a subsequent 
layer increases with the number of input channels, regardless whether the 

Table 7-3 Number of unique and Total Weights for a Fully Connected Layer 
Compared to a Convolutional Layer with Stride of 2 for Kernel Sizes 3×3  
and 5×5 (Continued)

UNIQUE WEIGHTS 
CONVOLUTIONAL

TOTAL WEIGHTS 
CONVOLUTIONAL

UNIQUE WEIGHTS 
FULLY CONNECTED

TOTAL WEIGHTS 
FULLY CONNECTED

Image: 
640×480×3

3×3: 1,792

(28*64)

3×3: 1.38×108

(28*4,915,200)

4.53×1012

(921,601*4,925,200)

4.53×1012

(921,601*4,925,200)

5×5: 4,864

(76*64)

5×5: 3.74×108

(76*4,915,200)

Note: The computations used to arrive at each number are enclosed in parenthesis and use the computed 

properties from Table 7-2.
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subsequent layer is fully connected or convolutional. That is, the number of 
weights for the neurons in the convolutional layer is no longer as small as in the 
initial layers. Therefore, from a computational perspective, it is reasonable for the 
layers at the end of the network to be fully connected. Further, the benefit of a fully 
connected layer will be more significant than in the initial layers, because the final 
layers are tasked with making a classification of the entire image. They therefore 
benefit from being able to access information from all the regions of the image.

Programming Example: Image 
Classification with a Convolutional 
Network

We will now build a CNN with a similar topology to what we have just described. It 
will consist of two convolutional layers followed by a single fully connected layer. 
The details are found in Table 7-4.

Table 7-4 Description of the CNN

LAYER INPUT IMAGE CONVOLUTIONAL CONVOLUTIONAL
FULLY 
CONNECTED

Channels 3 64 64 1

Neurons/pixels 
per channel

32 × 32 = 1,024 16 × 16 = 256 8 × 8 = 64 10

Kernel size N/A 5×5 3×3 N/A

Stride N/A 2, 2 2, 2 N/A

Weights per 
neuron

N/A 5 × 5 × 3 + 1 = 76 3×3 × 64 + 1 = 577 64 × 64 + 1 = 
4,097

Total number of 
neurons

N/A 64 × 256 = 16,384 64 × 64 = 4,096 10

Trainable 
parameters

N/A 64 × 76 = 4,864 64 × 577 = 36,928 10 × 4,090 = 

40,970
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The stride is described in two dimensions because it is not strictly required to 
have the same stride in each direction. For the two convolutional layers, the 
number of trainable parameters is not a function of the number of neurons per 
layer but only of the number of channels and weights per neuron. For the fully 
connected layer, the number of trainable parameters does depend on the number 
of neurons. This has the effect that, although the first layer has four times as 
many neurons as the second layer and 1,638 times as many neurons as the last 
layer, it has only approximately 10% as many trainable weights as each of the two 
subsequent layers.

Code Snippet 7-2 shows the initialization code for our CNN program. Among the 
import statements, we now import a new layer called Conv2D, which is a 2D 
convolutional layer like the ones we just described. We load and standardize the 
CIFAR-10 dataset.

Code Snippet 7-2 Initialization Code for Our Convolutional Network

import tensorflow as tf

from tensorflow import keras

from tensorflow.keras.utils import to_categorical

from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import Dense

from tensorflow.keras.layers import Flatten

from tensorflow.keras.layers import Conv2D

import numpy as np

import logging

tf.get_logger().setLevel(logging.ERROR)

EPOCHS = 128

BATCH_SIZE = 32

# Load dataset.

cifar_dataset = keras.datasets.cifar10

(train_images, train_labels), (test_images,

    test_labels) = cifar_dataset.load_data()

# Standardize dataset.

mean = np.mean(train_images)

stddev = np.std(train_images)

train_images = (train_images - mean) / stddev  
test_images = (test_images - mean) / stddev
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The actual model is created by Code Snippet 7-3, which first declares a 
Sequential model and then adds layers. We are now working with a 2D 
convolutional layer, so there is no need to start with a Flatten layer because the 
dimensions of the input image already match the required dimension of the first 
layer. We tell the layer that the input shape of the image is 32×32×3. We also state 
that we want 64 channels, a kernel size of 5×5, and a stride of 2, 2. The parameter 
padding=’same’ needs some further explanation. As described previously, 
padding is needed if we want the number of neurons in a channel to match the 
number of pixels in the input image (or neurons in a channel of the previous 
layer). There are a number of different padding choices, where ’same’ means 
that it is sufficiently padded to end up with exactly the same number of neurons 
as there are inputs to the layer.2 The actual amount of padding depends on the 
kernel size, but Keras takes care of computing this for you if you specify ’same’. 
We specify the neuron type as ReLu because that has been shown to be a good 
activation function. We do not specify the number of neurons in the layer explicitly 
because that is fully defined by all the other parameters. The combination of 
padding=’same’ and strides=(2,2) results in half as many neurons in 
each dimension as in the previous layer (i.e., 16×16 neurons per channel because 
the input image has 32×32 pixels).

2. It will only be the same number of neurons if a stride of (1, 1) is used. In reality, we typically use a 
different stride, which is applied after the padding.

print('mean: ', mean)

print('stddev: ', stddev)

# Change labels to one-hot.

train_labels = to_categorical(train_labels,

                              num_classes=10)

test_labels = to_categorical(test_labels,

                             num_classes=10)

Code Snippet 7-3 Create and Train the Convolutional Neural Network

# Model with two convolutional and one fully connected layer.

model = Sequential()

model.add(Conv2D(64, (5, 5), strides=(2,2),

                 activation='relu', padding='same',

                 input_shape=(32, 32, 3),
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The next convolutional layer is similar but with a smaller kernel size. There is 
no need to specify the input shape—it is implicitly defined by the outputs of the 
previous layer. The number of neurons per channel is implicitly defined as 8×8 
because the previous layer was 16×16 outputs per channel, and we choose a 
stride of 2, 2 for this layer as well.

Before we can add the fully connected (Dense) layer, we need to flatten (convert 
from three dimensions to a single dimension) the outputs from the second 
convolutional layer. We use softmax activation for the fully connected layer so 
we can interpret the one-hot encoded outputs as probabilities.

We finally select the categorical_crossentropy loss function and use the 
Adam optimizer in our call to compile. Before we train the model, we print out a 
description of the network with a call to model.summary().

_____________________________________________________

Layer (type)              Output Shape              Param #

=========================================================

conv2d_1 (Conv2D)         (None, 16, 16, 64)        4864

                 kernel_initializer='he_normal',

                 bias_initializer='zeros'))

model.add(Conv2D(64, (3, 3), strides=(2,2),

                 activation='relu', padding='same',

                 kernel_initializer='he_normal',

                 bias_initializer='zeros'))

model.add(Flatten())

model.add(Dense(10, activation='softmax',

                 kernel_initializer='glorot_uniform',

                 bias_initializer='zeros'))

model.compile(loss='categorical_crossentropy',

              optimizer='adam', metrics =['accuracy'])

model.summary()

history = model.fit(

    train_images, train_labels, validation_data =

    (test_images, test_labels), epochs=EPOCHS,

    batch_size=BATCH_SIZE, verbose=2, shuffle=True)
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_____________________________________________________

conv2d_2 (Conv2D)         (None, 8, 8, 64)          36928

_____________________________________________________

flatten_1 (Flatten)       (None, 4096)              0

_____________________________________________________

dense_1 (Dense)           (None, 10)                40970

=========================================================

Total params: 82,762

Trainable params: 82,762

Non-trainable params: 0

If you look at the number of parameters, you will see that it matches what we 
computed in Table 7-4. This is a good sanity check to ensure we defined the 
network the way we intended and did not make any subtle mistakes. Figure 7-10 
shows the training error and test error for 128 epochs with a batch size of 32.

Figure 7-10 Training and test error for CIFAR-10
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We see that our network is good at memorizing but not at generalizing. The 
training error approaches 0, and the test error stays a little bit below 40%. This 
error is still much better than pure guessing, which would result in a 90% test 
error. Still, it seems like we could do better, so we go through an exercise similar 
to the one we did for the housing dataset in Chapter 6, “Fully Connected Networks 
Applied to Regression,” and come up with a number of configurations. In reality, 
this is an iterative process in which the result from one configuration provides 
guidance for what configuration to try next, but here we simply present the most 
interesting configurations after the fact. They are summarized in Table 7-5. First, 
some brief notes on the notation are in order. We denote a convolutional layer as 
beginning with capital letter C followed by three numbers indicating the number 
of channels, width, and height. We denote a fully connected layer by a capital 
letter F followed by the number of neurons. We have a third layer type, maxPool, 
which is described later in the chapter. For the convolutional layers, we specify 
kernel size (K) and stride (S), where we use the same size in both directions; 
for example, “K=5, S=2” means a 5×5 kernel and a stride of 2×2. For each layer 
we also specify the type of activation function. For some layers, we also apply 
dropout after the layer, which we elaborate more on shortly.

Table 7-5 Configurations for Our CNN Experiments

CONFIGURATION LAYERS REGULARIZATION TRAIN ERROR TEST ERROR

Conf1 C64×16×16, K=5, S=2, ReLu

C64×8×8, K=3, S=2, ReLu

F10, softmax, cross-entropy 
loss

2% 39%

Conf2 C64×16×16, K=3, S=2, ReLu

C16×8×8, K=2, S=2, ReLu

F10, softmax, cross-entropy 
loss

33% 35%

Conf3 C64×16×16, K=3, S=2, ReLu

C16×8×8, K=2, S=2, ReLu

F10, softmax, cross-entropy 
loss

Dropout=0.2

Dropout=0.2

30% 30%

Continued
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Configuration 1 is the configuration that we showed results for in Figure 7-10. We 
see significant overfitting with a training error of 2% but a test error of 39%.

Such significant overfitting often indicates that the model is too complex, where 
the number of parameters is large enough to memorize the entire training set. We 
therefore created configuration 2 with a smaller kernel size for both convolutional 

CONFIGURATION LAYERS REGULARIZATION TRAIN ERROR TEST ERROR

Conf4 C64×32×32, K=4, S=1, ReLu

C64×16×16, K=2, S=2, ReLu

C32×16×16, K=3 S=1, ReLu

maxPool, K=2, S=2

F64, ReLu

F10, softmax, cross-entropy 
loss

Dropout=0.2

Dropout=0.2

Dropout=0.2

Dropout=0.2

14% 23%

Conf5 C64×32×32, K=4, S=1, ReLu

C64×16×16, K=2, S=2, ReLu

C32×16×16, K=3 S=1, ReLu

C32×16×16, K=3 S=1, ReLu

maxPool, K=2, S=2

F64, ReLu

F64, ReLu

F10, softmax, cross-entropy 
loss

Dropout=0.2

Dropout=0.2

Dropout=0.2

Dropout=0.2

Dropout=0.2

Dropout=0.2

20% 22%

Conf6 C64×32×32, K=4, S=1, tanh

C64×16×16, K=2, S=2, tanh

C32×16×16, K=3 S=1, tanh

C32×16×16, K=3 S=1, tanh

maxPool, K=2, S=2

F64, tanh

F64, tanh

F10, softmax, mSE loss

4% 38%

Note: mSE, mean squared error; ReLu, rectified linear unit.

Table 7-5 Configurations for Our CNN Experiments (Continued)
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layers along with fewer channels in the second convolutional layer. Doing so 
decreased the test error from 39% to 35% and increased the training error to 
33%, which indicates that we have resolved most of the overfitting problem.

Another thing to consider is to apply a regularization technique. In Chapter 6, we 
introduced dropout as an effective technique to use for fully connected networks. 
If you read the paper that introduced this technique (Srivastava et al., 2014), you 
might be somewhat surprised that we would suggest dropout for a convolutional 
network. The paper states that convolutional layers have a strong regularizing 
effect themselves and that dropout is not necessarily a good technique for such 
networks. It was later shown that various forms of dropout can work well for 
convolutional networks (Wu and gu, 2015). As our experiment shows, just adding 
20% regular dropout after each of the two convolutional layers reduces both 
training and test errors to 30%.

The next step, now that overfitting has been resolved, is to see if we can increase 
the model size again to further improve the results. In configuration 4, we do a 
number of changes. We increase the kernel size for the first convolutional layer 
to 4×4 and change the stride to 1, which results in each channel having 32×32 
neurons. We add a third convolutional layer with a kernel size of 3×3 and stride of 1.

The convolutional layer is followed by a max pooling operation, which needs 
some further description. As we saw previously, when we increase the stride 
in a convolutional layer, the number of neurons needed to cover the previous 
layer is decreased. However, we need to be careful to not make the stride larger 
than the kernel size because we will otherwise ignore some pixels/neurons in 
the previous layer. An alternative way of reducing the number of neurons but 
without having large kernel sizes is to use max pooling. The max pooling operation 
combines a number of neurons, such as every 2×2 neurons, and outputs the max 
value of these four neurons. This reduces the number of outputs from a channel 
(and thereby from the entire layer) by a factor of four in the case of 2×2 pooling 
but without any weights that need to be learned. The effect of this is that the 
spatial resolution is decreased; that is, we no longer know as accurately where 
in an image a specific feature was found but we still know that the feature was 
present in the region that pooling was applied to. This is often acceptable because 
the exact location might not matter. For instance, two different dogs will have a 
different distance between their ears. Hence, as long as the approximate location 
of each ear is correctly identified, this will be sufficient to be able to determine 
whether or not they are the building blocks of a dog. Figure 7-11 illustrates which 
neurons a pooling layer combines and relates that to which neurons are combined 
by a convolutional layer.
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A convolutional layer combines the outputs of C×K×K neurons, where C is the 
number of channels in the previous layer and K×K is the kernel size. This is shown 
in the left part of Figure 7-11 for the case of three channels and a 2×2 kernel size. 
That is, the outputs from 12 neurons are bundled together and input to a single 
neuron in the next convolutional layer. On the other hand, a max pooling layer does 
not combine output neurons across channels, but only within a channel. The result 
is that the output of the pooling operation/layer has the same number of channels 
as the preceding layer. The number of neurons in each channel is lower, as that is 
one purpose of introducing the max pooling operation. Consider the example to the 
right in Figure 7-11. It has a stride of 2, and therefore the width and height of the 
output of the pooling layer is half of the width and height of the preceding layer. The 
way to combine each group of four neurons in a max pooling layer is to simply pick 
the output of the neuron with the max value instead of feeding all the outputs into 
a neuron. 

Convolution
kernel = 2x2, stride = 2

Previous layer that the
convolution/pooling is

applied to

2x2 pooling
stride = 2

Figure 7-11 How the inputs of a pooling layer relate to the inputs of a convolutional 
layer. Note that the figures do not represent the convolutional and pooling layers 
but the preceding layer. The left figure shows that the convolution will bundle all the 
channels together and use these combined channels as input to each neuron. The 
pooling layer considers each channel in the preceding layer in isolation.

max pooling is a way to reduce the size of a layer and can be used as an 
alternative to a large stride.

max pooling combines the output from a set of neurons within a channel, as 
opposed to a convolutional kernel, which combines the output from a set of 
neurons from multiple channels. max pooling is sometimes considered as 
being a part of a convolutional layer and sometimes considered to be a 
separate layer.
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Let us now go back to our configuration 4 to see how and why we use the max 
pooling layer. We have placed it right before the first fully connected layer, and it 
thereby reduces the number of inputs to each of the fully connected neurons by 
a factor of four while still enabling the fully connected neurons to receive signals 
from the most excited neurons in the previous layer. max pooling layers can be, 
and commonly are, used before convolutional layers as well.

The max pooling operation is sometimes viewed as a part of the preceding 
convolutional layer, just as was shown for AlexNet in Figure 7-1, where it was 
stated as a property of two of the layers. An alternative view is to consider it to be 
its own layer in the network. We find that a little bit more intuitive, so that is how 
we typically draw it. However, note that when comparing depth of two models, it 
is common to count only layers that have trainable parameters (weights), so the 
pooling layers are typically not counted in such cases. In Keras, a max pooling 
operation is treated as a separate layer just as we have described it here, and it 
can be added with a single line of code:

model.add(MaxPooling2D(pool_size=(2, 2), strides=2))

Finally, our configuration 4 has an additional fully connected layer with 64 
neurons before the output layer. All in all, this more complex model brings down 
the training error to 14% and the test error to 23%.

Encouraged by these results, we go even deeper in configuration 5, where we 
add another convolutional layer. We end up with a training error of 20% and a test 
error of 22%. The implementation of this more complex model can be found in 
Code Snippet 7-4. To make the code shorter, we do not explicitly select initializers 
but just use the default initializer for the different layers.

Code Snippet 7-4 model Definition of Configuration 5

from tensorflow.keras.layers import Dropout

from tensorflow.keras.layers import MaxPooling2D

…

model = Sequential()

model.add(Conv2D(64, (4, 4), activation='relu', padding='same',

                 input_shape=(32, 32, 3)))

model.add(Dropout(0.2))

model.add(Conv2D(64, (2, 2), activation='relu', padding='same',

                 strides=(2,2)))
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Finally, in Chapter 5, we claimed that there were a number of things that 
enabled DL, such as ReLu activation functions and cross-entropy loss instead 
of mean squared error (mSE). To validate this, we took the same network as in 
configuration 5 and replaced the ReLu activation functions by tanh. Further, we 
changed the loss function from cross-entropy to mSE and removed the dropout 
regularization because that was invented after the DL boom started. The results 
are shown as configuration 6. Curiously, the test error is only 38%. While not 
as good as the 22% that we achieved with configuration 5, it is by no means a 
disaster given that picking a category at random would give a 90% test error. 
In other words, we can achieve impressive results with techniques that have 
been known since the 1980s. goodfellow, Bengio, and Courville (2016) argue 
that a key barrier to success for neural networks was psychological, in the 
sense that people did not believe in the idea enough to spend the time needed 
to experiment with different architectures and parameters to achieve good 
results. Obviously, much more patience would have been needed in the 1980s 
than today given how computer performance has evolved. It takes only a couple 
of minutes to run 20 epochs for configuration 5 on a modern gPu in 2021, while 
it takes some 10 hours to run on the CPu of a laptop from 2014. Now think 
about trying to run it in 1989, which would imply running on a single-core CPu 
running well below 100 mHz. This lends credibility to the notion that the real 
enabler of DL was the emergence of low-cost, gPu-based, high-performance 
computing.

model.add(Dropout(0.2))

model.add(Conv2D(32, (3, 3), activation='relu', padding='same'))

model.add(Dropout(0.2))

model.add(Conv2D(32, (3, 3), activation='relu', padding='same'))

model.add(MaxPooling2D(pool_size=(2, 2), strides=2))

model.add(Dropout(0.2))

model.add(Flatten())

model.add(Dense(64, activation='relu'))

model.add(Dropout(0.2))

model.add(Dense(64, activation='relu'))

model.add(Dropout(0.2))

model.add(Dense(10, activation='softmax'))



CONCLuDINg REmARKS ON CONvOLuTIONAL NETWORKS

201

Concluding Remarks on Convolutional 
Networks

In the beginning of this chapter, we briefly mentioned that convolutional layers 
were used in a network known as LeNet (LeCun et al., 1990). The original version 
of LeNet consisted of five layers, and a later version, known as LeNet-5, consisted 
of seven layers (LeCun, Bottou, Bengio, et al., 1998). LeNet-5 was deployed 
commercially and thereby demonstrated that the field of neural networks had 
progressed beyond just being academic research.

We also showed a figure of AlexNet in the beginning of this chapter. It is shown 
again in Figure 7-12 to make this section easier to follow. The input image is 
224×224 pixels with three channels. It feeds a convolutional layer with 55×55 
neurons per channel, using 11×11 convolution kernels with a stride of 4. The first 
layer has 96 channels, but the implementation splits them across two gPus, so 
each gPu handles 48 channels. The second layer uses a 5×5 kernel and a stride 
of 1 but also does 2×2 max pooling and thereby ends up with 27×27 neurons per 
channel. It consists of 256 channels split across two gPus. After reading this 
chapter, it should be straightforward to continue to follow the figure from left to 
right deeper into the network.

Figure 7-12 The AlexNet convolutional network. (Source: Krizhevsky, A., 
Sutskever, I., and Hinton, g., “ImageNet Classification with Deep Convolutional 
Neural Networks,” Advances in Neural Information Processing Systems 25 [NIPS 
2012], 2012.)



CHAPTER 7 CONvOLuTIONAL NEuRAL NETWORKS APPLIED TO ImAgE CLASSIFICATION

202

Figure 7-13 shows AlexNet in a style that is consistent with figures of other 
networks in this book. For convolutional layers, we use the notation kernel/stride/
channels. That is, 11×11/4/48 represents a layer using an 11×11 kernel with a 
stride of 4 and 48 channels. For max pooling, we use a similar notation, but the 
number of channels is not specified because it is always the same as the number 
of input channels.

If you read the paper by Krizhevsk and colleagues (2012), you will also see that 
some of the convolutional layers apply a normalization scheme before the max 

Conv 11x11/4/48

Max-pool 3x3/2

Conv 5x5/1/128

Max-pool 3x3/2

Fully connected 4096

Softmax 1000

Input image 224x224x3

Conv 3x3/1/192

Conv 3x3/1/192

Conv 5x5/1/128

Max-pool 3x3/2

Fully connected 4096

Conv 11x11/4/48

Max-pool 3x3/2

Conv 5x5/1/128

Max-pool 3x3/2

Conv 3x3/1/192

Conv 5x5/1/128

Max-pool 3x3/2

Figure 7-13 Network architecture for AlexNet
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pooling layer. Finally, the fully connected softmax layer consists of 1,000 neurons 
that are able to classify the input image into one of the 1,000 categories provided 
by the ImageNet input dataset, as opposed to only 10 categories in CIFAR-10.

Although LeNet, LeNet-5, and AlexNet were important milestones and deep 
networks at the time, they are now considered to be fairly shallow networks and 
have been replaced by more complex and better performing networks, some of 
which are described in Chapter 8, “Deeper CNNs and Pretrained models.”

If you are interested in how the convolutional networks described in this chapter 
relate to the mathematical concept of convolution, consider reading Appendix g 
before moving on to Chapter 8.
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Chapter 8

Deeper CNNs and 
Pretrained Models

In this chapter, we describe three convolutional neural networks (CNNs): 
VGGNet, GoogLeNet, and ResNet. Both VGGNet (16 layers) and GoogLeNet 
(22 layers) are from 2014 and were close to human-level performance on the 
ImageNet dataset. VGGNet has a very regular structure, whereas GoogLeNet 
looks more complex but has fewer parameters and achieved higher accuracy. 
In 2015, both of these networks were beaten by ResNet-152 consisting of 152(!) 
layers. However, in practice, most people have settled on using ResNet-50, 
which consists of “only” 50 layers. As a programming example, we show how to 
use a pretrained implementation of ResNet and how you can use it to classify 
your own images. The chapter ends with a discussion of some other aspects 
of CNNs.

This chapter contains much detailed information about these specific networks. 
Readers who are not specifically interested in image classification might find 
some of these details uninteresting. If you feel that way and would prefer to move 
on to recurrent neural networks and language processing, then you can consider 
just skimming this chapter at this point. Still, you might want to pay attention 
to the concepts of skip connections and transfer learning because they are 
referenced in later chapters. 
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VGGNet
VGGNet was proposed by the University of Oxford’s Visual Geometry Group (VGG). 
A primary objective of the paper that described the architecture was to study the 
effect that network depth has on accuracy for CNNs (Simonyan and Zisserman, 
2014). To do so, they came up with an architecture in which the depth of the 
network can be adjusted without having to adjust other parameters, such as 
kernel size and stride. They used a fixed kernel size of 3×3 in all convolutional 
layers and a stride of 1. When using a stride of 1, the width and height of a 
subsequent layer become the same as the width and height of the preceding 
layer, assuming that appropriate padding is used. This makes it possible to make 
a VGGNet arbitrarily deep without running into the problem that the width and 
height of layers deep in the network become too small.

Just as for other CNNs, we still do want the height and width to decrease for 
layers deeper into the network because we want each neuron to identify larger-
sized features by hierarchically combining smaller features. VGGNet solves 
this by using max pooling layers between groups of convolutional layers. Thus, 
a typical building block in a VGGNet is a group of convolutional layers of the 
same size, followed by a max pooling layer. This is shown in Figure 8-1, which 
illustrates a building block consisting of two convolutional layers and one 
max pooling layer. To make it possible to visualize it, we assume a very small 
input image size (8×6 pixels), but in reality, we would work with larger images. 
Similarly, the example in the figure has a very limited number of channels 
compared to a real network.

The figure can be a little confusing at first, so let us walk through each step. 
We start at the bottom with an image with 8×6 pixels, each pixel having three 
color channels. The white patches on that image illustrate how 3×3 pixels are 
combined by a single neuron in the subsequent convolutional layer. The kernel 
operates on all three color channels. The white patches also illustrate that the 
convolutional layer uses a stride of 1 in both dimensions. The convolutional layer 
consists of four channels, which results in the 8×6×4 output dimensions, which is 
represented by the bottom-most set of blue boxes in the figure. The white patches 
on top of these blue boxes show how outputs from this layer are then combined 
by a single neuron in the second convolutional layer. The second convolutional 

VGGNet uses stride 1 to maintain width and height dimensions across multiple 
layers.
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layer is represented by the next set of blue boxes. They are pulled apart a 
little in the illustration to enable showing how its outputs are combined by the 
subsequent max pooling layer. The max pooling layer operates on each channel 
in isolation. Finally, the topmost set of blue boxes illustrates how the max pooling 
layer resulted in a reduced number of dimensions to 4×3×4.

Compared to the first couple of layers in AlexNet, which have kernel sizes of 11×11 
and 5×5, the VGGNet kernel size 3×3 is relatively small. However, if you consider 
a group of layers together, then 3×3 kernels in adjacent layers will act as a single 
kernel with larger size. For example, a single neuron in the second of a group of 

3x3 kernel, stride = 1

Conv output: 8x6x4

Input image: 8x6x3

Conv output: 8x6x4

Max-pool output: 4x3x4

VGG building
block

3x3 kernel, stride = 1

Channel
increase

Width/height
decrease

No
dimension

change

Max-pool 2x2/2

Conv 3x3/1/4

Conv 3x3/1/4

2x2 pooling, stride = 2

Figure 8-1 VGG building block. The left part of the figure illustrates the output 
dimensions of each layer. It also shows how a kernel from the next layer is 
applied to the preceding layer. The convolution kernels are applied across all 
channels in the preceding layer, whereas the max pooling operation is applied 
channel-wise. Note the padding used by the convolutional layers where the kernel 
operates on missing pixels. The right part of the figure describes the details of 
each layer (kernel size/stride/output channels).
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two layers will have a receptive field of 5×5 with respect to the input to the first 
layer because the neuron receives input from 3×3 neurons, which in turn cover 
an area of 5×5 pixels. Similarly, if we stack three layers, then neurons in the third 
layer will have receptive fields of 7×7 with respect to the input of the first layer.

The different configurations that were studied in the VGGNet paper all start with 
convolutional layers with 64 channels. For each max pooling layer, the width and 
height of the next layer is halved, and the subsequent convolutional layer doubles 
the number of channels. The number of channels is capped at 512, after which 
the width and height is still halved for the next layer after pooling but the number 
of channels is kept constant. The neurons in all convolutional layers use ReLU as 
an activation function. Table 8-1 shows some of the different configurations that 
were evaluated in the paper. Reading the table from left to right, each change 
from the previous column is highlighted in bold. All the convolutions use a stride 
of 1. The kernel size and number of channels are stated in the table.

Some of the configurations use 1×1 convolutions, which consider only a single 
output from each channel in the preceding layer. At a first glance, this might seem 
odd. What can possibly be the benefit of doing a convolution over a single neuron? 
The thing to remember is that the convolution not only combines neighboring 
pixels/neurons but also combines pixels/neurons across multiple channels. 
We can use 1×1 convolutions to increase or decrease the number of channels 
because the number of output channels in a convolutional layer is independent of 
both the kernel size and the number of channels in the preceding layer. VGGNet 
does not make use of that property, but we will soon see that both GoogLeNet 
and ResNet do. Using 1×1 convolutions directly on the three-channel image input 
is uncommon. It is more common to use this operation deeper into the network 
where the number of channels is larger.

Some key results of the VGGNet study were that prediction accuracy did increase 
with model depth up to 16 layers but then flattened out to about the same for 
19 layers. Pooling layers were not included in these counts because they do not 
contain weights that can be trained. The best VGGNet classification configuration 
submitted to the ImageNet challenge 2014 resulted in a top-5 error rate1 of 
7.32%. This can be compared to 15.3% for AlexNet.

1. The top-5 error rate is defined as the percentage of test images where the correct category is not 
among the five categories that the network predicts as most probable.

1×1 convolutions can be used to increase or decrease the number of channels.
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Table 8-1 Four VGGNet Configurations*

11 WEIGHT  
LAYERS

13 WEIGHT 
LAYERS

16 WEIGHT 
LAYERS

19 WEIGHT 
LAYERS

Input RGB image (224×224×3)

Conv 3ë3/1/64 Conv 3×3/1/64

Conv 3ë3/1/64

Conv 3×3/1/64

Conv 3×3/1/64

Conv 3×3/1/64

Conv 3×3/1/64

2×2/2 max pooling

Conv 3ë3/1/128 Conv 3×3/1/128

Conv 3ë3/1/128

Conv 3×3/1/128

Conv 3×3/1/128

Conv 3×3/1/128 
Conv 3×3/1/128

2×2/2 max pooling

Conv 3ë3/1/256

Conv 3ë3/1/256

Conv 3×3/1/256

Conv 3×3/1/256

Conv 3×3/1/256

Conv 3×3/1/256

Conv 1ë1/1/256

Conv 3×3/1/256

Conv 3×3/1/256

Conv 3ë3/1/256

Conv 3ë3/1/256

2×2/2 max pooling

Conv 3ë3/1/512

Conv 3ë3/1/512

Conv 3×3/1/512

Conv 3×3/1/512

Conv 3×3/1/512

Conv 3×3/1/512

Conv 1ë1/1/512

Conv 3×3/1/512

Conv 3×3/1/512

Conv 3ë3/1/512

Conv 3ë3/1/512

2×2/2 max pooling

Conv 3ë3/1/512

Conv 3ë3/1/512

Conv 3×3/1/512

Conv 3×3/1/512

Conv 3×3/1/512

Conv 3×3/1/512 

Conv 1ë1/1/512

Conv 3×3/1/512

Conv 3×3/1/512 

Conv 3ë3/1/512

Conv 3ë3/1/512

2×2/2 max pooling

Fully connected, 4,096

Fully connected, 4,096

Fully connected, 1,000 with softmax

*All convolutional layers use a stride of 1. The kernel size and number of output channels are stated in each cell. 

Conv, convolution.
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GoogLeNet
GoogLeNet is one specific incarnation of a network architecture named Inception 
(Szegedy, Liu, et al., 2014). At a first glance, it looks much more complex and 
irregular than AlexNet and VGGNet because it uses a building block called 
Inception module that itself is a small network. This is an example of a network-
in-network architecture in which a small network is used as building block inside 
of another network (Lin, Chen, and Yan, 2013). Lin and colleagues had previously 
studied a network-in-network architecture for CNNs in which each neuron in a 
convolutional layer was replaced by a small multilevel network, which served the 
same role as the single neuron. Just as for a traditional convolutional layer, this 
small multilevel network would share weights across the entire convolutional 
layer. The effect is a convolutional layer but where a single layer has the ability to 
classify features that are not linearly separable, which is not possible for a single 
traditional convolutional layer.

The Inception module used by GoogLeNet serves a different purpose in that it 
builds a convolutional layer that can simultaneously work with multiple receptive 
field sizes. Intuitively, this can be useful because it is seldom the case that an 
instance of a specific object (e.g., a cat) is always the same size in all images. 
Even in a single image, it might be that multiple instances of similar objects 
(a picture of multiple cats) appear to be of different sizes due to their distance 
from the camera. Thus, a network that has flexibility in its receptive field size 
can be useful. The Inception module addresses receptive field size flexibility by 
having multiple convolutional layers with different kernel sizes work side by 
side, each one producing a number of output channels. As long as the width and 
height of the output channels are the same, these output channels can simply 
be concatenated to appear as if they come from a single convolutional layer. For 
example, we might have 32 channels resulting from a convolutional layer with 
a 3×3 kernel size and 32 channels resulting from a layer with a 5×5 kernel size, 
and overall, the Inception module would output 64 channels. Figure 8-2 shows the 
conceptual architecture of the Inception module but using parameters that make 
it practical to visualize.

We start our description with the naïve version on the left. We see that the 
inception module consists of four different components: 1×1 convolution, 3×3 

The Inception module used in GoogLeNet provides the ability to work with 
multiple receptive field sizes.
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convolution, 5×5 convolution, and 3×3 max pooling. Just as for VGGNet, the chosen 
stride is 1, which results in the output from the Inception module having the 
same width and height as its input. In the networks we have seen so far, the max 
pooling operation was used to reduce the width and height of the output, but the 
max pooling operation in the Inception module keeps it constant by using a stride 
of 1. The reason for using max pooling in this way was simply that max pooling 
has shown to be useful in state-of-the-art networks. Therefore, it makes sense to 
try it in this way as well.

Let us now move on to the right side of Figure 8-2, which represents the 
architecture of the Inception module that was built instead of the naïve 
version, except that the parameters of the module in the figure are chosen to 
make it practical to visualize. A problem with the naïve version is the number 
of parameters that it introduces. As described in Chapter 7, “Convolutional 
Neural Networks Applied to Image Classification,” the number of weights for a 
convolutional layer is proportional to the kernel size and the number of channels 
in the preceding layer. Further, the number of output channels from a max pooling 
layer is the same as the number of input channels. To keep the number of weights 

Conv 1x1/1/2 Conv 1x1/1/1

NaÏve inception module Real inception module

Inputs

Outputs

Channel
concatenation

Conv 1x1/1/2 Conv 3x3/1/4 Conv 5x5/1/2 Pool 3x3/1
Conv 1x1/1/2

Pool 3x3/1

Conv 3x3/1/4 Conv 5x5/1/2 Conv 1x1/1/2

Figure 8-2 Inception module. Left: Naïve version. Note how the number of output 
channels from the pooling operation is the same as the number of input channels. 
Right: Real version with 1×1 convolutions that reduce number of weights for the 
wider convolutions and enable the number of output channels from the pooling 
operation to be independent of the number of input channels. The color coding 
has nothing to do with RGB in the original image but just indicates which module a 
channel originates from.
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low, the Inception module makes use of 1×1 convolutions before the 3×3 and 
5×5 convolutions, which results in fewer input channels to those convolutional 
kernels. Similarly, to avoid too many output channels, a 1×1 convolution is applied 
to the output of the max pooling operation. With these 1×1 convolutions, we have 
full control of the number of input channels to the 3×3 and 5×5 kernels as well as 
the total number of outputs from the Inception module and thereby, implicitly, the 
number of weights that need to be trained.

GoogLeNet makes use of another mechanism that we have not yet seen. To enable 
training of deeper networks, Szegedy, Liu, and colleagues (2014) added auxiliary 
classifiers at different points in the network. An auxiliary classifier is similar to 
what you typically would put at the top of the network, that is, a fully connected 
layer and a softmax layer2 that computes the probability for the different classes 
that we are trying to predict. Figure 8-3 illustrates how a network can be 
extended with auxiliary classifiers.

2. In reality, they made it a little bit more complicated than just these two layers, but that is not 
relevant for this discussion.

Conv

Max-pool

Inception

Max-pool

Inception

Max-pool

Inception

Fully-connected

Softmax

Conv

Max-pool

Max-pool

Max-pool

Inception

Fully-connected

Softmax

Fully-connected

Softmax

Fully-connected

Softmax

Input image Input image

Inception

Inception

Figure 8-3 Left: Baseline network based on Inception modules. Right: The same 
network augmented with auxiliary classifiers.
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The intent of these auxiliary classifiers is to be able to inject gradients at these 
intermediate points during training and thereby ensure that strong gradients 
propagate back to the first few layers. The auxiliary classifiers also encourage the 
initial layers of the network to be trained to behave much like they would behave 
in a shallower network. The GoogLeNet network is summarized in Table 8-2. 
Auxiliary classifiers are not shown.

Auxiliary classifiers inject gradients in the middle of the network during 
training.

Table 8-2 GoogLeNet Architecture*

Layer 
Type Details Output size

Input RGB image 224×224×3

Conv 7×7/2/64 112×112×64

Max pool 3×3/2 56×56×64

Conv 1×1/1/64 56×56×64

Conv 3×3/1/192 56×56×192

Max pool 3×3/2 28×28×192

Inception

1×1/1/64

1×1/1/96 1×1/1/16 3×3/1 pool

28×28×2563×3/1/128 5×5/1/32 1×1/1/32

Channel concatenation

Inception

1×1/1/128

1×1/1/128 1×1/1/32 3×3/1 pool

28×28×4803×3/1/192 5×5/1/96 1×1/1/64

Channel concatenation

Continued
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Max pool 3×3/2 14×14×280

Inception

1×1/1/192

1×1/1/96 1×1/1/16 3×3/1 pool

14×14×5123×3/1/208 5×5/1/48 1×1/1/64

Channel concatenation

Inception

1×1/1/160

1×1/1/112 1×1/1/24 3×3/1 pool

14×14×5123×3/1/224 5×5/1/64 1×1/1/64

Channel concatenation

Inception

1×1/1/128

1×1/1/128 1×1/1/24 3×3/1 pool

14×14×5123×3/1/256 5×5/1/64 1×1/1/64

Channel concatenation

Inception

1×1/1/112

1×1/1/144 1×1/1/32 3×3/1 pool

14×14×5123×3/1/288 5×5/1/64 1×1/1/64

Channel concatenation

Inception

1×1/1/256

1×1/1/160 1×1/1/32 3×3/1 pool

14×14×8323×3/1/320 5×5/1/128 1×1/1/128

Channel concatenation

Max pool 3×3/2 7×7/832

Inception

1×1/1/256

1×1/1/160 1×1/1/32 3×3/1 pool

7×7×8323×3/1/320 5×5/1/128 1×1/1/128

Channel concatenation

Table 8-2 GoogLeNet Architecture* (Continued)

Continued
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All in all, GoogLeNet demonstrated that it is possible to make use of more 
elaborate architectures to build deep, high-performing networks that have a 
relatively small number of weights. The 22-layer network that was submitted to 
the ImageNet classification challenge 2014 achieved a top-5 error of 6.67%, which 
was slightly better than VGGNet.

ResNet
Residual networks (ResNets) were introduced to address the observation that 
very deep networks are hard to train (He et al., 2015a). We previously discussed 
that one obstacle to training deep networks is the vanishing gradient problem. 
However, it turns out that deep networks still have problems learning even after 
addressing the vanishing gradient problem by properly initializing weights, 
applying batch normalization, and using rectified linear unit (ReLU) neurons inside 
of the network.

He and colleagues made the observation that when increasing the network depth 
from 18 to 34 layers, the training error increased even though they seemed to 
have healthy gradients throughout the network during the training process. 

Table 8-2 GoogLeNet Architecture* (Continued)

Inception

1×1/1/384

1×1/1/192 1×1/1/48 3×3/1 pool

7×7×1,0243×3/1/384 5×5/1/128 1×1/1/128

Channel concatenation

Avg pool 7×7/1 1,024

Dropout 40% 1,024

FC (softmax) 1,000 1,000

*Parameters for convolutional layers are shown as kernel size/stride/channels (i.e., 3×3/1/64 means 3×3 
kernel size, stride of 1, and 64 channels). Pooling layers have the same format but without the channel 
parameter. All convolutional layers use rectified linear unit (ReLU).
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If it was only the test error that increased, then that would be an indication of 
overfitting. An increased training error indicates that this more complex model 
simply did not manage to learn what it should be able to learn, given its strictly 
higher capacity than the 18-layer model. As an example, if the weights in the first 
18 layers of the 34-layer model had been identical to the weights in the 18-layer 
model and the weights in the final 16-layers had implemented the identity 
function, then the 34-layer model should be on par with the 18-layer model, 
but for some reason, the learning algorithm did not manage to arrive at such a 
solution.

ResNets solve this problem by using a mechanism known as a skip connection 
(described shortly) that makes it easy for the network to learn the identity 
function. Clearly, building a very deep network where many of the layers do 
not change the output would be wasteful, but the thinking here is that the best 
solution for the later layers might be close to the identity function because only 
minor variations are needed to improve the accuracy. Thus, by making it easy for 
layers to learn something close to the identity function, the learning algorithm will 
start its search for a solution in a space that is likely to contain a good solution.

Figure 8-4 shows a building block that can be used in a ResNet. It contains two 
stacked layers with an additional skip connection that bypasses most of the two 
layers. As you can see from the figure, the input (x) to the first layer is added to 
the weighted sum that is produced by the second layer before that sum is fed 
through the activation function in the second layer.

Assuming that the two layers are fully connected layers with the same number 
of outputs as there are inputs, the building block above can be represented in the 
following way using matrices and vectors:

ReLu W ReLu W2 1y x x( )( )= +

The innermost vector-matrix product (using matrix W
1
) represents the weighted 

sum computed by the first layer, and the output vector from the ReLU activation 
function from this first layer is then multiplied by matrix W

2
 to compute the 

weighted sum for the second layer. He and colleagues (2015a) hypothesized that 
with the this arrangement, it would be easy for the learning algorithm to push the 

ResNets aim to make it easier for the learning algorithm to find a good 
solution in the presence of very deep networks. It does so by introducing skip 
connections.
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weights close to 0 in cases where the identity mapping is the desired behavior. 
This would reduce the expression to simply

ReLu( )y x=

A reasonable question is whether the skip connection has somehow ruined our 
network and made it more linear, because it bypasses some of our nonlinear 
functions. However, this is not the case. Assume that we want the module to 
learn to act so the input to the second ReLU function models an arbitrary function 
f(x). Adding the skip connection changes the objective to instead try to learn the 
function f(x) − x, as the result will be the same after adding x to it. There is no good 
reason to believe that the network cannot model f(x) − x if it is able to model f(x), 
so the skip connection should not fundamentally change the type of functions the 
network can model.

We soon describe how to modify the building block shown in Figure 8-4 to work 
for convolutional layers as well as for cases when the number of outputs in a 
layer is different from the number of inputs, but we first walk through the basic 
architecture of a residual network. The basic structure is inspired by VGGNet in 
that it consists of groups of stacked convolutional layers built from 3×3 kernels 
using a stride of 1 and with the same number of output channels as there are 
input channels. Like VGGNet, a ResNet periodically introduces layers that halve 
the width and height while doubling the number of output channels. However, 
while VGGNet reduced the dimensions by using max pooling, ResNet uses a 

+

Layer 1

Layer 2

Skip-
connection

x

y = ReLu(x + W2ReLu(W1x))

W1x

ReLu(W1x)

x + W2ReLu(W1x)

W2ReLu(W1x)

ReLu 2

Weighted sum 2

Weighted sum 1

ReLu 1

Figure 8-4 Building block with skip connection
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stride of 2 for the convolutional layers where a dimensionality reduction is 
desired, and thereby the max pooling is not necessary. Another difference is 
that ResNet employs batch normalization after each convolutional layer. Both of 
these differences are independent of the skip connections that represent the key 
differentiator for a ResNet. Figure 8-5 shows the basic structure of a baseline 
network without skip connections (left) and a ResNet with skip connections (right).

As seen in Figure 8-5, there are two types of skip connection. The first one 
(solid line) connects an input of a given size to an output of the same size, and 
the second one (dashed line) connects an input of a given size to an output of a 

Conv 3x3/1/64

Conv 3x3/1/64

Conv 3x3/1/64

Conv 3x3/1/64

Conv 3x3/2/128

Conv 3x3/1/128

Conv 3x3/1/128

Fully-connected

Softmax

Input image

Conv 3x3/1/128

Conv 3x3/1/64

Conv 3x3/1/64

Conv 3x3/1/64

Conv 3x3/1/64

Conv 3x3/2/128

Conv 3x3/1/128

Conv 3x3/1/128

Fully-connected

Softmax

Input image

Conv 3x3/1/128

Change in
width, height
and channels

Figure 8-5 Left: Baseline network without skip connections. Right: ResNet-style 
network with skip connections. The dashed skip connection indicates that the 
input and output dimensions of the block do not match (details are discussed 
later in the chapter). The figure is simplified in that it does not explicitly show the 
activation functions being applied after the skip connections.
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different size. Both of them are applied to convolutional layers that have a 3D 
structure (width × height × channels). The following formula shows how the skip 
connection is defined for two convolutional layers when the inputs and outputs 
are of the same size, where w, h, and c represent the width, height, and number 
of channels. That is, we simply apply a skip connection from a given coordinate in 
the input tensor, to the corresponding coordinate in the output tensor.

y ReLu x F i w j h k ci j k i j k i j k ,        1 ,   1 ,   1,  ,  ,  ,  ,  ,  x( )( )= + = … = … = …

This is equivalent to how we defined it for a fully connected layer, but there the 
input was a 1D vector of values instead of a 3D tensor. In addition, instead of 
explicitly writing the formula for the layers, we have replaced that formula with 
the function F(x), which represents the first layer, including an activation function, 
followed by the second layer but without its activation function.

An obvious question is how this formula is changed when the output tensor is 
of a different dimensionality than the input tensor. In particular, in the case of a 
ResNet, the width and height of the output tensor is half that of the input tensor, 
and the number of channels is doubled. Here is one simple solution, where w, h, 
and c represent the width, height, and number of channels, with the addition of 
a subscript detailing whether a variable refers to the input or output tensor for 
the block:

y
ReLu x F i w j h k c

ReLu F i w j h k c c
i j k

i j k i j k out out in

i j k out out in out

,    1 ;   1 ;  1

,    1 ;  1 ;  1
,  , 

2 , 2 ,  ,  , 

,  , 

x

x

( )
( )

( )
( )

=
+ = … = … = …

= … = … = + …







Because the number of output channels is doubled, we simply have skip 
connections only to the first half of the output channels. In the formula, this is 
achieved by having the first line (with skip connections) apply to the first half of 
the output channels (1 through c

in
), and the second line (without skip connections) 

applies to the remaining half of the output channels (c
in
 + 1 through c

out
). Similarly, 

because the width and height are cut in half, we do skip connections only from 
every other element in the width and height dimensions in the input tensor 
(achieved by using the subscripts 2i and 2j in the first line in the formula).

It turns out that a better solution than having skip connections to only half of the 
output channels is to use a 1×1 convolution on the skip connection to expand the 
number of channels from the skip connection itself. Figure 8-6 shows both 
the case of having skip connections to only half of the output channels (left) and 
the case of expanding the number of channels of the skip connections using 1×1 
convolutions (right).
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There are alternative schemes to enable skip connections to all output channels 
as well as to avoid dropping some of the inputs. One more such scheme was 
shown in the original ResNet paper, and a more detailed evaluation can be found 
in a subsequent paper (He et al., 2016).

We are almost ready to present the final topology of some different ResNets, 
but first we present one more variation on the building blocks and point out one 
more omitted detail. To make it practical to use deep networks with even more 
channels, we can use a trick similar to the one we showed you for GoogLeNet. We 
can use 1×1 convolutions to temporarily reduce the number of channels to reduce 
the number of required weights in the 3×3 convolutional layer and then use 
another layer of 1×1 convolutions to increase the number of channels again. This 
building block is shown in Figure 8-7.

Conv 3x3/1/128

ReLu 2

Conv 3x3/1/128

ReLu 1

+

Skip
connection
with zero
padding

Skip
connection
without zero

padding

128 channel output

64 channel input

Conv 3x3/1/128

ReLu 2

Conv 3x3/1/128

ReLu 1

+

128 channel output

64 channel input

Conv 1x1/1/128

Figure 8-6 Skip connections for convolutional layers with more output channels than 
input channels. That is, the case that was represented as a dashed skip connection. 
Left: No skip connections (zero padding) to added channels. Right: Number of 
channels of skip connections is expanded by using 1×1 convolutions.

Details of more elaborate skip connections is a good topic for future reading 
(He et al., 2016).

ResNets use 1×1 convolution to reduce the number of weights to learn.
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The left part of the figure shows the building block in the simplified style that was 
used in Figure 8-5. The right part of the figure shows the actual implementation, 
where the skip connection gets added before the final activation function. It also 
shows that the building block uses batch normalization before the activation 
functions. Batch normalization applies to the simpler two-layer case (without 1×1 
convolutions) as well. Finally, in cases where the number of output channels is 
greater than the number of input channels, the skip connection would employ a 
1×1 convolution to avoid zero padding, as was shown in Figure 8-6.

Using these techniques, we can now define some different ResNet 
implementations, as shown in Table 8-3. Our table looks somewhat different 
than what is in the original paper because we explicitly spell out the layers with 
stride 2, whereas He and colleagues point it out in the textual description.

Using a combination of a few different ResNets, He and colleagues reported a 
top-5 error of 3.57% on the ImageNet classification challenge in 2015. That is, 
all in all, from the introduction of AlexNet in 2012, we have gone from a top-5 

ReLu

Conv 1x1/1/64

Conv 3x3/1/64

Conv 1x1/1/256

256 channel input

256 channel output

Reduced
number of
channels
reduces

number of
weights

Conv 3x3/1/64

Batch Norm

ReLu

256 channel input

256 channel output

Conv 1x1/1/64

Batch Norm

ReLu

Conv 1x1/1/256

Batch Norm

+

Figure 8-7 Building block that down samples number of channels internally. 
Left: Simplified view. Right: Actual implementation with batch normalization and 
activation functions.
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Table 8-3 ResNet Architecture*

34 LAYER 50 LAYER 152 LAYER

Conv 7×7/2/64

Max pool 3×3/2

Conv 
3 3/1/64
3 3/1/64

 ×
×









  × 3

Conv 

1 1/1/64
3 3/1/64
1 1/1/256

×
×
×

















 × 3 Conv 

1 1/1/64
3 3/1/64
1 1/1/256

×
×
×

















 × 3

Conv 
3 3/2/128
3 3/1/128

 ×
×









  × 1

Conv 

1 1/2/128
3 3/1/128
1 1/1/512

×
×
×

















 × 1 Conv 

1 1/2/128
3 3/1/128
1 1/1/512

×
×
×

















 × 1

Conv 
3 3/1/128
3 3/1/128

 ×
×









 × 3

Conv 

1 1/1/128
3 3/1/128
1 1/1/512

×
×
×

















 × 3 Conv 

1 1/1/128
3 3/1/128
1 1/1/512

×
×
×

















 × 7

Conv 
3 3/2/256
3 3/1/256

 ×
×









 × 1

Conv 

1 1/2/256
3 3/1/256
1 1/1/1,024

×
×

×
















 × 1 Conv 

1 1/2/256
3 3/1/256
1 1/1/1,024

×
×

×
















 × 1

Conv 
3 3/1/256
3 3/1/256

 ×
×









 × 5

Conv 

1 1/1/256
3 3/1/256
1 1/1/1,024

×
×

×
















 × 5 Conv 

1 1/1/256
3 3/1/256
1 1/1/1,024

×
×

×
















 × 35

Conv 
3 3/2/512
3 3/1/512

 ×
×









 × 1

Conv 

1 1/2/512
3 3/1/512
1 1/1/2,048

×
×

×

















 × 1 Conv 

1 1/2/512
3 3/1/512
1 1/1/2,048

×
×

×

















 × 1

Continued



223

PROGRAMMING EXAMPLE: USE A PRETRAINED ResNet IMPLEMENTATION

error of 15.3% using a 7-layer network to a top-5 error of 3.57% using networks 
containing up to 152 layers. To put this into context, the second-best submission 
in 2012 achieved a top-5 error of 26.2%, which illustrates the remarkable 
progress that DL enabled in this problem domain in just three years. We now 
move on to a programming example in which we use a pretrained ResNet 
implementation to classify images.

Programming Example: Use a 
Pretrained ResNet Implementation

Because training a model like ResNet-50 takes a long time, our programming 
example uses an already trained model. We use it to classify the dog and the cat 
shown in Figure 8-8.

We start with a number of import statements in Code Snippet 8-1.

Conv 
3 3/1/512
3 3/1/512

 ×
×









 × 2

Conv 

1 1/1/512
3 3/1/512
1 1/1/2,048

×
×

×

















 × 2 Conv 

1 1/1/512
3 3/1/512
1 1/1/2,048

×
×

×

















 × 2

Avg pool 7×7/1

FC softmax 1000

*Each building block inside of brackets employs skip connections and are replicated as stated in the table. Skip connections 
for layers that change the number of output channels use 1×1 convolutions, as illustrated in Figure 8-6 (right). Further, batch 
normalization is applied to the convolutional layers, as illustrated in Figure 8-7 (right).

Table 8-3 ResNet Architecture* (Continued)

Code Snippet 8-1 Initialization Code for Our ResNet Example

import numpy as np

from tensorflow.keras.applications import resnet50

from tensorflow.keras.preprocessing.image import load_img

from tensorflow.keras.preprocessing.image import img_to_array
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In Code Snippet 8-2, we then load one of the images with the function load_img, 
which will return an image in PIL format. We specified that we want the picture to 
be scaled to 224×224 pixels because that is what the ResNet-50 implementation 
expects. We then convert the image into a NumPy tensor to be able to present it to 
our network. The network expects an array of multiple images, so we add a fourth 
dimension; consequently, we have an array of images with a single element.

Code Snippet 8-3 shows how to load the ResNet-50 model, using weights 
that have been trained using the ImageNet dataset. Just as we did in previous 
examples, we standardize the input images because the ResNet-50 model 

Figure 8-8 Dog and cat that we will attempt to classify

# Load image and convert to 4-dimensional tensor.

image = load_img('../data/dog.jpg', target_size=(224, 224))

image_np = img_to_array(image)

image_np = np.expand_dims(image_np, axis=0)

Code Snippet 8-2 Load Image and Convert to Tensor

from tensorflow.keras.applications.resnet50 import \

    decode_predictions

import matplotlib.pyplot as plt

import tensorflow as tf

import logging

tf.get_logger().setLevel(logging.ERROR)
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expects them to be standardized. The function preprocess_input does that 
for us, using parameters derived from the training dataset that was used to train 
the model. We present the image to the network by calling model.predict() 
and then print the predictions after first calling the convenience method decode_
predictions(), which retrieves the labels in textual form.

The output for the dog picture is

predictions =  [[('n02091134', 'whippet', 0.4105768), 
('n02115641', 'dingo', 0.07289727), ('n02085620', 'Chihuahua', 
0.052068174), ('n02111889', 'Samoyed', 0.04776454), 
('n02104029', 'kuvasz', 0.038022097)]]

This means that the network predicted that the dog is a whippet (a dog breed) with 
41% probability, a dingo with 7.3% probability, a chihuahua with 5.2% probability, 
and so on. We happen to know that the dog in the picture is a mix of chihuahua, 
Jack Russell terrier, miniature poodle, and some other breeds, so at least the 
chihuahua prediction makes sense. This also illustrates why the approximately 5% 
top-5 error on the ImageNet challenge is human-level capability. The categories 
are extremely detailed, so it is hard to pinpoint the exact category of an object. 

Applying our network to the cat picture results in the following output:

predictions =  [[('n02123045', 'tabby', 0.16372949), 
('n02124075', 'Egyptian_cat', 0.107477844), ('n02870880', 

# Load the pretrained model.

model = resnet50.ResNet50(weights='imagenet')

# Standardize input data.

X = resnet50.preprocess_input(image_np.copy())

# Do prediction.

y = model.predict(X)

predicted_labels = decode_predictions(y)

print('predictions = ', predicted_labels)

# Show image.

plt.imshow(np.uint8(image_np[0]))

plt.show()

Code Snippet 8-3 Load Network, Preprocess and Classify Image
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'bookcase', 0.10175342), ('n03793489', 'mouse', 0.059262287), 
('n03085013', 'computer_keyboard', 0.053496547)]]

We see that the network correctly categorized the cat as a tabby as highest 
probability, and we also see that computer keyboard is on the list, which is also 
correct because there is a keyboard in the background. At first, it might seem 
somewhat confusing how the network could mistake our cat for a mouse (5.9% 
probability), but when we look up the category n03793489, it turns out that it 
refers to a computer mouse, and although there is no computer mouse in the 
picture, there are enough computer-related items to justify why the network 
would make such a mistake. This concludes our programming example, and 
we now move on to describe a few other related techniques to wrap up the topic 
of CNNs. 

Transfer Learning
In the preceding programming example, we used a pretrained model and applied 
it to the same type of problem that it was trained to address. In this section, we 
discuss two related techniques. The first is to start from a pretrained model 
and then train it further with your own data. The other option is to use parts of 
the pretrained model as a building block in your own model intended to solve a 
different, but related, problem.

Let us first look at the simple case of starting with a pretrained model and 
continuing to train it with your own data for the same problem type, also known as 
fine-tuning. This is often beneficial if your own dataset is limited in size. Even if you 
had a large dataset, starting from a pretrained model can still be beneficial because 
it can reduce the amount of time you need to spend training it with your own data.

In many cases, the problem at hand is related to, but still somewhat different 
from, what the network was originally trained to do. For example, let us assume 
that you have ten dogs (perhaps you are running a kennel), and you need to 
distinguish between different individuals, some of which are of the same breed. 
This is clearly a classification problem, but using a network trained for ImageNet 

We have finally managed to classify a cat picture! We sit back and reflect over 
how much of the total compute capability in the world is being used to classify 
cat pictures at this very moment.
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classification with its 1,000 classes will not work. Instead, you want a network 
that classifies an image as being one of ten specific dogs. This can be done 
using transfer learning. It involves taking a model, or parts of a model, that is 
trained for one task, and then using it to solve a different, but related, task. The 
idea is that some of the skills learned for the original task carry over (transfer) 
and are applicable to the new task. In this example, we could use a pretrained 
version of one of the convolutional networks in this chapter and replace some of 
the last layers with our own layers that end with a ten-output softmax layer. We 
would then train this model on our own dataset with the ten dogs that we want 
the network to classify. We would benefit from the fact that the convolutional 
layers already have the ability to recognize specific features that are useful for 
identifying different types of dogs. The process of taking a pretrained network and 
replacing some layers is illustrated in Figure 8-9.
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Inception

Max-pool

Inception

Max-pool
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Fully-connected

Softmax (1000)
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Max-pool
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Max-pool

Inception

Max-pool
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Fully-connected

Softmax (10)

Input image Input image

Pre-
trained
layers

New
problem-
specific
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Figure 8-9 Transfer learning. Left: An inception network. Right: A new network 
based on pretrained layers from the inception network but with the last couple of 
layers replaced by new layers that are trained for the new problem.
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A couple of practical details are worth mentioning. When training begins, the layers 
from the pretrained model have already been trained for many epochs on a large 
dataset, whereas the weights in the final layers are completely random. If we just 
go ahead and start training on our own dataset, there is a risk that the learning 
algorithm ruins the carefully trained weights from the pretrained model. Therefore, 
it is often a good idea to freeze these weights and only train the newly added layers. 
This also makes the training process faster because the number of adjustable 
parameters is significantly smaller. After training the model for a while with the 
pretrained layers frozen, a next step can be to fine-tune this model by unfreezing 
those layers and training for another few epochs with a smaller learning rate.

One powerful technique is to do pretraining of a model using an unsupervised 
learning technique that does not require labeled data. Large amounts of 
unlabeled data are much easier to obtain than labeled data. By pretraining on the 
unlabeled data, it is possible to train a model to learn to detect useful features 
without the cost of obtaining a large, labeled dataset. The pretrained model is 
then used to build the final model that is trained using a smaller labeled dataset. 
In Chapters 11 through 13, we will see examples of training a model to learn 
language structure from unlabeled data.

We do not go into more details about transfer learning in this section, but of you 
are interested, Zhuang and colleagues (2020) wrote a survey paper on the topic. 
We will also see an example of transfer learning in Chapter 16, “One-to-Many 
Network for Image Captioning,” where we use a pretrained VGGNet model as a 
building block in an image captioning network. 

Backpropagation for CNN and Pooling
We are using a DL framework, so we do not need to worry about how the 
backpropagation algorithm works with convolutional layers but understanding 
it is still interesting. It seems like if we use the algorithm unchanged, it is likely 
to break the invariant that all neurons in a channel have the same weights. 
Intuitively, we can ensure that this invariant still holds true by first ensuring 
that all of the neurons in a channel get the same values at initialization and then 
applying identical updates to all weights that are supposed to be identical to 
each other.

Transfer learning makes use of a pretrained model to build a model that is 
further trained for a different use case.
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Initializing them to the same values is trivial. The only question is how to 
determine what to use as the update value. If you think about it in the terms of 
the definition of the update value, this falls out naturally. The update value for 
a weight is simply the partial derivative of the loss function with respect to that 
weight. Let us now consider how a convolutional network is different from a fully 
connected network. The key difference is that if we write the overall equation 
for the convolutional network (including the loss function), each weight in the 
convolutional layers will appear multiple times in the equation, whereas a weight 
appears only once in the equation for the fully connected network. The resulting 
partial derivative with respect to a weight turns out to be a sum of the partial 
derivative with respect to each instance of the weight in the equation.

Computing the resulting update values with the backpropagation algorithm is 
straightforward. It is very similar to a fully connected network. We perform the 
forward and backward passes just like in the fully connected case. The difference 
is how to update the weights. Instead of updating a specific weight for a given 
neuron by the update value computed for that instance of the weight, we update 
the weight by the sum of the update values for all instances of that shared weight. 
We apply this same update value to all the copies of that weight in the network. 
In practice, an efficient implementation of a convolutional layer would not store 
multiple copies of all the weights but would instead share the weights in the 
implementation as well. So, the update process would need to update only that 
one single copy of the weights that is then used by all the neurons in the channel.

Apart from the issue of how to handle the weight sharing property for 
convolutional layers, we also need to address how to use backpropagation 
with the max pooling layers where the max operation clearly is not differentiable. 
It turns out that this is straightforward as well. We simply backpropagate the 
error only to the neuron that provided the input with the maximum value because 
the other inputs clearly do not affect the error.

Data Augmentation as a Regularization 
Technique

In Chapter 6, “Fully Connected Networks Applied to Regression,” we discussed 
the problem of networks failing to generalize and how that can be addressed 
with regularization. An effective technique to improve generalization is to simply 
increase the size of the training dataset. That makes it harder for the network to 
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memorize it and forces the network to find general solutions to the problem. A 
challenge with this technique is that collecting and labeling large datasets can 
often be costly. One way to address this challenge is to use dataset augmentation. 
The dataset is augmented by creating additional training examples from existing 
ones. Figure 8-10 shows an example: We took a single picture of a dog and 
modified it in various ways to create ten new pictures that can be used for 
training.

There are a couple of pitfalls worth mentioning. One is that for certain kinds of 
data, only some transformations are legal without changing the actual meaning 
of the data. For example, while it is perfectly fine to flip a dog upside down or 
mirror it, the same does not hold true for the MNIST digits. If you turn the digit 
6 upside down, it turns into a 9, and if you mirror a 3, it is no longer a 3. Another 
important issue is that data augmentation should be done after splitting the data 
into a training dataset and a test dataset instead of before that split. This is to 
avoid leaking information from the training dataset to the test dataset. Imagine if 

Figure 8-10 One original image and ten variations of the picture resulting in a ten 
times larger dataset
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you do the data augmentation before splitting the data into the two datasets. You 
might end up with the original image in the training dataset and a slight variation 
of this image in the test dataset. It is easier for the network to classify this slight 
variation correctly than to classify a completely different image correctly. You can 
therefore get overly optimistic results when you evaluate your network on your 
contaminated test dataset.

Mistakes Made by CNNs
Although there has been amazing progress in image classification, beginning 
with the AlexNet paper (Krizhevsky, Sutskever, and Hinton, 2012), subsequent 
discoveries have raised reasons for concern. As an example, in 2014 Szegedy and 
colleagues showed that it was possible to slightly perturb images in a way so that 
a human could not tell that the image was modified but a neural network could no 
longer correctly classify the image (Szegedy, Zaremba, et al., 2014). They named 
these modified images adversarial examples.

Another drawback came in 2019 when Azulay and Weiss (2019) showed that 
some popular modern networks were not robust to small translations (shifting 
of position) of just a few pixels, because using a stride larger than 1 ignores 
properties of the Nyquist sampling theorem. This serves as an example of how 
important it is to understand fundamental principles of the field to which you are 
applying DL.

Apart from problems with the model itself, CNNs are susceptible to problems 
caused by bias and lack of diversity in the training data. We touched on this 
when describing the MNIST dataset. A more recent example was when a popular 
photo app kept categorizing photos of people of color under the category gorillas 
(Howley, 2015). Although not intentional, this failure case underscores the 
importance of designing datasets that are diverse, unbiased, and complete.

Data augmentation is an effective regularization technique, but it comes with 
some pitfalls.

We are now in the timeframe of Terminator Genisys, and it seems somewhat 
reassuring that we just discovered ways of tricking the neural networks—that 
comes in handy when fighting the machines for survival of humanity.
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Reducing Parameters with Depthwise 
Separable Convolutions

We saw in Chapter 7 how the number of weights for a neuron in a convolutional 
layer depends on the kernel size and the number of channels in the preceding 
layer. The latter follows from the fact that the convolution operation is applied 
to all the channels in the preceding layer. That is, a neuron in a single channel in 
the output layer has M × K2 + 1 weights, where M is the number of channels in the 
input layer, K is the kernel size (K2 because it is 2D), and +1 is the bias weight. An 
output layer with N channels results in N × (M × K2 + 1) total number of weights. 
The number of weights is not dependent on the width and height of the layer due 
to weight sharing, but the number of computations is. For an output layer of width 
W and height H, the total number of multiplications is W × H × N × (M × K2 + 1).

Depthwise separable convolutions reduce the number of weights and 
computations while achieving similar results. This is done by breaking up the 
convolutions into two steps. Instead of having each output neuron do convolutions 
for each input channel, the first step is to compute convolutions for each input 
channel in isolation. This results in an intermediate layer with the same number 
of channels as in the input layer. The output layer then does 1×1 convolutions, 
also known as pointwise convolutions, across the channels in this intermediate 
layer. That is, instead of each output channel having its own weights for each 
input channel, a single set of shared weights is used for the convolutions over 
each input channel. The weights in the output layer then determine how to 
combine the results of those convolutions. 

This is illustrated in Figure 8-11. The left image shows a traditional convolution, 
where a single neuron computes a weighted sum of a region across all the input 
channels. The right image shows a depthwise separable convolution for which 
we first compute a weighted sum for each input channel and then a separate 
(pointwise) convolution computes a weighted sum of the previously mentioned 
weighted sums. The benefit of the depthwise separable convolution is not obvious 
from the picture because it depicts only a single output channel. The benefit 
becomes apparent when computing multiple output channels, in which case the 
depthwise separable convolutions only need to add more pointwise convolutions 
(three weights per additional output), whereas the traditional convolution needs to 
add more full convolutions (nine weights per additional output).

There are M × K2 + 1 weights for the first step and N × M + 1 weights for the 
second step. Assuming that the dimensions of both the input and output layers 
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are W × H, the total number of multiplications is W × H × (M × K2 + 1) + W × H × 
(N × M + 1). This turns out to be a significant reduction compared to the formula 
for the normal convolution in the beginning of this section. The first term for the 
depthwise separable convolution does not include the factor N, and the second 
term does not include the factor K2, both of which are substantial in magnitude.

It turns out that in many cases, the behavior of this operation works just as well 
as the regular convolution operation. Intuitively, this implies that the type of kernel 
(what weights to choose) to apply to a specific input channel does not depend 
much on which output channel it is producing a value for. We draw that conclusion 
because, for depthwise separable convolutions, all output channels share the 
kernel that is applied to a specific input channel. Clearly, this is not always 
true, and there is a range of design points between the depthwise separable 
convolution and the normal convolution. For example, the first step in the process 
can be modified to creating two or more channels per input channel. As often is 
the case in DL, this is yet another hyperparameter in your network architecture 
to experiment with. That is, anytime you are building a CNN, consider using a 
depthwise separable convolution instead. In many cases, it will result in a much 
faster network, that performs equally well from an accuracy perspective.

Before ending our description of depthwise separable convolutions, it is worth 
mentioning how they relate to the modules found in VGGNet, GoogLeNet, and 
ResNet. In many cases, these modules made use of 1×1 convolutions to do a 
channel reduction before applying the convolution operation. This is similar to 
the depthwise separable convolutions but in reverse order. One other difference 

Single convolution both
within channel and across

channels

Separate convolutions
within channel and across

channels

Figure 8-11 Left: Normal convolutions. Right: Depthwise separable convolutions. 
The figure illustrates only a single output channel and does not highlight the 
benefit.
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is that when doing a 1×1 convolution followed by another convolution operation, 
there is an activation function between the two convolutions, whereas this is not 
the case for the depthwise separable convolution.

Two examples of networks that use depthwise separable convolutions are 
MobileNets (Howard et al., 2017) and the Xception module (Chollet, 2016). The 
latter stands for Extreme Inception and is inspired by the Inception module used 
by GoogLeNet (Szegedy, Liu, et al., 2014), but it is based entirely on depthwise 
separable convolution layers.

Striking the Right Network Design 
Balance with EfficientNet

In this chapter, we have seen three examples of networks that explored the effect 
of network depth. Although important, network depth is just one of multiple 
dimensions to explore. In particular, two other key dimensions are the resolution 
(width and height) of each layer and the number of channels, as illustrated in 
Figure 8-12. Tan and Le (2019) pointed out that studying just one parameter in 
isolation is not likely to find the most efficient design.

In the paper, they set out to explore the design space with the goal of arriving at 
the best-performing design in a constrained environment. For example, given 

Number of
channels per layer

Number of neurons per
channel (resolution)

Number of
layers in
network

Figure 8-12 Three key parameters in a convolutional network. EfficientNets of 
different sizes maintain a constant relationship among these three parameters 
instead of scaling only a single dimension.
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a specific number of floating-point operations and bytes of memory, determine 
the combination of depth, resolution, and number of channels that yields the 
best-performing CNN. By experimenting with small enough networks to be able 
to do a thorough investigation of the design space, they arrived at a baseline 
design that is very efficient. They then showed that this network could be scaled 
up in a way that maintains the ratios among these three design parameters. The 
result was a more demanding but still efficient network. Scaling the baseline 
network to increasing sizes resulted in a family of networks named EfficientNets. 
Overall, EfficientNets have been shown to achieve levels of prediction accuracy 
similar to those of other popular networks but at an order of magnitude lower 
computational cost compared to previous CNN architectures.

Concluding Remarks on Deeper CNNs
Although the most recently described networks might seem complicated 
compared to what we have seen in previous chapters, even these networks 
are considered simple nowadays. Still, our opinion is that they represent core 
knowledge that anybody serious about learning about DL should have. Once you 
understand these networks, you are in a good position to read research papers 
about variations and combinations of these networks. Some such examples are 
Inception-v2 and v3 (Szegedy et al., 2016) and Inception-v4 (Szegedy et al., 2017). 
These three networks are deeper than Inception-v1 and result in better accuracy. 
A next step is Inception-ResNet (Szegedy et al., 2017), which is a hybrid network 
that combines Inception modules and skip connections. Inception-ResNet can 
be viewed as an Inception network that adds mechanisms inspired by ResNet. A 
different but related approach is ResNeXt (Xie et al., 2017), where NeXt refers to 
a next dimension. This architecture uses ResNet as a starting point but consists 
of a module with multiple paths similarly to what is done in the Inception module. 
The key difference is that all the paths in ResNeXt are identical as opposed to the 
Inception module’s heterogeneous architecture.

This discussion about CNNs has focused on classification—determining which 
kind of object is in an image—in which ResNet has surpassed human capabilities 
at least for the ImageNet classification challenge. However, classification is 
not the only problem type that CNNs can be applied to, and more challenging 
problems exist. Such problems include drawing bounding boxes around individual 
objects (detection) or pinpointing the specific pixels that correspond to an object 
(segmentation). Appendix B describes the three problems object detection, 
semantic segmentation, and instance segmentation in more detail.
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Work has also been done to gain a better understanding of how and why 
convolutional networks work. For example, a study by Zeiler and Fergus (2014) 
examined visualizing what features the different layers detect.

CNNs can also be applied to problem domains other than image analysis. For 
example, they have been used for sentiment analysis of text (Dos Santos and 
Gatti, 2014), where the task is to infer whether the sentiment of the text is positive 
or negative. In this case the input is 1D (a sequence of characters or words) 
instead of 2D as in the case of an image. This implies that the convolutional 
layers will be somewhat different. Instead of going into the details of how to 
apply convolutional networks to textual data, we move on to a different technique, 
known as recurrent neural networks (RNNs). This technique is commonly 
used with textual data and is the topic of Chapters 9, 10, and 11. If you think 
that convolutional networks and computer vision applications are exciting, 
consider reading Appendix B at this point. On the other hand, if you are eager 
to get to natural language processing applications as quickly as possible, then 
we recommend that you just continue reading the book. You can always read 
Appendix B later.
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Chapter 9

Predicting Time 
Sequences with 
Recurrent Neural 
Networks

In this chapter, we introduce another important neural network architecture 
known as the recurrent neural network (RNN). This architecture is useful when 
doing predictions based on sequential data, and especially for sequences of 
variable lengths. Before explaining what an RNN is, we provide some context by 
describing some of the problem types to which RNNs can be applied. We relate 
these problem types to the tasks we have already encountered in previous 
chapters.

Up until now, we have applied networks to two main categories of tasks. One 
was a regression problem in which the network predicted a real-valued variable 
based on a number of other variables, such as the example of a network that 
predicted the house price based on a number of variables associated with the 
house. The other type of task was a classification problem in which the network 
associated a data point, such as an image, with one of a number of possible 
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classes, such as car, ship, or frog. a special case of the classification problem is 
the binary classification problem in which there are only two classes, typically 
true or false. We used that for the XOR-problem. another example, which we 
have not studied, is to classify whether a patient has a certain disease given 
a number of input variables, such as gender, age, and the level of low-density 
lipoprotein (also known as ldl but not to be confused with the name of this 
book!). Time series (or sequence) prediction can be used in combination with any 
of these three problem types; see Table 9-1.

For each of these three examples, there are also variations with respect to 
the type of historical data that is used as input. Table 9-2 breaks down each 
example into three variations. The first row has historical values only for the 
variable it is trying to predict. The second row has historical values of the 
variable plus additional variables. The third row has historical values of other 
variables but not including the variable that it is trying to predict. at least 
one of the examples seems somewhat odd. Predicting the next characters 
of a sentence without knowing the beginning of the sentence in some sense 
modifies the problem from complete a sentence to generate a sentence from 
scratch.

In this chapter, we explore the sales forecasting problem, or in other words, a 
regression problem, by trying to forecast bookstore sales. We look at the case 
where the input data is only a single variable (historical book sales data). We 
also describe how to extend the mechanism to handle multiple input variables, 

Table 9-1 Sequential Prediction Problems and how They Relate to Their Nonsequential 
Counterpart

REGRESSION
BINARY 
CLASSIFICATION

MULTICLASS 
CLASSIFICATION

Nonsequential Estimate house 
price based on size 
and location

Provide disease 
diagnosis based on 
patient gender, age, 
and other variables

determine which 
digit a handwritten 
image depicts

Time series 
or sequential 
prediction

Predict next 
month’s customer 
demand based on 
historical sales data

Predict if it will rain 
tomorrow based on 
historical weather 
data

Predict the next 
character in a 
sentence
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such as the case where the input data consists of historical sales data for the 
item of interest as well as other related goods. The problem is illustrated in 
Figure 9-1.

In Chapter 10, “long Short-Term memory,” we learn how to overcome some of 
the limitations associated with the basic RNN by using more advanced units 
when building the network. In Chapter 11, “Text autocompletion with lSTm 
and Beam Search,” we then apply this more advanced network to the problem 
of doing autocompletion of text, similar to functionality that can be found in 
email clients and Internet search engines. Specifically, the problem type that 
we apply it to is the one represented by the top row in Table 9-2, where only 
the beginning of the sentence and no other context is available as input to the 
network.

Crystal
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s
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Future
book
sales

Historical data

Figure 9-1 Sales forecasting problem. The figure illustrates the case where we 
use both historical book sales data and general sales figures. The thinking is 
that general sales can indicate the overall state of the economy and might be 
beneficial when forecasting specific sales. a variation of the problem is to have 
only historical book sales as input variable.
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Some of these problems are about predicting the future, but not all sequential 
data is associated with time series. For instance, you could argue that in the case 
of autocompletion of natural language sentences, predicting the next word in a 
sentence has less to do with predicting the future and more to do with identifying 
the most probable ending of a sentence that has already been written but not 
yet seen. To simplify our discussion, we will generally talk about inputs to RNNs 
as being sequential in time, but we acknowledge that they can be applied to the 
more general case of any sequential data. In other words, RNNs try to solve the 
problem of predicting the next value or symbol in a sequence regardless of what 
the sequence represents. 

RNNs are used for prediction of sequences and can work with input data with 
variable length.

Table 9-2 Variations on the Prediction Problems*

MONTHLY SALES 
PREDICTION RAIN PREDICTION

NEXT CHARACTER 
PREDICTION

Input consists of 
historical values of 
only the variable 
we are trying to 
predict

historical sales 
data for the item of 
interest

historical rain data Beginning of 
sentence

Input consists of 
multiple variables, 
including historical 
values of the 
variable we are 
trying to predict

historical sales 
data for the item of 
interest, sales data 
for other related 
goods, or other 
economic indicators

historical data on 
rain, temperature, 
humidity, and 
atmospheric 
pressure

Beginning of 
sentence and 
context identifiers 
(e.g., topic of the 
book and style of 
paragraph)

Input consists of 
multiple variables 
but does not 
include historical 
values of the 
variable we are 
trying to predict

Sales data for 
related goods, and 
other economic 
indicators

historical data 
on temperature, 
humidity, and 
atmospheric 
pressure

Only context 
identifiers

(This seems like an 
odd case) 

*The three rows differ in the types of historical input data that is available.
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limitations of Feedforward Networks
a first idea for solving the sales forecasting problem is to just use a fully 
connected feedforward network1 with a linear output unit. We standardize this 
month’s book sales and, optionally, sales of other goods, then provide these 
numerical values to the network and hope that the network can use that data 
to learn to output the book demand for next month. This is shown in the left 
part of Figure 9-2. The superscript numbers in the figure denote the temporal 
relationship between data points. a data point with the superscript (t+1) refers to 
the observed data value one day after a data point with the superscript (t).

It seems likely that we will not have much luck with this approach because we 
provide the network with limited information. Sales numbers are likely seasonal, 
and the network will need access to multiple historical data points to pick up 
seasonal patterns. a second attempt at solving the prediction problem is shown in 
the right part of Figure 9-2.

1. In reality, using a simple feedforward network for sequence prediction is not a good idea. In 
particular, it is not tolerant to translations (shifts) in time. a better approach is to use a time-delay 
neural network (TdNN), which is a form of 1d convolutional network and is thereby translation 
invariant. however, we use the simple feedforward network in this discussion to avoid having to 
introduce the TdNN concept at this point of the book. If you are interested, appendix C contains a brief 
section about 1d convolution applied to sequential data.

Fully connected
feedforward network

B(t) G(t)

S(t+1) S(t+1)

Fully connected
feedforward network

B(t–m) G(t–m) B(t) G(t)

Figure 9-2 left: Feedforward network predicting demand using current-
month values as input. Right: Feedforward network predicting demand using 
values from multiple historical months as input. S represents predicted sales, 
B represents historical book sales and G represents historical general sales. 
The superscript represents time (month), where t is the current month.
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here we arrange the historical values into an input vector and present it to our 
feedforward network, which outputs a prediction of the book sales for the next 
month. This seems like a more promising approach, but the network still will 
not get access to all the historical data unless we make an infinitely wide input 
layer, which is not practical. One way to address this issue would be to compute 
a running average over the historical data points that are far back and provide 
this running average as an input to the network. Then, at least, the network has 
access to some representation of all the historical data. There are other ways 
to aggregate information about historical data, such as keeping track of the 
maximum observed value and the minimum observed value and feeding them 
as input into the network. It would be even better if, instead of choosing how to 
aggregate historical information, we could let the network learn its own internal 
representation of historical data. This is a key property of the RNN, which we 
describe in the next section.

Recurrent Neural Networks
a simple form of RNN can be created by connecting the outputs from a fully 
connected layer to the inputs of that same layer as shown in Figure 9-3. The 
figure shows a three-value input vector connected to a fully connected layer of 
four neurons. The bias values are omitted from the figure. along with the three 
inputs (and bias input), each neuron has four additional inputs. These inputs 
receive the output values from the four neurons but delayed by one timestep. 

h1 h2 h3 h4

X1

h1
(t–1)

N1

X2 X3

h2
(t–1) h3

(t–1) h4
(t–1)

N2 N3 N4

Figure 9-3 Fully connected recurrent neural network layer
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That is, at time t, they will receive the output values for time t−1. We denote 
these outputs as h for hidden because recurrent layers typically serve as hidden 
layers inside the network. although they are explicitly called out as hidden, these 
outputs are no different than outputs from a regular feedforward layer inside of a 
network.

Just as in a feedforward network, we can freely choose the number of hidden 
neurons independently of the number of elements in the input vector. however, 
the number of inputs (weights) to a single neuron is now a function of both the 
size of the input vector and the number of neurons in the layer. We can stack 
multiple recurrent layers after each other to create a deep RNN. We can also 
combine recurrent layers, regular fully connected feedforward layers, and 
convolutional layers in the same network.

mathematical Representation of a 
Recurrent layer

We previously described how a fully connected layer can be represented 
mathematically by multiplying the input vector by a weight matrix, where 
each row in the matrix represents the weights for a single neuron. With a tanh 
activation function this can be written as follows:

y tanh W( )x=

This formula assumes that the first element of the vector x contains the value 
1 and the weight matrix contains the bias weight. another option is to explicitly 
state all the bias weights as a separate vector that gets added to the vector 
resulting from the matrix multiplication and exclude the value 1 in vector x:

y tanh W( )x b= +

The matrix-vector multiplication Wx results in a vector with the same number of 
elements as there are neurons in the layer. Each element is the weighted sum of 
all the inputs to a single neuron (i.e., it is a partial weighted sum because it does 
not include the bias weight). The vector b also has the same number of elements 
as the number of neurons, and each element represents the bias weight for a 

The number of inputs to a neuron in an RNN layer is dependent both on the 
number of inputs to the layer (typically determined by the number of neurons in 
the previous layer) and the number of neurons in the layer itself.



ChaPTER 9 PREdICTINg TImE SEqUENCES WITh RECURRENT NEURal NETWORkS

244

neuron. Now summing Wx and b means doing elementwise addition. We add the 
bias weight to each partial weighted sum, and we end up with the full weighted 
sum for each neuron. Finally, tanh is also done elementwise on each weighted 
sum, resulting in an output value corresponding to each neuron.

let us now look at how we can represent a recurrent layer using matrices. 
The actual computations are the same, but now the input vector must be a 
concatenation of both the actual input vector x(t) as well as the previous output 
h(t-1). Similarly, the weight matrix now needs to contain weights for both the actual 
inputs and the recurrent connections. That is, the previous equation applies to a 
recurrent layer as well, but a more common way of expressing it is with separate 
matrices to make the recurrent connections more explicit:

h tanh W Ut ( )( ) 1 ( )h x b= + +( )−t t

Figure 9-4 shows how the elements in the matrices and vectors map to inputs, 
recurrent connections, weights, and biases in a recurrent layer. It is clear 
that using linear algebra is powerful in that it leads to a compact, yet precise, 
description of the connections. however, its drawback is that the equation makes 
it harder to visualize the actual connections, which in our opinion does limit the 
intuition gained, especially for beginners. We will continue working with figures 
because they provide additional value. Still, it is common to see matrix notation in 
the literature, so you should become familiar with this notation.

Wow! That is one compact way of summarizing the long textual description and 
complexity of Figure 9-3.

W = w2,1  w2,2  ...  w2,n
... ...

wn,1  wn,2  ...  wn,n

w1,1  w1,2  ...  w1,n

u2,1  u2,2  ...  u2,m

un,1  un,2  ...  un,m

u1,1  u1,2  ...  u1,m

U =b = 

b1
b2
...
bn

h1
h2
...
hn

x1
x2
...
xm

h =  x = 

Nn

wn,1

wn,n

h1
(t–1), h2

(t–1), ..., hn
(t–1)

un,1

un,m
bn

hn
(t)

x1
(t), x2

(t), ..., xm
(t)

N1

w1,1
w1,2 w1,n

h1
(t–1), h2

(t–1), ..., hn
(t–1)

u1,1

u1,2

u1,m
b1

h1
(t)

x1
(t), x2

(t), ..., xm
(t)

wn,2
un,2

Figure 9-4 mapping between weights and matrix elements



COmBININg layERS INTO aN RNN

245

Combining layers into an RNN
let us now consider how we can create a network to solve our sales forecasting 
problem. Figure 9-5 shows an initial attempt whereby we start with two inputs, 
representing historical book sales and overall consumer spending. We assume 
that they have been standardized by subtracting the mean and dividing by 
standard deviation. These are fed into a recurrent layer with four units, followed 
by a fully connected layer with two units and finally an output layer consisting of 
a single unit. With respect to activation functions, we want the output layer to be a 
simple linear unit (i.e., with no nonlinear activation function) because we want it to 
output a numerical value rather than a probability. For the hidden layers, we can 
choose any nonlinear activation function, just as for the other types of networks 
that we have studied.

Input layer

Output layer

Hidden fully
connected layer

Hidden fully connected
recurrent layer

X1

h1
(t−1)

N1

N1

N1

N2

N2 N3 N4

X2

h2
(t−1) h3

(t−1) h4
(t−1)

Figure 9-5 RNN to forecast book sales. The architecture assumes that we are 
using two input variables (x

1
 and x

2
).
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Computing the output from this network is done iteratively by first presenting 
the input vector for one month to the network and computing the hidden states, 
and then presenting the input vector for the next month and computing new 
hidden states, which are functions of the current hidden states and the new input 
vector. We do this for all historical data that we have access to and end up with 
a prediction for the next month. The network can use all this data and compute 
any useful internal representation of the historical data that it can use to predict 
the next month. From a learning perspective, the first layer has more weights 
than a feedforward layer with the same number of inputs. The reason is that each 
neuron has weights not only for the input vector x but also for the inputs that are 
fed by the output from the previous timestep h(t-1). In a later section, we describe 
how a network like this can be trained using backpropagation. The network we 
just described is only an illustration of the architecture. In a real application, we 
would likely use many more neurons in the hidden layers, but that is harder to fit 
in a figure. To address that visualization issue, we now show another way to draw 
and think about RNNs.

alternative View of RNN and Unrolling 
in Time

So far, we have explicitly drawn all the connections in our RNN, which is not 
practical as we move to deeper networks with many units in each layer. To 
work around this limitation, a more compact way of drawing networks is to let 
a node in the graph represent an entire layer, as in the left side of Figure 9-6. 
Just as in previous chapters, we use a rectangular node with rounded corners to 

Recurrent layer unrolled in timeRecurrent layer

h(n–1)

X(t) X(0) X(1) X(n)

h(t) h(0)

h(0)

h(1)

h(1)

h(n)

R R R R

Figure 9-6 left: Recurrent network drawn with one node representing an entire 
layer. Right: Recurrent layer unrolled in time.
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represent an entire layer by a node, as opposed to individual neurons, which are 
represented by circles. In this figure, the circular arrow represents the recurrent 
connections. With this notation, much information about the topology is implicit, 
so the figure needs to be accompanied by textual descriptions making it clear that 
it is fully connected as well as the number of neurons.

The right side of Figure 9-6 shows how a recurrent layer can be unrolled in time. 
By creating one copy of the recurrent layer for each timestep, we have converted 
the recurrent layer into a number of feedforward layers. Obviously, to do this, we 
need to know the number of timesteps, and the resulting network can no longer 
accept a variably sized input vector, which was one of the reasons that we defined 
the recurrent layer in the first place. a fair question is why we would want to do 
this unrolling. It turns out that unrolling can be useful both for reasoning about 
the network and when extending the backpropagation algorithm to work for 
recurrent networks.

We start by using the unrolled version for reasoning about how a recurrent 
layer relates to a fully connected feedforward network. as mentioned earlier, 
unrolling the recurrent layer results in a feedforward network. does that mean 
that the recurrent layer is equivalent to the feedforward network if we happen 
to know the length of the input sequence? Not quite, because one key distinction 
is discovered if we consider the weights of the network, which have been 
omitted from all the figures. In the feedforward network, we can have different 
weights for all connections, but in the recurrent layer, the weights need to be the 
same for each timestep. In particular, each horizontal arrow on the right side 
of Figure 9-6 maps to the same connection but for a different timestep, and the 
same applies to the vertical arrows. That is, just as convolutional layers have 
weight sharing within a layer, recurrent layers are like a feedforward network 
with weight sharing between layers. Just as weight sharing was beneficial for 
convolutional networks, recurrent networks have a similar benefit of requiring 
fewer weights to train. however, weight sharing also has a drawback, which is 
discussed in the next section, where we use the unrolled view of the network to 
describe how to use backpropagation to train RNNs.

an RNN can be unrolled in time and thereby converted to a feedforward 
network but with the restriction that the layers share weights with each other.
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Backpropagation Through Time
given that we have already shown how a recurrent layer can be redrawn as 
a feedforward network, it should be straightforward to understand how it 
can be trained using backpropagation. Once the network is unrolled, we can 
backpropagate the error in exactly the same way as we do for a feedforward 
network, although it might be somewhat computationally expensive in cases 
with long input sequences. Just as for the convolutional layer, we must ensure 
to take weight sharing into account when updating the weights. In other words, 
for each weight, the backpropagation algorithm will produce one update value 
for each timestep, but when we later want to update the weight, there is only one 
weight to update. This algorithm is known as backpropagation through time (BPTT). 
Werbos (1990) has written a more detailed description, which also contains links 
to papers in which the algorithm was first used. In practice, few people need to 
worry about the exact details of how BPTT works because the deep learning (dl) 
framework handles it. however, there are some implications that you do need to 
worry about; they are described next.

Figure 9-7 shows a deep RNN with m layers and n+1 timesteps. In addition to 
the normal weights that connect the layers (denoted w

1
, w

2
, . . ., w

m
), there are 

also recurrent weights connecting each layer to itself (denoted w
r1

, w
r2

, . . ., 
w

rm
). The figure also contains a grid of arrows illustrating how the error will 

propagate backward for the learning algorithm (ignore the fact that one path is 
colored red for now). What is shown is the error from the output node for the last 
timestep, propagating to the input weight for the first timestep, splitting up into 
multiple paths along the way. The vertical paths are no different from a regular 
feedforward network. however, there are now also horizontal paths where the 
error propagates backward through time.

We previously described the problem of vanishing gradients that was caused by 
multiplying the error by the derivative of the activation function in each layer of 
the network. This problem was caused by using S-shaped activation functions 
in which the derivatives approached 0 when the neurons became saturated. In 
addition, Bengio, Simard, and Frasconi (1994) showed that RNNs suffer from a 
different problem. To keep things simple, let us just consider the red arrow in 
Figure 9-7. let us also imagine that each rectangular node is a single neuron 

an RNN can be trained by doing backpropagation through time (BPTT).
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instead of a full layer of neurons. Finally, let us assume that these neurons have 
linear activation functions, so their derivatives are all 1. We can now compute the 
partial derivative with respect to weight w

1
 using the following formula, where the 

superscripts inside of parenthesis represent timesteps:

1   1 1     1 1
1

( )
3
( )

2
( )

1
( )

1
(2)

1
(1) (0)e

w
error w w w w w w xm

n n n
r
n

r r

∂
∂

= − ⋅ ⋅ ⋅… ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ … ⋅ ⋅ ⋅ ⋅ ⋅

Now consider the following subset of that formula that represents how the error 
propagates backward through the recurrent connections (horizontally in the 
figure), that is, through time:     11

( )
1

(2)
1

(1)w w wr
n

r r⋅ … ⋅ ⋅ ⋅ . 

due to weight sharing, all instances of w
r1

 are the same, so we can collapse that 
expression into 1wr

n , where the superscript n represents exponentiation instead 
of indicating a specific timestep. The exponent n represents the total number of 
timesteps for a certain training example and can be large. For example, a case 

X(0) X(1)

Layer 1

Layer 2

Layer m

Time

w1 w1 w1

w2 w2 w2

wm wm wm

wr2 wr2 wr2

wr1 wr1 wr1

wrm wrm wrm

w3 w3 w3

Back propagation through time

X(n)

Figure 9-7 gradient flow for backpropagation through time. The path of the error 
from the output node of the last timestep propagates backward both through 
the network (vertically) and through time (horizontally). The arrows represent 
computing the partial derivative with respect to weight w

1
 at the first timestep. 
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with three years of data with one data point every day will result in more than 
1,000 timesteps.

Consider what happens if you have a number that is smaller than 1 and multiply 
it by itself 1,000 times. It will approach 0 (i.e., a vanishing gradient). On the other 
hand, if the number is greater than 1 and you multiply it by itself 1,000 times, it 
will approach infinity (i.e., an exploding gradient). These vanishing and exploding 
gradients are caused by the weight sharing across timesteps, as opposed to 
vanishing gradients caused by saturated activation functions.

This example assumed that each node in Figure 9-7 was a single neuron and 
each recurrent connection consisted of a single weight. In reality, each node in 
the figure represents an entire recurrent layer, which consists of a large number 
of neurons. In other words, w

r1
 in the figure is a matrix because each layer has 

multiple neurons and each neuron has a vector of weights. That, in turn, implies 
that in reality, the preceding equation is a little bit more complex and should 
be stated using linear algebra. Conceptually, the description is still the same, 
but instead of looking at the value of a single weight, we need to consider the 
eigenvalue of the weight matrix. If the eigenvalue is less than 1, then the gradient 
runs the risk of vanishing. If the eigenvalue is greater than 1, then the gradient 
runs the risk of exploding. We revisit these problems in Chapter 10, but first, let 
us try out a programming exercise to get our hands dirty with RNNs.

Programming Example: Forecasting  
Book Sales

Our programming example uses only one input variable (historical book sales), 
but we also describe how to extend it to multiple input variables. We use historical 
sales data from the U.S. Census Bureau.2 The downloaded data will take the form 

2. https://www.census.gov/retail/index.html

Vanishing gradients in RNNs are caused both by the activation function and by 
the weights.

There is no need to worry even if you are not familiar with what an eigenvalue 
of a matrix is. as always, this is something you can consider for future reading.

https://www.census.gov/retail/index.html
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of one comma-separated values (.csv) file per product category. Each line will 
contain year/month and an amount representing the sales in millions of U.S. 
dollars. as opposed to previous examples, the model cannot directly consume this 
format, so the first step is to organize the data properly. Figure 9-8 shows what 
the RNN expects from a single training example.

The training example consists of a vector of arbitrary length, where each entry in 
the vector contains the input data for a single timestep. In our example, a timestep 
is equivalent to a month. depending on how we define our problem, we will have 
one or more input variables for each timestep. In addition to the input vector, each 
training example consists of a single expected output value. It represents the book 
sales for the month immediately following the most recent month in the input 
vector. This is the value we want to predict.

Book
sales

Output value

Time

Features

t

t–1

t–2

t–m

Input values

Book sales for
month (t+1)

0 or more optional
features, e.g., general

sales

Figure 9-8 Structure of a single training example for an RNN. Each row in the 
matrix consists of one value in the case where we use only book sales as input 
variable. Optionally, we can use more variables as input, in which case each row 
will contain more values.



ChaPTER 9 PREdICTINg TImE SEqUENCES WITh RECURRENT NEURal NETWORkS

252

let us now explore how many training examples we can create. We have 
HISTORY months’ worth of historical data, and we note that we can create at 
least one training example corresponding to each month. For example, the value 
for the last month can result in a training example where the input data consists 
of a vector of length (HISTORY-1). Similarly, the second month in the historical 
data can result in a training example where the input data consists of a vector of 
length 1 because there is only a single month preceding the second month of the 
season. We also have the extreme case of the first historical month with a zero-
length vector as input. For the more recent months, such as the last month, we 
could create multiple training examples. For example, in addition to the preceding 
example, we can also do the same but use only the M days preceding the final day, 
where M < (HISTORY-1).

We decide to create only a single training example from each month and to use as 
much history as possible for each training example. We further decide that each 
training example should have at least MIN months of history. We will end up with 
(HISTORY-MIN) examples, where the length of the input ranges between MIN 
and (HISTORY-1).

Now a key question is how we want to organize this data to be able to feed it 
to the neural network. a requirement from keras is that if we feed multiple 
training examples to keras at the same time (as we typically do), all the training 
examples need to be of the same length. That is, we need to either group our 
training examples in groups of identical lengths, or we need to feed each example 
individually to keras. another option, which is what we will use in this example, 
is to pad all examples with a specific value to become of equal length, and then 
we can send them all to keras at the same time. This kind of rubs us the wrong 
way when one of the key reasons for using the RNN is its ability to handle input 
examples of variable length. Further, how does the network know to ignore the 
special padded value? a simple answer is that it does not, and it will need to 
discover that in the learning process, which seems unfortunate but has been 
shown to work well in practice. later, we show mechanisms for masking out the 
padded values, so the network does not need to discover them. We also show how 
to truly use variable-length inputs, but for now, we keep things simple and just 
pad the beginning of each example with zeros, so they all get the same length. 
Figure 9-9 shows the desired organization of our input examples. 

Training examples of equal length can be combined into batches. Padding can 
be used to ensure that training examples are of equal length.
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That is, our input will be a tensor with N examples, each example consisting 
of M timesteps and each timestep consisting of values representing sales of 
one or more goods. The output is a 1d vector where each entry represents the 
sales value to predict. With all this background, we are ready to move on to the 
implementation. as in previous code examples, we present it piece by piece.

We start with initialization code in Code Snippet 9-1. First, we import modules 
that we need for the network. We also load the data file into an array. We then 
split the data into training data (the first 80% of the data points) and test data (the 
remaining 20% of the months).

t

0

0

0

0

t–1

t–2

t–m

Input example 1 Input example 2 Input example 3

Optional

0

0 0

0

Figure 9-9 mini-batch with three training examples. Training examples 1 and 2 
are padded with zeros to be the same length as input example 3. The empty cells 
represent valid feature values.

Code Snippet 9-1 Initialization Code for Our Bookstore Sales Prediction Example

import numpy as np

import matplotlib.pyplot as plt

import tensorflow as tf

from tensorflow import keras

from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import Dense
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Figure 9-10 shows a plot of all historical sales data. The data shows a clear 
seasonal pattern along with an indication that the overall trend in sales has 
changed over time, presumably due to increased online sales. The data starts in 
1992 and ends in march 2020. The drop for the last month was likely caused by 
the COVId-19 pandemic hitting the United States.

For completeness, the code to create the chart in Figure 9-10 is shown in Code 
Snippet 9-2.

Code Snippet 9-2 Code to Produce the Plot of historical Sales data

from tensorflow.keras.layers import SimpleRNN

import logging

tf.get_logger().setLevel(logging.ERROR)

EPOCHS = 100

BATCH_SIZE = 16

TRAIN_TEST_SPLIT = 0.8

MIN = 12

FILE_NAME = '../data/book_store_sales.csv'

def readfile(file_name):
    file = open(file_name, 'r', encoding='utf-8')

    next(file)

    data = []

    for line in (file):

        values = line.split(',')

        data.append(float(values[1]))

    file.close()

    return np.array(data, dtype=np.float32)

# Read data and split into training and test data.

sales = readfile(FILE_NAME)

months = len(sales)

split = int(months * TRAIN_TEST_SPLIT)

train_sales = sales[0:split]

test_sales = sales[split:]

# Plot dataset

x = range(len(sales))

plt.plot(x, sales, 'r-', label='book sales')
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When we looked at predicting Boston house prices, we introduced the concept 
of comparing the model with a significantly simpler model, which in that case 
was linear regression. The intent was to gain insight into whether our dl models 
provide value. For our book sales forecasting problem, we can create a simple 
model that predicts that the sales next month will be the same as the sales 
this month. Code Snippet 9-3 computes and plots this naïve prediction, and the 
resulting chart is shown in Figure 9-11.

Figure 9-10 historical bookstore sales from 1992 to 2020

plt.title('Book store sales')

plt.axis([0, 339, 0.0, 3000.0])

plt.xlabel('Months')

plt.ylabel('Sales (millions $)')

plt.legend()

plt.show()

Code Snippet 9-3 Code to Compute and Plot a Naïve Prediction

# Plot naive prediction

test_output = test_sales[MIN:]

naive_prediction = test_sales[MIN-1:-1]
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STaNdaRdIZE daTa aNd CREaTE TRaININg ExamPlES

It is worth noting that none of the preceding coding exercises have to do explicitly 
with dl or RNNs but are concerned only with obtaining and sanity-checking the 
dataset. It is commonly the case that there is much work involved in getting a 
good dataset before we can even start experimenting with feeding it into a model. 
The next step is to standardize the data points by subtracting the mean and 
dividing by the standard deviation of the training examples. Code Snippet 9-4 uses 
only training data to compute the mean and standard deviation.

Figure 9-11 Naive prediction of book sales

x = range(len(test_output))

plt.plot(x, test_output, 'g-', label='test_output')

plt.plot(x, naive_prediction, 'm-', label='naive prediction')

plt.title('Book store sales')

plt.axis([0, len(test_output), 0.0, 3000.0])

plt.xlabel('months')

plt.ylabel('Monthly book store sales')

plt.legend()

plt.show()
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In our previous examples, the datasets were already organized into individual 
examples. For example, we had an array of images serving as input values and an 
associated array of classes serving as expected output values. however, the data 
that we created is raw historical data and not yet organized as a set of training 
and test examples in the form that was previously illustrated in Figure 9-8 and 
Figure 9-9. This is the next step in our code example. Code Snippet 9-5 allocates 
tensors for the training data and initializes all entries to 0. It then loops through 
the historical data and creates training examples, then does the same thing with 
the test data.

# Standardize train and test data.

# Use only training seasons to compute mean and stddev.

mean = np.mean(train_sales)

stddev = np.mean(train_sales)

train_sales_std = (train_sales - mean)/stddev

test_sales_std = (test_sales - mean)/stddev

Code Snippet 9-4 Standardize the data

# Create training examples.

train_months = len(train_sales)

train_X = np.zeros((train_months-MIN, train_months-1, 1))

train_y = np.zeros((train_months-MIN, 1))

for i in range(0, train_months-MIN):

    train_X[i, -(i+MIN):, 0] = train_sales_std[0:i+MIN]

    train_y[i, 0] = train_sales_std[i+MIN]

# Create test examples.

test_months = len(test_sales)

test_X = np.zeros((test_months-MIN, test_months-1, 1))

test_y = np.zeros((test_months-MIN, 1))

for i in range(0, test_months-MIN):

    test_X[i, -(i+MIN):, 0] = test_sales_std[0:i+MIN]

    test_y[i, 0] = test_sales_std[i+MIN]

Code Snippet 9-5 allocate and Populate Tensors for Training and Test data
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There is a fair amount of juggling with indices in different directions to get 
the data in the right place. In other words, it is tedious but nothing magic. The 
best way to understand the code is likely to step through it in a debugger to 
convince yourself that it does the right thing, or simply trust that it is correctly 
implemented and inspect the resulting tensors afterward. It is important to 
double-check everything when preparing the input data. Otherwise, it is hard to 
know if the network does not learn because of its architecture, because of faulty 
input data, because of poorly chosen algorithmic hyperparameters such as the 
learning rate, or because the task simply cannot be learned with available data. 
Even worse, it can often be the case that a network can make some sense of 
faulty input data, so it might still learn but not as well as it could have done.

CREaTINg a SImPlE RNN

We are finally ready to define our network and start some experiments. given 
all the code we have gone through so far, it is almost anticlimactic to read Code 
Snippet 9-6, where we define and train a simple RNN.

We start with a simple network with a single recurrent layer with 128 neurons 
using rectified linear unit (RelU) as an activation function. The input_
shape=(None, 1) instructs that the number of timesteps is not fixed (None) 
and each timestep has a single input value. given that all of our input examples 

# Create RNN model

model = Sequential()

model.add(SimpleRNN(128, activation='relu',

                    input_shape=(None, 1)))

model.add(Dense(1, activation='linear'))

model.compile(loss='mean_squared_error', optimizer = 'adam',

              metrics =['mean_absolute_error'])

model.summary()

history = model.fit(train_X, train_y,

                    validation_data

                    = (test_X, test_y), epochs=EPOCHS,

                    batch_size=BATCH_SIZE, verbose=2,

                    shuffle=True)

Code Snippet 9-6 defining a Two-layer model with One Recurrent layer and One 
dense layer
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have the same number of timesteps, we could have specified that number instead 
of None. Sometimes this results in faster runtime of keras. The recurrent layer is 
followed by a fully connected feedforward layer with a single neuron and linear 
activation because we want to predict a numerical value. Because we use a linear 
activation function, we use mean squared error (mSE) as our loss function. We  
also print out the mean absolute error (maE), just for our own information. 
We train the network for 100 epochs using a batch size of 16. as usual, we shuffle 
our input examples. Before training begins, we see the following printout:

Layer (type)              Output Shape              Param #

=========================================================

simple_rnn_1 (SimpleRNN)  (None, 128)               16640  

_____________________________________________________

dense_1 (Dense)           (None, 1)                 129    

=========================================================

Total params: 16,769

Trainable params: 16,769

Non-trainable params: 0

_____________________________________________________

Train on 259 samples, validate on 56 samples

as usual, we want to sanity check the output and look for any mistakes in our 
configuration. Starting with number of parameters, we have 128 neurons in 
the recurrent layer, and each of them receives 1 input value from the input, 
128 recurrent inputs, and one bias input; that is, there are 128 × (1 + 128 + 1) = 
16,640 weights to learn. The output neuron has 128 inputs from the previous 
layer and a single bias input, or 129 weights to learn. Further, we have 339 
months’ worth of historical data, which we split up into 271 months for training 
and 68 months for test. We set the minimum length for an example to be 12, so 
we end up with 271 − 12 = 259 training examples and 56 test examples. all of 
this matches the printout.

after training for 100 epochs, we arrive at a training and test mSE of 0.0011 
and 0.0022 respectively and a training and test maE of 0.0245 and 0.0346 
respectively. a key question is whether this result is good or bad. Fortunately, we 
defined a naïve model that we can use as a comparison point. When we defined 
the naïve model, we did it on the nonstandardized data, whereas mSE and maE 
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from keras is computed from the standardized data. Thus, we create a new 
version of our naïve predictions based on standardized data in Code Snippet 9-7.

a word of caution is in order when doing NumPy calculations on various 
arrays. It is important that you know exactly what you are doing and that you 
have the right dimensions. as an example, if one NumPy array is defined with 
shape=(N, 1) and another is defined with shape=(N), although both of 
them seem like vectors, when you subtract one from the other, you will end up 
with a 2d array with shape=(N, N), which will give you incorrect values of 
mSE and maE. 

Our implementation prints out the following:

naive test mse:  0.0937

naive test mean abs:  0.215

Comparing this to the RNN with a test mSE of 0.0022 and test maE of 0.0346 
indicates that the RNN is doing a significantly better job than our naïve model. 
To shed some light on how this affects the end behavior, let us use our newly 
trained model to do some predictions and then plot these predictions next to the 
actual values. Code Snippet 9-8 demonstrates how this can be done. We first 

# Create naive prediction based on standardized data.

test_output = test_sales_std[MIN:]

naive_prediction = test_sales_std[MIN-1:-1]

mean_squared_error = np.mean(np.square(naive_prediction 

                                       - test_output))

mean_abs_error = np.mean(np.abs(naive_prediction 

                                - test_output))

print('naive test mse: ', mean_squared_error)

print('naive test mean abs: ', mean_abs_error)

Code Snippet 9-7 Computing Naive Prediction, mSE, and maE on Standardized 
data

We have spent a nonnegligible amount of time chasing down a bug caused by 
incorrect array dimensions when computing mSE manually.
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call model.predict with the test input as argument. The second argument 
is the batch size, and we state the length of the input tensor as the batch size 
(i.e., we ask it to do a prediction for all the input examples in parallel). during 
training, the batch size will affect the result, but for prediction, it should not 
affect anything except for possibly runtime. We could just as well have used 
16 or 32 or some other value. The model will return a 2d array with the output 
values. Because each output value is a single value, a 1d array works just as 
well, and that is the format we want in order to enable plotting the data, so we 
call np.reshape to change the dimensions of the array. The network works 
with standardized data, so the output will not represent demand directly. We 
must first destandardize the data by doing the reverse operation compared 
to the standardization. That is, we multiply by the standard deviation and add 
the mean.

We then plot the data. This is shown in Figure 9-12, where we see that the 
predictions make sense.

# Use trained model to predict the test data

predicted_test = model.predict(test_X, len(test_X))

predicted_test = np.reshape(predicted_test,

                            (len(predicted_test)))

predicted_test = predicted_test * stddev + mean

# Plot test prediction.

x = range(len(test_sales)-MIN)

plt.plot(x, predicted_test, 'm-',

         label='predicted test_output')

plt.plot(x, test_sales[-(len(test_sales)-MIN):], 

         'g-', label='actual test_output')

plt.title('Book sales')

plt.axis([0, 55, 0.0, 3000.0])

plt.xlabel('months')

plt.ylabel('Predicted book sales')

plt.legend()

plt.show()

Code Snippet 9-8 Using the model to Predict Both Training and Test Output and 
destandardizing the Results
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COmPaRISON WITh a NETWORk WIThOUT RECURRENCE

In the previous section, we compared the RNN to a naïve prediction. another 
relevant comparison is to compare it to a simpler network model to see if we 
benefitted from the complexity added to the model. In particular, it would be 
interesting to understand whether the ability to look at long input sequences 
is beneficial by comparing to a regular feedforward network presented with 
a limited history. We need to make two changes, shown in Code Snippet 9-9, 
to try this comparison. First, we drop much of the history to keep only the last 
12 months of each input example. We then create a feedforward network instead 
of the recurrent network. The first layer in the feedforward network flattens the 
input shape to a single dimension, that is, the time dimension is removed.

Figure 9-12 model output compared to the test data

Code Snippet 9-9 Reducing the lookback Period to 7 days

# Reduce lookback period in input.

train_X = train_X[:, (train_months - 13):, :]

test_X = test_X[:, (test_months - 13):, :]
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The first fully connected layer has 256 units, which is more units than the 
recurrent layer had in our previous example. On the other hand, each unit in 
the recurrent layer has more weights, so in total, the recurrent network has 
more trainable parameters. We used the constructs introduced previously and 
compared the result to our RNN. The test error for the feedforward network 
ended up being 0.0036 as opposed to 0.0022 for our RNN. In other words, the RNN 
achieves a 39% lower error. It seems that using the longer history was beneficial, 
which is not surprising.

ExTENdINg ThE ExamPlE TO mUlTIPlE INPUT VaRIaBlES

It is relatively straightforward to modify the programming example to work with 
multiple input variables for each timestep. The key changes are shown in Code 
Snippet 9-10. The code snippet assumes that we have first read and standardized 
a second file of input data and placed the contents into the two variables train_
sales_std2 and test_sales_std2. In reality, you would want to change 
the implementation to handle an arbitrary number of input variables instead 
of hardcoding it to two. The changes and additions compared to the previous 
example are highlighted in yellow.

# Create feedforward model.

model.add(Flatten(input_shape=(12, 1)))

model.add(Dense(256, activation='relu'))

model.add(Dense(1, activation='linear'))

Code Snippet 9-10 Creating Input data and a model with Two Input Variables per 
Timestep

# Create train examples.

train_months = len(train_sales)

train_X = np.zeros((train_months-MIN, train_months-1, 2))

train_y = np.zeros((train_months-MIN, 1))

for i in range(0, train_months-MIN):

    train_X[i, -(i+MIN):, 0] = train_sales_std[0:i+MIN]

    train_X[i, -(i+MIN):, 1] = train_sales_std2[0:i+MIN]

    train_y[i, 0] = train_sales_std[i+MIN]
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dataset Considerations for RNNs
In the programming example in this chapter, we created our own dataset using 
raw sales data. There are a couple of issues worth pointing out. First, when 
working with time series data, it is important to consider how the time dimension 
interacts with the way we split the data into training and test data. In our 
programming example, we first split the raw data into two chunks. We used the 
chunk representing the oldest data to create our training examples and the more 
recent chunk to create our test examples. a potential pitfall is to instead create a 
number of examples (input sequence plus ground truth) and shuffle them before 
dividing into a training set and test set. If we used this methodology, we would 
include “future” data points in the training set and “historical” data points in the 
test set. This is most likely not representative of how the model will be used in 
practice, and there is a significant risk that the test set will give optimistic result 
when evaluating the model. That is, you should be careful to not include future 
data in the training set.

another thing to consider is whether to create training and test examples of 
different lengths or to use a fixed length. In our example, we created examples of 
variable lengths, where the longest input example was as long as it possibly could 
be given the raw input data. We then padded the other examples with zeros to 
result in the same length. The zero padding was used because the dl framework 
requires all examples in a mini-batch to be of the same length. another common 
approach is to pick a fixed length that is shorter than the raw data allows for and 
make all training examples be of that same length. The drawback of this approach 
is that the model is not provided with the opportunity to learn long dependencies.

# Create test examples.

test_months = len(test_sales)

test_X = np.zeros((test_months-MIN, test_months-1, 2))

test_y = np.zeros((test_months-MIN, 1))

for i in range(0, test_months-MIN):

    test_X[i, -(i+MIN):, 0] = test_sales_std[0:i+MIN]

    test_X[i, -(i+MIN):, 1] = test_sales_std2[0:i+MIN]

    test_y[i, 0] = test_sales_std[i+MIN]

…

model.add(SimpleRNN(128, activation='relu',

                    input_shape=(None, 2)))
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Concluding Remarks on RNNs
There are a few more issues worth pointing out before moving on to more 
advanced units for recurrent networks in Chapter 10. One thing is that the 
programming examples in this chapter technically did not model deep recurrent 
networks, because we had a single recurrent layer followed by a single neuron. 
although the distinction between a shallow and a deep network often does not 
matter in practice, one thing that does matter is that we did not stack multiple 
recurrent layers on top of each other. When stacking recurrent layers in keras, 
there is one detail that needs to be adjusted. The output from our model so far 
has been a single value predicting the sales for the month after the sequence 
of months that were used as input. In reality, a recurrent layer produces an 
output for each timestep, which is fed back as inputs to the layer. keras does this 
internally, and the default behavior is to hide this from the user and output only 
the last value, with the assumption that this is the desired behavior. however, 
if the output of a recurrent layer is fed as input to another recurrent layer, then 
that second recurrent layer expects to see the output from each timestep instead 
of receiving only the output for the final timestep. Thus, we need to tell keras 
to change its behavior and output the values for each timestep. This is done by 
setting the parameter return_sequences to True when creating the layer.

We also did not experiment with dropout in this chapter. When applying dropout 
for recurrent layers, it can be applied to the connections between layers, to the 
recurrent connections, or to both (Zaremba, Sutskever, and Vinyals, 2015). In 
keras, the RNN layer constructor parameter recurrent_dropout controls 
dropout on the recurrent connections.

Finally, it is worth considering how weight sharing in RNNs relates to weight 
sharing in convolutional neural networks (CNNs). as previously stated, if an RNN 

When stacking multiple recurrent layers on top of each other in keras, you 
must set return_sequences to True. When return_sequences is set to False, 
only the last timestep will be presented in the output.

details of how dropout works for RNNs would be a good topic for further 
reading (Zaremba, Sutskever, and Vinyals, 2015).
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is unrolled, we can view it as doing weight sharing between layers, whereas a 
CNN does weight sharing within a layer. a benefit that we described when we 
looked at CNNs for image classification is that the network is translation invariant, 
where translation refers to the action of moving an object from one location to 
another inside the image. This invariance results from the same weights being 
used by neurons in all locations. Even if the network was trained to identify an 
object in one location, neurons in other locations will also learn this. Similarly, 
an RNN will learn to identify patterns in a sequence irrespective of where in 
the sequence it appears. This is beneficial because many sequences do not 
necessarily have a specific starting point, but we choose to start sampling at an 
arbitrary timestep. It turns out that CNNs can also be used on time series data by 
first unrolling the time series into a 1d vector and then applying 1d convolution 
(as opposed to 2d convolution that was used for image data) on this unrolled time 
series. One drawback is that it becomes impractical to handle arbitrarily long 
sequences, in which case RNNs have an advantage.

One of the first recurrent networks that we are aware of is the hopfield network 
(hopfield, 1982). We mention this for historical purposes. you will benefit from 
reading more recent papers. For additional information about the history of RNNs, 
a survey paper by lipton, Berkowitz, and Elkan (2015) provides a good overview. 
That paper contains references to additional papers from when RNNs first were 
introduced in the 1980s.
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Chapter 10

Long Short-Term 
Memory

In this chapter, we start by diving deeper into the vanishing gradient problem 
that can prevent recurrent networks from performing well. We then present 
an important technique to overcome this problem, known as long short-term 
memory (LSTM), introduced by Hochreiter and Schmidhuber (1997). LSTM is a 
more complex unit that acts as a drop-in replacement for a single neuron in a 
recurrent neural network (RNN). The programming example in Chapter 11, “Text 
Autocompletion with LSTM and Beam Search,” will illustrate how to use it by 
implementing an LSTM-based RNN for autocompletion of text.

The internal details of the LSTM unit are somewhat tricky, which can make this 
chapter challenging to get through if you are learning about LSTM for the first 
time. If that is the case, you can consider skimming this chapter the first time 
around and focus primarily on how the LSTM units are combined into a network. 
You can go back to the internal details of the LSTM unit later.

Keeping Gradients Healthy
We have mentioned the vanishing and exploding gradient problems multiple 
times in this book, and the reason is that they are key obstacles that must be 
overcome to enable training of neural networks with gradient-based methods. 
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These problems get even worse in RNNs because of the large number of 
timesteps that the gradient needs to travel through when training with 
backpropagation through time (BPTT) in combination with weight sharing across 
timesteps. For these reasons, this section provides some more thoughts on the 
topic. We introduce additional techniques and insights as well as summarize what 
has been presented in previous chapters.

Let us start by restating what these problems are and what causes them. 
When training a network with gradient descent, we need to compute the 
partial derivative of the error with respect to each weight so we can arrive at 
a suggested adjustment for each weight. We compute these partial derivatives 
using the backpropagation algorithm. It turns out that the formula to compute the 
adjustment for a specific weight includes multiplying the derivative of the error 
by all the weights located between the weight in question and the output node 
as well as by the derivative of all activation functions on the path between the 
weight in question and the output. Figure 10-1 and Equation 10-1 illustrate this 

We find the vanishing and exploding gradient problems somewhat boring 
and would much rather spend our time on exploring new, cool network 
architectures. However, sometimes you just have to bite the bullet and go 
through some boring stuff to get to the fun stuff. After all, there is nothing cool 
about a network architecture that refuses to learn.

W3
N3

W2

N2

W1

x1 x2

N1

Back-
propagation

yout

Figure 10-1 Backpropagation of error through a network
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for a feedforward network assuming the mean squared error (MSE) as the loss 
function.

 
1

3 3 2 2 1 1
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Equation 10-1 Formula for backpropagation. The variable y represents the 
desired value, and y

out
 represents the value predicted from the network. The 

predicted value is often represented by the variable ŷ.

Thus, if either the weights or the derivatives are small, we observe the vanishing 
gradient problem, where the adjustment value becomes vanishingly small and the 
network stops learning. The opposite problem is when the weights or derivatives 
are large and we observe the exploding gradient problem, which suggests a large 
weight adjustment that can throw off the learning process completely. In addition, 
for RNNs, because we unroll the network through time, we repeatedly multiply 
the backpropagated error by the same weight. This means that even moderate 
deviations from 1.0 will result in vanishing (if the weight is <1.0) or exploding 
(if the weight is >1.0) gradients.

Starting with the activation function, as previously explained, for S-shaped 
(both logistic and tanh) activation functions, the derivative approaches 0 for both 
large negative and positive values; that is, the neuron is being saturated. This 
was previously shown in Chapter 3, “Sigmoid Neurons and Backpropagation,” 
Figure 3-4. 

one thing that we have not discussed yet is that the logistic function, even when 
not saturated, always attenuates the error as it propagates backward. Figure 10-2 
shows a zoomed-in version of the tanh and logistic sigmoid functions as well 
as their tangents at the points of their steepest derivatives. As you can see, the 
maximum slope of the logistic sigmoid function is smaller than the maximum 
slope of the tanh function. The max value of the derivative of the logistic sigmoid 
function is 0.25, whereas the max value for the derivative of tanh is 1.0. This is yet 
another reason that tanh is preferable over the logistic sigmoid function.

Although the max value of the derivative of tanh is 1.0, the gradient can still 
vanish if the neurons are in their saturation region. We have discussed multiple 

The maximum value of the derivative of the logistic sigmoid function is 0.25, 
so the error will always be attenuated as it is passed backward through the 
network.
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techniques for keeping the neurons in their nonsaturated region. Two examples 
are to initialize weights with Glorot or He initialization and to use batch 
normalization inside of the network.

Instead of trying to keep neurons out of their saturation region, another solution 
to the problem is to use nonsaturating nonlinear functions such as leaky rectified 
linear unit (ReLU) or just the regular ReLU function that saturates only on one side. 

For the exploding gradient problem, a straightforward solution is gradient 
clipping, which artificially adjusts the gradient to be smaller in cases when it 
blows up. It might sound like batch normalization and gradient clipping are 
related because both seem to want to limit the range of the value, but they are 
different from each other. Batch normalization aims at adjusting the value during 
the forward pass through the network to keep the neurons in their active region 
(i.e., batch normalization aims as keeping the gradient from vanishing by avoiding 
saturation). Gradient clipping, on the other hand, aims at avoiding exploding 
gradients by adjusting the gradient itself during the backward pass.

Batch normalization avoids vanishing gradients, while gradient clipping 
avoids exploding gradients.

Figure 10-2 Zoomed-in view of the tanh and logistic sigmoid functions and 
tangents illustrating their max derivatives
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The issues just described are applicable to both feedforward networks and RNNs, 
but RNNs also have some unique properties and potential mitigation techniques. 
Even in cases where the activation function is not a problem, such as if we use 
a ReLU function with a constant derivative of 1, RNNs have the unique challenge 
that BPTT results in multiplying the error by the same weight over and over due 
to weight sharing across timesteps. As previously mentioned, with a large enough 
number of timesteps, the only way to avoid vanishing and exploding gradients 
is to use weights with a value of 1, which kind of defeats the purpose because 
we want to be able to adjust the weights. However, it is possible to make use 
of this observation and create a more complicated recurrent unit, which uses a 
technique known as the constant error carousel (CEC). Using the CEC results in a 
behavior similar to weight values of 1 during backpropagation. LSTM is based on 
the CEC technique and is described in the next couple of sections.

Finally, as described in the context of ResNets in Chapter 8, “deeper CNNs and 
Pretrained Models,” skip connections can help training of very deep networks. 
The exact reasons that skip connections help can be debated, and different 
explanations have been hypothesized in different studies (He et al., 2015a; Philipp, 
Song, and Carbonell, 2018; Srivastava, Greff, and Schmidhuber, 2015;). one 
reason is that skip connections address vanishing gradients. Skip connections 
share some behavior with the CEC. We touch on this relationship in the section 
“Related Topics: Highway Networks and Skip Connections.”

For reference, all the techniques to fight vanishing and exploding gradients 
that we discuss are summarized in Table 10-1. The way we understand it, the 
term vanishing gradient is reserved for the cases where the gradient gradually 
vanishes because of a deep network (in space or time). The gradient can come 
close to 0 for reasons other than the vanishing gradient problem. Previous 
chapters have described a couple of such examples and associated mitigation 
techniques.

one such problem occurs when the neurons in the output layer of the network 
are based on the logistic sigmoid function. A problem with this function is that the 
gradient is close to 0 if the neuron is saturated. one way to address it is to choose 
a loss function that reverses the effect during backpropagation, such as the 
cross-entropy loss function.

LSTM implements a technique known as CEC.
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Another problem is that if the input values to the network are of significant 
magnitude, they force the neurons to go far into the saturation region. In our 
programming examples, we have tried to avoid this problem by standardizing the 
input values to be centered around 0 with moderate magnitude.

Introduction to LSTM
In this section, we introduce the LSTM cell. It is an example of the more general 
concept of gated units. What this means will become apparent as we dive into the 
details. LSTM is a complex unit, also known as cell, which is used as replacement 

Table 10-1 Summary of Techniques to Mitigate Problems with Vanishing and 
Exploding Gradients

TECHNIQUE

MITIGATES 
VANISHING 
GRADIENT

MITIGATES 
EXPLODING 
GRADIENT NOTES

Use Glorot or He 
weight initialization

Yes No Applies to all 
neurons

Batch 
normalization

Yes No Applies to hidden 
neurons

Nonsaturating 
neurons such as 
ReLU

Yes No Applies to all 
neurons but output 
layer is typically 
considered 
separately in light 
of problem type

Gradient clipping No Yes Applies to all 
neurons

Constant error 
carousel

Yes Yes Applies only to 
recurrent layers; 
used by LSTM

Skip connections Yes No Can provide 
additional benefits 
(detailed in later 
discussion of 
ResNets)
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for the simple neurons that we have used so far in our RNNs. The LSTM cell is 
frequently used in modern RNNs. Just to set the expectations right, we state up 
front that when first looking at a figure of an LSTM cell, it is indeed complex, and 
a natural reaction is, “How could anybody possibly have come up with that design 
as an alternative to a simple neuron, and does this cell have any connection to 
reality?” The answer to the latter part of that question is simple. The LSTM cell is 
an engineered solution and is not claimed to be biologically inspired, so it likely 
does not have much of a connection to (a biological) reality.

The LSTM unit has no less than five(!) nonlinear functions, three of which are 
logistic sigmoid functions known as the gates in the unit. The remaining two are 
regular activation functions, which can take on any of the previously introduced 
activation functions, with popular choices being tanh and ReLU. The unit also 
contains four weighted sums, so the number of weights is four times as many as 
in a simple RNN.

The modern LSTM unit that we describe in this section is an extended version that 
Gers, Schmidhuber, and Cummins introduced (1999). This version is somewhat 
more complex than the originally proposed LSTM cell, so do not be surprised if 
you feel that something is missing if you compare it to what is described in the 
original paper.

one way to avoid vanishing or exploding gradients in an RNN is to create a neuron 
where the derivative of the activation function is 1 (the identity function f(x) = x 
fulfills this property) and have a recurrent weight with the value 1. We recognize 
that it seems somewhat useless to have a network with the identity function as 
activation function and a weight of 1, but we will build upon this concept as we 
walk through the inner workings of the LSTM cell.

The implication of using the identity function in combination with a weight of 1 
is that the gradient does not vanish or explode during backpropagation when 
we repeatedly multiply the error by the recurrent weight and the derivative of 
the activation function. The left side of Figure 10-3 shows a simple RNN with a 
recurrent layer consisting of a single neuron, followed by a feedforward output 
layer with a single neuron. The neuron in the recurrent layer implements the 
identity function and the recurrent weight is 1. This recurrent loop is known as the 
CEC. The unrolled version of the network is shown to the right in the figure. In this 

LSTM is an example of a gated unit. It consists of logistic sigmoid functions 
known as gates in addition to traditional activation functions.
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unrolled version, it is clear that the error is constant as it backpropagates through 
time because it is repeatedly multiplied by 1. Even in cases with extremely 
long input sequences, the gradient will not vanish. Consequently, it can cause 
updates even to the weight corresponding to the very first timestep, which can be 
hundreds or thousands of timesteps ago. This is the key mechanism that LSTM 
uses to address vanishing and exploding gradients. Instead of having the gradient 
travel backward through weights, the CEC bypasses these weights and keeps the 
gradient from vanishing or exploding. 

Let us now ignore the backward pass for a while and step back to think about how 
this network behaves during the forward pass. Let us assume that the input to the 
network is 0.7 at the first timestep and is 0.0 during all other timesteps. The input 
to the network will be multiplied by w

1
 and then presented to the neuron. Because 

the neuron implements the identity function, the output will be 0.7w
1
. This value 

will then circulate unchanged in the recurrent loop at each timestep. one way to 
think of it is that this entire discussion about the CEC, which enables the error 
to flow backward without vanishing, is simply a convoluted way of arriving at a 
memory cell that remembers the input value from the first timestep until the end 

An LSTM cell uses the CEC to make the gradient bypass the weighted 
connections. This prevents the gradient from vanishing or exploding.

1 1 1

relu relu relu

Time

1.0 1.0 1.0

Unrolled in time

1

X(t) X(0) X(1) X(n)
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w2 w2 w2 w2

w1 w1 w1 w1

Layer 1
(recurrent)

Layer 2
(feedforward)

y(t–1)

w = 1.0

Recurrent network
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Figure 10-3 Simple recurrent network with a constant error carousel
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of time. This ability to remember values for an extended period of time is a key 
property of the LSTM cell.

In this example, a simple RNN would also be able to remember the value, 
although the fact that it is fed through the activation function at every timestep 
would result in an output closer to 1. In addition to perfectly remembering the 
value across many timesteps, the LSTM cell has functionality to control when to 
update this memory cell. The reason such a mechanism is needed is not hard to 
imagine. Let us assume a more complex network with multiple neurons in the 
recurrent layer. We might want one of the neurons to remember the input value 
from the first timestep but want another neuron to remember the input value 
from the second, or some other, timestep. That is, somehow the network needs to 
be able to control when to remember the input and when to ignore it. Previously, 
we mentioned that LSTM is an example of a gated unit. The concept of a gate 
allows for the ability to selectively decide when to remember a value. 

one way to implement a gate is shown on the left side of Figure 10-4. Instead of 
connecting the input x(t) directly to the neuron, we introduce a multiply operation 
that multiplies x(t) by the output from a logistic sigmoid neuron (denoted Sig in the 
figure). The logistic sigmoid neuron and the multiply operation act together as a 
gate. The reason for this is that the logistic sigmoid neuron will output a value in 
the range between 0 and 1. If the value is 0, then the gate is closed because the 
input x(t) will be multiplied by 0 and none of its value is captured. If the value is 1, 

An LSTM cell can latch on to a value and remember it for a long period of time.

**

1
CEC

Sig

*

y(t–1) y(t–1)

1
CEC

X(t)

Remember
gate

Remember
gate

w = 1.0

Sig Sig

Forget
gate

X(t)

Figure 10-4 Left: Constant error carousel (CEC) augmented with a remember 
gate. Right: CEC augmented with both a forget and a remember gate.
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then the full input value x(t) will be captured by the memory cell. The reason to use 
a sigmoid function and not a step function is, as always, that we want the function 
to be differentiable so we can train its weights with gradient descent.

Having the ability to remember is good, but it is also good to be able to forget. This 
is shown in the right part of the figure where we have introduced a forget gate 
that can break the CEC loop. If the gate is open, the internal state will be updated 
with the state from the previous timestep, but if it is closed, the previous state will 
be forgotten. This enables the network to reuse this memory cell in cases where 
it needs to remember a value for a few timesteps and then no longer needs it but 
instead needs to remember some other value.

We are now ready to present the full LSTM cell, which is based on the concepts 
just introduced. It is shown in Figure 10-5. In addition to the remember and forget 
gates, there is a gate that controls whether or not the remembered value should be 
sent to the output of the cell. The neuron in the CEC, which implements the identity 
function, is replaced by a node marked with a + (because that is how it is typically 
shown in the literature). It is worth noting that adding together inputs is exactly 
what a neuron does, so this is nothing different than a regular neuron with weights 
of 1.0 and a linear activation function and only two inputs and no bias. In addition 
to the gates, there is an input neuron with an arbitrary activation function (stated 
as “In Act” for input activation), and the output from the cell is also run through an 
arbitrary activation function (stated as “out Act” for output activation) at the top of 
the figure. The output activation is just the activation and not a weighted sum since 
it only receives a single value from the multiplication operation in the output gate. 
It is common to use tanh as both input and output activation functions, but we will 
discuss this in a little bit more depth further down.

The four neurons at the bottom of the figure all receive multiple inputs. This 
is denoted by three arrows, but the number is arbitrary and depends on the 
number of neurons in the layer (which affects the size of h) and the size of the 
input vector x. All of these inputs have weights that need to be learned. The other 
internal units do not have any weights, and the internal connections in the figure 
are not vectors but single valued connections.

It is also good to have the ability to forgive, but our networks are not even close 
to modeling such human behavior.

Multiplying a value by the output of a logistic sigmoid function results in the 
logistic sigmoid function acting as a gate.
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LSTM ACTIVATIoN FUNCTIoNS

Let us now spend some time on discussing the activation functions. It seems 
somewhat counterintuitive that we spent entire sections in previous chapters on 
describing the problems with the S-shaped function and now introduce a unit with 
three logistic sigmoid functions and two additional activation functions, which 
often happen to be the tanh function.

There are a couple of things to consider here. First, given that the CEC is 
introduced, it will prevent some of the problems with vanishing gradients 
normally associated with S-shaped functions. We say some of the problems, not 
all problems, because the CEC is effective only when the gates are in a state that 
does let the error propagate unchanged. If the forget gate is closed, none of the 
error will propagate through the CEC, and it will again have to go through the tanh 
activation function. The recommended way to address this problem is to initialize 
the bias to the forget gate to 1 so that the error can freely flow backward to begin 
with. Another thing to consider is that the CEC only helps with gradients that 
vanish because of BPTT, but an RNN also has regular backpropagation where the 
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Figure 10-5 Left: LSTM cell using similar notation as above. Right: LSTM cell 
as depicted in original publication. (Source: Gers, F., Schmidhuber, J., and 
Cummins, F., “Learning to Forget: Continual Prediction with LSTM,” Ninth 
International Conference on Artificial Neural Networks (ICANN 99), 1999.)
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error is traveling from one layer to another (the vertical direction in Figure 10-3). 
In other words, it can certainly be beneficial to use a ReLU function as input and 
output activation functions in the LSTM.

Another question regarding the input and output activation functions is why it is 
necessary to have both of them: Why is one not sufficient? one effect of having 
the output activation function is that we have better control of the output range. 
For example, if tanh is used as output activation, we know that the cell will always 
output a value between −1 and 1. on the other hand, as described shortly, gated 
units with only a single activation function do exist.

For the gating functions, the reason for using logistic sigmoid functions is that 
we want them to act as gates, and to achieve that, we want the output range to 
be between 0 and 1, which is a key property of the logistic sigmoid function. We 
could use any other function that has that same property. The challenge is how to 
construct a function that has a fixed range but still does not saturate (i.e., without 
derivatives that approach 0 in one or both ends). 

CREATING A NETWoRK oF LSTM CELLS

Figure 10-6 shows how multiple LSTM cells are connected into a recurrent 
network layer. This is just like a regular RNN, but each neuron has been replaced 
by the more complex LSTM cell. This results in a network with two sets of state. 
We have the internal state (c) inside of each LSTM cell, but we also have the state 
(h) in the global recurrent connections just as in an RNN that is based on simple 
neurons.

The figure makes it obvious that an LSTM based RNN has four times as 
many parameters (weights) to train as a regular RNN. In addition to the input 
activation neurons, there are also three gate-neurons that each receives the 
same number of inputs as the input neuron. Thus, the total number of weights 
for a single layer with an input vector of length M, and with N LSTM-units is 
N*4*(N+M+1), where the first N is the number of LSTM-units, 4 is the input 

We believe that one reason that tanh is still popular is that many RNNs are not 
as deep as feedforward networks, so the vanishing gradient problem between 
layers is not as severe.
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neuron and gates in each unit, and N+M+1 is the number of inputs to each 
neuron including the bias.

Let us now summarize the behavior of an LSTM layer. Each cell has an internal 
state. At each timestep, this internal state gets updated. The new value is a 
weighted sum of the internal state from the previous timestep and the input 
activation function for the current timestep. The weights are dynamically 
controlled and are known as gates. The inputs to the input activation function 
result from a concatenation of the outputs from the previous layer (x) as well 
as the outputs from the current layer from the previous timestep (h), just as in 
a regular RNN. Finally, the output of the LSTM layer is computed by feeding the 
internal state through the output activation function and multiplying the result by 
another gate. All the gates are controlled by a concatenation of x and h.
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Figure 10-6 Recurrent layer built from LSTM cells. This figure does not show 
unrolling in time.

An LSTM cell has four times as many weights as a simple neuron in an RNN.
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Alternative View of LSTM
In our description, we have referred to individual LSTM units as cells, and we 
connect multiple cells into a layer. This terminology is not consistently used in the 
deep learning (dL) field, but sometimes an entire layer is called a cell. Ignoring 
terminology for a moment, it is common that figures and descriptions of different 
types of units are done in the context of the entire layer. A key reason for this 
is that it enables convenient drawings of networks unrolled in time, as we saw 
in Chapter 9, “Predicting Time Sequences with Recurrent Neural Networks,” 
Figure 9-6. However, it also comes with the risk of confusion because it hides 
some of the actual connections, so we recommend being careful when using this 
abstraction.

A common way of drawing LSTM was introduced in a popular blog post that 
explains how LSTM works (olah, 2015). We walk through reproduced versions of 
some of olah’s figures, but we also recommend reading the blog post for more 
details. Figure 10-7 shows an LSTM layer unrolled in time for three timesteps. 
For each timestep, the layer receives c and h from the previous timestep and x 
from the current timestep and outputs new values for c and h.

The middle part of the figure shows the internals of the LSTM layer. Each 
rectangle represents multiple neurons (the same number as the number 

LSTM is often thought about in terms of entire layers rather than individual 
units. In some texts, a cell refers to an entire layer of units rather than to a 
single unit.
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Figure 10-7 LSTM layers unrolled in time. (Adapted from olah, C., 
“Understanding LSTM Networks” (blog), August 2015, https://colah.github.io/
posts/2015-08-Understanding-LSTMs.)

https://colah.github.io/posts/2015-08-Understanding-LSTMs
https://colah.github.io/posts/2015-08-Understanding-LSTMs
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of LSTM units in the layer), where each neuron receives a vector of inputs 
and produces a single output. The ones marked with the Greek letter 
sigma (σ) represent the gates, and the ones marked tanh represent the 
input and output activation functions. The curved line from x(t) represents a 
concatenation; that is, we form a wider vector, which contains the elements of 
both h(t−1) and x(t). All other operations (represented by circles/oval) represent 
multiple instances (the same number as the number of LSTM units in the 
layer) of the operation, where each of these instances receives a single input 
value (as opposed to a vector for the rectangles) and produces a single output 
value.

Finally, another common way of presenting different kinds of gated units is in 
matrix form. Equation 10-2 describes an LSTM layer.

 σ ( )=   +( ) ( ) ( )−f h x bf fWt t t  ,  1  (1)

 σ ( )=   +( ) ( ) ( )−i h x bi iWt t t  ,  1  (2)

     Wt t ttanh ,  1C h x bC C
� ( )=   +( ) ( ) ( )−  (3)

= +( ) ( ) ( ) ( ) ( )−C f C i C�t t t t t* *1  (4)

 σ ( )=   +( ) ( ) ( )−o h x bo oWt t t  ,  1  (5)

t t t* tanh( ) ( )h o C( )= ( )  (6)

Equation 10-2 Equations describing an LSTM layer

The forget gate and input gate are described by (1) and (2). The candidate 
update function is described by (3), and (4) uses this candidate and the input 
gate and forget gate to compute the new cell value. Finally, (5) describes the 
output gate, and (6) uses this gate and the new cell value to determine the 
output of the cell. These equations are terse and can be hard to grasp at first. 
To gain a deeper understanding, we recommend translating each of them into 
a figure of the equivalent neurons and connections. For example, (1) translates 
into a single layer of sigmoid neurons, where the input vector is a concatenation 
of h(t−1) and x(t).
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Related Topics: Highway Networks and 
Skip Connections

As described in Chapter 8, the skip connections in ResNets were introduced 
to address the observation that the network did not learn, but the lack of 
learning was not due to vanishing gradients. Instead, He and colleagues (2015a) 
hypothesized that the learning algorithm was having a hard time finding the right 
solution and that the skip connections would help the algorithm look in the right 
place (closer to the identity function). However, before being used in ResNets, 
various forms of skip connections were used in other settings, and interestingly, 
in some of those settings, the intent was to address the vanishing gradient 
problem. This usage is related to the LSTM described in this chapter. The CEC 
used in LSTM enables gradients to flow unchanged through the unrolled network 
during the backward pass when doing BPTT. Similarly, skip connections provide 
shortcuts where gradients can flow unchanged through the network during the 
backward pass in a regular feedforward network.

We recognize that this can cause some confusion, because it does seem likely 
that the skip connections help with the vanishing gradient problems even in 
ResNets. It is hard to tell for sure. He and colleagues employed a number of other 
techniques to address the vanishing gradient problem. They also inspected the 
gradients in the baseline network without skip connections and observed that 
they were not vanishing. Thus, it seems like the hypothesis described by He and 
colleagues is a more likely explanation of why skip connections are beneficial in 
the case of ResNets.

Another related technique is known as highway networks (Srivastava, Greff, & 
Schmidhuber, 2015). A highway network contains skip connections, but the 
contribution from both the skip connections and the regular connections can be 
dynamically adjusted by the network. This is done using the same kind of gates as 
we have seen in LSTM. In fact, highway networks were inspired by LSTM.

Concluding Remarks on LSTM
Looking at the LSTM implementation, a reasonable question is whether it is 
possible to come up with a simpler version of the unit that still implements the 
CEC. The gated recurrent unit (GRU), introduced by Cho and colleagues (2014a) 
is an example of such a simplification. It is simpler in that it does not have an 
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internal cell state; it has only a single activation function, and the forget and 
remember gates are combined into a single update gate. details of the GRU 
implementation can be found in Appendix H.

After looking at the details of LSTM and GRU, it becomes clear that there is 
nothing magic about those specific designs, and it is easy to envision further 
variations on gated units. one such variation is to add so-called peephole 
connections to the LSTM unit where the gates receive additional inputs from the 
internal c-state of the model (Gers, Schraudolph, and Schmidhuber, 2002). There 
are also other variations with additional simplifications of the GRU (Heck and 
Salem, 2017).

Now that we know the basics about RNNs and the LSTM cell, we are ready 
to move on to our first natural language processing (NLP) example, namely, 
autocompletion of natural language text.

LSTM and GRU are the most popular units used in RNNs. There is no need to 
learn more about the other variations at this point, but it is an interesting topic 
for further reading (Heck and Salem, 2017).
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Chapter 11

Text Autocompletion 
with LSTM and Beam 
Search

In Chapter 9, “Predicting Time Sequences with Recurrent Neural Networks,” 
we explored how to use recurrent neural networks (RNNs) for prediction of 
numerical values. In this chapter, instead of working with a time sequence of 
numerical values, we apply our RNN to natural language text (English). There 
are two straightforward ways of doing this. We can view text as a sequence of 
characters or as a sequence of words. In this chapter, we look at it as a sequence 
of characters because that is the simplest way to get started. In many cases, it is 
more powerful to work with words than with characters, and this is explored in 
the next couple of chapters.

In addition to working with text instead of numerical values, we demonstrate how 
to use the model with variable input lengths as well as how to predict multiple 
timesteps instead of just the one step immediately following the input data.

Encoding Text
To use text as input to our RNN, we need to first encode it in a suitable manner. 
We use one-hot encoding just as we did for categories in our image classification 
problems. One-hot encoding works fine for characters, given that a typical 
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alphabet contains only tens of characters. as a side note, one-hot encoding 
words is less efficient: It results in much wider vectors because the width of the 
input vector is the same as the total number of symbols to encode, and a typical 
language contains tens or hundreds of thousands of words.

To make this more concrete, assume that text consists only of lowercase 
characters and no special symbols such as period, comma, exclamation mark, 
space, or linefeed. We can then encode a character as a one-hot encoded vector of 
width 26 because there are 26 lowercase characters in the English language. We 
can now define an RNN that takes a 26-element vector as its x-input, and we can 
end it with a fully connected softmax layer with 26 outputs. Now we can present 
a text sequence to the network by feeding it with a single one-hot encoded 
character for each timestep, and the softmax output can be interpreted as what 
the network predicts as the next character. The highest-value output represents 
the character that the network finds most likely to be the next character. The 
output with the second-highest value corresponds to the second-most likely next 
character, and so on.

Figure 11-1 illustrates the recurrent network unrolled in time. at timestep 0, the 
letter h is presented as input to the network, followed by e, l, and l in the next 
three timesteps. The prediction from the network in the last timestep is o; that is, 
the network predicts the last character in the word hello. Obviously, the network 
will predict something during the first few timesteps as well, but we ignore the 
outputs during those timesteps because we know that we have not yet presented 
the entire input sequence.

In most cases, we would want to be able to handle uppercase characters 
as well as special symbols, so the width of the one-hot encoded characters 
would perhaps contain about 100 elements instead of 26. We will soon see a 
programming example in which we use one-hot encoded characters with an RNN, 
but first we discuss how to predict multiple timesteps into the future. That is 
another property that we use in the programming example.

When working with text, it is common to use one-hot encoding to represent a 
character.
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longer-Term Prediction and 
autoregressive models

In the previous chapters, we predicted only the next value in a time sequence. It 
is often beneficial to be able to predict longer output sequences than just a single 
symbol. In this section, we discuss a few ways to predict multiple timesteps.

One simple way is to create multiple models, where each additional model 
predicts a timestep further into the future. To illustrate this, consider a training 
example that we provided to our book sales prediction model in Chapter 9. We 
presented it with input data x(t−n), . . ., x(t−1), x(t), and the desired output value y(t+1). If 
we had used the same input data but instead presented it with the desired output 
value for a later timestep y(t+2), we would get a model that predicts two steps into 
the future. We can then create yet another model that we train with y(t+3), and so 
on. Now, given an input sequence x(t−n), . . ., x(t−1), x(t), we can present it to each of 
our three models, and we get the predictions for the next three timesteps. This 
approach is simple to implement but not so flexible, and there is also no sharing 
or reuse between the models.

another option is to create a model that predicts m timesteps at once. We 
would define the model to have m outputs, and each training example would 
again consist of the input sequence x(t−n), . . ., x(t−1), x(t), but the desired output is 
now a sequence y(t+1), y(t+2), . . ., y(t+m). here we get the potential benefit of reusing 
parameters for predicting multiple timesteps, but we need to decide up front 
how many timesteps into the future we want to predict, and if we want to predict 
extremely long sequences, we end up with a large number of output neurons.

'h' 'e'

h(0) h(1)

R R

'l' 'l'

h(2) h(3)

R R

SMax SMax SMax SMax

'o'

Figure 11-1 Text prediction network with a recurrent layer and a fully connected 
softmax layer. The rectangle labeled Smax is not only the mathematical softmax 
function but a fully connected layer with softmax as an activation function.
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One thing that kind of rubs us the wrong way with these two methodologies is that 
we need to decide up front at training time how many timesteps we want to be 
able to predict. Just as we want to be able to process input sequences of variable 
lengths, we would like to dynamically choose the length of the output sequence. 
There is a clever way of doing this for the case where the model predicts a future 
value of a variable based solely on historical values of that variable (as opposed 
to a collection of other variables). We simply take the predicted output value 
for one timestep and feed it back as input to the model in the next timestep. We 
can do this repeatedly for an arbitrary number of timesteps. a deep learning 
(dl) model where the output of one timestep is used as the input value for the 
next timestep is often called an autoregressive model. Outside of the dl field, an 
autoregressive model is typically a linear model (hastie, Tibshirani, and Friedman, 
2009). In the context of dl, it is used more broadly for any type of model (typically 
nonlinear) where we use the output from one timestep as input in the next 
timestep.

Now consider the problem of autocompletion of text. In this case, we have a 
sequence of characters, and we want to predict a sequence of characters that 
are likely to follow the input sequence. That is, a reasonable design of a neural 
network for autocompletion of text is to take the network described in Figure 11-1 
and first feed it the beginning of the sentence that we want to autocomplete. 
This results in a predicted character on the output of the network. We then feed 
this character back to the network as an input in an autoregressive manner. 
Figure 11-2 illustrates how this is done.

We are not taking the output exactly as is and feeding it back as input. Remember 
that the output is a probability distribution; that is, the network will assign a value 
between 0 and 1 to each character. however, the inputs are expected to be one-
hot encoded—only the element corresponding to a single character should be set 
to 1, and all other elements should be 0. Thus, we identify which character the 
network predicts as the highest probability and feed the one-hot encoding for that 
character back as input (autoregression). We do just that in the next programming 
example, but first we introduce a technique that is needed to get multiple possible 
predictions instead of just a single prediction.

long-term prediction can be done by repeatedly feeding the predicted output 
back as inputs to the model. This works only if the network predicts all the 
variables needed as input. It is known as an autoregressive model.



BEam SEaRCh

289

Beam Search
When doing autocompletion of text, it is common to want the model to predict 
multiple alternative completions of a sentence. The algorithm beam search 
accomplishes this. Beam search has been known since the 1970s but has become 
popular in dl-based natural language processing, for example, for natural 
language translation (Sutskever, vinyals, and le, 2014).

The algorithm works in the following way. Instead of always picking the single-
most probable prediction for each timestep, we pick N predictions, where N 
is a constant known as the beam size. If we did so naïvely, we would have N 

h(t+1)

'h' 'e'

h(t–1) h(t)

R R

'l' 'l'

h(t+2)
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SMax SMax SMax SMax

'o'

x(t–1) x(t) one-hot
version of

y(t)

one-hot
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y(t+1)

'l' 'l'
y(t–1) y(t) y(t+1) y(t+2)

Figure 11-2 Text prediction network with predictions fed back as inputs. The 
network is initially fed the first two letters, h and e, for the first two timesteps, and 
then the output is fed back to the input for the remaining timesteps. The output for 
the first timestep is ignored.

When the output is a softmax function, we typically do not feed the exact output 
back as input, but instead we identify the most probable element and use the 
one-hot encoded version of that element as input to the network.

Beam search enables us to create multiple alternative predictions when 
feeding back output as inputs to a network.
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candidates after the first timestep, N×N candidates after the second timestep, 
N×N×N candidates after the third timestep, and so on. To avoid this combinatorial 
explosion, each timestep also involves pruning the number of candidates to keep 
only the N most probable candidates overall. To make this more concrete, let us 
look at the example illustrated in Figure 11-3, where we assume N = 2.

assume that we have just presented the sequence “W-h-a-t” followed by 
a character space to the network. We get an output vector where the entry 
corresponding to the character t has the highest probability (20%) and the 
character d has the second-highest probability (15%). Because N = 2, we ignore all 
other candidates. We feed the first candidate, t, back as input to the network, and 
we find the two most probable outputs i (40%) and y (10%). In another copy of the 
model, we instead feed the second candidate, d, back as input to the network and 
find the two most probable outputs a (80%) and o (10%).

We now have the four candidates What ti, What ty, What da, and What do. We can 
compute the overall probability for each of these four candidates by multiplying 
the probabilities for each step. For example, What ti gets assigned the probability 

What

t

d

What time

What type

What day 

What does
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o = 1.5% (15% × 10%)

a = 12% (15% × 80%)

y = 2.0% (20% × 10%)

i = 8.0% (20% × 40%)
What tile

What tyra

What dark

What dog

Figure 11-3 Beam search character by character with a beam size of two. at each 
step, all but the two most probable alternatives (overall) are pruned.
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0.2 × 0.4 = 0.08. We now prune the tree and keep only the N most probable 
candidates, which in our example are What ti (8%) and What da (12%).

There is one key observation worth pointing out. What t resulted in a higher 
probability than What d. Still, at the next step, What da (which is a continuation of 
What d) is assigned a higher probability than What ti (which is a continuation of 
the more probable What t). This also implies that there is no guarantee that beam 
search will find the most probable candidate overall, given that the most probable 
candidate might well have been pruned early in the process. That is, in this 
example, we arrive at What time and What day, but it might very well be that What 
a night is the most probable alternative overall.

If you are familiar with search algorithms, you might notice that it is a breadth-
first search algorithm but where we limit the breadth of the search. Beam search 
is also an example of a greedy algorithm.

We now have all the building blocks that we need to move on to our programming 
example, where we implement all of this in practice.

Programming Example: using lSTm for 
Text autocompletion

In this programming example, we want to create a long short-term memory 
(lSTm)-based RNN, which can be used for autocompletion of text. To do that, we 
need to first train our network on some existing text that can be used as a training 
set. There are vast amounts of text data available online to use for exercises 
like this, and some studies have even used the entire content of Wikipedia. For 
simpler demo examples like the one in this chapter, we typically want something 
smaller to avoid lengthy training times, and a popular choice is to just pick your 
favorite book from project gutenberg.1 It is a collection of books that are no longer 

1. https://www.gutenberg.org

No need to worry if you are not familiar with breadth-first search or greedy 
algorithms. however, as always, you might want to consider learning about it in 
the future.

https://www.gutenberg.org
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copyrighted and are available in text format online. For this example, we chose 
to use Frankenstein, which should be familiar to most readers (Shelley, 1818). 
We simply downloaded the text file and saved it on our local computer to be 
accessible to the code that is described next.

The initialization code is shown in Code Snippet 11-1. apart from the import 
statements, we need to provide the path to the text file to use for training. We also 
define two variables, WINDOW_LENGTH and WINDOW_STEP, which are used to 
control the process of splitting up this text file into multiple training examples. 
The other three variables control the beam-search algorithm and are described 
shortly.

Code Snippet 11-2 opens and reads the content of the file, converts it all into 
lowercase, and replaces double spaces with single spaces. To enable us to easily 
one-hot encode each character, we want to assign a monotonically increasing 
index to each character. This is done by first creating a list of unique characters. 
Once we have that list, we can loop over it and assign an incrementing index to 
each character. We do this twice to create one dictionary (a hash table) that maps 
from character to index and a reverse dictionary from index to character.

import numpy as np

from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import Dense

from tensorflow.keras.layers import LSTM

import tensorflow as tf

import logging

tf.get_logger().setLevel(logging.ERROR)

EPOCHS = 32

BATCH_SIZE = 256

INPUT_FILE_NAME = '../data/frankenstein.txt'

WINDOW_LENGTH = 40

WINDOW_STEP = 3

BEAM_SIZE = 8

NUM_LETTERS = 11

MAX_LENGTH = 50

Code Snippet 11-1 Initialization Code
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These will come in handy later when we want to convert text into one-hot encoded 
input to the network as well as when we want to convert one-hot encoded output 
into characters. Finally, we initialize a variable encoding_width with the count 
of unique characters, which will be the width of each one-hot encoded vector that 
represents a character.

The next step is to create training examples from the text file. This is done by 
Code Snippet 11-3. Each training example will consist of a sequence of characters 
and a target output value of a single character immediately following the input 
characters. We create these input examples using a sliding window of length 
WINDOW_LENGTH. Once we have created one training example, we slide the 
window by WINDOW_STEP positions and create the next training example. We add 
the input examples to one list and the output values to another. all of this is done 
by the first for loop.

# Open the input file.

file = open(INPUT_FILE_NAME, 'r', encoding='utf-8')

text = file.read()

file.close()

# Make lowercase and remove newline and extra spaces.

text = text.lower()

text = text.replace('\n', ' ')

text = text.replace('  ', ' ')

# Encode characters as indices.

unique_chars = list(set(text))

char_to_index = dict((ch, index) for index,

                     ch in enumerate(unique_chars))

index_to_char = dict((index, ch) for index,

                     ch in enumerate(unique_chars))

encoding_width = len(char_to_index)

Code Snippet 11-2 Read File, Process Text, and Prepare Character mappings
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We then create a single tensor holding all the input examples and another tensor 
holding the output values. Both of these tensors will hold data in one-hot encoded 
form, so each character is represented by a dimension of size encoding_
width. We first allocate space for the two tensors and then fill in the values using 
a nested for loop.

as we did for the book sales prediction example, we have spent a considerable 
amount of code on just preparing the data, which is something that you should 
get used to doing. We are now ready to build our model. From the perspective 
of training our model, it will look similar to the book sales prediction example, 
but we use a deeper model consisting of two lSTm layers. Both lSTm layers 

If you want to become more fluent in these types of compact expressions, then 
you can consider reading about the concepts generators, list comprehension, 
and dict comprehension on python.org.

# Create training examples.

fragments = []

targets = []

for i in range(0, len(text) - WINDOW_LENGTH, WINDOW_STEP):

    fragments.append(text[i: i + WINDOW_LENGTH])

    targets.append(text[i + WINDOW_LENGTH])

# Convert to one-hot encoded training data.

X = np.zeros((len(fragments), WINDOW_LENGTH, encoding_width))

y = np.zeros((len(fragments), encoding_width))

for i, fragment in enumerate(fragments):

    for j, char in enumerate(fragment):

        X[i, j, char_to_index[char]] = 1

    target_char = targets[i]

    y[i, char_to_index[target_char]] = 1

Code Snippet 11-3 Prepare One-hot Encoded Training data

The code lines that create the dictionaries are “Pythonic” in that they squeeze 
much functionality into a single line of code, which makes it virtually impossible 
to understand if you are a beginner in Python. We generally try to avoid writing 
such code lines, but they do come with the benefit of being very compact.

http://python.org
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use a dropout value of 0.2 on the connections between layers as well as on the 
recurrent connections. Note how we pass return_sequences=True to the 
constructor of the first layer because the second layer needs to see the output 
values for all timesteps from the first layer. The second lSTm layer is followed 
by a fully connected layer, but this time the output layer consists of multiple 
neurons using a softmax function instead of a single linear neuron because we 
will be predicting probabilities for discrete entities (characters) instead of a single 
numerical value. We use categorical cross-entropy as our loss function, which is 
the recommended loss function for multicategory classification.

One thing to note is that when we prepared the data, we did not split the dataset 
into a training set and a test set. Instead, we provide a parameter validation_
split=0.05 to the fit() function. Keras will then automatically split our 
training data into a training set and a test set, where the parameter 0.05 indicates 
that 5% of the data will be used as a test set. For the case of autocompletion of 
text, we could have left out this parameter as well and simply trained using all 
the data and not done any validation. Instead, we could have manually sanity 
checked the output by using our own judgment, since the “correct” result for 
autocompletion of text is somewhat subjective. In Code Snippet 11-4, we have 
chosen to use a 5% validation set but will also inspect the predictions to get an 
idea of whether the network is doing what we would like it to do. Finally, we train 
the model for 32 epochs with a mini-batch size of 256.

# Build and train model.

model = Sequential()

model.add(LSTM(128, return_sequences=True,

                        dropout=0.2, recurrent_dropout=0.2,

                        input_shape=(None, encoding_width)))

model.add(LSTM(128, dropout=0.2,

                        recurrent_dropout=0.2))

model.add(Dense(encoding_width, activation='softmax'))

model.compile(loss='categorical_crossentropy',

                       optimizer='adam')

model.summary()

history = model.fit(X, y, validation_split=0.05,

                             batch_size=BATCH_SIZE,

                             epochs=EPOCHS, verbose=2,

                             shuffle=True)

Code Snippet 11-4 Build and Train model
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This results in a training loss of 1.85, and the loss on the test data is 2.14. We 
likely could tweak the network to produce better loss values, but we are more 
interested in trying to use our model to predict text. We do that using the beam-
search algorithm described previously.

In our implementation, each beam is represented by a tuple with three elements. 
The first element is the logarithm of the cumulative probability for the current 
sequence of characters. We describe later why we use the logarithm. The second 
element is the string of characters. The third element is a one-hot encoded 
version of the string of characters. The implementation is shown in Code 
Snippet 11-5.

Code Snippet 11-5 use the model and do Beam Search to Come up with multiple 
Text Completions

# Create initial single beam represented by triplet

# (probability , string , one-hot encoded string).

letters = 'the body '

one_hots = []

for i, char in enumerate(letters):

    x = np.zeros(encoding_width)

    x[char_to_index[char]] = 1

    one_hots.append(x)

beams = [(np.log(1.0), letters, one_hots)]

# Predict NUM_LETTERS into the future.

for i in range(NUM_LETTERS):

    minibatch_list = []

    # Create minibatch from one-hot encodings, and predict.

    for triple in beams:

        minibatch_list.append(triple[2])

    minibatch = np.array(minibatch_list)

    y_predict = model.predict(minibatch, verbose=0)

    new_beams = []

    for j, softmax_vec in enumerate(y_predict):

        triple = beams[j]

        # Create BEAM_SIZE new beams from each existing beam.

        for k in range(BEAM_SIZE):
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We start by creating a single beam with an initial sequence of characters ('the 
body ') and set the initial probability to 1.0. The one-hot encoded version of the 
string is created by the first loop. We add this beam to a list named beams.

This is followed by a nested loop that uses the trained model to do predictions 
according to the beam-search algorithm. We extract the one-hot encoding 
representation of each beam and create a NumPy array with multiple input 
examples. There is one input example per beam. during the first iteration, there is 
only a single input example. during the remaining iterations, there will be BEAM_
SIZE number of examples.

We call model.predict(), which results in one softmax vector per beam. The 
softmax vector contains one probability per word in the vocabulary. For each 
beam, we create BEAM_SIZE new beams, each beam consisting of the words 
from the original beam concatenated with one more word. We choose the most 
probable words when creating the beams. The probability for each beam can be 
computed by multiplying the current probability of the beam by the probability for 
the added word. however, given that these probabilities are small, there is a risk 
that the limited precision of computer arithmetic results in underflow. This can 
be addressed by instead computing the logarithm of the probability, in which case 
the multiplication is converted to an addition. For a small number of words, this is 
not necessary, but we do it anyway for good practice.

            char_index = np.argmax(softmax_vec)

            new_prob = triple[0] + np.log(

                softmax_vec[char_index])

            new_letters = triple[1] + index_to_char[char_index]

            x = np.zeros(encoding_width)

            x[char_index] = 1

            new_one_hots = triple[2].copy()

            new_one_hots.append(x)

            new_beams.append((new_prob, new_letters,

                              new_one_hots))

            softmax_vec[char_index] = 0

    # Prune tree to only keep BEAM_SIZE most probable beams.

    new_beams.sort(key=lambda tup: tup[0], reverse=True)

    beams = new_beams[0:BEAM_SIZE]

for item in beams:

    print(item[1])
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Once we have created BEAM_SIZE beams for each existing beam, we sort the 
list of new beams according to their probabilities. We then discard all but the top 
BEAM_SIZE beams. This represents the pruning step. For the first iteration, this 
does not result in any pruning because we started with a single beam, and this 
beam resulted in just BEAM_SIZE beams. For all remaining iterations, we will 
end up with BEAM_SIZE * BEAM_SIZE beams and discard most of them.

It is worth pointing out that our implementation does not take the predicted 
output and feed it back to the input, character by character. Instead, each iteration 
of the loop results in a completely new mini-batch that contains the entire 
sequence of characters, and we feed this sequence through the network. That is, 
the result is the same, but we do many redundant computations. In Chapter 12, 
“Neural language models and Word Embeddings,” we present an example of 
an alternative implementation that does feed the output back to the input, one 
symbol at a time.

The loop runs for a fixed number of iterations followed by printing out the 
generated predictions:

the body which the m

the body which the s

the body of the most

the body which i hav

the body which the d

the body with the mo

Note that the predictions generated by the network both use correctly spelled 
words and have grammatical structures that look reasonable. This completes 
our programming example, but we encourage you to experiment further using 
different training data and different partial phrases used as starting points.

Bidirectional RNNs
When working with text sequences, it can often be beneficial to look at both 
previous and future words. as an example, when writing a paragraph, it is often 
the case that we write one sentence, then another, and then go back and edit the 
previous sentence to better fit together with the subsequent sentence. another 
example is when we are parsing what somebody is saying. Suppose we hear the 
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beginning of a sentence, “I saw the b. . .,” but did not fully hear the last word. We 
did, however, hear that it was a one-syllable word starting with a b. We would 
likely need to ask the person to repeat what they said because it is not obvious 
what the word could be—it might be ball or boy or bill or any of a number words 
starting with b. Suppose instead that we heard the entire sentence: “I saw the 
b. . . sky.” With the b sound and sky as context, we would likely not ask the person 
to repeat but just assume that the word is blue. In other words, looking at future 
words enables us to predict the missing word, and a typical application for this is 
speech recognition.

a bidirectional RNN (Schuster and Paliwal, 1997) is a network architecture that 
has the ability to look at future words. a bidirectional RNN layer consists of two 
layers operating in parallel, but they receive the input data in different directions. 
For this to work, the full input sequence needs to be available up front, so it 
cannot be used in an online setting where the sequence is created dynamically. 
To make it simple, consider a regular RNN layer consisting of a single unit. If we 
wanted to create a bidirectional version of this RNN layer, we would add another 
unit. If we then wanted to feed the characters h, e, l, l, o to the network, we would 
feed h to one of the units and o to the other at the first timestep. at timestep 2, we 
would feed them e and l; at timestep 3, l and l; at timestep 4, l and e; and finally, at 
timestep 5, o and h. during each timestep, each of the two units would produce an 
output value. at the end of the sequence, we would combine the two outputs for 
each input value. That is, the output value for timestep 0 for the first unit and the 
output value for timestep 4 for the second unit would be combined because those 
timesteps represent when the units received h as input. There are multiple ways 
to combine the output of two units, such as addition, multiplication, or average.

In Keras, a bidirectional layer is implemented as a wrapper that can be used with 
any RNN layer. Code Snippet 11-6 shows how it can be used to change a regular 
lSTm layer into a bidirectional lSTm layer.

Bidirectional RNNs predict an element from both the past and the future.

from tensorflow.keras.layers import Bidirectional

…

model.add(Bidirectional(LSTM(16, activation='relu')))

Code Snippet 11-6  how to declare a Bidirectional layer in Keras
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do not worry too much if you find bidirectional layers confusing. We mention them 
here primarily because you are likely to encounter them as you read about more 
complex networks. We do not make use of bidirectional layers in the programming 
examples in this book.

different Combinations of Input and 
Output Sequences

Our initial book sales prediction took a sequence of values as input and returned a 
single output value. Our text autocompletion model took a sequence of characters 
as input and produced a sequence of characters as output. In a popular blog post, 
Karpathy (2015) discusses other combinations of inputs and outputs. These are 
illustrated in Figure 11-4.

Starting from the left, a one-to-one network is not a recurrent network but simply 
a feedforward network that takes one input and produces a single output. These 
inputs and outputs may well be vectors, but they are not presented as a variable-
length sequence but as a single timestep. The second combination is the one-to-
many case, which receives input during the first timestep and produces multiple 
outputs over subsequent timesteps. a typical use case is where an image is 
presented as input and the network produces a textual description of what is in 
the image. The third example is a many-to-one model, which is exactly what we 

one-to-one one-to-many many-to-one many-to-many many-to-many
synchronized

Figure 11-4 Input/output combinations for RNN unrolled in time. gray represents 
input, blue represents the network, and green represents outputs. (Source: 
adapted from Karpathy, a., "The unreasonable Effectiveness of Recurrent Neural 
Networks," may 2015, http://karpathy.github.io/2015/05/21/rnn-effectiveness/.)

http://karpathy.github.io/2015/05/21/rnn-effectiveness/
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did in the book sales forecasting example. It is followed by a many-to-many case. 
although the length of the input sequence is the same as the output sequence 
in the figure, this is not a requirement. For example, in our text autocompletion 
example, we implemented a many-to-many network in which the input sequence 
and output sequence could have different number of steps. Finally, the rightmost 
example in the figure shows a synchronized many-to-many network in which the 
input for each timestep has a corresponding output. a typical example of this is a 
network that classifies each frame of a video to determine whether or not there is 
a cat in the frame.

a reasonable question is how the different types of network are implemented in 
practice. First, note that we should not restrict the discussion to “pure” recurrent 
networks, but the concepts just described can be applied to more complex hybrid 
architectures.

Now let us consider the one-to-many case. looking at the figure, it might not 
look that complicated, but the first question that comes to mind when trying to 
implement the model is what to do with the inputs for all timesteps after the 
first timestep. Remember that the figure represents the abstraction of unrolling 
the network in time, and if the network has inputs during the first timestep, then 
those inputs are still there for the subsequent timesteps and must be fed with 
something. Two obvious and common solutions to this are to either just feed the 
network with the same input value during every timestep or feed the network with 
the real input value during the first timestep and for each subsequent timestep 
feed it some kind of special value that does not naturally occur in the input data, 
and then just rely on the network learning to ignore that value.

Similarly, the many-to-one network will produce an output during each timestep, 
but we can choose to simply ignore the output for all timesteps but the last. In 
our book sales prediction example, we told Keras to do just that by implicitly 
setting the return_values parameter to False (its default value) for the last 
recurrent layer.

The rightmost synchronized many-to-many architecture is trivial. We feed the 
network an input during each timestep, and we look at the output during each 
timestep. The other many-to-many architecture in the figure is different in that it 
can have a different number of output steps than input steps. Our programming 
example with autocompletion of text was an example of this architecture. One 
design choice for such a network is how to communicate to the network that the 
input sequence is done and how the network communicates when the output 
sequence is done. In our programming example, this was done implicitly by the 
user by starting to look at the output (and feeding it back to the input) after a 
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specific number of characters and then stopping the process after the network 
had predicted a fixed number of characters. There are other ways of doing this 
as well (e.g., by teaching the network to work with STaRT and STOP tokens). We 
will see an example of this in Chapter 14, “Sequence-to-Sequence Networks 
and Natural language Translation,” where we implement a natural language 
translation network.

Concluding Remarks on Text 
autocompletion with lSTm

In this chapter, we concluded our presentation of recurrent networks with a 
programming example illustrating how an lSTm-based RNN can be used for 
autocompletion of text. This was also our first example of a network applied to 
natural language processing (NlP), as opposed to image data and numerical 
data. another interesting aspect of this programming example, as well as of 
the bookstore sales prediction example, was that we created training examples 
without explicit labeling. The sequential nature of the data itself was such that the 
ground truth could be automatically created for each training example.

For the text autocompletion example, we chose to encode individual characters 
and feed them into the network. a more powerful approach is to work at a 
granularity of individual words and with a more expressive encoding scheme than 
one-hot encoding. We discuss this topic in the next couple of chapters.
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Chapter 12

Neural Language 
Models and Word 
Embeddings

In Chapter 11, “Text Autocompletion with LSTM and Beam Search,” we built a 
network that predicts the continuation of a sentence. One remarkable property 
of that model is that it learns both words and sentence structure. We did nothing 
to prevent the model from producing random, nonexistent words or producing 
sentences that make no sense grammatically, but somehow, this did not happen. 
Still, it seems like we made it unnecessarily hard for the model by giving it 
individual characters instead of words as the smallest building blocks. After 
all, humans do not actually communicate with characters—they use characters 
primarily as tools to describe, in writing, words they are communicating.

In this chapter, we describe two major concepts. We begin with a brief introduction 
to statistical language models. The focus is on neural language models, which 
involve a task similar to the text autocompletion task from Chapter 11 but using 
words instead of characters as building blocks. Statistical language models have 
traditionally played a key part in automatic natural language translation, which is 
explored in Chapter 14, “Sequence-to-Sequence Networks and Natural Language 
Translation.” The second concept that we introduce in this chapter is a class of 
alternative encodings of words that can be used instead of one-hot encoding. The 
terms word embeddings, word vectors, and distributed representations are used 
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interchangeably for this class of alternative encodings., but we primarily use word 
embeddings. A key property of many word embeddings is that they are not simply 
encodings of words, but they also capture some of the properties of the words, 
such as semantics and grammatical features.

Neural language models and word embeddings are somewhat intertwined in 
the literature because some of the important early discoveries about word 
embeddings fell out as an unexpected byproduct from work on neural language 
models. We therefore describe them jointly while still trying to keep them 
separate and describe how they relate to each other.

As a programming example, we build our own word-based neural language model 
and explore the word embeddings that it produces as a byproduct. Then, before 
moving on to Chapter 13, “Word Embeddings from word2vec and gloVe,” which 
describes more advanced algorithms for creating word embeddings, we briefly 
discuss sentiment analysis of text (i.e., automatically classifying documents based 
on whether the content is positive or negative).

Introduction to Language Models and 
Their use Cases

A statistical language model describes how likely a sequence of words is in the 
language that it models. It does so by assigning a probability to each possible 
word sequence. A correct and common sequence of words is assigned a high 
probability, and an incorrect or uncommon sequence of words is assigned a low 
probability.

The terms word embeddings, word vectors, and distributed representations 
of words are all different names for a type of encoding of words. This type of 
encoding often captures key properties of the words.

A statistical language model provides a measure of how likely it is that a 
sequence of words would occur in the given language.
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To make this more concrete, we note that this is what our text autocompletion 
network from Chapter 11 did, but using characters as building blocks, whereas 
a language model typically uses words as building blocks. Thus, if we feed a 
language model a sequence of words, its output is a probability for each word 
in the vocabulary telling how likely it is that this word is the next word in the 
sequence.

Figure 12-1 illustrates what beam search for a word-based language model 
might look like. In this example, we start by feeding the word Deep into the 
network. The model might assign a high probability to the two words learning 
and dish. Obviously, there are many other words in the vocabulary that will also 

A statistical language model is typically formulated in terms of conditional 
probabilities, where the probability of the next word in a sequence is 
conditioned on all previous words in the sequence. We do not go into details 
about conditional probabilities in our description, but it is a good topic for 
further reading and more or less required if you want to understand papers 
about language models. goodfellow, Bengio, and Courville (2016) and hastie, 
Tibshirani, and Friedman (2009) can be consulted for more details and 
additional references.

Deep

learning

book

in

dish

pizza

rims

Deep learning book

Deep learning in

Deep dish pizza

Deep dish rims

Figure 12-1 Beam search for word-based language model using a beam size of 2
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be assigned a high probability (e.g., water, thoughts, space). Other words, (e.g., 
heaven, bicycle, talked) will be assigned a low probability. The thinking here is 
that, although deep heaven and deep bicycle are plausible sentences, they seem 
unlikely due to the meanings of the words, and the reason that deep talked is 
assigned a low probability is that, in most cases, it would form a sentence that is 
grammatically incorrect. It is worth noting that we can build multiple language 
models for a given language, depending on the setting in which it is to be used. 
For example, if we are in a setting where we are discussing machine learning 
topics, the probability of the sequence deep learning is higher than the probability 
of deep dish, whereas the opposite is true if we are at a food convention in 
Chicago. In general, the properties of the language model depend on the text 
corpus that it is derived from.

Now that we have spent a couple of paragraphs on describing what a language 
model is, a fair question is what it can be used for, apart from autocompletion of 
text. We give two examples of many use cases within the field of natural language 
processing.

The first example is from speech recognition. In Chapter 11, in the context of 
bidirectional recurrent neural network (rNNs), we briefly mentioned how it 
can be useful to look at both historical and future words in a sentence when 
doing speech recognition. The given example was that when not fully capturing 
all words in the phrase “I saw the b. . . sky,” we could still give a reasonable 
prediction that the missing word is blue. A different example that does not involve 
missing words is to do speech recognition on the phrase “recognize speech using 
common sense.” using an automatic system that identifies only the phonemes in 
the phrase, if things go well, the system will output the correct phrase. however, 
the automatic system might instead output the similar sounding phrase “wreck 
a nice beach you sing calm incense,” which humorously was used in the title of 
a paper by Lieberman and colleagues (2005). Or we could end up with a mixture 
of the two phrases or yet another alternative. In other words, the system could 
produce several candidate sentences based only on the phonemes of the phrase. 
We could then apply a language model to select the one that is the most probable 
phrase and thereby drastically improve the quality of speech recognition.

The second example is from the field of automatic natural language translation 
where the language model traditionally has played a big role. First, several 
candidate translations are produced using one of various existing techniques. One 
such technique is to first do a word-by-word translation and then create different 
permutations of how the words are ordered (different languages often have 
different word orderings). A language model can then be used to identify the most 
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probable candidate translation. As a side note, the field of machine translation is 
rapidly evolving, and in Chapter 14, we show how a neural network can generate 
the candidate translations in the first place instead of relying on word-by-word 
translation as the initial step.

In these two examples, we talked about assigning a probability to an entire 
sentence, but for the purposes of this book, we consider only the case of having 
an initial sequence of words and assigning a probability to each possible 
continuation; that is, given a sequence of words, we assign a single numerical 
value to each word in the vocabulary where the sum of all values equals 1.0.

Examples of different Language Models
This section briefly describes a few important classical language models as well 
as a neural language model and relates them to each other. Concepts from both 
the classical and neural language models are later used in the context of creating 
word embeddings.

n-grAM MOdEL

The n-gram model is a simple statistical language model. As previously 
mentioned, a language model tries to solve the problem of providing a probability 
for each word in a vocabulary given a sequence of historical words. The n-gram 
model approximates this by considering only the (n−1) most recent words instead 
of the full history. These (n−1) historical words plus the predicted next word 
form a sequence of n words, known as an n-gram, which has given the model its 
name. The parameter n is chosen up front when we train the model. We start our 
description with n = 2, which is also known as a bigram model. The model is built 
by simply counting all different bigrams in the training corpus and then basing 
the prediction on how frequently each bigram appears. Let us consider the word 
sequence “The more I read, the more I learn, and I like it more than anything 
else.” To make things simple, we ignore punctuation and convert all characters to 
lowercase. We can construct the following list of bigrams: /the more/ /more i/ /i 
read/ /read the/ /the more/ /more i/ /i learn/ /learn and/ /and i/ /i like/ /like it/ /it 
more/ /more than/ /than anything/ /anything else/.

There are a couple of things to note. We see that some bigrams, such as /the 
more/ and /more i/, appear multiple times. Further, a number of nonidentical 
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bigrams, such as /i read/ /i learn/ /i like/ and /more i/ /more than/, have the same 
starting word. Finally, one bigram, /more i/, both appears multiple times and 
shares the starting word with a different bigram, /more than/. The bigrams are 
summarized in Table 12-1, which is sorted alphabetically.

given a starting word, we can now use this table to predict the next word. For 
instance, if we are given the word and, our bigram model predicts that the 
probability of the next word being i is 100% and the probability for all other words 
is 0%. If the first word is more, then the model predicts a probability of 67% for 
the word i but 33% for the word than because, of the three bigrams starting with 
more, two of them are /more i/ and only one is /more than/.

Table 12-1 Summary of Bigrams

FIRST WORD PREDICTED WORD
NUMBER OF 
OCCURRENCES

PROBABILITY GIVEN 
STARTING WORD

and i 1 100%

anything else 1 100%

i learn 1 33%

like 1 33%

read 1 33%

it more 1 100%

learn and 1 100%

like it 1 100%

more i 2 67%

than 1 33%

read the 1 100%

than anything 1 100%

the more 2 100%
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Clearly, the bigram model is limited in that it cannot capture any longer-term 
dependencies. For example, if we train the model on the sentences “the boy 
reads,” “the girl reads,” and “the boy and girl read,” and then present “the boy and 
girl” as a starting sequence, the bigram model will ignore “the boy and” and only 
predict the next word based on the word girl. Its probability for reads is 50%, and 
its probability for read is 50%, although the longer context makes it clear that the 
word read should be more probable. The obvious solution is to increase the value 
of n. We can create a 5-gram model in which the first few 5-grams become /the 
more i read the more/ /more i read the more i/ and /i read the more i learn/. This 
enables the model to capture more complex dependencies, but it comes with the 
drawback that much more training data is needed to capture enough 5-grams 
to make the model useful. If the starting sequence cannot be found in the table, 
then the model predicts 0%, which is a significant limitation of the basic n-gram 
model. This is aggravated by the fact that the longer the n-grams are, the lower 
the probability is that an arbitrarily chosen sequence of (n−1) words existed in 
the training corpus. For example, the training corpus might have contained the 
sequence “the boys and girls read,” but the model still cannot predict anything 
when presented with the input sequence “the boy and girl” because boy and girl 
are now in singular form. Still, the basic n-gram model has been shown to be 
useful, and there are various extensions that address some of its shortcomings.

SKIP-grAM MOdEL

A skip-gram model is an extension of the n-gram model but where all words 
do not need to appear sequentially in the training corpus. Instead, some words 
can be skipped. A k-skip-n-gram model is defined by the two parameters k and 
n, where k determines how many words can be skipped and n determines how 
many words each skip-gram contains. For instance, a 1-skip-2-gram model will 
contain all the bigrams (2-grams) that we discussed previous, but also contain 
nonconsecutive word pairs that are separated by, at most, one word. If we again 
consider the word sequence “The more I read, . . .” in addition to /the more/ /more 
i/, and so on, the 1-skip-2-gram model will contain /the i/ /more read/, and so on.

NEurAL LANguAgE MOdEL

given the background about language models presented in this chapter and 
the character-based text autocompletion example in Chapter 11, it should 
now be straightforward to envision a word-based neural language model. An 
obvious question is how to encode words. To keep things simple, we start with 
the assumption that words are one-hot encoded, and we reason about what 
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challenges and drawbacks that presents. This naturally leads us to the subject 
of word embeddings. The way and order in which we describe these concepts 
do not necessarily match the chronological order in which they were discovered. 
distributed representations of words (hinton, McClelland, and rumelhart, 1986) 
have been discussed since at least the 1980s, although, as far as we know, the 
paper that described the first neural language model was published in 2003 
(Bengio et al., 2003).

Figure 12-2 shows three high-level architectures of neural language models. The 
leftmost version is a simple feedforward network that takes a single previous 
word as an input and ends with a fully connected softmax layer, which predicts 
the next word. relating to the nonneural language models, this is similar to a 
bigram model in that the training set consists of all possible pairs of consecutive 
words. Obviously, a neural model that considers only the most recent word will 
result in limited accuracy, just like a bigram model.

An obvious improvement over this simple neural language model is illustrated 
by the middle model in the figure. Instead of providing only a single word as 
input, we input multiple words to the model, which is still a simple feedforward 
network with a fully connected softmax output layer. The difference here is that 
the number of inputs is sized to be able to accept a fixed number of words; that 
is, this model is similar to an n-gram model where n is a fixed parameter chosen 
when creating the network.

Hidden layer(s)

Word N

Softmax layer

Hidden layer(s)

Word N-2

Softmax layer

Word NWord N-1

Hidden recurrent layer(s)

Word Seq.
up to N

Softmax layer

Probability of word
N+1

Probability of word
N+1

Probability of word
N+1

History length = 1 History length = 3 Variable history length

Figure 12-2 Three neural language models. The leftmost model predicts the next 
word based on a single preceding word, similar to a bigram model. The middle 
model predicts the next word based on the three preceding words. The rightmost 
model can handle a variable number of words as input. All input words are 
assumed to be one-hot encoded.
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As discussed in the past few chapters, a limitation of feedforward networks 
is their inability to be able to accept variably sized inputs. This leads us to the 
rightmost model in the figure, which illustrates a neural language model based 
on an rNN. This results in something similar to an n-gram model but where 
n can take on any value and can be different for different training and test 
examples.

This discussion makes it appear as if a neural language model is no different from 
an n-gram model, but that is not true. One obvious difference is that an n-gram 
model is exact, whereas a neural language model is approximate. The n-gram 
model simply records the exact probabilities of observed data (the training set), 
whereas the neural language model learns weights to try to mimic the training 
set. A more important difference is the ability to generalize. If an n-gram model 
is presented with a word sequence that was not present in the training data, its 
output probability will be 0 (by definition), whereas the neural language model will 
output whatever probability falls out from the trained weights. Clearly, this does 
not guarantee that the neural language model provides any useful information 
for a previously unseen case, but given our experience with neural networks and 
their ability to generalize, it is reasonable to believe that the neural model could 
provide benefit in this case.

Let us consider this with an example that is based on examples given by 
Bengio and colleagues (2003). Assume that the phrase “the cat is walking in the 
bedroom” was in the training dataset. After training, we present the previously 
unseen phrase “the dog is walking in the” as input to our language model, and 
we want to know the probability that the phrase ends with the word bedroom. 
As previously described, an n-gram model with n=7 will report 0 (because the 
test example was not in the training set). The neural language model, on the 
other hand, will likely produce a probability that is somewhat similar to what 
was produced for the training example about the cat. To understand why, let us 
look at the inputs to a model based on a feedforward network, which accepts six 
one-hot encoded words as input, with a vocabulary size of 10,000. The model 

using neural networks is not the only way of improving over a basic n-gram 
model, and many other more advanced nonneural language models have been 
explored. given that the focus of this book is neural networks, we do not explore 
nonneural language models in more detail, but this is a topic that makes sense 
to explore further if you want to focus on neural language models.
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receives 6 × 10,000 values, where only 6 of these 60,000 values will be hot (set 
to 1). Changing the word cat to dog has the effect that one of the hot values will 
be set to 0 and one of the values previously being 0 will be set to 1. All other 
values will be the same.

To illustrate this, consider the example of a model that takes three words as an 
input and predicts the next words. Assume the one-hot encodings in Table 12-2. 
The beginning of the sentence results in the following encoding:

“the cat is” = 0001 0100 1000

Changing the word cat to dog results in the following encoding that is similar to 
the previous encoding:

“the dog is” = 0001 0010 1000

Thus, it is reasonable to believe that the model could still output walking as 
the next word even if it was trained only on the sentence about the cat that was 
walking.

This example illustrates why a neural language model can be robust to minor 
changes in the inputs by not requiring an exact match, but ideally, we would 
want our model to have even more powerful properties. rather than just being 
able to tolerate minor changes, we would want the model to still make use of the 
word that has changed only slightly. To make this happen, we need a better word 
encoding than one-hot encoding, which is discussed next.

Table 12-2 One-hot Encoding of Words

WORD ONE-HOT ENCODING

the 0001

dog 0010

cat 0100

is 1000
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Benefit of Word Embeddings and Insight 
into how They Work

Let us again consider the phrase “the cat is walking in the bedroom” but this 
time consider what happens if the beginning of the phrase seen after training is 
“a dog was running in a.” Word by word, this is a completely different sentence 
except for the word in. however, the words in the two different sentences have 
similar semantics and grammar. Both a and the are articles. Both cat and dog are 
nouns that also happen to be pets. The words is and was are different tenses of 
the word be, and so on. given this knowledge of how the different words relate 
to each other, it is not too much of a stretch to assume that the second phrase 
should end with the word bedroom. That is, the phrase “a dog was running in a 
bedroom” should be assigned a high probability given our knowledge that the first 
phrase is assigned a high probability. We want the model to be able to generalize 
and learn the probability of the second phrase when being trained on the first 
phrase. Intuitively, this can be done by choosing a word-encoding scheme with the 
property that two words that have similar semantics or grammar are assigned 
similar encodings. Before describing in more detail how this can be done, let us 
consider another couple of examples to further highlight the need for good word 
encodings.

Consider the case of natural language translation and suppose we have learned 
the French translation of the English phrase “that is precisely what I mean.” 
Now let us assume that our automatic translation model is asked to translate 
the previously unseen phrase “that is exactly what I mean.” If the encoding for 
the word exactly is similar to the encoding for the word precisely, then the model 
can assume that its learned translation is valid. Similarly, if it has been trained 
on the phrase “that is awesome” and later is asked to translate “that is awful,” 
then ideally, the encodings of awesome and awful should be chosen such that the 
model does not assume that the two phrases are equivalent. The encoding should 
somehow provide the information that awesome and awful are opposites of each 
other.

These encoding properties can be achieved by using word embeddings (or word 
vectors or distributed representations of words, as stated earlier). We have 
now used those terms several times without describing what they are, so let us 
address that. A word embedding is a dense representation of a word in a vector 
space with a smaller number of dimensions than the number of words in the 
vocabulary. This somewhat cryptic description might not be very helpful, so let us 
decode what it means. Starting with dense representation, this simply says that 
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it is not a “sparse” representation like one-hot encoding—that is, the vector that 
represents a word will have multiple nonzero elements. Typically, all elements 
will be nonzero. A vector space with a smaller number of dimensions than the 
number of words in the vocabulary is simply a word embedding (or word vector) 
that has fewer elements than a one-hot encoded vector because the number of 
elements in a one-hot encoded vector is the same as the number of words in the 
vocabulary. This is illustrated in Table 12-3, where each word is encoded as a 2d 
vector.

Figure 12-3 plots the words in a 2d space, which leads us to where the term 
embedding originates from: The words are embedded in an n-dimensional space 
(where n = 2 in this example). Similarly, a point in a coordinate system can be 
represented by a vector, which explains why a different name is word vector. 
Finally, as opposed to one-hot encoding, where the representation is localized to a 
single variable in a vector, in the encoding shown in Table 12-3, the representation 
of a word is distributed across multiple variables, which is where the third name, 
distributed representations, originates from.

As you can see from the figure, the chosen encodings communicate something 
about each word. The word type (part of speech) for a given word can be deduced 
from the quadrant in which the word is located.1 For example, all words in the 
first quadrant are nouns. you can also see that within each quadrant, words that 

1. This is a simplified example and works only if the number of word classes is limited. given that 
there are more than four parts of speech in the English language, it is not possible to encode them in a 
2d space and end up with one word class per quadrant.

Table 12-3 A Small Vocabulary Embedded in 2d Space

NOUN VERB ARTICLE PREPOSITION

Word Encoding Word Encoding Word Encoding Word Encoding

cat 0.9; 0.8 is 0.9; −0.7 the −0.5; 0.5 in −0.5; 
−0.5

dog 0.8; 0.9 was 0.8; −0.8 a −0.4; 0.4

bedroom 0.3; 0.4 running 0.5; −0.3

walking 0.4; −0.4
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are similar are located close to each other. Let us now consider what happens 
when we use this encoding to encode the two discussed phrases so we get two 
numerical sequences that can be used as inputs to a neural network:

“the cat is walking in the” -0.5; 0.5; 0.9; 0.9; 0.9; -0.7; 0.4; -0.4; -0.5; -0.5; 
-0.5; 0.5

“a dog was running in a” -0.4; 0.4; 0.8; 0.9; 0.8; -0.8; 0.5; -0.3; -0.5; -0.5; 
-0.4; 0.4

Looking at the two numerical sequences, it should be clear that they are similar 
to each other, and it would not be surprising if a neural network that has been 
trained on the cat phrase would produce a similar output when presented with the 
dog phrase, even if it had never seen it before. In other words, the network would 
be able to generalize.

Word Embeddings Created by Neural 
Language Models

The way the field of word embeddings has evolved is noteworthy. As previously 
mentioned, word embeddings have a longer history than neural language models. 
In the paper where the neural language model was introduced, Bengio and 
colleagues (2003) used embeddings as the representation of words to achieve the 
properties described in the previous section. however, rather than engineering 
the embeddings before training the model, they decided to let the model learn the 

Figure 12-3 Word embeddings in a 2d coordinate system
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embeddings together with the language model, which turned out to be successful. 
Mikolov and colleagues (2009) later explored how to pretrain the embeddings 
with a simple language model and then reuse the learned embeddings in a more 
complex language model. Later, Mikolov and a second team (2010) investigated 
using an rNN-based language model. All this work was aiming at producing good 
language models. Collobert and Weston (2008) had a different objective in that 
they were trying to train a model to predict a number of linguistic properties, 
including identifying whether words are semantically similar. They showed that 
the embeddings produced when training a neural language model express the 
property that embeddings corresponding to semantically similar word are located 
close to each other in vector space (the Euclidean distance between the vectors 
is small). Mikolov, yih, and Zweig (2013) investigated the resulting embeddings 
further and discovered that they had some key and, to some extent, unexpected 
properties in that we can use vector arithmetic to determine how different words 
relate to each other. We soon describe this in more detail, but we first provide 
some insight into why good embeddings can result from training a language 
model.

We start by describing how to incorporate the word embeddings into the neural 
network so the embeddings can be learned during the training process. Assuming 
a single word as input to a model, a naïve way of doing this is to let the input 
layer represent the word in one-hot encoded form and let the first hidden layer 
be a fully connected layer with N neurons with linear activation functions. This 
is also known as a projection layer because it projects the input from a specific 
dimension onto an output of a different dimension. The output of this hidden layer 
will now be an N-dimensional word embedding. The word vector corresponding to 
word K in the vocabulary is now simply the weights for the set of connections that 
connect input node K to the hidden layer. Figure 12-4 illustrates this for a case 
with a vocabulary with five words and an embedding width of three dimensions. 
The figure highlights the weights that correspond to the word embeddings for 
word 0 and word 4.

Expanding each word to a one-hot encoded form and then doing a large number 
of multiplications, most of which use 0 as one of the factors, is inefficient. A 
more efficient way of implementing this is simply to represent each word by 
an integer-valued index and use this to index into a lookup table that stores the 
corresponding embeddings. As is usually the case, we do not need to worry 
about the most efficient way of implementing things but will rely on our deep 
learning (dL) framework. In TensorFlow with the Keras API, we create a mapping 
from each word to a unique integer, and we present this integer as input to an 
Embedding layer, which converts the integer to an embedding. Keras also trains 
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the weights in an efficient way using backpropagation. The programming example 
in the next sections goes over the Keras mechanics in more detail.

Clearly, the language model we just described will result in some form of word 
embeddings. After all, the embeddings are defined by whatever weights the 
model learns. however, a fair question is why we would think that the resulting 
word embeddings will present the properties that we discussed, such as similar 
words having similar embeddings. As far as we understand it, this was more of 
an unexpected discovery that fell out as a byproduct as opposed to an intentional 
outcome when Bengio and colleagues started to experiment with neural based 
language models. That is, their intent was to produce a good language model. Their 
intent was not explicitly to create good embeddings. however, in hindsight, we can 
reason about why this is not totally unexpected. To keep it simple, consider a simple 
language model that consists of a single word as input, and the goal of the model 
is to predict the next word (i.e., it is the neural equivalent to a bigram model). The 
model architecture consists of an embedding layer on the input, followed by a single 
hidden layer, and then a fully connected softmax layer on the output that predicts 
the probability of the next word. The architecture is shown in Figure 12-5.

Now let us reason about what happens when we train on various input sequences 
that we have used previously as examples. For automatic translation, we 
noted that it would be beneficial if exactly and precisely had similar encodings 
given that they are synonyms to each other. Let us now assume that we trained 
a model based on bigrams of the two phrases “that is exactly what I mean” and 
“that is precisely what I mean.” The two relevant bigrams are /exactly what/ and 

Lin
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WE41

WE42

Embedding for
word 0

Embedding for
word 4

Embedding layer output

One-hot encoded
input layer

Figure 12-4 Embedding layer that converts from one-hot encoded representation 
to word embeddings. The weights are named WE

xy
, where WE signifies word 

embedding, x represents the word, and y represents the vector element. Lin in the 
neurons represents linear (i.e., no activation function).
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/precisely what/; that is, we are asking the model to learn to output the word 
what both when the input word is exactly and when the input word is precisely. 
Clearly, there are many ways to choose weights to make this happen. One 
simple way is for the model to adjust the weights in the embedding layer so the 
weights for both exactly and precisely are similar to each other. do not worry if 
you find this explanation hand-wavy. As previously mentioned, the finding that 
training a language model produces useful word embeddings as a byproduct 
was somewhat unexpected to begin with. On the other hand, one can argue that 
it would be surprising if training a good language model resulted in unstructured 
word embeddings, given that we have already convinced ourselves that good 
embeddings will help making a language model perform well.

This discussion assumed a simple model with a single input word. given that 
experiments with classical language models have shown that more history is 
beneficial, it makes sense to extend the model to use more words as input, either 
a fixed number, as in the left of Figure 12-6, or a variable number, as in the right 

Hidden layer(s)

Word N

Softmax layer

Probability of word
N+1

History length = 1

Embedding layer

Figure 12-5 Neural language model with history length = 1 (i.e., it predicts the 
next word based on a single input word)
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of the figure. Although it seems like there are multiple separate embedding layers 
in the left part of the figure, they all share the same weights.

We now move on to a practical example in which we implement and train an rNN-
based language model, including training the word embeddings. We then explore 
whether the resulting embeddings demonstrate any notable properties.

Programming Example: Neural Language 
Model and resulting Embeddings

Most of the program is similar to the character-based autocompletion example 
from Chapter 11. The initialization code in Code Snippet 12-1 contains a couple of 
additional imports and defines two new constants MAX_WORDS and EMBEDDING_
WIDTH that define the max size of our vocabulary and the dimensionality of the 
word vectors.

Hidden layer(s)

Softmax layer

Hidden recurrent layer(s)

Word Seq.
up to N

Softmax layer

Probability of word
N+1

Probability of word
N+1

Variable history length

Embedding
layer

Embedding
layer

Word
N-2

Word
N

Word
N-1

History length = 3

Embedding
layer

Embedding
layer

Figure 12-6 Language models with three-word fixed history (left) and variable 
length history (right), where the model creates word embeddings. The three 
embedding layers in the left figure share weights.
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Code Snippet 12-2 first reads the input file and splits the text into a list of 
individual words. The latter is done by using the imported function text_to_
word_sequence(), which also removes punctuation and converts the text 
to lowercase, so we do not need to do that manually in this example. We then 
create input fragments and associated target words just as in the character-
based example. Because we are working at the granularity of words, these 
training sentences will be longer from a human perspective, but from the network 
perspective, they still contain the same number of symbols. however, it will result 
in fewer training examples than for the character-based example, given that we 
slide the window forward by a fixed number of words instead of a fixed number 
of characters for each example. Combined with the fact that the number of unique 
symbols (the vocabulary) is larger for a word-based system (10,000 words in our 
case vs. 26 characters), this generally results in a need for a larger text corpus for 
training a word-based language model than for training a character-based model, 
but we will still stick with using Frankenstein for this example.

import numpy as np

from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import Dense

from tensorflow.keras.layers import LSTM

from tensorflow.keras.layers import Embedding

from tensorflow.keras.preprocessing.text import Tokenizer

from tensorflow.keras.preprocessing.text \

    import text_to_word_sequence

import tensorflow as tf

import logging

tf.get_logger().setLevel(logging.ERROR)

EPOCHS = 32

BATCH_SIZE = 256

INPUT_FILE_NAME = '../data/frankenstein.txt'

WINDOW_LENGTH = 40

WINDOW_STEP = 3

PREDICT_LENGTH = 3

MAX_WORDS = 10000

EMBEDDING_WIDTH = 100

Code Snippet 12-1 Initialization Code for the Word-Based Language Model
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The next step is to convert the training examples into the correct format. This is 
somewhat different than in the character-based example because we want to use 
word embeddings. Thus, each input word needs to be encoded to a corresponding 
word index (an integer) instead of one-hot encoding. This index will then be 
converted into an embedding by the Embedding layer. The target (output) word 
should still be one-hot encoded. To simplify how to interpret the output, we want 
the one-hot encoding to be done in such a way that bit N is hot when the network 
outputs the word corresponding to index N in the input encoding.

Code Snippet 12-3 shows how this is done. We make use of the Keras 
Tokenizer class. When we construct our tokenizer, we provide an argument 
num_words = MAX_WORDS that caps the size of the vocabulary. The tokenizer 
object reserves index 0 to use as a special padding value and index 1 for unknown 
words. The remaining 9,998 indices (MAX_WORDS was set to 10,000) are used to 
represent words in the vocabulary.

The padding value (index 0) can be used to make all training examples within the 
same batch have the same length. The Embedding layer can be instructed to 
ignore this value, so the network does not train on the padding values.

Index 1 is reserved for uNKnown (UNK) words because we have declared UNK 
as an out-of-vocabulary (oov) token. When using the tokenizer to convert text to 

# Open and read file.

file = open(INPUT_FILE_NAME, 'r', encoding='utf-8')

text = file.read()

file.close()

# Make lower case and split into individual words.

text = text_to_word_sequence(text)

# Create training examples.

fragments = []

targets = []

for i in range(0, len(text) - WINDOW_LENGTH, WINDOW_STEP):

    fragments.append(text[i: i + WINDOW_LENGTH])

    targets.append(text[i + WINDOW_LENGTH])

Code Snippet 12-2 read Input File and Create Training Examples
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tokens, any word that is not in the vocabulary will be replaced by the word UNK. 
Similarly, if we try to convert an index that is not assigned to a word, the tokenizer 
will return UNK. If we do not set the oov_token parameter, it will simply ignore 
such words/indices.

After instantiating our tokenizer, we call fit_on_texts() with our entire text 
corpus, which will result in the tokenizer assigning indices to words. We can then 
use the function texts_to_sequences to convert a text string into a list of 
indices, where unknown words will be assigned the index 1.

We are now ready to build and train the model. Code Snippet 12-4 creates a 
model with an Embedding layer followed by two long short-term memory 
(LSTM) layers, followed by one fully connected layer with reLu activation, and 
finally a fully connected layer with softmax as output. When we declare the 
Embedding layer, we provide it with its input dimensions (vocabulary size) and 
output dimensions (embedding width) and tell it to mask inputs using index 0. This 
masking is not necessary for our programming example given that we created the 
training input such that all input examples have the same length, but we might as 
well get into the habit of doing this because we might want to use it later. We state 
input_length=None so that we can feed training examples of any length to the 
network.

# Convert to indices.

tokenizer = Tokenizer(num_words=MAX_WORDS, oov_token='UNK')

tokenizer.fit_on_texts(text)

fragments_indexed = tokenizer.texts_to_sequences(fragments)

targets_indexed = tokenizer.texts_to_sequences(targets)

# Convert to appropriate input and output formats.

X = np.array(fragments_indexed, dtype=np.int)

y = np.zeros((len(targets_indexed), MAX_WORDS))

for i, target_index in enumerate(targets_indexed):

    y[i, target_index] = 1

Code Snippet 12-3 Convert Training Input to Word Indices and Output to One-hot 
Encoding
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In this code snippet, we trained the model for 32 epochs, and during the training 
process, we saw (not shown) the loss value continuously decrease while the test 
loss increased in the beginning and then stayed fairly constant. As we have seen 
in previous chapters, this is an indication of overfitting, but for this application, 
we do not worry too much about that. It is somewhat dubious to believe that our 
model should be able to predict the plot for Frankenstein, given that we would 
not necessarily even expect this from a human reader the first time they read 
the book. Therefore, a more commonly used metric when evaluating statistical 
language models is called perplexity (Bengio et al., 2003). It is a statistical metric 
of how well a sample matches a probability distribution. however, given that we 
are mainly interested in the word embeddings resulting from the language model 
training process, we do not need to worry about defining a good metric of the 
language model itself.

# Build and train model.

training_model = Sequential()

training_model.add(Embedding(

    output_dim=EMBEDDING_WIDTH, input_dim=MAX_WORDS,

    mask_zero=True, input_length=None))

training_model.add(LSTM(128, return_sequences=True,

                        dropout=0.2, recurrent_dropout=0.2))

training_model.add(LSTM(128, dropout=0.2,

                        recurrent_dropout=0.2))

training_model.add(Dense(128, activation='relu'))

training_model.add(Dense(MAX_WORDS, activation='softmax'))

training_model.compile(loss='categorical_crossentropy',

                       optimizer='adam')

training_model.summary()

history = training_model.fit(X, y, validation_split=0.05,

                             batch_size=BATCH_SIZE,

                             epochs=EPOCHS, verbose=2,

                             shuffle=True)

Code Snippet 12-4 Building and Training the Model

Perplexity is a good concept to learn about if you want to dive deeper into 
language models. Starting points can be found in papers about language 
models, such as the work by Bengio and colleagues (2003).
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After training the model, we are ready to use it to do predictions. We do this a 
little bit differently than in the previous chapters. Instead of feeding a string of 
symbols as input to the model, we feed it only a single symbol at a time. This is an 
alternative implementation compared to the implementation in Chapter 11, where 
we repeatedly fed the model a growing sequence of characters. To clarify, in Code 
Snippet 11-6, we first fed the model the sequence 'the body ', which resulted 
in the character ‘w’ as output. In the next step, we fed it 'the body w', followed 
by 'the body wh', and so on. That is, for every prediction, we started over 
from the beginning. had we instead used the implementation from this chapter, 
we would have fed it 't', 'h', 'e', ' ', 'b', 'o', 'd', 'y', ' ', which would 
have resulted in an output 'w', and we would then just feed that character back 
as input.

The scheme used in this chapter has a subtle implication, which has to do with 
dependencies between multiple consecutive calls to model.predict(). In 
Chapter 11, we did not have an expectation that the inputs to the first prediction 
should impact the second prediction. We probably would have found it odd if 
they had because that would mean that the output value we would get from a 
call to model.predict() could be different for two consecutive calls that had 
identical input values. Thus, the way we have initialized the model in the past 
makes sure that the output of multiple calls to the predict() function will 
be the same if the input parameters are the same for each call. This is done by 
having a call to predict() implicitly reset the internal state (c and h for LSTM 
cells) before doing the prediction.

In this chapter, we do not want this behavior. We want the LSTM layers to retain 
their c and h states from one call to another so that the outputs of subsequent 
calls to predict() will depend on the prior calls to predict(). This can be 
done by giving the parameter stateful=True to the LSTM layers. A side effect 
of this is that we manually need to call reset_states() on the model before 
our first prediction.

Code Snippet 12-5 creates a model that is identical to the training model except 
that we declare the LSTM layers with stateful=True as well as specify a fixed 
batch size (required when declaring the LSTM layer as stateful) of size 1 using 
the batch_input_shape argument. Instead of creating this separate inference 
model, we could have created the training model as a stateful model, but the 
training model would then assume that consecutive batches of training examples 
were dependent on each other. In other words, we would need to modify either 
our input dataset or the way we send training examples to the model so that we 
could call reset_states() at appropriate times. For now, we want to keep the 
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training process simple as well as illustrate how to transfer weights from one 
model to another. Clearly, we cannot train just one model and then use a separate 
untrained model for inference. The solution is shown in the two last lines in the 
code snippet. There, we first read out the weights from the trained model and 
then initialize it into our inference model. For this to work, the models must have 
identical topology.

Code Snippet 12-6 implements logic of presenting a word to the model and 
retrieving the word with the highest probability from the output. This word 
is then fed back as input to the model in the next timestep. To simplify the 
implementation, we do not do beam search this time around but simply predict 
the most probable word at each timestep.

# Build stateful model used for prediction.

inference_model = Sequential()

inference_model.add(Embedding(

    output_dim=EMBEDDING_WIDTH, input_dim=MAX_WORDS,

    mask_zero=True, batch_input_shape=(1, 1)))

inference_model.add(LSTM(128, return_sequences=True,

                         dropout=0.2, recurrent_dropout=0.2,

                         stateful=True))

inference_model.add(LSTM(128, dropout=0.2,

                         recurrent_dropout=0.2, stateful=True))

inference_model.add(Dense(128, activation='relu'))

inference_model.add(Dense(MAX_WORDS, activation='softmax'))

weights = training_model.get_weights()

inference_model.set_weights(weights)

Code Snippet 12-5 Building the Inference Model

Code Snippet 12-6 Feeding the Predicted Output Back as Input, One Word at 
a Time

# Provide beginning of sentence and

# predict next words in a greedy manner

first_words = ['i', 'saw']
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All of the preceding code had to do with building and using a language model. 
Code Snippet 12-7 adds some functionality to explore the learned embeddings. 
We first read out the word embeddings from the Embedding layer by calling 
get_weights() on layer 0, which represents the Embedding layer. We then 
declare a list of a number of arbitrary lookup words. This is followed by a loop 
that does one iteration per lookup word. The loop uses the Tokenizer to convert 
the lookup word to a word index, which is then used to retrieve the corresponding 
word embedding. The Tokenizer functions are generally assumed to work 
on lists. Therefore, although we work with a single word at a time, we need to 
provide it as a list of size 1, and then we need to retrieve element zero ([0]) from 
the output.

first_words_indexed = tokenizer.texts_to_sequences(

    first_words)

inference_model.reset_states()

predicted_string = ''

# Feed initial words to the model.

for i, word_index in enumerate(first_words_indexed):

    x = np.zeros((1, 1), dtype=np.int)

    x[0][0] = word_index[0]

    predicted_string += first_words[i]

    predicted_string += ' '

    y_predict = inference_model.predict(x, verbose=0)[0]

# Predict PREDICT_LENGTH words.

for i in range(PREDICT_LENGTH):

    new_word_index = np.argmax(y_predict)

    word = tokenizer.sequences_to_texts(

        [[new_word_index]])

    x[0][0] = new_word_index

    predicted_string += word[0]

    predicted_string += ' '

    y_predict = inference_model.predict(x, verbose=0)[0]

print(predicted_string)
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Once we have retrieved the corresponding word embedding, we loop through all 
the other embeddings and calculate the Euclidean distance to the embedding for 
the lookup word using the NumPy function norm(). We add the distance and the 
corresponding word to the dictionary word_indices. Once we have calculated 
the distance to each word, we simply sort the distances and retrieve the five word 
indices that correspond to the word embeddings that are closest in vector space. 
We use the Tokenizer to convert these indices back to words and print them 
and their corresponding distances.

# Explore embedding similarities.

embeddings = training_model.layers[0].get_weights()[0]

lookup_words = ['the', 'saw', 'see', 'of', 'and', 

                'monster', 'frankenstein', 'read', 'eat']

for lookup_word in lookup_words:

    lookup_word_indexed = tokenizer.texts_to_sequences(

        [lookup_word])

    print('words close to:', lookup_word)

    lookup_embedding = embeddings[lookup_word_indexed[0]]

    word_indices = {}

    # Calculate distances.

    for i, embedding in enumerate(embeddings):

        distance = np.linalg.norm(

            embedding - lookup_embedding)

        word_indices[distance] = i

    # Print sorted by distance.

    for distance in sorted(word_indices.keys())[:5]:

        word_index = word_indices[distance]

        word = tokenizer.sequences_to_texts([[word_index]])[0]

        print(word + ': ', distance)

    print('')

Code Snippet 12-7 Take a Number of Arbitrary Words and, for Each Word, Print 
the Five Words That Are Closest in Vector Space
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running the program, we first get2 the following predicted sentence:

i saw the same time

This looks reasonable and demonstrates that we successfully built a language 
model at the granularity of words and using an Embedding layer. Let us now 
move on to the resulting word embeddings. Table 12-4 lists some of the words 
that express noteworthy relationships. The leftmost cell in each row contains 
the lookup word, and the three cells to the right contain the three words that are 
located closest in vector space.

Looking at the first row, we see that our preprocessing of the text could likely 
have been better because two words that are identified are labour-the and “the 
(with a misplaced quotation mark). Still, it is noteworthy that the model managed 
to recognize that these two words are closely related to the. It is unclear to us how 
the third word tardily fits in.

Moving on to the next row with the lookup word see, it seems like the language 
model has produced embeddings that group verbs together.

Thereafter, we see that the row with the lookup word of consists solely of 
prepositions, such as with, in, and by.

The row after that groups the lookup word monster together with the words 
slothful, chains, and devoting.

2. given the stochastic nature of this process, your model will likely produce a quite different output, 
but there should be a high probability that your model produces a correct sentence. Note that because 
we replaced rare words with UNK (for uNKnown) in the training set, the model may well produce an 
output sentence that includes UNK as a word.

Table 12-4 Words with Noteworthy relationships

LOOKUP WORD WORDS CLOSE IN VECTOR SPACE

the labour-the “the tardily

see visit adorns induce

of with in by

monster slothful chains devoting

read travelled hamlet away
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It does not seem too farfetched to believe that at least slothful and chains are used 
closely together with the word monster in the book, which gives some idea of why 
they are perceived as related.

Similarly, the words read and hamlet in the last row make some sense to 
associate with each other.

Although the empirical observations presented here do not prove anything, 
they still seem to indicate that the word embeddings produced by training them 
together with a language model do capture some kinds of similarities or other 
relationships between words. That leads us to the next section, where we discuss 
these kinds of relationships further.

King − Man + Woman! = Queen
Earlier in this chapter, we made up our own embedding space in two dimensions 
and grouped different parts of speech into different quadrants. We did so because 
it is easy to visualize (and draw) things in two dimensions, but in reality, it is likely 
that the grouping would not be in quadrants but in multiple dimensions. One 
dimension (one of the variables in the word vector) might indicate if the word is 
a noun, a different one might indicate if it is a verb, and so on. A benefit of this 
approach is that we can divide words into more than the four categories allowable 
using four quadrants. In our example, we kind of glossed over the issue that we 
did not even assign any word encodings to our adjectives awful and awesome, 
and the same is true for the adverbs exactly and precisely. Further, it would be 
useful to distinguish between the singular and the plural form of nouns while 
still keeping them similar to each other, just as it would be useful to distinguish 
between different tenses of verbs, such as run and ran while still keeping their 
encodings close to each other.

All of these examples are for different grammatical aspects of words, but you can 
also envision semantic differences that can be used to classify words. Consider 

In the programming example, we analytically identified words that are close 
in vector space. Another approach is to visualize the embeddings. This can be 
done with TensorBoard, which is a part of the TensorFlow framework.
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the four words boy, girl, man, and woman. There are at least two obvious ways of 
classifying these four words into two groups:

• Female = [girl, woman]; Male = [boy, man]

• Child = [girl, boy]; Adult = [man, woman]

Ignoring parts of speech for a moment, let us now assume that we want to devise 
word encodings in two dimensions that capture both these classifications at the 
same time. We can do that by letting the x-dimension distinguish between male 
and female (gender) and the y-dimension distinguish between adult and child 
(age), which results in word vectors, as shown in Figure 12-7.

given these embeddings, we can now do vector arithmetic on these word vectors 
in a way that at a first glance seems close to magical, as shown in the following 
equation and illustrated by the dashed arrows in Figure 12-7:

  0.9
0.9

0.9
0.9

0.9
0.9

0.9
0.9

V V V Vgirl woman man boy− + =
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Intuitively, by subtracting woman and adding man, the age dimension is kept 
constant while the gender dimension has changed from female to male. That is, 
if we would apply this transformation to the meaning of the word girl, we would 
end up with the meaning of boy. That is exactly what happens in our equation. 
Although this might seem magical at first, if you think about it (or experiment 
with it), it is hard to simultaneously classify a group of words according to 

Figure 12-7 Word vectors (solid) that distinguish between female and male and 
between adult and child. The dashed vectors illustrate how vector arithmetic can be 
used to modify the gender property of the word girl and end up with the word boy.
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different degrees of similarity (such as gender and age) without ending up with 
embeddings where this kind of vector arithmetic can be used.

This now leads us to the exciting discovery by Mikolov, yih, and Zweig (2013) when 
they analyzed the word embeddings that were the result of training an rNN-
based language model. They discovered that by using vector arithmetic on the 
vectors, they could show the following relationship that is likely the most famous 
example of the power of word embeddings:

 V V V Vking man woman queen− + ≈

The way we presented this topic was aimed at providing intuition and understanding, 
which somewhat demystifies the subject, but as we understand things, the way 
these relationships originally were uncovered through a truly unexpected discovery. 
Mikolov and colleagues state, “We find that these representations are surprisingly 
good at capturing syntactic and semantic regularities in language, and that each 
relationship is characterized by a relation-specific vector offset” (Mikolov, yih, 
and Zweig, 2013) and “Somewhat surprisingly, many of these patterns can be 
represented as linear translations” (Mikolov, Sutskever, et al., 2013). Even after this 
discussion, it still feels a little bit like magic that we can apply a neural network that 
knows nothing about a language to a random text (with no explicit labeling) and the 
network can discover enough structure to know that the words King and Man have 
the same relationship to each other as Queen and Woman!

Although it might not have been obvious to begin with, based on what we have seen 
so far, it makes much sense to represent a word as a multidimensional vector. In 
a sense, a word is just a label that serves as a shorthand notation of an object (or 
concept) that is associated with a number of properties. For instance, if we asked 
you to identify a word that is associated with the properties royal, male, adult, 
singular, it is likely that you would identify the word king. If we changed the property 
singular to plural, you would likely say kings. Similarly, replace male with female 
and you get queen, or replace adult with child and you get with prince. So, the true 
surprise is that the neural network trained using stochastic gradient descent can 
manage to identify all of these different dimensions from unlabeled text.

King − Man + Woman ! = Queen
Before moving on to the next topic, there are a few misunderstandings that 
we think are worth pointing out because what we presented previously is not 
fully correct. First, the vector produced by King − Man + Woman is obviously 
not exactly the same as the vector for Queen given that we are working with 
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continuous variables in a multidimensional space. This is likely not surprising, and 
a reasonable interpretation is to look for a word vector that is closest to the given 
vector. Even so, for many embeddings, including the one that first reported the 
King/Queen relationship, it is not the case that the word vector for Queen is closest 
to the vector that results from King − Man + Woman. It turns out that the vector 
that is closest to that vector is typically the vector for King itself! In other words,

V V V Vking man woman king− + ≈

The common way of doing these comparisons is to exclude the original word 
when looking for the closest vector. hopefully, we did not just ruin all the magic 
about this subject; we make it all more concrete in the programming example in 
Chapter 13. Another thing worth mentioning is that, although we used Euclidean 
distance when analyzing the embeddings in our programming example, another 
common metric is the cosine similarity, which we describe and use in practice in 
the next programming example.

Another common misunderstanding is that the King/Queen property is the result 
of an algorithm known as word2vec, which was published as a research paper 
together with an associated C implementation. It is true that word2vec does show 
this property, and the authors of word2vec are the same authors who discovered 
the King/Queen property. however, they first described it in a paper that analyzed 
the word embeddings resulting from an rNN-based language model, as opposed 
to embeddings resulting from the word2vec algorithm. having said that, the 
word2vec algorithm does produce higher-quality word embeddings from the 
perspective of capturing semantics and other language structure. We also think 
that making a C implementation of the algorithm available resulted in awareness 
of the power of word embeddings not only in the neural network crowd but also 
among people focusing on traditional language modeling. We study the word2vec 
algorithm in detail in Chapter 13.

Language Models, Word Embeddings, 
and human Biases

A model trained to identify structure in natural text runs a clear risk of picking 
up biases from the humans who wrote the text in the first place. To illustrate this, 
consider the following equation:

V V V Vdoctor man woman ?− + ≈
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If the word embeddings do not contain any gender bias, then one would expect 
that the resulting vector would also represent doctor given that both men and 
women can be doctors. We could imagine that a model that is gender biased 
(sexist) would return nurse if it has picked up on the sexist notion that men are 
doctors and women are nurses.

Interestingly, one study (Bolukbasi et al., 2016) reported results indicating a 
biased model.3 however, consider what we described in the previous section. 
The typical way of doing this vector arithmetic is to exclude the original word 
from the results. That is, the model was not allowed to return the word doctor 
(it would be discarded if it did), so how could it possibly return an unbiased 
result to the equation? Nissim, Noord, and goot (2020) pointed this out and 
analyzed other similar studies. They concluded that while word embeddings 
have picked up human biases in some cases, some of the reported findings 
in previous studies were likely caused by human biases in the questions 
themselves!

These studies illustrate how difficult it is to get these things right even when 
actively thinking about it. This is further complicated by the fact that what is 
considered acceptable and what is considered controversial evolves over time 
and depends on context and cultural region.

Not surprisingly, language models often do pick up human biases expressed 
in the training data. Sheng and colleagues (2019) studied this issue by 
comparing the generated text resulting from two similar input sequences 
in which they modified key variables such as gender and ethnicity. For 
example, the input sequence “The man worked as” resulted in the continuation 
“a car salesman at the local Wal-Mart,” whereas the input sequence “The 
woman worked as” resulted in the continuation “a prostitute under the name of 
hariya.”

On a positive note, word embeddings have also been shown to be useful in 
fighting malicious human behavior. We have seen how related words end 
up with similar embeddings. Liu, Srikanth, and colleagues (2019) used this 
property to detect harassing and offensive social media posts. They looked 
for words that are similar to keywords that are already used in a malicious 
context.

3. In their model, he and she were used instead of man and woman.
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related Topic: Sentiment Analysis of Text
Before diving into the details of the word2vec algorithm, we take a detour and 
introduce a topic that you are likely to run into if you continue to explore how to 
apply dL to textual input data. This topic is known as sentiment analysis and aims 
at classifying documents based on their content. The definition of document in this 
context can range from individual sentences to multi-paragraph documents. Two 
common examples found in books such as Chollet’s (2018) and online tutorials 
(TensorFlow, n.d.) are classifications of movie reviews and Twitter messages. 
This is not surprising given easily available datasets such as the sentiment 140 
dataset (sentiment140 dataset) containing 1,600,000 labeled tweets and the IMdb 
Movie reviews dataset (n.d.) containing 50,000 labeled movie reviews. We do 
not dive into details of sentiment analysis in this book and only outline a couple 
of approaches instead of providing a detailed programming example. Thus, this 
section should be viewed primarily as suggestions for future reading, although we 
build upon some of the concepts in Chapter 13.

Let us assume that we have a number of labeled movie reviews, and each review 
consists of a text sequence of arbitrary length as well as a label that states if 
the review was positive or negative. The task at hand is to create a model that 
will predict whether an unlabeled movie review is positive or negative. given the 
techniques that we have studied in the last few chapters, we think that the model 
shown in Figure 12-8 seems like a reasonable approach.

We feed the review word by word into an embedding layer that is connected to 
a couple of recurrent layers followed by fully connected layers ending with a 
single logistic sigmoid neuron that does binary classification. This is a perfectly 
fine model but may be a little bit complex to use as a starting point. As previously 
described, it is often good to start with a simple model to get an idea of what 
is a good and what is a bad result. In this section, we start by describing some 
more traditional techniques based on a concept known as bag-of-words (BoW)
and then describe how that can be combined with dL. you will also note that these 
techniques have connection points both to n-grams and word embeddings.

BAg-OF-WOrdS ANd BAg-OF-N-grAMS

BoW is a simple technique to summarize a text. It is simply a list of all 
words contained in the document, and each word has an associated number 
representing how many times that word appears in the document. One use case 
for BoW is to compare how similar two documents are, which we explore in the 
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next section. Let us begin by creating a BoW for the sentence that we used when 
discussing n-grams: “The more I read, the more I learn, and I like it more than 
anything else.” The corresponding BoW is found in Table 12-5.

One thing to note is that the information captured in the table is similar to a 
couple of the columns of Table 12-1, which listed the bigrams for the sentence. 
In some sense, we can view a BoW model as a special case of an n-gram model 
with n = 1, in that we are counting the number of occurrences of text sequences 
with n words, but for BoW, the sequence length is 1. Looking at a BoW for a single 
document in isolation can provide some insight, but a more interesting use case 
is to compare BoW for multiple documents. As an example, assuming that a 
document consists of a single sentence in this example, let us now consider the 
additional document “I like to read trash magazines since I do not learn anything.” 
We can create a common vocabulary between the two documents by listing all 

Hidden recurrent layer(s)

Word sequence

Fully-connected layer(s)

Embedding layer

Classification

Output neuron

Figure 12-8 Network for sentiment analysis
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the unique words that appear in one or both of the documents. This vocabulary 
will consist of the following words, listed in alphabetical order: and, anything, do, 
else, i, it, learn, like, magazines, more, not, read, since, than, the, to, trash. given this 
vocabulary, we can now express the BoW for the two sentences as the following 
two vectors:

BoW1: [1, 1, 0, 1, 3, 1, 1, 1, 0, 3, 0, 1, 0, 1, 2, 0, 0]

BoW2: [0, 1, 1, 0, 2, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1]

Because each BoW in some sense summarizes a document, intuitively, it seems 
that we should be able to use these two vectors to compare the documents. If 
almost all entries that are nonzero for BoW1 are zero for BoW2, and vice versa, 
then it seems likely that the two documents are discussing completely different 
topics. On the other hand, if there is overlap such that both documents contain 
similar sets of words, it seems plausible that they discuss similar topics. We 

Table 12-5 Example of a BoW

WORD NUMBER OF OCCURRENCES

and 1

anything 1

else 1

i 3

it 1

learn 1

like 1

more 3

read 1

than 1

the 2
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discuss more formal ways of comparing BoW in the next section, but first we 
discuss the impact of word ordering.

By this time, it should be clear that BoW does not take word ordering into 
account. It simply contains the count of each word, and we arbitrarily stated 
them alphabetically to provide some structure. Even if we listed the words in 
the order that they first appear in one document, they might not appear in that 
same order in another document. From the perspective of at least one of the 
documents, the word order will be arbitrary. This has the somewhat unfortunate 
effect that important relationships get lost. For instance, for the second sentence, 
the fact that learn is preceded by not is clearly important because it expresses 
the opposite of what is communicated in the first sentence. One simple way of 
extending the BoW model to take some ordering into account is to instead create 
a bag-of-n-grams, for example, a bag-of-bigrams. In such a model, we first identify 
all the bigrams in the two documents and then create a vocabulary of bigrams 
instead of individual words. In our example, /not learn/ would be one token in the 
vocabulary, and it would show up in only one of the documents, whereas the token 
/i like/ would show up in both documents. The bag-of-n-grams technique is also 
known as w-shingling because n-grams are also known as shingles when applied 
to words.

At this point, we suspect that we have managed to confuse quite a few of you. We 
first claimed that BoW is a special case of n-grams, and then we turned around 
and described how the BoW technique can be extended by applying it to n-grams 
instead of applying it to individual words. That is, in some sense, we are using an 
arbitrary n-gram as a building block to create a special case of n-gram with n = 1. 
The explanation is simply that we are working with a number of related concepts 
that can be applied at various levels of granularity—for example, characters, 
words, or groups of words—and on top of that, these concepts can be combined 
in various ways, which can be confusing at first. As with everything else, it takes 
some time to get comfortable with, but it becomes clear once you have worked 
through a few examples.

Before we discuss how to better compare two BoW with each other, we mention 
a couple of additional issues related to BoW. First, documents typically contain 
many words that do not contribute much to the total amount of information 
in the document. In the English language, the, a, and an are examples of such 
words. There are various ways of handling this, such as simply dropping them 
before creating the BoW or using various normalization or weighting schemes 
to reduce their relative weight in the vector. Further, a long document typically 
results in many more nonzero entries than a short document simply because 
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there are more words in the document. Further, even if the size of the vocabulary 
is similar between the two documents, the nonzero entries will be larger for a 
longer document. To some extent, this issue can be addressed with normalization, 
but another common technique is to simply cut parts of the longer document to 
make both documents somewhat comparable in size. Another variation of BoW 
is to make the vector binary, to indicate only whether each word appears in the 
document at all instead of indicating the number of times it appears.

SIMILArITy METrICS

In the previous section, we showed how the BoW technique results in representing 
a document as a vector of n integers, where n is the size of the combined 
vocabulary from all the documents that we are trying to compare. That is, we can 
view the resulting vector as a document vector or a document embedding, where 
the document is embedded in n-dimensional space. Note how this is similar to 
word embeddings but at a different hierarchical level where we are now trying 
to compare the meaning of collections of words instead of the meaning of single 
words. Still, given that the representation is simply a vector, we should be able to 
compare two documents by simply computing the Euclidean distance between the 
two vectors, just as we did when we compared word vectors in the programming 
example earlier in this chapter. Euclidean distance is just one of several metrics that 
can be used to compare vectors, and the next couple of paragraphs introduce some 
other common metrics that can be used for BoW vectors or word vectors, or both.

The first metric, known as Jaccard similarity, assumes that the vectors contain 
binary values and is therefore best suited for comparing binary BoW vectors. We 
compute the metric by counting how many elements are nonzero in both vectors 
and dividing that number by the size of the vector. In other words, it describes 
how much of the vocabulary that is common between the two documents. As an 
example, we take the two BoW vectors from the previous section and modify them 
in a way that each element is binary and thereby represents whether or not a 
word is present:

BoW1: [1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0]

BoW2: [0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1]

Learning more techniques for text preprocessing and variations of BoW is 
useful if you want to continue working with text data and sentiment analysis.
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We see that 5 words (anything, i, learn, like, read), out of the total of 17 words 
in the vocabulary, are present in both documents, and our Jaccard similarity 
is therefore 5/17 = 0.29. The way the Jaccard similarity is defined, it will be a 
number between 0 and 1, where higher number indicates more similarity, but it is 
worth noting that a score of 1 does not imply that the two documents are identical. 
For example, the two documents “I do not like meat but I like vegetables” and “I do 
not like vegetables but I like meat” will result in a Jaccard similarity of 1, although 
their meanings are different.

Another metric that is commonly used when comparing word embeddings, 
but can also be used for BoW vectors, is the cosine similarity. It is defined 
as the cosine of the angle between the vectors. As you hopefully know from 
trigonometry, the cosine function will result in a value between −1 and 1, where 
the value 1 means that the vectors point in exactly the same direction, and −1 
means that they point in the opposite direction from each other. Thus, a cosine 
similarity close to 1 means that the two vectors are similar. One pitfall when 
comparing to Euclidean distance is that a small value of Euclidean distance 
implies that vectors are similar, whereas a large value of cosine similarity implies 
that vectors are similar.

Therefore, sometimes the metric cosine distance is used, which is defined as 
(1 − cosine_similarity). Another property worth mentioning is that if the vectors 
are normalized so their absolute value (their length) is 1.0, and we are trying to 
find the vector that is closest to a given vector, then it does not matter if we use 
Euclidean distance or cosine similarity. They will both end up identifying the same 
vector. This is illustrated in Figure 12-9.

The figure shows that when vectors are not normalized (left), the closest vector 
can be different depending on whether Euclidean or cosine distance is used. In the 
example, vector A is closest to vector B when using Euclidean distance, but C is 
closest to B when using cosine distance. When the vectors are normalized (right) 
so all have the same length, both Euclidean distance and cosine distance will 
identify the same vector as being closest, since as we see, both E

BC
 < E

AB
 and q

BC
 < 

q
AB

. The choice of distance metric and whether to normalize the vectors depends 
on your application.

As we write “as you hopefully know from trigonometry,” we catch ourselves 
having to look up and confirm that what we said about the resulting values of 
the cosine function is true, so you might not want to worry too much even if it 
was not completely obvious to you.
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COMBININg BOW ANd dL

up until this point, this whole discussion about BoW has been fairly decoupled 
from dL, despite that early on in the book, we promised to focus on dL and avoid 
spending time on more traditional approaches unless absolutely necessary. We 
now try to make good on that promise by showing how to make use of BoW in 
dL. We consider how to use BoW to create a dL model to classify movie reviews 
without embedding layers and rNNs. We can do that by first converting each 
movie review into a BoW vector. This vector can be a binary vector, or else we can 
standardize it so each element in the training set takes on a value between −1.0 
and 1.0. We can then feed this vector into a simple feedforward network, given 
that the size of the vector is the size of the vocabulary, which is known up front. If 
the vector size is prohibitively large, we can always reduce it by simply ignoring 
rare words. The model is illustrated in Figure 12-10.

A B

C

A

B

C

EAB

θAB θABθBC θBC

EAB

EBC

EBC

Non-normallized vectors Normallized vectors

Figure 12-9 Euclidean and cosine distance for nonnormalized and normalized 
vectors

If you are familiar with linear algebra, you will know that the dot product of 
two vectors is directly proportional to the cosine of the angle between them. 
Thus, we can make use of the dot product when computing cosine similarities. 
This is something to consider for further reading. A summary of linear algebra 
concepts useful for dL can be found in Deep Learning by goodfellow, Bengio, 
and Courville (2016).
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One objection to this model is that we have lost all sense of word ordering, but to 
address that issue, we can experiment with using bag-of-bigrams or bag-of-n-
grams as input to the model.

We can now devise an experiment in which we create one model based on BoW 
vectors as input to a feedforward network, one model based on bag-of-bigrams 
as input to a feedforward network, one model based on bag-of-n-grams (with n 
> 2) as input to a feedforward network, and finally, the more complex network 
with an embedding layer followed by recurrent layers, followed by feedforward 
layers. We leave the actual task of doing this as an exercise to the (ambitious) 
reader. A simple way of creating a BoW is to use the function sequences_to_
matrix() in the Keras Tokenizer class. The IMdb movie reviews dataset is 
included with Keras, and accessing it is similar to how we accessed the MNIST 
dataset earlier in this book:

imdb_dataset = keras.datasets.imdb

you will not need to use any of the similarity metrics described previously for 
this exercise. you are not trying to compare movie reviews to each other, but your 
focus is to classify them as positive or negative, which is done by training the 
model using the labeled dataset. We do, however, use the cosine similarity metric 
in Chapter 13, where we get back to the topic of word embeddings by describing 
the word2vec algorithm.

Bag-of-words

Classification

Output
neuron

Fully connected layer(s)

Figure 12-10 BoW-based model for sentiment analysis
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Concluding remarks on Language 
Models and Word Embeddings

In this chapter, we introduced the concept of language models. We described the 
traditional n-gram and skip-gram models and described how they relate to neural 
language models. We also provided insight into how a neural language model 
works and is able to generalize to unseen sentences.

We described word embedding whereby each word is represented by a vector 
embedded in a multidimensional space. We showed how these embeddings 
can be trained jointly with a neural language model and how the resulting 
embeddings capture some relationships between the words they represent. An 
interesting aspect is that they can capture these relationships without explicit 
dataset labeling. As a result, a common technique is to train the embedding layer 
on a large, unlabeled dataset on one task (e.g., a language model) and then use 
the resulting embeddings when training a different network for a different task 
(e.g., natural language translation). That is, the embedding layer is pretrained 
on unlabeled data on one task and then used in a transfer learning setting for a 
different, but related, task. In the case of natural language translation, this second 
task requires a dataset with the same sentence in two languages (in some sense, 
a labeled dataset), and the dataset is therefore often smaller in size than the 
dataset used to train the embedding layer in the first task.

generating word embeddings as a byproduct of training a neural language 
model is not the most efficient approach, nor does it result in the highest-quality 
word embeddings. A better way is to employ an algorithm specifically designed 
to create good word embeddings, inspired by the discoveries described in this 
chapter. Two such algorithms are word2vec and gloVe. They are the topics of 
Chapter 13.
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Chapter 13

Word Embeddings from 
word2vec and GloVe

As previously mentioned, the evolution of neural language models and word 
embeddings are somewhat intertwined. Bengio and colleagues (2003) decided 
to use word embeddings in their neural language model, reasoning that it 
would help the language model to be effective. Collobert and Weston (2008) 
and Mikolov, Yih, and Zweig (2013) then discovered that the resulting word 
embeddings demonstrated noteworthy properties, which was also demonstrated 
by the programming example in Chapter 12, “Neural Language Models and Word 
Embeddings.” Mikolov, Chen, and colleagues (2013) explored whether word 
embeddings could be improved by making the properties of the embeddings 
the primary objective as opposed to just producing them as a byproduct in the 
process of trying to create a good language model. Their work resulted in the 
word2vec algorithm, which comes with a number of variations and is described in 
detail in this chapter.

Pennington, Socher, and Manning (2014) later devised a different algorithm, 
known as GloVe, aiming to produce even better word embeddings. As a 
programming example, we download the GloVe word embeddings and explore 
how these embeddings demonstrate semantic properties of the embedded 
words.
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Using word2vec to Create Word 
Embeddings Without a Language Model

In Chapter 12, we discussed word embeddings as a byproduct of training a 
language model, with the goal to predict the next word based on a sequence of 
previous words. Intuitively, if the aim is not to create a language model but to 
create good embeddings, it seems silly to restrict ourselves to look only at the 
sequence of words preceding the word to predict. Just as in the example with 
bidirectional recurrent neural networks (rNNs), important relationships between 
words can be identified by also taking future word sequences into account. All the 
variations of word2vec do just that, and we soon look at how this is done.

Apart from using future words to train the word embeddings, the various 
word2vec variations also aim at reducing the computational complexity 
required to produce the embeddings. The primary rationale for this is that it 
enables training on a larger input dataset, which in itself should result in better 
embeddings. There are a number of optimizations that are employed by the 
different variations of word2vec, and we start with the ones that are fundamental 
to the algorithms.

One thing to note is that word2vec evolved gradually into the final word2vec 
algorithm from the insight that a language model can create word embeddings. 
This evolution included two techniques that were important steppingstones but 
that later were eliminated and are no longer used in the dominating version of the 
word2vec algorithm. The first of these techniques is hierarchical softmax, which 
had previously been developed to speed up neural language models (Morin and 
Bengio, 2005). The second of these techniques is known as the continuous-bag-
of-words (CBOW) model, which was one of the two main versions of the word2vec 
algorithm (the other being the continuous skip-gram model) in the original 
word2vec publication. The focus of our description is on the final algorithm, which 
is based on the continuous skip-gram model. We describe hierarchical softmax 
and CBOW only at the level needed to understand the big picture.

rEDUCING COMPUTATIONAL COMPLEXITY COMPArED TO A 
LANGUAGE MODEL

A key obstacle in producing word embeddings from neural language models 
was the computational complexity of training a language model with a large text 
corpus. To reduce this computational complexity, it is necessary to profile where 
time is spent in the neural language model.
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Mikolov, Chen, and colleagues (2013) noted that a typical neural language model 
consists of the following layers:

• A layer that computes an embedding—low complexity (lookup table)

• One or more hidden layers or recurrent layers—high complexity (fully 
connected)

• A softmax layer—high complexity (vocabulary size implies large number of 
nodes)

Prior work on reducing computational complexity of neural language models 
(Morin and Bengio, 2005) had shown that a technique known as hierarchical 
softmax could be used to reduce the complexity of the softmax layer. Therefore, 
the initial word2vec paper (Mikolov, Chen, et al., 2013) did not focus on that layer 
but simply assumed that hierarchical softmax was used. A follow-on paper 
(Mikolov, Sutskever, et al., 2013) removes the softmax layer from word2vec 
altogether (described later in the chapter), so for now, you can just assume that 
we are using a regular softmax layer and need not worry about the distinction 
between hierarchical softmax and regular softmax. It is also worth noting that 
computational complexity is less of a concern now than when the initial work on 
neural language models and word embeddings was done.

The second optimization is to remove the hidden layer(s). Given what we know 
about deep learning (DL), removing layers will make the language model less 
powerful, but note that the embeddings are encoded in the first layer. If our 
objective is not to create a powerful language model, then it is far from clear that 
increasing the number of layers will result in higher-quality embeddings in the first 
layer.

After these two changes, we have arrived at a model in which the first layer 
converts the inputs to word embeddings (i.e., it is an embedding layer) simply 
followed by a softmax (in reality, a hierarchical softmax) layer as the output 
layer. The only nonlinearity in the model is the softmax layer itself. These two 
modifications should address most of the computational complexity in the 
language model and thereby enable a larger training dataset. The model is 
illustrated in Figure 13-1.

Learning about hierarchical softmax can make sense to understand the 
history of word2vec, and it might well come in handy in other settings as well. 
however, there is no need to learn it to understand the rest of this book.
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however, this is still not representative of what is used in the word2vec algorithm. 
The outlined model still has the limitation that it considers only historical words, 
so let us now move on to techniques that consider both historical and future 
words when training the embeddings.

CONTINUOUS BAG-OF-WOrDS MODEL

Extending our model to take future words into account is trivial. Instead of creating 
a training set from K consecutive words followed by the next word as the word 
to predict, we can select a word to predict and use a concatenation of the K 
preceding words and the K subsequent words as the input to the network. The 
most straightforward way to create our network would be to simply concatenate 
the embeddings corresponding to all the words. The input to the softmax layer 
would be 2×K×M, where 2×K is the number of words that we use as input and M 
is the embedding size for a single word. however, the way it is done in word2vec 
is to average the embeddings for the 2×K words and thereby produce a single 
embedding vector of size M. This architecture is shown in Figure 13-2, where K = 2.

Embedding
layer

Hierarchical softmax

Probability of
word N+1

History length = 3

Embedding
layer

Embedding
layer

Word
N–2

Word
N–1

Word
N

Figure 13-1 Simple model to create word embeddings. This model does not 
accurately represent the model from word2vec.
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Averaging the vectors has the effect that the order in which they are presented to 
the network does not matter, just as the order does not matter for a bag-of-words 
model. With that background, Mikolov, Chen, and colleagues (2013) named the 
model a continuous bag-of-words model, where the word continuous indicates 
that it is based on real-valued (i.e., continuous) word vectors. however, it is worth 
noting that the CBOW is not based on the entire document but on only the 2×K 
surrounding words.

The CBOW model was shown to outperform the embeddings created from an 
rNN-based language model in terms of how well it captures semantic structures 
in the dataset in addition to speeding up the training time significantly. however, 
the authors also discovered that a variation of the CBOW technique performed 
even better with respect to capturing semantics of the words. They named this 
variation the continuous skip-gram model, which is the model they later continued 
to optimize in favor of the CBOW model. The continuous skip-gram model is 
described next.

Word
N–2

Word
N–1

Word
N+1

Word
N+2

Hierarchical softmax

Probability of
word N

Context size = -2, +2

Embedding
layer

Embedding
layer

Embedding
layer

Embedding
layer

Average

Figure 13-2 Architecture of the continuous bag-of-words model
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CONTINUOUS SKIP-GrAM MODEL

We have now described two major ways of creating embeddings. One is based 
on a model that uses historical words to predict a single word, and the other 
is based on a model that uses historical and future words to predict a single 
word. The continuous skip-gram model flips this around somewhat. Instead of 
predicting a single word based on its surrounding words (also known as the 
context), it tries to predict the surrounding words based on a single word. This 
might sound odd at first, but it results in the model becoming simpler. It takes a 
single word as its input and creates an embedding. This embedding is then fed 
to a fully connected softmax layer, which produces probabilities for each word in 
the vocabulary, but we now train it to output nonzero probabilities for multiple 
words (the words surrounding the input word) instead of just outputting a 
nonzero probability for a single word in the vocabulary. Figure 13-3 shows such 
a model.

When discussing word2vec, context refers to the words surrounding the word 
in question. Note that when we discuss sequence-to-sequence networks in the 
next couple of chapters, the word context will have a different meaning.

Hierarchical softmax

Word N

Probabilities of words
N–2, N–1, N+1, N+2

Embedding layer

Figure 13-3 Continuous skip-gram model
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Like CBOW, the model gets its name from a traditional model (skip-gram) but with 
the addition of continuous to again indicate that it deals with real-valued word 
vectors. A valid question is why this would work well, but we can use a similar 
line of reasoning as we did for why the language model would produce good 
embeddings. We have noted that words that have properties in common (e.g., 
they are synonyms or similar in some other way) often surround themselves 
with a similar set of words, as in our sentences “that is exactly what I mean” 
and “that is precisely what I mean.” If we train on both of these sentences, then 
our continuous skip-gram model is tasked with outputting a nonzero probability 
for the words that, is, what, I, and mean both when presented with exactly and 
when presented with precisely on its input. A simple way of achieving that is to 
produce embeddings in which those two words are close to each other in vector 
space. This explanation involves a fair amount of hand-waving, but remember 
that the model evolved on the basis of empirical studies. When you consider 
the history of how the models evolved, it is not hard to envision (although it was 
clearly still clever) how Mikolov, Chen, and colleagues (2013) experimented with 
different approaches and decided to try the continuous skip-gram once they had 
shown that the CBOW model worked well. Given that the continuous skip-gram 
model outperformed CBOW, they then continued to optimize the former, which is 
described next.

OPTIMIZED CONTINUOUS SKIP-GrAM MODEL TO FUrThEr rEDUCE 
COMPUTATIONAL COMPLEXITY

The original continuous skip-gram model used hierarchical softmax on its output, 
but in a subsequent paper, the algorithm was modified to make it even faster 
and simpler (Mikolov, Sutskever, et al., 2013). The overall observation was that 
both softmax and hierarchical softmax aim at computing correct probabilities 
for all words in the vocabulary, which is important for a language model, but 
as previously mentioned, the objective of word2vec is to create good word 
embeddings as opposed to a good language model. With that background, the 
algorithm was modified by replacing the softmax layer with a new mechanism 

Although we say that “it is not hard to envision” that they came up with the 
continuous skip-gram model, it would not surprise us if they first tried a large 
number of other alternatives. After all, research is 10% inspiration and 90% 
perspiration, but that is often not clear when reading the published paper.
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named negative sampling. The observation was that instead of computing a 
true probability distribution across all the words in the vocabulary, it should be 
possible to produce good embeddings if we teach the network to just correctly 
identify the surrounding words, which are on the order of tens of words instead 
of tens of thousands of words. In addition, it is necessary to make sure that the 
network does not incorrectly produce high probabilities for words that are not 
part of the set of surrounding words.

We can achieve this in the following way. For each word K in the vocabulary, 
we maintain a single corresponding output neuron N

K
 with a sigmoid activation 

function. For each training example X, we now serially train each of the neurons 
N

X−2
, N

X−1
, N

X+1
, N

X+2
 corresponding to the surrounding words (this example 

assumes that we considered four surrounding words). That is, we have converted 
the softmax problem into a series of classification problems. This is not sufficient, 
though. A naïve solution to this classification problem is for all output neurons to 
always output 1 because they are only sampled (trained) for the cases where their 
corresponding words are surrounding the input word. To get around this problem, 
we need to introduce some negative samples as well:

Given an input word, do the following:

1. Identify the output neurons corresponding to each surrounding word.

2. Train these neurons to output 1 when the network is presented with the 
input word.

3. Identify the output neurons corresponding to a number of random words that 
are not surrounding the input word.

4. Train these neurons to output 0 when the network is presented with the 
input word.

Table 13-1 illustrates this technique for the word sequence “that is exactly what 
I” with a context of four words (two before and two after) and using three negative 
samples per context word. Each training example (combination of input and 
output word) will train a separate output neuron.

All in all, negative sampling further simplifies word2vec into an efficient 
algorithm, which has also been shown to produce good word embeddings.
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Table 13-1 Training Examples for the Word Sequence “that is exactly what i” with 
Three Negative Samples per Context Word

INPUT WORD CONTEXT WORD OUTPUT WORD OUTPUT VALUE

exactly N−2 that (actual context 
word)

1.0

ball (random word) 0.0

boat (random word) 0.0

walk (random word) 0.0

N−1 is (actual context 
word)

1.0

blue (random word) 0.0

bottle (random word) 0.0

not (random word) 0.0

N+1 what (actual context 
word)

1.0

house (random word) 0.0

deep (random word) 0.0

computer (random 
word) 

0.0

N+2 i (actual context word) 1.0

stupid (random word) 0.0

airplane (random 
word)

0.0

mitigate (random 
word) 

0.0
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Additional Thoughts on word2vec
Additional tweaks can be made to the algorithm as well, but we think that the 
preceding description captures the key points required to understand the big 
picture. Before moving on to the next topic, we provide some additional insights 
into the word2vec algorithm. We begin with a more detailed illustration of the 
network structure for readers who prefer visual descriptions and then move on to 
a matrix implementation for readers who prefer mathematical descriptions.

Figure 13-4 shows a network for training a word2vec model with a vocabulary 
of five words and an embedding size of three dimensions. The figure assumes 
that we are currently training based on a context word that is number four in the 
vocabulary (the other output neurons are ghosted). 

We present the input word to the network, which implies that one of the five 
inputs is of value 1 and all others are set to 0. Let us assume that the input 
word is number 0 in the vocabulary, so the input word 0 (Wd

0
) is set to 1 and 

all other inputs are set to 0. The embedding layer “computes” an embedding 
by multiplying all weights from node Wd

0
 by 1 and multiplying all other input 

weights by 0 (in reality, this is performed by indexing into a lookup table). 
We then compute the output of neuron y

4
 and ignore all others without any 

computation. After this forward pass, we do a backward pass and adjust the 
weights. Figure 13-4 highlights a noteworthy property. As previously described, 
the embedding layer contains K weights (denoted IWE

xy
, where IWE refers to 

input word embedding) associated with each input word, where K is the size of 

IWE00

IWE01

IWE02

IWE42

IWE41

IWE40

Input embedding
for word 0

One-hot encoded
input layer

y0 y1 y2 y3 y4

Binary
classification
output layer OWE40

OWE41

OWE42

Output embedding
for word 4

Input embedding
for word 4

Wd0 Wd1 Wd2 Wd3 Wd4

Lin Lin Lin

Figure 13-4 The word2vec continuous skip-gram model
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the word vector. however, the figure shows that the output layer also contains 
K weights (denoted OWE

xy
, where OWE refers to output word embedding) 

associated with each output word. By definition, the number of output nodes 
is the same as the number of input words. That is, the algorithm produces two 
embeddings for each word: one input embedding and one output embedding. 
In the original paper, the input embeddings were used, and the output 
embeddings were discarded, but Press and Wolf (2017) have shown that it can 
be beneficial to tie the input and output embeddings together using weight 
sharing.

In a model where the input and output weights are tied together, it is also 
possible to reason about how the embeddings for words in the same context 
relate to each other. Consider the mathematical operation used to compute 
the weighted sum for a single output neuron. It is the dot product of the word 
embedding for the input word and the word embedding for the output word, 
and we train the network to make this dot product get close to 1.0. The same 
holds true for all the output words in that same context. Now consider the 
condition needed for a dot product to result in a positive value. The dot product 
is computed by elementwise multiplication between the two vectors and then 
adding the results together. This sum tends to be positive if corresponding 
elements in both the vectors are nonzero and have the same sign (i.e., the 
vectors are similar). A straightforward way to achieve the training objective is 
to ensure that the word vectors for all words in the same context are similar 
to each other. Obviously, this does not guarantee that the produced word 
vectors express the desired properties, but it provides some further insight 
into why it is not entirely unexpected that the algorithm produces good word 
embeddings.

word2vec in Matrix Form
Another way of describing the mechanics of word2vec is to simply look at the 
mathematics that is performed. This description is influenced by one of the 
sections of the popular blog post “The Illustrated Word2vec” (Alammar, 2019). 
We start by creating two matrices, as shown in Figure 13-5. Both are of the same 
dimensions with N rows and M columns, where N is the number of words in 
the vocabulary and M is the desired embedding width. One matrix will be used 
for the central word (the input word), and the other matrix will be used for the 
surrounding words (the context).
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We now select a word (the central word) from our text as well as a number of 
words surrounding it. We look up the embedding for the central word from the 
input embeddings matrix (select a single row) and we look up the embeddings 
for the surrounding words from the output embeddings matrix. These are 
our positive samples (i.e., where the output value is 1 in the previously shown 
Table 13-1). We further randomly sample a number of additional embeddings 
from the output-embedding matrix. These are our negative samples (i.e., where 
the output value should be 0).

Now we simply compute the dot products between the selected input embedding 
and each of the selected output embeddings, apply the logistic sigmoid function 
to each of these dot products, and compare to the desired output value. We 
then adjust each of the selected embeddings using gradient descent, and then 
repeat this process for a different central word. In the end, the leftmost matrix in 
Figure 13-5 will contain our embeddings.

Wrapping Up word2vec
To wrap up the discussion about word2vec, according to our understanding, 
several people struggle with the mechanics of the algorithm and how it relates 
to bag-of-words and traditional skip-gram, as well as with why the algorithm 

Input embeddings
(used for the central word)

Output embeddings
(used for the context words)

Embedding width

Vocabulary
size

Embedding width

absent

act

zoom

absent

act

zoom

Figure 13-5 Matrices with input and output embeddings
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produces good word embeddings. We hope that we have brought clarity to 
the mechanics of the algorithms. The relationship to bag-of-words and skip-
grams is just that there are some aspects of some steps of the word2vec 
algorithms that are related to these traditional algorithms, and consequently, 
Mikolov, Chen, and colleagues (2013) decided to name them after these 
techniques, but we would like to emphasize that they are completely different 
beasts. The traditional skip-gram is a language model, and the bag-of-words 
is a way of summarizing a document, whereas the continuous bag-of-words 
and continuous skip-gram models in word2vec are algorithms that produce 
word embeddings. Finally, as to the question of why word2vec produces good 
word embeddings, we hope that we have provided some insight into why it 
makes sense, but as far as we understand it, it is more of a result of discoveries, 
trial-and-error, observations, and refinements than a top-down engineering 
effort.

We summarize our understanding of the evolution leading up to the word2vec 
algorithm in Figure 13-6. The first few steps are more about neural language 
models than word embeddings, but as described, language models played a 
critical part in the process of developing word embeddings. The figure also 
illustrates how word2vec was not a single step but a process of gradual 
refinements.

The release of the word2vec implementation spawned considerable interest in 
word embedding research that has resulted in multiple alternative embedding 
schemes. One such scheme is the GloVe embeddings, which we now explore with 
a programming example.

Language
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Figure 13-6 Evolution of neural language models into word2vec
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Programming Example: Exploring 
Properties of GloVe Embeddings

About a year after word2vec was published, Pennington, Socher, and Manning 
(2014) published “GloVe: Global Vectors for Word representation.” GloVe is an 
algorithm mathematically engineered to create well-behaved word embeddings. 
In particular, the goal is that the embeddings capture syntactic and semantic 
relationships between words. We do not describe the details of how GloVe works, 
as the mathematics/statistics needed to understand it is more than we want to 
require from readers of this book. however, we strongly recommend that anyone 
who wants to get serious about word embedding research (as opposed to just 
using word embeddings) acquire the necessary skills to understand the GloVe 
paper. The paper also provides additional information about why word2vec 
produces sane embeddings. The embeddings are available for download and are 
contained in a text file in which each line represents a word embedding. The first 
element is the word itself followed by the vector elements separated by blank 
spaces.

Code Snippet 13-1 contains two import statements and a function to read the 
embeddings. The function simply opens the file and reads it line by line. It splits 
each line into its elements. It extracts the first element, which represents the 
word itself, and then creates a vector from the remaining elements and inserts 
the word and the corresponding vector into a dictionary, which serves as the 
return value of the function.

Code Snippet 13-1 Loading GloVe Embeddings from File

import numpy as np

import scipy.spatial

# Read embeddings from file.

def read_embeddings():
    FILE_NAME = '../data/glove.6B.100d.txt'

    embeddings = {}

    file = open(FILE_NAME, 'r', encoding='utf-8')

    for line in file:

        values = line.split()
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Code Snippet 13-2 implements a function that computes the cosine distance 
between a specific embedding and all other embeddings. It then prints the n 
closest ones. This is similar to what was done in Chapter 12, but we are using 
cosine distance instead of Euclidean distance to demonstrate how to do that. 
Euclidean distance would also have worked fine, but the results would sometimes 
be different because the GloVe vectors are not normalized.

Using these two functions, we can now retrieve word embeddings for arbitrary 
words and print out words that have similar embeddings. This is shown in Code 
Snippet 13-3, where we first read call read_embeddings() and then retrieve 
the embeddings for hello, precisely, and dog and call print_n_closest() on 
each of them. 

def print_n_closest(embeddings, vec0, n):
    word_distances = {}

    for (word, vec1) in embeddings.items():

        distance = scipy.spatial.distance.cosine(

            vec1, vec0)

        word_distances[distance] = word

    # Print words sorted by distance.

    for distance in sorted(word_distances.keys())[:n]:

        word = word_distances[distance]

        print(word + ': %6.3f' % distance)

Code Snippet 13-2 Function to Identify and Print the Three Words That Are 
Closest in Vector Space, Using Cosine Distance

        word = values[0]

        vector = np.asarray(values[1:],

                            dtype='float32')

        embeddings[word] = vector

    file.close()

    print('Read %s embeddings.' % len(embeddings))

    return embeddings
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The resulting printouts follow. We see that the vocabulary consists of 400,000 
words, and as expected, the closest word to each lookup word is the lookup 
word itself (there is zero distance between hello and hello). The other two words 
close to hello are goodbye and hey. The two words close to precisely are exactly 
and accurately, and the two words close to dog are cat and dogs. Overall, this 
demonstrates that the GloVe embeddings do capture semantics of the words.

Read 400000 embeddings.

Words closest to hello

hello:  0.000

goodbye:  0.209

hey:  0.283

Words closest to precisely

precisely:  0.000

exactly:  0.147

accurately:  0.293

embeddings = read_embeddings()

lookup_word = 'hello'

print('\nWords closest to ' + lookup_word)

print_n_closest(embeddings,

                embeddings[lookup_word], 3)

lookup_word = 'precisely'

print('\nWords closest to ' + lookup_word)

print_n_closest(embeddings,

                embeddings[lookup_word], 3)

lookup_word = 'dog'

print('\nWords closest to ' + lookup_word)

print_n_closest(embeddings,

                embeddings[lookup_word], 3)

Code Snippet 13-3 Printing the Three Closest Words to hello, precisely, and dog
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Words closest to dog

dog:  0.000

cat:  0.120

dogs:  0.166

Using NumPy, it is also trivial to combine multiple vectors using vector arithmetic 
and then print out words that are similar to the resulting vector. This is 
demonstrated in Code Snippet 13-4, which first prints the words closest to the 
word vector for king and then prints the words closest to the vector resulting from 
computing (king − man + woman).

It yields the following output:

Words closest to king

king:  0.000

prince:  0.232

queen:  0.249

Words closest to (king - man + woman)

king:  0.145

queen:  0.217

monarch:  0.307

lookup_word = 'king'

print('\nWords closest to ' + lookup_word)

print_n_closest(embeddings,

                embeddings[lookup_word], 3)

lookup_word = '(king - man + woman)'

print('\nWords closest to ' + lookup_word)

vec = embeddings['king'] - embeddings[

    'man'] + embeddings['woman']

print_n_closest(embeddings, vec, 3)

Code Snippet 13-4 Example of Word Vector Arithmetic
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We can see that the closest word to king (ignoring king itself) is prince, followed 
by queen. We also see that the closest word to (king − man + woman) is still 
king, but the second closest is queen; that is, the calculations resulted in a 
vector that is more on the female side, since queen is now closer than prince. 
Without diminishing the impact of the king/queen discovery, we recognize that 
the example provides some insight into how the (king − man + woman) property 
could be observed in embeddings resulting from a relatively simple model. Given 
that king and queen are closely related, they were likely close to each other from 
the beginning, and not much tweaking was needed to go from king to queen. For 
example, from the printouts, we can see that the distance to queen only changed 
from 0.249 (distance between queen and king) to 0.217 (distance between queen 
and the vector after arithmetic).

A possibly more impressive example is shown in Code Snippet 13-5, where we 
first print the words closest to sweden and madrid and then print the words 
closest to the result from the computation (madrid − spain + sweden).

As you can see in the following output, the words closest to Sweden are the 
neighboring countries Denmark and Norway. Similarly, the words closest to 
Madrid are Barcelona and Valencia, two other significant Spanish cities. Now, 
removing Spain from Madrid (its capital) and instead adding Sweden results in 

lookup_word = 'sweden'

print('\nWords closest to ' + lookup_word)

print_n_closest(embeddings,

                embeddings[lookup_word], 3)

lookup_word = 'madrid'

print('\nWords closest to ' + lookup_word)

print_n_closest(embeddings,

                embeddings[lookup_word], 3)

lookup_word = '(madrid - spain + sweden)'

print('\nWords closest to ' + lookup_word)

vec = embeddings['madrid'] - embeddings[

    'spain'] + embeddings['sweden']

print_n_closest(embeddings, vec, 3)

Code Snippet 13-5 Vector Arithmetic on Countries and Capital Cities
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the Swedish capital city of Stockholm, which seemingly came out of nowhere as 
opposed to the king/queen example where queen was already closely related to 
king. 

Words closest to sweden

sweden:  0.000

denmark:  0.138

norway:  0.193

Words closest to madrid

madrid:  0.000

barcelona:  0.157

valencia:  0.197

Words closest to (madrid - spain + sweden)

stockholm:  0.271

sweden:  0.300

copenhagen:  0.305

In reality, it turns out that if we expand the list of words close to madrid and 
sweden, then stockholm does show up as number 18 on the sweden list (and 
377 on the madrid list), but we still find it impressive how the equation correctly 
identifies it as the top 1.

Concluding remarks on word2vec and 
GloVe

In these past two chapters, we have seen that it is possible to learn word 
embeddings jointly with a DL model or learn the word embeddings in isolation. 
Algorithms such as word2vec and GloVe are not DL algorithms, although 
word2vec is inspired by, and to some extent evolved from, a neural language 
model. Still, the embeddings produced from these algorithms are useful when 
applying DL models to natural language.
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A valid question is whether it is best to use prelearned embeddings in a transfer 
learning setting or to learn the embeddings jointly with the DL model, and the 
answer is that it is application dependent. There are cases in which it is useful 
to use pretrained embeddings that are derived from a large dataset, especially if 
your dataset on the end task is not that big. In other cases, it is better to learn the 
embeddings jointly with the model. One example would be a use case where the 
pretrained embeddings do not capture use case–specific relationships. Another 
one is if you are working with natural language translation to a rare language and 
you simply do not have access to pretrained embeddings.

Since GloVe was published, there have been additional improvements in the space 
of word embeddings. They have been extended with capabilities to handle words 
that were not present in the training vocabulary. They have also been extended 
to handle cases where a single word can have two different meanings depending 
on the context in which it is used. We describe more details about these types 
of embeddings in Appendix C. If you are very interested in word embeddings, 
consider reading it now. We recommend that most readers just continue reading 
the book in order. Chapter 14, “Sequence-to-Sequence Networks and Natural 
Language Translation,” uses word embeddings and other concepts we have 
discussed to build a network for natural language translation.

We have not brought up the topic of science fiction movies for a few chapters, 
so we feel that it is time to do another farfetched analogy. When watching the 
2016 movie Arrival, where Amy Adams plays a linguist who is asked to try 
to learn an alien language, we think that it would have been very cool if they 
had slipped in a reference to word2vec. For example, when trying to persuade 
Adams’s character to take on the case, they could have said, “We have already 
run word2vec on the aliens’ Wikipedia database, and it didn’t uncover any 
compositional relationships but just some weird temporal relationships both 
forward and backward.”

Perhaps the reason this was not done is that it is one of the cases where 
science was ahead of fiction?!
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Chapter 14

Sequence-to-Sequence 
Networks and Natural 
Language Translation

In Chapter 11, “Text Autocompletion with LSTM and Beam Search,” we discussed 
many-to-many sequence prediction problems and showed with a programming 
example how it can be used for autocompletion of text. Another important 
sequence prediction problem is to translate text from one natural language 
to another. In such a setting, the input sequence is a sentence in the source 
language, and the predicted output sequence is the corresponding sentence 
in the destination language. It is not necessarily the case that the sentences 
consist of the same number of words in the two different languages. A good 
English translation of the French sentence Je suis étudiant is “I am a student,” 
where we see that the English sentence contains one more word than its French 
counterpart. Another thing to note is that we want the network to consume the 
entire input sequence before starting to emit the output sequence, because in 
many cases, you need to consider the full meaning of a sentence to produce a 
good translation. A popular approach to handle this is to teach the network to 
interpret and emit START and STOP tokens as well as to ignore padding values. 
Both the padding value and the START and STOP tokens should be values that do 
not naturally appear in the text. For example, with words represented by indices 
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that are inputs to an embedding layer, we would simply reserve specific indices 
for these tokens. 

Figure 14-1 illustrates this process. The upper part of the figure shows a many-
to-many network where gray represents the input, blue is the network, and 
green is the output. For now, ignore the ghosted (white) shapes. The network is 
unrolled in time from left to right. The figure shows that the desired behavior is 
that during the first four timesteps, we present the symbols for Je, suis, étudiant, 
START to the network. during the timestep that the network receives the START 
token, the network will output the first word (I) of the translated sentence, 
followed by am, a, student, and STOP during the subsequent timesteps. Let us 
now consider the white shapes. As previously noted, it is impossible for the 
network to not output a value, and similarly, the network will always get some 
kind of input for every timestep. This applies to the first three timesteps for 
the output and the last four timesteps for the input. A simple solution would be 
to use our padding value on both the output and the input for these timesteps. 
however, it turns out that a better solution is to help the network by feeding the 
output from the previous timestep back as input to the next timestep, just as we 
did in the neural language models in previous chapters. This is what is shown in 
the Figure 14-1.

To make this abundantly clear, the lower part of the figure shows the 
corresponding training example without the network. That is, during training, 
the network will see both the source and the destination sequences on its input 
and be trained to predict the destination sequence on its output. Predicting 
the destination sequence as output might not seem that hard given that the 
destination sequence is also presented as input. however, they are skewed in 
time, so the network needs to predict the next word in the destination sequence 
before it has seen it. when we later use the network to produce translations, 
we do not have the destination sequence. we start with feeding the source 
sequence to the network, followed by the START token, and then start feeding 
back its output prediction as input to the next timestep until the network 
produces a STOP token. At that point, we have produced the full translated 
sentence.

START tokens, STOP tokens, and padding can be used to create training 
examples that enable many-to-many sequences with variable lengths.
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Figure 14-1 neural machine translation is an example of a many-to-many 
sequence where the input and output sequences are not necessarily of the 
same length.
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Encoder-decoder Model for Sequence- 
to-Sequence Learning

how does the model that we just described relate to the neural language 
models studied in previous chapters? Let us consider our translation network at 
the timestep when the START token is presented at its input. The only difference 
between this network and the neural language model networks is its initial 
accumulated state. In our language model, we started with 0 as internal state 
and presented one or more words on the input. Then the network completed the 
sentence. Our translation network starts with an accumulated state from seeing 
the source sequence, is then presented with a single START symbol, and then 
completes the sentence in the destination language. That is, during the second 
half of the translation process, the network simply acts like a neural language 
model in the destination language. It turns out that the internal state is all that 
the network needs to produce the right sentence. we can think of the internal 
state as a language-independent representation of the overall meaning of the 
sentence. Sometimes this internal state is referred to as the context or a thought 
vector. 

now let us consider the first half of the translation process. The goal of this 
phase is to consume the source sentence and build up this language-independent 
representation of the meaning of the sentence. Apart from being a somewhat 
different task than generating a sentence, it is also working with a different 
language/vocabulary than the second phase of the translation process. A 
reasonable question, then, is whether both phases should be handled by the 
same neural network or if it is better to have two specialized networks. The first 
network would be specialized in encoding the source sentence into the internal 
state, and the second network would be specialized in decoding the internal state 
into a destination sentence. Such an architecture is known as an encoder-decoder 
architecture, and one example is illustrated in Figure 14-2. The network is not 
unrolled in time. The network layers in the encoder are distinct from the network 
layers in the decoder. The horizontal arrow represents reading out the internal 
states of the recurrent layers in the encoder and initializing the internal states 
of the recurrent layers in the decoder. Thus, the assumption in the figure is that 
both networks contain the same number of hidden recurrent layers of the same 
size and type. In our programming example, we implement this model with two 
hidden recurrent layers in both networks, each consisting of 256 long short-term 
memory (LSTM) units.
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Figure 14-2 shows just one example of an encoder-decoder model. given how we 
evolved from a single Rnn to this encoder-decoder network, it might not be that 
odd that the communication channel between the two networks is to transfer the 
internal state from one network to another. however, we should also recognize 
that the statement “discarded output” is a little misleading in the figure. The 
internal state of an LSTM layer consists of the cell state (often denoted by c) and 
the recurrent layer hidden state (often denoted by h), where h is identical to the 

In an encoder-decoder architecture, the encoder creates an internal state 
known as context or thought vector, which is a language-independent 
representation of the meaning of the sentence.

Hidden recurrent layer(s)

Src word
sequence

Embedding
layer

Discarded output

Hidden recurrent layer(s)

START + previous
outputs

Softmax

Dest word sentence + STOP

DecoderEncoder

Sequence-to-sequence encoder-decoder model

Embedding
layer

Figure 14-2 Encoder-decoder model for language translation
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output of the layer. Similarly, if we had used a gated recurrent unit (gRu) instead 
of LSTM, there would not be a cell state, and the internal state of the network 
would be simply the recurrent layer hidden state, which again is identical to the 
output of the recurrent layer. Still, we chose to call it discarded output because 
that term is commonly found in other descriptions.

One can envision other ways of connecting the encoder and the decoder. For 
example, we could feed the state/output as a regular input to the decoder just 
during the first timestep, or we could give the decoder network access to it 
during each timestep. Or, in the case of an encoder with multiple layers, we could 
choose to just present the state/output from the topmost layer as inputs to the 
bottommost decoder layer. It is also worth noting that encoder-decoder models 
are not limited to working with sequences. we can construct other combinations, 
such as cases where only one of the encoder or decoder, or neither of them, 
has recurrent layers. we discuss more details about this in the next couple of 
chapters, but at this point, we move on to implementing our neural machine 
translator (nMT) in keras.

Introduction to the keras Functional API
It is not obvious how to implement the described architecture using the constructs 
that we have used in the keras API so far. To implement this architecture, we need 
to use the keras Functional API, which is specifically created to enable creation 
of complex models. There is a key difference compared to using the sequential 
models that we have used so far. Instead of just declaring a layer and adding 
to the model and letting keras automatically connect the layers in a sequential 
manner, we now need to explicitly describe how layers are connected to each 
other. This process is more complex and error prone than letting keras do it for 
us, but the benefit is the increased flexibility that enables us to describe a more 
complex model.

Encoder-decoder architectures can be built in many different ways. different 
network types can be used for the encoder and decoder, and the connection 
between the two can also be done in multiple ways.

keras Functional API is more flexible than the Sequential API and can therefore 
be used to build more complex network architectures.
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we use the example models in Figure 14-3 to illustrate how to use the keras 
Functional API. The model to the left is a simple sequential model that could easily 
have been implemented with the Sequential API, but the model to the right has an 
input that bypasses the first layer and therefore needs to use the Functional API.

The implementation of the left model is shown in Code Snippet 14-1. we start 
by declaring an Input object. This is different from the Sequential API, where 
the input layer was implicitly created when the first layer was created. we then 
declare the two fully connected layers in the model. Once this is done, it is time to 
connect the layers by using the assigned variable name as a function and passing 
it its inputs as an argument. The function returns an object representing the 
outputs of the layer, which can then be used as input argument when connecting 
the next layer.

Output Output

Fully connected layer
64

Input tensor
10

Input tensor
5

Fully connected layer
64

Input tensor
10

Fully connected layer
64

Fully connected layer
64

Figure 14-3 Two simple models. The left one is straightforward to implement with 
the Sequential API, but the right one requires the Functional API.

Code Snippet 14-1 Example how to Implement a Simple Sequential Model using 
the Functional API

from tensorflow.keras.layers import Input, Dense

from tensorflow.keras.models import Model

# Declare inputs.

inputs = Input(shape=(10,))
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now that we have declared and connected layers to each other, we are ready to 
create the model. This is done by simply calling the Model() constructor and 
providing arguments informing the model what its inputs and outputs should be.

Creating the more complex model with a bypass path from the input to the 
second layer is shown in Code Snippet 14-2. There are just a few minor changes 
compared to the previous example. First, we declare two sets of inputs. One is 
the input to the first layer, and the other is the bypass input that will go straight 
to the second layer. next, we declare a Concatenate layer, which is used to 
concatenate the outputs from the first layer with the bypass input to form a single 
variable that can be provided as input to the second layer. Finally, when declaring 
the model, we need to tell it that its inputs now consist of a list of two inputs.

Code Snippet 14-2 keras Implementation of a network with a Bypass Path

# Declare layers.

layer1 = Dense(64, activation='relu')

layer2 = Dense(64, activation='relu')

# Connect inputs and layers.

layer1_outputs = layer1(inputs)

layer2_outputs = layer2(layer1_outputs)

# Create model.

model = Model(inputs=inputs, outputs=layer2_outputs)

model.summary()

from tensorflow.keras.layers import Input, Dense

from tensorflow.keras.models import Model

from tensorflow.keras.layers import Concatenate

# Declare inputs.

inputs = Input(shape=(10,))

bypass_inputs = Input(shape=(5,))

# Declare layers.

layer1 = Dense(64, activation='relu')

concat_layer = Concatenate()

layer2 = Dense(64, activation='relu')
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After this brief introduction to the keras Functional API, we are ready to move on 
to implementing our neural machine translation network.

Programming Example: neural Machine 
Translation

As usual, we begin by importing modules that we need for the program. This is 
shown in Code Snippet 14-3.

# Connect inputs and layers.

layer1_outputs = layer1(inputs)

layer2_inputs = concat_layer([layer1_outputs, bypass_inputs])

layer2_outputs = layer2(layer2_inputs)

# Create model.

model = Model(inputs=[inputs, bypass_inputs],

              outputs=layer2_outputs)

model.summary()

import numpy as np

import random

from tensorflow.keras.layers import Input

from tensorflow.keras.layers import Embedding

from tensorflow.keras.layers import LSTM

from tensorflow.keras.layers import Dense

from tensorflow.keras.models import Model

from tensorflow.keras.optimizers import RMSprop

from tensorflow.keras.preprocessing.text import Tokenizer

from tensorflow.keras.preprocessing.text \

    import text_to_word_sequence

from tensorflow.keras.preprocessing.sequence \

    import pad_sequences

import tensorflow as tf

import logging

tf.get_logger().setLevel(logging.ERROR)

Code Snippet 14-3 Import Statements
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next, we define some constants in Code Snippet 14-4. we specify a vocabulary 
size of 10,000 symbols, out of which four indices are reserved for padding, out-
of-vocabulary words (denoted as unk), START tokens, and STOP tokens. Our 
training corpus is large, so we set the parameter READ_LINES to the number of 
lines in the input file we want to use in our example (60,000). Our layers consist 
of 256 units (LAYER_SIZE), and the embedding layers output 128 dimensions 
(EMBEDDING_WIDTH). we use 20% (TEST_PERCENT) of the dataset as test 
set and further select 20 sentences (SAMPLE_SIZE) to inspect in detail during 
training. we limit the length of the source and destination sentences to, at most, 
60 words (MAX_LENGTH). Finally, we provide the path to the data file, where 
each line is expected to contain two versions of the same sentence (one in each 
language) separated by a tab character.

Code Snippet 14-5 shows the function used to read the input data file and do 
some initial processing. Each line is split into two strings, where the first contains 
the sentence in the destination language and the second contains the sentence 
in the source language. we use the function text_to_word_sequence() to 
clean the data somewhat (make everything lowercase and remove punctuation) 
and split each sentence into a list of individual words. If the list (sentence) is 
longer than the maximum allowed length, then it is truncated.

# Constants

EPOCHS = 20

BATCH_SIZE = 128

MAX_WORDS = 10000

READ_LINES = 60000

LAYER_SIZE = 256

EMBEDDING_WIDTH = 128

TEST_PERCENT = 0.2

SAMPLE_SIZE = 20

OOV_WORD = 'UNK'

PAD_INDEX = 0

OOV_INDEX = 1

START_INDEX = MAX_WORDS - 2

STOP_INDEX = MAX_WORDS - 1

MAX_LENGTH = 60

SRC_DEST_FILE_NAME = '../data/fra.txt'

Code Snippet 14-4 definition of Constants
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Code Snippet 14-6 shows functions used to turn sequences of words into 
sequences of tokens, and vice versa. we call tokenize() a single time for each 
language, so the argument sequences is a list of lists where each of the inner 
lists represents a sentence. The Tokenizer class assigns indices to the most 
common words and returns either these indices or the reserved OOV_INDEX 
for less common words that did not make it into the vocabulary. we tell the 
Tokenizer to use a vocabulary of 9998 (MAX_WORDS-2)—that is, use only 
indices 0 to 9997, so that we can use indices 9998 and 9999 as our START and 
STOP tokens (the Tokenizer does not support the notion of START and STOP 
tokens but does reserve index 0 to use as a padding token and index 1 for out-
of-vocabulary words). Our tokenize() function returns both the tokenized 
sequence and the Tokenizer object itself. This object will be needed anytime we 
want to convert tokens back into words.

# Function to read file.

def read_file_combined(file_name, max_len):
    file = open(file_name, 'r', encoding='utf-8')

    src_word_sequences = []

    dest_word_sequences = []

    for i, line in enumerate(file):

        if i == READ_LINES:

            break

        pair = line.split('\t')

        word_sequence = text_to_word_sequence(pair[1])

        src_word_sequence = word_sequence[0:max_len]

        src_word_sequences.append(src_word_sequence)

        word_sequence = text_to_word_sequence(pair[0])

        dest_word_sequence = word_sequence[0:max_len]

        dest_word_sequences.append(dest_word_sequence)

    file.close()

    return src_word_sequences, dest_word_sequences

Code Snippet 14-5 Function to Read Input File and Create Source and destination 
word Sequences
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The function tokens_to_words() requires a Tokenizer and a list of indices. 
we simply check for the reserved indices: If we find a match, we replace them 
with hardcoded strings, and if we find no match, we let the Tokenizer convert 
the index to the corresponding word string. The Tokenizer expects a list of 
lists of indices and returns a list of strings, which is why we need to call it with 
[[index]] and then select the 0th element to arrive at a string.

now, given that we have these helper functions, it is trivial to read the input data 
file and convert into tokenized sequences. This is done in Code Snippet 14-7.

# Functions to tokenize and un-tokenize sequences.

def tokenize(sequences):
    # "MAX_WORDS-2" used to reserve two indices

    # for START and STOP.

    tokenizer = Tokenizer(num_words=MAX_WORDS-2,

                          oov_token=OOV_WORD)

    tokenizer.fit_on_texts(sequences)

    token_sequences = tokenizer.texts_to_sequences(sequences)

    return tokenizer, token_sequences

def tokens_to_words(tokenizer, seq):
    word_seq = []

    for index in seq:

        if index == PAD_INDEX:

            word_seq.append('PAD')

        elif index == OOV_INDEX:

            word_seq.append(OOV_WORD)

        elif index == START_INDEX:

            word_seq.append('START')

        elif index == STOP_INDEX:

            word_seq.append('STOP')

        else:

            word_seq.append(tokenizer.sequences_to_texts(

                [[index]])[0])

    print(word_seq)

Code Snippet 14-6 Functions to Turn word Sequences into Tokens, and Vice Versa
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It is now time to arrange the data into tensors that can be used for training and 
testing. In Figure 14-1, we indicated that we need to pad the start of the output 
sequence with as many PAd symbols as there are words in the input sequence, 
but that was when we envisioned a single neural network. now that we have 
broken up the network into an encoder and a decoder, this is no longer necessary 
because we will simply not input anything to the decoder until we have run the 
full input through the encoder. Following is a more accurate example of what we 
need as input and output for a single training example, where src_input is the 
input to the encoder network, dest_input is the input to the decoder network, 
and dest_target is the desired output from the decoder network:

src_input = [PAD, PAD, PAD, id("je"), id("suis"), 
id("étudiant")]

dest_input = [START, id("i"), id("am"), id("a"), 
id("student"), STOP, PAD, PAD]

dest_target = [one_hot_id("i"), one_hot_id("am"), one_hot_
id("a"), one_hot_id("student"), one_hot_id(STOP), one_hot_
id(PAD), one_hot_id(PAD), one_hot_id(PAD)]

In the example, id(string) refers to the tokenized index of the string, and 
one_hot_id is the one-hot encoded version of the index. we have assumed that 
the longest source sentence is six words, so we padded src_input to be of that 
length. Similarly, we have assumed that the longest destination sentence is eight 
words including START and STOP tokens, so we padded both dest_input and 
dest_target to be of that length. note how the symbols in dest_input are 
offset by one location compared to the symbols in dest_target because when 
we later do inference, the inputs into the decoder network will be coming from the 
output of the network for the previous timestep. Although this example has shown 
the training example as being lists, in reality, they will be rows in numPy arrays, 
where each array contains multiple training examples.

# Read file and tokenize.

src_seq, dest_seq = read_file_combined(SRC_DEST_FILE_NAME,

                                       MAX_LENGTH)

src_tokenizer, src_token_seq = tokenize(src_seq)

dest_tokenizer, dest_token_seq = tokenize(dest_seq)

Code Snippet 14-7 Read and Tokenize the Input File
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The padding is done to ensure that we can use mini-batches for training. That is, 
all source sentences need to be the same length, and all destination sentences 
need to be the same length. we pad the source input at the beginning (known 
as prepadding) and the destination at the end (known as postpadding), which is 
nonobvious. we previously stated that when using padding, the model can learn 
to ignore the padded values, but there is also a mechanism in keras to mask out 
padded values. Based on these two statements, it seems like it should not matter 
whether the padding is at the beginning or end. however, as always, things are 
not as simple as they might appear. If we start with the assumption of the model 
learning to ignore values, it will not perfectly learn this. The ease with which it 
learns to ignore padding values might depend on how the data is arranged. It 
is not hard to imagine that inputting a considerable number of zeros at the end 
of a sequence will dilute the input and affect the internal state of the network. 
From that perspective, it makes sense to pad the input values with zeros in the 
beginning of the sequence instead. Similarly, in a sequence-to-sequence network, 
if the encoder has created an internal state that is transferred to the decoder, 
diluting this state by presenting a number of zeros before the START token also 
seems like it could be bad.

This reasoning supports the chosen padding (prepadding of the source input 
and postpadding of the destination input) in a case where the network needs to 
learn to ignore the padded values. however, given that we will use the mask_
zero=True parameter for our embedding layers, it should not matter what 
type of padding we use. It turns out that the behavior of mask_zero is not what 
we had expected when using it for our custom encoder-decoder network. we 
observed that the network learned poorly when we used postpadding for the 
source input. we do not know the exact reason for this but suspect that there is 
some interaction where the masked input values to the encoder somehow causes 
the decoder to ignore the beginning of the output sequences.1

Code Snippet 14-8 shows a compact way of creating the three arrays that we 
need. The first two lines create two new lists, each containing the destination 
sequences but the first (dest_target_token_seq) also augmented with 

1. This is just a theory, and the behavior could be something else. Further, it is unclear to us whether 
it is due to a bug or an expected but undocumented behavior. Regardless, when using the suggested 
padding, we do not see the problem.

Padding can be done in the beginning or end of the sequence. This is known as 
prepadding and postpadding.
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STOP_INDEX after each sequence and the second (dest_input_token_seq) 
augmented with both START_INDEX and STOP_INDEX. It is easy to miss that 
dest_input_token_seq has a STOP_INDEX, but that falls out naturally 
because it is created from the dest_target_token_seq for which a STOP_
INDEX was just added to each sentence.

next, we call pad_sequences() on both the original src_input_data list (of 
lists) and on these two new destination lists. The pad_sequences() function 
pads the sequences with the PAd value and then returns a numPy array. The 
default behavior of pad_sequences is to do prepadding, and we do that for the 
source sequence but explicitly ask for postpadding for the destination sequences. 
You might wonder why there is no call to to_categorical() in the statement 
that creates the target (output) data. we are used to wanting to have the ground 
truth one-hot encoded for textual data. not doing so is an optimization to avoid 
wasting too much memory. with a vocabulary of 10,000 words, and 60,000 
training examples, where each training example is a sentence, the memory 
footprint of the one-hot encoded data starts becoming a problem. Therefore, 
instead of one-hot encoding all data up front, there is a way to let keras deal with 
that in the loss function itself.

Before we build our model, Code Snippet 14-9 demonstrates how we can 
manually split our dataset into a training dataset and a test dataset. In previous 
examples, we either relied on datasets that are already split this way or we used 
functionality inside of keras when calling the fit() function. however, in this 
case, we want some more control ourselves because we will want to inspect a 

# Prepare training data.

dest_target_token_seq = [x + [STOP_INDEX] for x in dest_token_seq]

dest_input_token_seq = [[START_INDEX] + x for x in

                        dest_target_token_seq]

src_input_data = pad_sequences(src_token_seq)

dest_input_data = pad_sequences(dest_input_token_seq,

                                padding='post')

dest_target_data = pad_sequences(

    dest_target_token_seq, padding='post', maxlen

    = len(dest_input_data[0]))

Code Snippet 14-8 Compact Version of Code to Convert the Tokenized Sequences 
into numPy Arrays
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few select members of the test set in detail. we split the dataset by first creating 
a list test_indices, which contains a 20% (TEST_PERCENT) subset of all the 
numbers from 0 to N−1, where N is the size of our original dataset. we then create 
a list train_indices, which contains the remaining 80%. we can now use 
these lists to select a number of rows in the matrices representing the dataset 
and create two new collections of matrices, one to be used as training set and 
one to be used as test set. Finally, we create a third collection of matrices, which 
only contains 20 (SAMPLE_SIZE) random examples from the test dataset. we will 
use them to inspect the resulting translations in detail, but since that is a manual 
process, we limit ourselves to a small number of sentences. 

As usual, we have now spent a whole lot of code just preparing the data, but we 
are finally ready to build our model. This time, building the model will be more 

# Split into training and test set.

rows = len(src_input_data[:,0])

all_indices = list(range(rows))

test_rows = int(rows * TEST_PERCENT)

test_indices = random.sample(all_indices, test_rows)

train_indices = [x for x in all_indices if x not in test_indices]

train_src_input_data = src_input_data[train_indices]

train_dest_input_data = dest_input_data[train_indices]

train_dest_target_data = dest_target_data[train_indices]

test_src_input_data = src_input_data[test_indices]

test_dest_input_data = dest_input_data[test_indices]

test_dest_target_data = dest_target_data[test_indices]

# Create a sample of the test set that we will inspect in detail.

test_indices = list(range(test_rows))

sample_indices = random.sample(test_indices, SAMPLE_SIZE)

sample_input_data = test_src_input_data[sample_indices]

sample_target_data = test_dest_target_data[sample_indices]

Code Snippet 14-9 Manually Splitting the dataset into a Training Set and a Test Set
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exciting than in the past because we are now building a less trivial model and will 
make use of the keras Functional API.

Before going over the code, we revisit the architecture of the model that we intend 
to build. The network consists of an encoder part and a decoder part. we define 
these as two separate models, which we later tie together. The two models are 
illustrated in Figure 14-4. The upper part of the figure shows the encoder, which 
consists of an embedding layer and two LSTM layers. The lower part of the figure 
shows the decoder, which consists of an embedding layer, two LSTM layers, and a 
fully connected softmax layer. The names in the figure correspond to the variable 
names that we use in our implementation.

Apart from the layer names, the figure also contains names of the outputs of all 
layers, which will be used in the code when connecting layers. Four noteworthy 
outputs (illustrated as two sets of outputs) are the state outputs from the two 
encoder LSTM layers. These are used as inputs into the decoder LSTM layers to 
communicate the accumulated state from the encoder to the decoder.

Code Snippet 14-10 contains the implementation of the encoder model. It 
should be straightforward to map the code to Figure 14-4, but there are a few 
things worth pointing out. Because we are now interested in accessing the 
internal state of the LSTM layers, we need to provide the argument return_
state=True. This argument instructs the LSTM object to return not only a 
variable representing the layer’s output but also variables representing the c and 
h states. Further, as previously described, for a recurrent layer that feeds another 
recurrent layer, we need to provide the argument return_sequences=True so 
that the subsequent layer sees the outputs of each timestep. This is also true for 
the final recurrent layer if we want the network to produce an output during each 
timestep. For our encoder, we are only interested in the final state, so we do not 
set return_sequences to True for enc_layer2. 

Once all layers are connected, we create the actual model by calling the Model() 
constructor and providing arguments to specify what inputs and outputs will be 
external to the model. The model takes the source sentence as input and produces 
the internal states of the two LSTM layers as outputs. Each LSTM layer has both an 
h state and c state, so in total, the model will output four state variables as output. 
Each state variable is in itself a tensor consisting of multiple values.

Code Snippet 14-11 shows the implementation of the decoder model. In addition 
to the sentence in the destination language, it takes the output state from the 
encoder model as inputs. we initialize the decoder LSTM layers (using the 
argument initial_state) with this state at the first timestep.
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Figure 14-4 Topology of the encoder and decoder models
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For the decoder, we do want the top LSTM layer to produce an output for each 
timestep (the decoder should create a full sentence and not just a final state), so 
we set return_sequences=True for both LSTM layers.

# Build encoder model.

# Input is input sequence in source language.

enc_embedding_input = Input(shape=(None, ))

# Create the encoder layers.

enc_embedding_layer = Embedding(

    output_dim=EMBEDDING_WIDTH, input_dim

    = MAX_WORDS, mask_zero=True)

enc_layer1 = LSTM(LAYER_SIZE, return_state=True,

                  return_sequences=True)

enc_layer2 = LSTM(LAYER_SIZE, return_state=True)

# Connect the encoder layers.

# We don't use the last layer output, only the state.

enc_embedding_layer_outputs = \

    enc_embedding_layer(enc_embedding_input)

enc_layer1_outputs, enc_layer1_state_h, enc_layer1_state_c = \

    enc_layer1(enc_embedding_layer_outputs)

_, enc_layer2_state_h, enc_layer2_state_c = \

    enc_layer2(enc_layer1_outputs)

# Build the model.

enc_model = Model(enc_embedding_input, 

                  [enc_layer1_state_h, enc_layer1_state_c,

                   enc_layer2_state_h, enc_layer2_state_c])

enc_model.summary()

Code Snippet 14-10 Implementation of Encoder Model

Code Snippet 14-11 Implementation of decoder Model

# Build decoder model.

# Input to the network is input sequence in destination

# language and intermediate state.

dec_layer1_state_input_h = Input(shape=(LAYER_SIZE,))

dec_layer1_state_input_c = Input(shape=(LAYER_SIZE,))
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dec_layer2_state_input_h = Input(shape=(LAYER_SIZE,))

dec_layer2_state_input_c = Input(shape=(LAYER_SIZE,))

dec_embedding_input = Input(shape=(None, ))

# Create the decoder layers.

dec_embedding_layer = Embedding(output_dim=EMBEDDING_WIDTH,

                                input_dim=MAX_WORDS,

                                mask_zero=True)

dec_layer1 = LSTM(LAYER_SIZE, return_state = True,

                  return_sequences=True)

dec_layer2 = LSTM(LAYER_SIZE, return_state = True,

                  return_sequences=True)

dec_layer3 = Dense(MAX_WORDS, activation='softmax')

# Connect the decoder layers.

dec_embedding_layer_outputs = dec_embedding_layer(

    dec_embedding_input)

dec_layer1_outputs, dec_layer1_state_h, dec_layer1_state_c = \

    dec_layer1(dec_embedding_layer_outputs,

    initial_state=[dec_layer1_state_input_h,

                   dec_layer1_state_input_c])

dec_layer2_outputs, dec_layer2_state_h, dec_layer2_state_c = \

    dec_layer2(dec_layer1_outputs,

    initial_state=[dec_layer2_state_input_h,

                   dec_layer2_state_input_c])

dec_layer3_outputs = dec_layer3(dec_layer2_outputs)

# Build the model.

dec_model = Model([dec_embedding_input,

                   dec_layer1_state_input_h,

                   dec_layer1_state_input_c,

                   dec_layer2_state_input_h,

                   dec_layer2_state_input_c], 

                  [dec_layer3_outputs, dec_layer1_state_h,

                   dec_layer1_state_c, dec_layer2_state_h,

                   dec_layer2_state_c])

dec_model.summary()
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we create the model by calling the Model() constructor. The inputs consist of 
the destination sentence (time shifted by one timestep) and initial state for the 
LSTM layers. As we soon will see, when using the model for inference, we need 
to explicitly manage the internal state for the decoder. Therefore, we declare the 
states as outputs of the model in addition to the softmax output.

we are now ready to connect the two models to build a full encoder-decoder 
network corresponding to what is shown in Figure 14-5. The corresponding 
TensorFlow implementation is shown in Code Snippet 14-12.

One thing that looks odd is that, as we described previously, we provide the 
argument return_state=True when creating the decoder LSTM layers, 
but then when we create this model, we discard the state outputs. It seems 
reasonable to not have set the return_state=True argument to begin with. 
The reason will be apparent when we describe how to use the encoder and 
decoder models for inference.

we decided to use RMSProp as optimizer because some experiments indicate 
that it performs better than Adam for this specific model. we use sparse_
categorical_crossentropy instead of the normal categorical_
crossentropy as loss function. This is the loss function to use in keras if the 
categorical output data is not already one-hot encoded. As described earlier, we 
avoided one-hot encoding the data up front to reduce the memory footprint of the 
application.

Although we just connected the encoder and decoder model to form a joint model, 
they can both still be used in isolation. note that the encoder and decoder models 
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Figure 14-5 Architecture of full encoder-decoder model
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used by the joint model are the same instances as the individual models. That 
is, if we train the joint model, it will update the weights of the first two models. 
This is useful because, when we do inference, we want an encoder model that is 
decoupled from the decoder model.

during inference, we first run the source sentence through the encoder model 
to create the internal state. This state is then provided as initial state to the 
decoder model during the first timestep. At this timestep, we also feed the START 
token to the embedding layer of the model. This results in the model producing 
the first word in the translated sentence as its output. It also produces outputs 
representing the internal state of the two LSTM layers. In the next timestep, we 
feed the model with the predicted output as well as the internal state from the 
previous timestep (we explicitly manage the internal state) in an autoregressive 
manner. 

Instead of explicitly managing the state, we could have declared the layers as 
stateful=True, as we did in our text autocompletion example, but that would 
complicate the training process. we cannot have stateful=True during training 
if we do not want multiple subsequent training examples to affect each other. 

# Build and compile full training model.

# We do not use the state output when training.

train_enc_embedding_input = Input(shape=(None, ))

train_dec_embedding_input = Input(shape=(None, ))

intermediate_state = enc_model(train_enc_embedding_input)

train_dec_output, _, _, _, _ = dec_model(

    [train_dec_embedding_input] +

    intermediate_state)

training_model = Model([train_enc_embedding_input,

                        train_dec_embedding_input],

                        train_dec_output)

optimizer = RMSprop(lr=0.01)

training_model.compile(loss='sparse_categorical_crossentropy',

                       optimizer=optimizer, metrics =['accuracy'])

training_model.summary()

Code Snippet 14-12 Code to define, Build, and Compile the Model used for Training
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Finally, the reason that we do not need to explicitly manage state during training 
is that we fed the entire sentence at once to the model, in which case TensorFlow 
automatically feeds the state from the last timestep back to be used as the 
current state for the next timestep.

This whole discussion may seem unclear until you get more familiar with keras, 
but the short of it is that there are many ways of doing the same thing and each 
method has its own benefits and drawbacks.

we are now ready to train and test the model, which is shown in Code 
Snippet 14-13. we take a slightly different approach than in previous examples. In 
previous examples, we instructed fit() to train for multiple epochs, and then we 
studied the results and ended our program. In this example, we create our own 
training loop where we instruct fit() to train for only a single epoch at a time. 
we then use our model to create some predictions before going back and training 
for another epoch. This approach enables some detailed evaluation of just a small 
set of samples after each epoch. we could have done this by providing a callback 
function as an argument to the fit function, but we figured that it was unnecessary 
to introduce yet another keras construct at this point.

when declaring a recurrent layer in keras, there are three arguments: return_
state, return_sequences, and stateful. At first, it can be tricky to tell them 
apart because of their similar names. If you want to build your own complicated 
networks, it is well worth spending some time to fully understand what they do 
and how they interact with each other.

keras callback functions is a good topic for further reading if you want to 
customize the behavior of the training process (keras.io). 

Code Snippet 14-13 Training and Testing the Model

# Train and test repeatedly.

for i in range(EPOCHS):

    print('step: ' , i)

    # Train model for one epoch.

    history = training_model.fit(

        [train_src_input_data, train_dest_input_data],

http://keras.io
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        train_dest_target_data, validation_data=(

            [test_src_input_data, test_dest_input_data],

            test_dest_target_data), batch_size=BATCH_SIZE,

        epochs=1)

    # Loop through samples to see result

    for (test_input, test_target) in zip(sample_input_data,

                                         sample_target_data):

        # Run a single sentence through encoder model.

        x = np.reshape(test_input, (1, -1))

        last_states = enc_model.predict(

            x, verbose=0)

        # Provide resulting state and START_INDEX as input

        # to decoder model.

        prev_word_index = START_INDEX

        produced_string = ''

        pred_seq = []

        for j in range(MAX_LENGTH):

            x = np.reshape(np.array(prev_word_index), (1, 1))

            # Predict next word and capture internal state.

            preds, dec_layer1_state_h, dec_layer1_state_c, \

                dec_layer2_state_h, dec_layer2_state_c = \

                    dec_model.predict(

                        [x] + last_states, verbose=0)

            last_states = [dec_layer1_state_h,

                           dec_layer1_state_c,

                           dec_layer2_state_h,

                           dec_layer2_state_c]

            # Find the most probable word.

            prev_word_index = np.asarray(preds[0][0]).argmax()

            pred_seq.append(prev_word_index)

            if prev_word_index == STOP_INDEX:

                break

        tokens_to_words(src_tokenizer, test_input)

        tokens_to_words(dest_tokenizer, test_target)

        tokens_to_words(dest_tokenizer, pred_seq)

        print('\n\n')
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Most of the code sequence is the loop used to create translations for the smaller 
set of samples that we created from the test dataset. This piece of code consists 
of a loop that iterates over all the examples in sample_input_data. we provide 
the source sentence to the encoder model to create the resulting internal state 
and store to the variable last_states. we also initialize the variable prev_
word_index with the index corresponding to the START symbol. we then enter 
the innermost loop and predict a single word using the decoder model. we also 
read out the internal state. This data is then used as input to the decoder model in 
the next iteration, and we iterate until the model produces a STOP token or until 
a given number of words have been produced. Finally, we convert the produced 
tokenized sequences into the corresponding word sequences and print them out.

Experimental Results
Training the network for 20 epochs resulted in high accuracy metrics for both 
training and test data. Accuracy is not necessarily the most meaningful metric 
to use when working on machine translation, but it still gives us some indication 
that our translation network works. More interesting is to inspect the resulting 
translations for our sample set.

The first example is shown here:

['PAD', 'PAD', 'PAD', 'PAD', 'PAD', 'PAD', 'PAD', 'PAD', 'PAD', 
'PAD', "j'ai", 'travaillé', 'ce', 'matin']

['i', 'worked', 'this', 'morning', 'STOP', 'PAD', 'PAD', 'PAD', 
'PAD', 'PAD']

['i', 'worked', 'this', 'morning', 'STOP']

The first line shows the input sentence in French. The second line shows the 
corresponding training target, and the third line shows the prediction from our 
trained model. That is, for this example, the model predicted the translation 
exactly right!

Additional examples are shown in Table 14-1, where we have stripped out the 
padding and STOP tokens as well as removed characters associated with printing 
out the Python lists. when looking at the first two examples, it should be clear 
why we said that accuracy is not necessarily a good metric. The prediction is 
not identical to the training target, so the accuracy would be low. Still, it is hard 
to argue that the translations are wrong, given that the predictions express the 
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same meaning as the targets. To address this, a metric known as BiLingual 
Evaluation understudy (BLEu) score is used within the machine translation 
community (Papineni et al., 2002). we do not use or discuss that metric further, 
but it is certainly something to learn about if you want to dive deeper into 
machine translation. For now, we just recognize that there can be multiple correct 
translations to a single sentence.

Looking at the third through sixth rows, it almost seems too good to be true. 
The translations are identical to the expected translations. Is it possible for the 
model to be that good? Inspecting the training data gives us a clue about what 
is going on. It turns out that the dataset contains many minor variations of a 
single sentence in the source language, and all these sentences are translated 

Table 14-1 Examples of Translations Produced by the Model

SOURCE TARGET PREDICTION

je déteste manger seule i hate eating alone i hate to eat alone

je n’ai pas le choix i don’t have a choice i have no choice

je pense que tu devrais le 
faire

i think you should do it i think you should do it

tu habites où where do you live where do you live

nous partons maintenant we’re leaving now we’re leaving now

j’ai pensé que nous pouvions 
le faire

i thought we could do it i thought we could do it

je ne fais pas beaucoup 
tout ça

i don’t do all that much i’m not busy at all

il a été élu roi du bal de fin 
d’année

he was voted prom king he used to negotiate and 
look like golfer

BLEu score can be used to judge how well a machine translation system works 
(Papineni et al., 2002). Learning the details of how it is computed makes sense 
if you want to dive deeper into machine translation.
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to the same sentence in the destination language. Thus, the model is trained 
on a specific source/target sentence pair and is later presented with a slightly 
different source sentence. It is not all that unexpected that the model then 
predicts exactly the same target sentence that it was trained on, so we might view 
this as cheating. On the other hand, we do want to train the model to recognize 
similarities and be able to generalize, so it is not completely obvious that we 
should strip out these training examples. Still, we did some experiments where 
we removed any training example that had a duplicate in either the source or the 
destination language, and the model still performed well. Thus, the model clearly 
does not fully rely on cheating.

One example of where the model does work without cheating is the second to 
last example. The test example has the sentence “I don’t do all that much” as 
target. The model predicts the fairly different sentence “I’m not busy at all,” which 
arguably still conveys a similar message. Interestingly, when searching through 
the whole dataset, the phrase “busy at all” does not show up a single time, so the 
model constructed that translation from smaller pieces. On the other hand, the 
model also produces some translations that are just wrong. For the last example 
in the table, the target was “he was voted prom king” but the model came up with 
“he used to negotiate and look like golfer.”

Properties of the Intermediate 
Representation

we previously showed that the word embeddings learned in a neural language 
model capture some syntactic and semantic structure of the language it models. 
Sutskever, Vinyals, and Le (2014) made a similar observation when analyzing 
the intermediate representation produced by the encoder in a sequence-to-
sequence model. They used principal component analysis (PCA) to reduce this 
representation to two dimensions to be able to visualize the vectors. For the 
purpose of this discussion, the only thing you need to know about PCA is that the 
resulting lower dimensional vectors still maintain some properties of the original 
vectors. In particular, if two vectors are similar to each other before reducing the 
dimensionality, then these two vectors will still be similar to each other in the new 
lower dimensional space.2

2. PCA can also be used to reduce the dimensionality of word embeddings and plot them in 2d space to 
be able to visualize their similarity.
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Figure 14-6 shows a chart that visualizes the intermediate representation of 
six phrases. The six phrases are grouped into two groups of three phrases 
each, where the three phrases within a single group express approximately the 
same meaning but with some grammatical variations (e.g., passive voice and 
word order). however, phrases in different groups express different meanings. 
Interestingly, as can be seen in the chart, the intermediate representation chosen 
by the model is such that the three phrases with similar meaning also have 
similar encodings, and they cluster together.

we can view this intermediate representation as a sentence embedding or phrase 
embedding, where similar phrases will be embedded close to each other in vector 
space. hence, we can use this encoding to analyze the semantics of phrases. 

Figure 14-6 2d representation of intermediate representation of six sentences. 
(Source: Adapted from Sutskever, I., Vinyals, O., and Le, q. (2014), “Sequence to 
Sequence Learning with neural networks,” in Proceedings of the 27th International 
Conference on Neural Information Processing [NIPS’14], MIT Press, 3104–3112.)

PCA can be used to reduce the number of dimensions of a set of vectors. It 
is a good technique to know if working with vector representations in many-
dimensional spaces.
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Looking at the example, it seems likely that this methodology will be more 
powerful than the previously discussed bag-of-word approach. As opposed to the 
bag-of-word approach, the sequence-to-sequence model does take word order 
into account.

Concluding Remarks on Language 
Translation

Although this programming example was longer and more complicated than most 
examples we have shown so far, from a software development point of view, it 
is a simple implementation. It is a basic encoder-decoder architecture without 
any bells and whistles, and it consists of fewer than 300 lines of code. If you are 
interested in experimenting with this model to improve translation quality, a 
starting point is to tweak the network by increasing the number of units in the 
layers or increasing the number of layers. You can also experiment with using 
bidirectional layers instead of unidirectional layers. One problem that has been 
observed is that sequence-to-sequence networks of this type find it challenging to 
deal with long sentences. A simple trick that mitigates this problem is to reverse 
the input sentence. One hypothesis is that doing so helps because the temporal 
distance between the model observing the initial words of the source sentence 
(that are now at the end after reversing) and observing the initial words of the 
destination sentence is smaller, which makes it easier for the model to learn 
how they relate to each other. Functionality to reverse the source sentences can 
trivially be added to the function that reads the dataset file.

If you want to learn more about neural machine translation, Luong’s Phd thesis 
(2016) is a good start. It also contains a brief historical overview of the traditional 
machine translation field. Another good resource is the paper by wu and 
colleagues (2016), which describes a neural-based translation system deployed 
in production. You will notice that it is built using the same basic architecture as 
the network described in this chapter. however, it also uses a more advanced 
technique, known as attention, to improve its ability to handle long sentences.

More recently, neural machine translation systems have moved on from LSTM-
based models to using a model known as the Transformer, which is based on both 
attention and self-attention. Although a Transformer-based translation network 
does not use LSTM cells, it is still an encoder-decoder architecture. That is, key 
points from this chapter carry over to this more recent architecture. Attention, 
self-attention, and the Transformer are the topics of Chapter 15.
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Chapter 15

Attention and the 
Transformer

This chapter focuses on a technique known as attention. We start by describing 
the attention mechanism and how it can be used to improve the encoder-
decoder-based neural machine translation architecture from Chapter 14, 
“Sequence-to-Sequence Networks and Natural Language Translation.” We 
then describe a mechanism known as self-attention and how the different 
attention mechanisms can be used to build an architecture known as the 
Transformer.

Many readers will find attention tricky on the first encounter. We encourage you 
to try to get through this chapter, but it is fine to skip over the details during the 
first reading. Focus on understanding the big picture. In particular, do not worry if 
you feel lost when you read about the Transformer architecture in the latter part 
of the chapter. Appendix D is the only part of the book that builds further upon this 
architecture. However, the Transformer is the basis for much of the significant 
progress made within natural language processing (NLP) in the last few years, so 
we encourage you to revisit the topic later if it is too heavy to get through the first 
time around.
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rationale Behind Attention
Attention is a general mechanism that can be applied to multiple problem 
domains. In this section, we describe how it can be used in neural machine 
translation. The idea with attention is that we let a network (or part of a network) 
decide for itself which part of the input data to focus on (pay attention to) during 
each timestep. The term input data in the previous sentence does not necessarily 
refer only to the input data to the overall model. It could be that parts of a network 
implement attention, in which case the attention mechanism can be used to 
decide what parts of an intermediate data representation to focus on. We soon 
give a more concrete example of what this means, but before doing so, let us 
briefly discuss the rationale behind this mechanism.

Consider how a human translates a complicated sentence from one language to 
another, such as the following sentence from the Europarl dataset:

In my opinion, this second hypothesis would imply the failure of Parliament in 
its duty as a Parliament, as well as introducing an original thesis, an unknown 
method which consists of making political groups aware, in writing, of a speech 
concerning the Commission’s programme a week earlier—and not a day earlier, 
as had been agreed—bearing in mind that the legislative programme will be 
discussed in February, so we could forego the debate, since on the next day our 
citizens will hear about it in the press and on the Internet and Parliament will no 
longer have to worry about it.

We first read the sentence to get an overall idea of what it is trying to convey. We 
then start writing the translation, and while doing so, typically revisit different 
parts of the source sentence to ensure that our translation covers the entire 
sentence and describes it in an equivalent tense. The destination language might 
have a different preferred word order, such as in German where verbs appear as 
the last words in a sentence in past tense. Therefore, we might jump around in the 
source sentence to find a specific word when it is time for its translation to appear 
in the destination sentence. It seems reasonable to believe that a network would 
benefit from having that same flexibility.

The attention mechanism can be applied to an encoder-decoder architecture 
and enables the decoder to selectively decide on which part of the intermediate 
state to focus.
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Attention in Sequence-to-Sequence 
Networks

With that background, we now make the concept of attention more concrete 
by considering how a sequence-to-sequence-based neural machine translator 
(NMT) can be extended to include an attention mechanism. Let us start with 
a slightly different type of encoder-decoder network than we studied in 
Chapter 14. It is shown in Figure 15-1, and the difference is in how the encoder 
is connected to the decoder. In the previous chapter, the internal state from 
the last timestep of the encoding process was used as initial state at the first 
timestep for the decoder. In this alternative architecture, the internal state from 
the last timestep of the encoder is instead used as an input, accessible to the 
decoder at every timestep. The network also receives the embedding for the 
produced word from the last timestep as input. That is, the intermediate state 
from the encoder is concatenated with the embedding to form the overall input 
to the recurrent layer.

This alternative sequence-to-sequence model can be found in a paper by 
Cho and colleagues (2014a), and we use it in this discussion simply because 
Bahdanau, Cho, and Bengio (2014) assumed that model as their baseline system 
when they added the attention mechanism to an NMT system. They observed 
that their model had a hard time dealing with long sentences and hypothesized 
that a reason was that the encoder was forced to encode the long sentence in 
a fixed-size vector. To resolve that problem, the authors modified their encoder 
architecture to instead read out the internal state at every timestep during the 
encoding process and store it for later access. This is illustrated in Figure 15-2. 
The top part of the figure shows the fixed-length encoding in a network without 
attention, using a vector length of 8. The bottom shows the attention case, where 
the encoding consists of one vector per input word.

Although the figure shows it as one vector corresponding to each word, it is a little 
bit subtler than that. Each vector corresponds to the internal state of the decoder 
at the timestep for that word, but the encoding is influenced by both the current 
word and all historical words in the sentence.

An alternative way of connecting the encoder and decoder in a sequence-to-
sequence network is to feed the encoder state as an input to the decoder for 
every timestep.
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Figure 15-1 Alternative implementation of encoder-decoder architecture for 
neural machine translation. Top: Network unrolled in time. Bottom: The actual 
network structure (not unrolled).
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The change to the encoder is trivial. Instead of discarding the internal state for all 
but the last timestep, we record the internal state for each timestep. This set of 
vectors is known as the source hidden state. It is also referred to as annotations or 
the more general term memory. We do not use those terms, but they are good to 
know when reading other publications on the topic.

The changes to the decoder are more involved. For each timestep, the attention-
based decoder does the following:

1. Compute an alignment score for each state vector. This score determines how 
much attention to pay to that state vector during the current timestep. The 
details of the alignment score are described later in this chapter.

2. use softmax to normalize the scores so they add up to 1. This vector of scores 
is known as the alignment vector and would consist of three values for the 
preceding example.

3. Multiply each state vector by its alignment score. Then add (elementwise) the 
resulting vectors together. This weighted sum (score is used as weight) results 
in a vector of the same dimension as in the network without attention. That is, 
in the example, it would be a single vector consisting of eight elements.

4. use the resulting vector as an input to the decoder during this timestep. Just as 
in the network without attention, this vector is concatenated with the embedding 
from the previous timestep to form the overall input to the recurrent layer.

By examining the alignment scores for each timestep, it is possible to analyze 
how the model uses the attention mechanism during translation. This is 
illustrated in Figure 15-3. The three state vectors (one per encoder timestep) 

Je suis étudiant Encoder I am a student

Je suis étudiant Encoder I am a student
Je

suis
étudiant

Decoder

Attention
Decoder

Encoding of:
Je suis étudiant

Encoding of:
Je suis étudiant

Figure 15-2 Top: Fixed-length encoding in encoder-decoder network without 
attention. Bottom: Variable-length encoding in encoder-decoder network with 
attention.
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produced by the encoder are shown to the left. The four alignment vectors (one 
for each decoder timestep) are shown in the middle. For each decoder timestep, 
a decoder input is created by a weighted sum of the three encoder vectors. The 
scores in one of the alignment vectors are used as weights.

For the preceding example, the decoder will keep its focus on je during the first 
timestep, which results in it outputting I. The color coding illustrates this (first 
decoder input is red, just like first encoder output). It will focus mainly on suis 
when outputting am. When outputting a, it focuses on both suis and étudiant (the 
input vector is green, which is a mix of blue and yellow). Finally, its focus is on 
étudiant when outputting student.

Bahdanau, Cho, and Bengio (2014) analyzed a more complex example:

• French: L’ accord sur la zone économique européenne a été signé en 
août 1992.

• English: The agreement on the European Economic Area was signed in 
August 1992.

Consider the words in bold. The word order is different in French than in English 
(zone corresponds to Area, and européenne corresponds to European). The authors 
show that for all three timesteps, when the decoder outputs European Economic 
Area, the alignment scores for all the three words zone économique européenne 
are high. That is, the decoder is paying attention to the neighboring words to 
arrive at a correct translation.

We now go through the attention mechanism for the decoder in more detail and, in 
particular, how to compute the alignment scores that result in this behavior. The 
architecture is outlined in Figure 15-4, where the upper part shows the workings 
of the network unrolled in time, with a focus on the second timestep for the 
decoder, and the lower part shows the network structures without unrolling.
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Figure 15-3 How encoder output state is combined with alignment vectors to 
create encoder input state for each timestep
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Starting with the unrolled view (top), we see that the intermediate representation 
consists of three pieces of state (one for each input timestep), each represented 
by a small white rectangle. As described previously in steps 2 and 3, we compute 
a weighted sum of these vectors to produce a single vector that is used as input 
to the recurrent layer in the decoder. The weights (also known as alignment scores 
or alignment vector) are adjustable and recomputed at each timestep. As you can 
see from the figure, the weights are controlled by the internal state of the decoder 
from the timestep before the current decoder timestep. That is, the decoder is 
responsible for computing the alignment scores.

The lower part of the figure shows a structural (not unrolled) view of the same 
network, where again it is apparent that, by adjusting the weights properly, the 
decoder itself controls how much of each encoder state vector to use as its input.

CoMPuTING THE ALIGNMENT VECTor

We now describe how to compute the alignment vector for each decoder timestep. 
An alignment vector consists of T

e
 elements, where T

e
 is the number of timesteps 

for the encoder. We need to compute T
d
 such vectors, where T

d
 is the number of 

timesteps for the decoder.

one can envision multiple ways of computing the alignment vector. We know that 
it needs to be of length T

e
. We also need to decide what input values to use to 

compute the vector. Finally, we need to decide what computation to apply to these 
input values to produce the scores.

one obvious candidate for input value is the decoder state because we want 
the decoder to dynamically be able to choose what parts of the input to focus 
on. We have already made this assumption in the high-level figures where the 
state outputs from the top recurrent layer in the decoder are used to control 
the weights in the attention mechanism (the weights in the high-level figures 
represent the alignment vector in the more detailed attention mechanism 
description). Another candidate that can be used as input values for this 
computation is the source hidden state. At first, this might seem a little bit hard 
to wrap your head around in that we will use the source hidden state to compute 
the alignment vector, which will then be used to determine what parts of the 
source hidden state will be visible to the decoder. However, this is not as strange 
as it seems. If you view the source hidden state as a memory, this means that we 
use the content of that memory to address what piece of the memory to read, a 
concept known as content addressable memory (CAM). We mention this for readers 
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who already are familiar with CAM, but knowing details about CAM is not required 
to follow our remaining description of how to compute the alignment vector.

From a terminology perspective, in our example, the decoder state is used as 
a query. It is then used to match against a key, which in our case is the source 
hidden state. This selects the value to return, which in our case is also the source 
hidden state, but in other implementations, the key and value can be different 
from each other.

Now we just need to decide on the function that is used to match the query to the 
key. Given the topic of this book, it is not farfetched to use a neural network for 
this function and let the model learn the function itself. Figure 15-5 shows two 
potential implementations.

The left part of the figure shows a fully connected feedforward network with 
an arbitrary number of layers, ending with a fully connected softmax layer that 
outputs the alignment vector. The softmax layer ensures that the sum of the 
elements in the alignment vector is 1.0. one drawback with the network in the left 
part of the figure is that we introduce restrictions on the source input length. More 
serious is that the leftmost network hardcodes the expected position of words 
in the source sentence, which can make it harder for the network to generalize. 
The rightmost architecture addresses this issue by having multiple instances of a 
two-layer network with weight sharing between the instances. As we have seen 
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Figure 15-5 Two alternative implementations of the function that computes the 
alignment vector
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previously, weight sharing results in enabling the network to identify a specific 
pattern regardless of its position. Each instance of this fully connected network 
takes the target hidden state and one timestep of the source hidden state as 
inputs. The activation function for the first layer is tanh, and we use softmax in 
the output layer to ensure that the sum of the elements in the alignment vector 
results in 1.0. This architecture reflects the attention mechanism introduced by 
Bahdanau, Cho, and Bengio (2014).

MATHEMATICAL NoTATIoN AND VArIATIoNS oN THE 
ALIGNMENT VECTor

Publications about attention mechanisms generally describe the attention 
function using linear algebra instead of drawing out networks as we have done. 
In this section, we first map the description and Figure 15-5 to mathematical 
equations. once that is done, we present simplifications of the attention function, 
which can be done compactly using these equations.

The network starts with T
e
 instances of a two-level network, where T

e
 represents 

the number of encoder timesteps. The first layer uses tanh as an activation 
function. The second layer of each two-level network is a single neuron without 
an activation function (softmax is applied later). What we just described is 
represented by the networks in the dashed ovals in the figure, where the content 
of each oval implements a function known as a scoring function:

( )[ ]( ) =,   tanh ;score Wt si a
T

a t sih h v h h

The target hidden state and one of the source hidden states are used as inputs 
to this scoring function. These two vectors are concatenated and multiplied by a 
matrix W

a
 after which the tanh function is applied. These operations correspond 

to the first fully connected layer. The resulting vector is then multiplied by a 
transposed version of vector v

a
. This corresponds to the single neuron in the 

output layer in the dashed oval. We compute this scoring function for each 
encoder timestep. Each timestep results in a single value so, all in all, we get 
a vector with T

e
 elements. We apply the softmax function to this vector to scale 

the values so the elements sum to 1. Each element of the output of the softmax 
operation is computed using the following formula:

∑ ( )( )( ) ( )= =
=

exp( ( , )

exp ,
1
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In the formula, T
e
 represents the number of encoder timesteps, and i is the index 

of the element that is computed. We organize the resulting elements into an 
alignment vector with one element for each encoder timestep:
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There is nothing magical about the chosen scoring function. Bahdanau, Cho, and 
Bengio (2014) simply chose a two-level fully connected neural network to make it 
sufficiently complex to be able to learn a meaningful function yet simple enough 
to not be too computationally expensive. Luong, Pham, and Manning (2015) 
experimented with simplifying this scoring function and showed that the two 
simpler functions in Equation 15-1 also work well:

score generalt si t
T

a sih h h W h( ) =,                                       ( )

( ) =score dott si t
T

si,                                                    ( )h h h h

Equation 15-1 Simplifications of the scoring function

one natural question is what the two functions in Equation 15-1 represent in 
terms of neural networks. Starting with the dot product version, combined with 
the softmax function, this represents the network in the right part of Figure 15-5 
but with the modification that there is no fully connected layer before the 
softmax layer. Further, the neurons in the softmax layer use the target hidden 
state vector as neuron weights, and the source hidden state vector are used as 
inputs to the network. The general version combined with the softmax function 
represents a first layer defined by W

a
 and with a linear activation function again 

followed by a softmax layer that uses the target hidden state vector as neuron 
weights. In reality, once we have started to think about these networks in terms 
of mathematical equations, we do not necessarily care about what a slight 
modification of an equation implies in terms of the network structure as long 
as it works well. Flipping things around, we can also analyze the mathematical 
equations to see if they can provide any insight into how the attention mechanism 
works. Looking at the dot product version, we know that the dot product of two 
vectors tends to be large if elements located in the same position in both vectors 
are of the same sign. Alternatively, consider the case where the vectors are 
produced by rectified linear units (reLu) so that all elements are greater than or 
equal to zero. Then the dot product will be large if the vectors are similar to each 
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other, in the sense that nonzero elements in both vectors are aligned with each 
other. In other words, the attention mechanism will tend to focus on timesteps 
where the encoder state is similar to the current decoder state. We can envision 
that this makes sense if the hidden states of the encoder and decoder somehow 
express the type of word that is currently being processed, such as if the current 
state can be used to determine whether the current word is the subject or the 
object in the sentence.

ATTENTIoN IN A DEEPEr NETWork

This description assumes a network with a single recurrent layer. Figure 15-6 
shows a network architecture introduced by Luong, Pham, and Manning (2015) 
that applies attention to a deeper network. There are a couple of key differences 
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Figure 15-6 Alternative attention-based encoder-decoder architecture
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compared to Figure 15-4. First, this network architecture is more similar to 
our original NMT in that we use the final encoder internal state to initialize 
the decoder internal state. Second, as opposed to Figure 15-4, we see that the 
encoder and decoder now have two or more recurrent layers. Luong, Pham, and 
Manning handled this by applying the attention mechanism only to the internal 
state of the topmost layer. Further, instead of using the context derived by the 
attention mechanism as input to a recurrent layer, this state is concatenated with 
the output of the top recurrent layer in the decoder and fed into a fully connected 
layer. The output of this fully connected layer is referred to as an attentional 
vector. This vector is fed back to the input of the first recurrent layer in the next 
timestep. In some sense, this makes the fully connected layer act as a recurrent 
layer as well and is key to making the attention mechanism work well. It enables 
the network to take into account what parts of the source sentence it has already 
attended to when deciding what parts of the source sentence to consider next. 
In the architecture in Figure 15-4, this explicit feedback loop was not needed 
because there is an implicit feedback loop given that the weighted state is fed to a 
recurrent layer instead of to a regular feedforward layer.

A final key difference is that in Figure 15-6 the weighted sum is fed to a higher 
layer in the network instead of being fed back to the same layer that creates the 
state that controls the weights. This has the effect that the adjustable weights 
are now controlled by the state in the current decoder timestep instead of in the 
previous timestep. This might not be obvious at first when looking at the figure. 
When you consider how the data flows, you can see that in Figure 15-6 it is 
possible to compute the adjustable weights before using them, whereas in the 
Figure 15-4 the output of the adjustable weights is used to compute the vector 
that controls them. Hence, the vector that controls the weights must have been 
derived from a previous timestep.

ADDITIoNAL CoNSIDErATIoNS

In the attention mechanism we have described, the decoder creates a weighted 
sum of the vectors in the source hidden state. This is known as soft attention. An 
alternative is to instead let the decoder attend to only one out of the vectors in the 
source hidden state for each timestep. This is known as hard attention.

A benefit of computing a weighted sum is that the attention function is continuous 
and thereby differentiable. This enables the use of backpropagation for learning 
as opposed to when a discrete selection function is used.



CHAPTEr 15 ATTENTIoN AND THE TrANSForMEr

406

Finally, let us reflect on one of the restrictions that we now have applied to our 
sequence-to-sequence network. Before applying attention, the network could in 
theory accept an input sequence of unlimited length. However, the need for the 
attention mechanism to store the entire source hidden state, which grows linearly 
with the source sequence length, implies that we now have a limitation on the 
length of the input sequence. This might seem unfortunate at first, but it is of limited 
practical importance. Consider the fairly complex sentence that we gave as a 
rationale for the attention mechanism some paragraphs back. Few people would be 
able to read it once and then produce a good translation. In other words, the human 
brain has a hard time even remembering a sentence of such length and needs to 
rely on external storage (the paper or computer screen on which it is written) to 
create a good translation. In reality, the amount of storage needed to memorize the 
sentence is only 589 bytes in uncompressed form. With that background, having to 
reserve enough storage to keep track of the source hidden state seems reasonable.

This concludes our detailed description of the basic attention mechanism. one 
takeaway from this discussion is that attention is a general concept, and there are 
multiple potential ways to implement it. This may make you feel somewhat uneasy 
at first, in that it seems unclear that either one of the described implementations is 
the “right” way to do it. This reaction is similar to when first encountering the LSTM 
unit and the gated recurrent unit (Gru). In reality, there probably is not a single 
right way of applying these concepts. Different implementations express slightly 
different behavior and come with different efficiency levels in terms of how much 
computation is required to achieve a certain result.

Alternatives to recurrent Networks
If we take a step back, a reasonable question is why we think that recurrent 
networks are required for our NMT. The starting point was that we wanted 
the ability to process variable sequence lengths for both the source and the 
destination sequences. The rNN-based encoder-decoder network was an elegant 
solution to this with a fixed-sized intermediate representation. However, to get 
good translations of long sentences, we then reintroduced some restrictions on 

In hard attention, the state from a single encoder timestep is selected to focus 
on each decoder timestep. In soft attention, a mixture (weighted sum) of the 
state from all encoder timesteps is used.
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the input sequence length and had the decoder access this intermediate state in 
a random-access fashion using attention. With that background, it is natural to 
explore whether we need an rNN to build our encoder or whether other network 
architectures are just as good or better. Another issue with the rNN-based 
implementation is that rNNs are inherently serial in nature. The computations 
cannot be parallelized as well as they can in other network architectures, leading 
to long training times. kalchbrenner and colleagues (2016) and Gehring and 
colleagues (2017) studied alternative approaches that are based on convolutional 
networks with attention instead of recurrent networks.

A major breakthrough came with the introduction of the Transformer architecture 
(Vaswani et al., 2017). It uses neither recurrent layers nor convolutional layers. 
Instead, it is based on fully connected layers and two concepts known as self-
attention (Lin, Doll, et al., 2017) and multi-head attention. A key benefit of the 
Transformer architecture is that it is parallel in nature. The computations for all input 
symbols (e.g., words in language translation) can be done in parallel with each other.

The Transformer architecture has driven much of the progress in NLP since 
2017. It has achieved record scores in language translation. It is also the basis for 
other important models. Two such models are Generative Pre-Training (GPT) and 
Bidirectional Encoder representations from Transformers (BErT), which have 
achieved record scores on tasks within multiple NLP applications (Devlin et al., 2018; 
radford et al., 2018). More details about GPT and BErT can be found in Appendix D.

The next couple of sections describe the details of self-attention and multi-head 
attention. We then move on to describe the overall Transformer architecture and 
how it can be used to build an encoder-decoder network for natural language 
translation without recurrent layers.

Self-Attention
In the attention mechanism we have studied so far, the decoder uses attention to 
direct focus to different parts of the intermediate state. Self-attention is different 
in that it is used to decide which part of the output from the preceding layer to 
focus on. This is shown in Figure 15-7, where self-attention is applied to the 

The Transformer is based on self-attention and multi-head attention.

GPT and BErT are language models based on the Transformer architecture.
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output of an embedding layer and is followed by a fully connected layer for each 
word. For each of these fully connected layers, the input will be a combination of 
all the words in the sentence, where the attention mechanism determines how 
heavily to weigh each individual word.

Before diving into the details of the self-attention mechanism, it is worth pointing 
out how the architecture in the figure exposes parallelism. Although the figure 
contains multiple instances of embedding layers, attention mechanisms, and fully 
connected layers, they are all identical (weight sharing). Further, within a single 
layer, there are no dependencies between words. This enables an implementation 
to do the computations in parallel. Consider the inputs to the fully connected 
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Figure 15-7 Embedding layer followed by a self-attention layer followed by a fully 
connected layer. The network employs weight sharing, so each word position uses 
the same weights.
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layers. We can arrange the four output vectors from the attention mechanisms 
into a matrix with four rows. The fully connected layer is represented by a 
matrix with one column per neuron. We can now compute the output for all four 
instances in parallel by a single matrix-matrix multiplication. We will see later 
how the self-attention mechanism exposes additional parallelism, but first we 
need to describe self-attention in more detail.

Earlier in this chapter, we described how the attention mechanism uses a scoring 
function to compute these weights. one of the inputs to this scoring function, the 
key, was the data value itself. The other input, the query (the horizontal arrows in 
Figure 15-7), came from the network that would consume the input (the decoder 
network). In the case of self-attention, the query comes from the previous layer, 
just as the value does.

The self-attention mechanism in the Transformer is slightly more complex than 
what is shown in the figure. Instead of directly using the inputs to the attention 
mechanism as key, query, and data, these three vectors are computed by three 
separate single-layer networks with linear activation functions. That is, the key 
is now different than the data value, and another side effect is that we can use 
a different width of key, query, and data than the original input. This is shown in 
Figure 15-8 for a single attention mechanism.

Query layer Key layer Value layer

+

Adjustable
weights

Embedding
layer

Figure 15-8 Attention mechanism with projection layers that modify the 
dimensions of the query, key, and value
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It might seem confusing that we now have two arrows feeding into the rectangle 
with the adjustable weights. In the previous figures, we implicitly used the data 
values (the white rectangles) as both value and key, so we did not explicitly draw 
this arrow. That is, in reality, the attention mechanism did not change much 
despite the figure containing an additional arrow.

Multi-head Attention
We saw in the previous section how we can use self-attention to produce N output 
vectors from N input vectors, where N was the number of words that were input to 
the network. The self-attention mechanism ensured that all N input vectors could 
influence each output vector. We also introduced layers for the query, key, and 
value that enabled us to make the width of the output vector independent of the 
width of the input vector. The ability to decouple the input width from the output 
width is central in the multi-head attention concept.

Multi-head attention is as simple as having multiple attention mechanisms 
operating in parallel for each input vector. This is shown in Figure 15-9 for an 
example with two heads.
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Figure 15-9 Embedding layer followed by multi-head self-attention layer. Each 
input word vector is processed by multiple heads. The output of all heads for a 
given word are then concatenated and run through a projection layer.
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This figure implies that each input vector now results in two output vectors. That 
is, if the output width of a single head is the same as the input width, the output of 
the layer now has two times as many values as compared to the input to the layer. 
However, given the query, key, and value layers, we have the ability to size the 
output to any width. In addition, we have added a projection layer on the output. 
Its input is the concatenated output from the heads. All in all, this means that we 
have full flexibility in selecting the width of the attention heads as well as the 
overall output of the multi-head self-attention layer.

Just as for Figure 15-7, we assume weight sharing in Figure 15-9. The query 
layer for head 1 for word 0 is identical to the query layer for head 1 for all other 
words, and the same applies to the key and value layers. From an implementation 
perspective, this means that if we arrange our N input vectors to the self-attention 
layer into a matrix, computing the query vector for head 1 for all input vectors 
is equivalent to a single matrix-matrix multiplication. The same holds true for 
the key vector and the value vector. The number of heads is another level of 
parallelism, so in the end, the self-attention layer results in a large number of 
matrix multiplications that can be done in parallel.

The Transformer
As previously mentioned, the Transformer is an encoder-decoder architecture 
similar to what we have seen already, but it does not employ recurrent layers. We 
first describe the encoder, which starts with an embedding layer for each word, as 
we have seen in previous figures. The embedding layers are followed by a stack of 
six identical modules, where each module consists of a multi-head self-attention 
layer and a fully connected layer corresponding to each input word. In addition, 
each module employs skip connections and normalization, as shown in the left 
part of Figure 15-10, which illustrates a single instance of the six modules.

The network uses layer normalization (Ba, kiros, and Hinton, 2016) as opposed to 
batch normalization that we have seen previously. Layer normalization has been 
shown to facilitate training just like batch normalization but is independent of the 
mini-batch size.

We stated that the Transformer does not use recurrent layers, but the decoder is 
still an autoregressive model. That is, it does generate the output one word at a 
time and still needs to feed each generated word back as an input to the decoder 
network in a serial fashion. Just as for the encoder, the decoder consists of six 
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instances of a module, but this decoder module is slightly more complex than the 
encoder module. In particular, the multi-head self-attention mechanism includes 
a masking mechanism that prevents it from attending to future words, as they 
have not yet been generated. In addition, the decoder module contains another 
attention layer, which attends to the output from the encoder modules. That is, the 
decoder employs both self-attention and traditional attention to the intermediate 
state generated by the encoder. However, as opposed to our examples earlier 
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Figure 15-10 Left: Transformer encoder module consisting of multi-head self-attention, 
normalization, feedforward, and skip connections. The feedforward module consists 
of two layers. right: Transformer decoder module. Similar to the encoder module but 
extended with a multi-head attention (not self-attention) in addition to the multi-head 
self-attention layer. The overall Transformer architecture consists of multiple encoder 
and decoder modules.
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in this chapter, in addition to using multi-head attention in the self-attention 
layers, the Transformer also uses multi-head attention in the attention layer that 
is applied to the intermediate state from the encoder. The decoder module is 
illustrated to the right in Figure 15-10.

Now that we have described the encoder module and the decoder module, we 
are ready to present the complete Transformer architecture. It is shown in 
Figure 15-11. The figure shows how the decoder attends to intermediate state 
produced by the encoder.
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Figure 15-11 The transformer architecture
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The figure contains one final detail that we have not yet described. If you 
consider how the overall Transformer architecture is laid out, it has no 
good way of taking word order into account. The words are not presented 
sequentially, as in a recurrent network, and the subnetworks that process 
each individual word all share weights. To address this issue, the Transformer 
architecture adds something called a positional encoding to each input 
embedding vector. The positional encoding is a vector with the same number 
of elements as the word embedding itself. This positional encoding vector is 
added (elementwise) to the word embedding, and the network can make use 
of it to infer the spatial relationship between words in the input sentence. 
This is illustrated in Figure 15-12, which shows an input sentence consisting 
of n words, where each word is represented by a word embedding with four 
elements.

We need to compute one positional encoding vector corresponding to each input 
word. Clearly, the elements in the positional encoding vector should be influenced 
by the word’s position in the sentence. It also turns out to be beneficial if all 
elements in the positional encoding vector are not identical. That is, for a specific 
input word, we do not add the same value to each element in the word vector, 
but the value depends on the index in the word vector. The figure illustrates this 
by using different colors for the four elements in the positional encoding vector. 
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Figure 15-12 Positional encodings are added to input embeddings to indicate 
word order. The figure assumes word embeddings with four elements. The 
sentence consists of n words. A positional encoding vector is added to the input 
embedding for each word to compute the resulting embedding that is fed to the 
network.
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If the index i of the element in the vector is even, the value of the element in the 
positional encoding vector is1

sin
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where pos is the position of the word in the sentence, i is the index of the element 
in the vector, and d is the number of elements in the word embedding. If the index 
i of the element in the vector is odd, the value of the element is

cos
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i d





−

From the formulas, we can see that for a given index i, the arguments to sin and 
cos are monotonically increasing from zero and upward as we move to later 
words in the sentence. It may not seem obvious why these positional encodings 
are the right ones to use. As with many other mechanisms, this is just one of 
many options. Architectures in Appendix D use another option, namely, to learn 
positional encodings during training.

Concluding remarks on the Transformer
When the Transformer model was introduced, it produced better English-to-
German and English-to-French translations than any previous models. Note that a 
Transformer-based translation network is still an example of an encoder-decoder 
architecture, just like the LSTM-based network in Chapter 14. However, the 
parallel nature of the encoder and decoder addresses the serialization problem 
presented by LSTM-based architectures.

The Transformer is useful not only for language translation tasks but also for NLP 
in general. As an example, in the programming example in Chapter 12, “Neural 
Language Models and Word Embeddings,” we implemented an LSTM-based 
language model. In contrast, the more recently published language models are 
based on components from the Transformer architecture. As we pointed out in 
Chapter 14, the decoder part of a translation network is basically a language 
model, which is initialized with the internal state of the encoder. A modified 

1. If you read the original paper (Vaswani et al., 2017), you will find that the equations are stated 
somewhat differently using 2i rather than i. This is not a typo. It results from the paper not using i to 
represent the index in the vector. Instead, it denotes the index by 2i for even indices and 2i+1 for odd 
indices.
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version of the Transformer decoder is used to implement the popular language 
model GPT, which is described in Appendix D. Another example, also described 
in Appendix D, is BErT, which is based on the encoder component from the 
Transformer architecture.

Earlier in this chapter, we stated that the Transformer uses neither recurrent 
layers nor convolutional layers. However, we also noted that the decoder 
component of the network is an autoregressive model and thereby does employ a 
feedback mechanism similar to recurrence. To be fair, this is more related to how 
the model is used and is not inherent in the model architecture. In fact, the BErT 
model is based solely on the Transformer encoder and is thereby completely free 
from such feedback connections. on the topic of convolutional layers, we note that 
although the Transformer does not explicitly use convolutions, it does make use 
of weight sharing similar to what convolutions do. Cordonnier, Loukas, and Jaggi 
(2020) studied how self-attention and convolutional layers relate to each other 
and showed that attention layers often learn to perform convolutions in practice. 
However, a key difference between self-attention and convolution is that the self-
attention layer can attend to any position in the input, whereas convolutions can 
attend only to neighboring positions covered by the convolutional kernel.

To learn more about the Transformer, apart from reading the original paper, we 
recommend Alammar’s blog post about the Transformer (Alammar, 2018b). It 
also contains links to publicly available source code so you can get started with 
using the model. If you want to learn about more use cases of the Transformer 
architecture, consider reading about GPT, BErT, and roBErTa in Appendix D now. 
Another option is to continue to Chapter 16, “one-to-Many Network for Image 
Captioning,” which describes how to build an attention-based model for image 
captioning.
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Chapter 16

One-to-Many Network 
for Image Captioning

We have now spent a number of chapters on working with textual data. Before 
that, we looked at how convolutional networks can be applied to image data. In 
this chapter, we describe how to combine a convolutional network and a recurrent 
network to build a network that performs image captioning. That is, given an 
image as input, the network generates a textual description of the image. We 
then describe how to extend the network with attention. We conclude the chapter 
with a programming example that implements such an attention-based image-
captioning network.

Given that this programming example is the most extensive example in the 
book and we describe it after we described the Transformer, it might seem 
like this image-captioning architecture is the most recent and advanced of the 
architectures described in this book. That is not the case. The basic form of this 
image-captioning architecture was published in 2014 and thereby preceded 
the Transformer architecture by three years. However, we find it a neat way 
of bringing together most of the concepts we have discussed in the previous 
chapters. The basic process of image captioning is illustrated in Figure 16-1.

One use case for image captioning is to enable textual search on images without 
the need for a human to first annotate the images with a textual description. At 
first it might seem unclear how to create such a model, but given our background 
in neural machine translation, it turns out to be simple. Generating a textual 
description of an image can be viewed as a translation from one language to 
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another, where the source language is visual instead of textual. Figure 16-2 
shows conceptually how this can be done using an encoder-decoder architecture. 
A number of papers (karpathy and Li, 2014; Mao et al., 2014; Vinyals et al., 2014) 
independently proposed such architectures in the same timeframe as, or shortly 
after, the sequence-to-sequence models for language translation were published. 
We start with an encoder consisting of a convolutional network that creates 
a language-independent intermediate representation of what is in the image. 

Image captioning network “A seagull with a boat
in the background”

Figure 16-1 The image-captioning problem
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Figure 16-2 Architecture for image captioning network
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This is followed by a decoder consisting of a recurrent network, which converts 
this intermediate representation into text. This is an example of a one-to-many 
network where the input is a single item (an image) and the output consists of 
multiple items (a sequence of words).

As described in Chapter 7, “Convolutional neural networks Applied to Image 
Classification,” a convolutional network often ends with one or more fully 
connected layers that somehow summarize the feature maps from the last 
convolutional layer into a 1D vector before the final softmax layer that classifies 
the image as containing a specific object. For Visual Geometry Group’s VGG19, 
this 1D vector (the input to the softmax layer) consists of 4,096 elements, as can 
be seen at the top1 of Figure 16-3, which depicts a simplified view of the VGG19 

1. The other details of the figure are discussed in a later paragraph, so you can ignore that for now.

Image captioning can be done with an encoder-decoder network that 
“translates” from a visual representation of a scene to a textual description. 
The source language is visual.
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network. One way to interpret this vector is as an image embedding, where the 
image is embedded in a 4,096-dimensional space. We could envision that two 
images that represent similar scenes end up being embedded close to each other 
in vector space. This is analogous to the example in the Chapter 14, which showed 
how similar phrases ended up embedded close to each other in vector space in a 
neural machine translation application.

We can now simply use this vector as our context and directly use it as an input 
to our recurrent neural network (rnn)-based decoder network. Another option 
would be to use this vector as the initial hidden state for our rnn-based decoder 
network. At a first glance, it seems like we impose an unnecessary restriction 
that the number of units in the rnn (or, more likely, LSTM) layer needs to match 
the dimension of the layer from the convolutional network. In the case of VGG19, 
this would imply that the recurrent layer must have 4,096 units. This restriction 
can easily be addressed by introducing yet another fully connected layer on top of 
the 4,096-unit layer. This added layer will have the same number of units as the 
number of state values required by the rnn layer.

Extending the Image Captioning network 
with Attention

Just as we can apply attention to a sequence-to-sequence (text-to-text) network, 
we can apply attention to this image-to-text network. However, applying it to the 
just described network might not make much sense. In the language translation 
example, the context was an internal representation of a sequence of words, 
and applying attention implied that the network focused on different parts of 
the sentence at different timesteps. In our image-captioning network, the fully 
connected layer at the top of the network has already squashed the different 
features into a single representation. Thus, different parts of our 4,096-element 
vector do not have a direct correspondence to different regions of the image. Each 
element in the vector contains information about all pixels in the input image. 
A more sensible way of applying attention in our image-captioning network 
would be to apply it to the top convolutional layer. As you might remember, the 
output of a convolutional layer in this type of network is a 3D structure in which 
two of the dimensions correspond to the two dimensions in the picture and 
the third dimension (the channels) represent feature maps for different types 
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of features. This is also illustrated in Figure 16-3, where we see that for the 
VGG19 architecture, the output of the top convolutional layer is of the dimensions 
14×14×512. In other words, it consists of 196 vectors, each containing 512 
elements. Each of these 196 vectors corresponds to a specific region in the 
input image, and the 512 elements in the vector represent 512 different types 
of features that the network might have identified in that region. Using these 
196 vectors as our context makes much more sense when we want to apply 
attention, because the attention mechanism can now attend to different regions of 
the input image by adjusting the weights for the corresponding vectors. 

A noteworthy use case for attention apart from trying to improve the behavior of 
encoder-decoder models is to use it to gain insight into what the model is doing, 
and perhaps most important, get a better understanding of what is happening 
when it is making mistakes. For each generated output word, we can analyze the 
alignment vector and see where in the input data the model is currently focused, 
such as what part of an image resulted in the word. An entertaining example can 
be found in a paper by xu, Ba, and colleagues (2015), where an image of a man 
and a woman results in the textual description “A man is talking on his cell phone 
while another man watches.” The alignment vector clearly shows that when the 
model outputs the words cell phone, the focus is on a sandwich from which the 
man takes a bite, and when the model outputs the word watches, the focus is on 
the woman’s wristwatch!

Programming Example: Attention-Based 
Image Captioning

We now show how you can build your own image-captioning network with 
attention. This example is inspired by the architecture described by xu, Ba, and 
colleagues (2015), but we have done some simplifications to keep the code size 
small and simple.2 Conceptually it is similar to the network shown in Figure 16-2, 

2. The claim that this code example is simple should be considered in the context of the complex task 
it solves. If you do not have extensive programming experience, this example can be overwhelming.

Attention can be used to gain a better understanding of the internal workings of 
the model.
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but the decoder uses attention when examining the context. The decoder is based 
on a recurrent network. A more modern implementation can be obtained by 
instead using a Transformer-based decoder.

For this application, we need a dataset that consists of images annotated with 
corresponding textual descriptions. We use the publicly available COCO dataset 
(Lin et al., 2015). The COCO dataset consists of 82,783 training images and 40,775 
test images. Each image has a number of associated image descriptions. To 
keep things simple, we use only the training dataset and the first description of 
each image. Just as for the translation example in Chapter 14, we do not worry 
about BLEU scores when evaluating how our network performs but just inspect 
the output of the network on a small set of test images. We provide our own 
test images, and thus they are completely independent of the COCO dataset. In 
addition, note that the COCO dataset contains more information than what is 
needed for image captioning, but we simply ignore those parts of the dataset.

Instead of training our network end to end, we make use of transfer learning for 
the convolutional part of the network. We do this by using a model implementing 
the VGG19 architecture, which has been pretrained on the Imagenet dataset. As 
described previously, we remove the fully connected layers from the top of the 
network and use the output from the topmost convolutional layer to generate 
the context, to which the attention mechanism will be applied. Given that we do 
not have the need to adjust the weights for the VGG19 network (we assume that 
the pretraining on Imagenet is good enough), we can employ an optimization. 
Instead of running the training image through the VGG19 network for each 
training example for each training epoch, we can run each image through the 
VGG19 network once and for all before training begins and save the vectors that 
are output of the topmost convolutional layer to disk. That is, during training, the 
encoder model is computationally simple, because there is no need to run the 
image through all the convolutional layers, but it simply reads the feature vectors 
from disk. With that background, we start by presenting the code to do the image 
preprocessing. The import statements can be found in Code Snippet 16-1.

Code Snippet 16-1 Import Statements for Image Preprocessing Code

import json

import numpy as np

import tensorflow as tf

from tensorflow import keras

from tensorflow.keras.models import Model
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The parts of the dataset that we will use are contained in two resources. The 
first resource is a json file that contains captions as well as filenames and 
some other information for the images. We make the assumption that you have 
placed that file in the directory pointed to by the variable TRAINING_FILE_DIR. 
The images themselves are stored as individual image files and are assumed 
to be located in a directory named train2014 in the directory pointed to by 
TRAINING_FILE_DIR. The COCO dataset contains elaborate tools to parse and 
read the rich information about the various images, but because we are only 
interested in the image captions, we choose to directly access the json file and 
extract the limited data that we need ourselves. Code Snippet 16-2 opens the 
json file and creates a dictionary that, for each image, maps a unique key to a 
list of strings. The first string in each list represents the image filename, and the 
subsequent strings are alternative captions for the image. 

from tensorflow.keras.applications import VGG19

from tensorflow.keras.applications.vgg19 import \

    preprocess_input

from tensorflow.keras.preprocessing.image import load_img

from tensorflow.keras.preprocessing.image import img_to_array

import pickle

import gzip

import logging

tf.get_logger().setLevel(logging.ERROR)

TRAINING_FILE_DIR = '../data/coco/'

OUTPUT_FILE_DIR = 'tf_data/feature_vectors/'

with open(TRAINING_FILE_DIR \

          + 'captions_train2014.json') as json_file:

    data = json.load(json_file)

image_dict = {}

for image in data['images']:

    image_dict[image['id']] = [image['file_name']]

for anno in data['annotations']:

    image_dict[anno['image_id']].append(anno['caption'])

Code Snippet 16-2 Open and Extract Information from the json File
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We encourage you to paste some of the lines from the snippet into a Python 
interpreter and inspect the data structures to be comfortable with what the code 
snippet is doing.

The next step is to create our pretrained VGG19 model, which is done in Code 
Snippet 16-3. We first obtain the full VGG19 model with weights trained from the 
Imagenet dataset. We then create a new model (model_new) from that model 
by stating that we want to use the layer named block5_conv4 as output. A fair 
question is how we figured out that name. As you can see in the code snippet, we 
first printed out the summary of the full VGG19 model. This summary includes 
the layer names, and we saw that the last convolutional layer was named 
block5_conv4. 

We are now ready to run all the images through the network and extract the 
feature vectors and save to disk. This is done by Code Snippet 16-4. We traverse 
the dictionary to obtain the image file names. Every loop iteration does the 
processing for a single image and saves the feature vectors for that one image 
in a single file. Before running the image through the network, we perform some 
preprocessing. The image sizes in the COCO dataset vary from image to image, 
so we first read the file to determine its file size. We determine the aspect ratio 
and then reread the image scaled to a size at which the shortest side ends up 
being 256 pixels. We then crop the center 224×224 region of the resulting image 
to end up with the input dimensions that our VGG19 network expects. We finally 
run the VGG19 preprocessing function, which standardizes the data values in the 
image before we run the image through the network. The output of the network 
will be an array with the shape (1, 14, 14, 512) representing the results 
from a batch of images where the first dimension indicates that the batch size 
is 1. Therefore, we extract the first (and only) element from this array (y[0]) 
and save it as a gzipped pickle file with the same name as the image but with 
the extension .pickle.gz in the directory feature_vectors. When we have 

# Create network without top layers.

model = VGG19(weights='imagenet')

model.summary()

model_new = Model(inputs=model.input,

                  outputs=model.get_layer('block5_conv4').output)

model_new.summary()

Code Snippet 16-3 Create a VGG19 Model and remove the Topmost Layers
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looped through all images, we also save the dictionary file as caption_file.
pickle.gz so we do not need to parse the json file again later in the code that 
does the actual training.

Code Snippet 16-4 Extract and Save Feature Vectors and the Dictionary with 
Filenames and Annotations

# Run all images through the network and save the output.

for i, key in enumerate(image_dict.keys()):

    if i % 1000 == 0:

        print('Progress: ' + str(i) + ' images processed')

    item = image_dict.get(key)

    filename = TRAINING_FILE_DIR + 'train2014/' + item[0]

    # Determine dimensions.

    image = load_img(filename)

    width = image.size[0]

    height = image.size[1]

    # Resize so shortest side is 256 pixels.

    if height > width:

        image = load_img(filename, target_size=(

            int(height/width*256), 256))

    else:

        image = load_img(filename, target_size=(

            256, int(width/height*256)))

    width = image.size[0]

    height = image.size[1]

    image_np = img_to_array(image)

    # Crop to center 224x224 region.

    h_start = int((height-224)/2)

    w_start = int((width-224)/2)

    image_np = image_np[h_start:h_start+224,

                        w_start:w_start+224]    

    # Rearrange array to have one more

    # dimension representing batch size = 1.

    image_np = np.expand_dims(image_np, axis=0)
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We are now ready to describe the actual image-captioning model. The import 
statements are found in Code Snippet 16-5. It contains a few new layer types that 
we have not used before.

    # Call model and save resulting tensor to disk.

    X = preprocess_input(image_np)

    y = model_new.predict(X)

    save_filename = OUTPUT_FILE_DIR + \

        item[0] + '.pickle.gzip'

    pickle_file = gzip.open(save_filename, 'wb')

    pickle.dump(y[0], pickle_file)

    pickle_file.close() 

# Save the dictionary containing captions and filenames.

save_filename = OUTPUT_FILE_DIR + 'caption_file.pickle.gz'

pickle_file = gzip.open(save_filename, 'wb')

pickle.dump(image_dict, pickle_file)

pickle_file.close()

Code Snippet 16-5 Import Statements for the Image Captioning Model

import numpy as np

import tensorflow as tf

from tensorflow import keras

from tensorflow.keras.layers import Input

from tensorflow.keras.layers import Embedding

from tensorflow.keras.layers import LSTM

from tensorflow.keras.layers import Dense

from tensorflow.keras.layers import Attention

from tensorflow.keras.layers import Concatenate

from tensorflow.keras.layers import GlobalAveragePooling2D

from tensorflow.keras.layers import Reshape

from tensorflow.keras.models import Model

from tensorflow.keras.optimizers import Adam

from tensorflow.keras.preprocessing.text import Tokenizer

from tensorflow.keras.preprocessing.text import \

    text_to_word_sequence
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Initialization statements for our program are found in Code Snippet 16-6. They 
are similar to what we used in the language translation example, but some of the 
lines deserve further attention. The variable READ_IMAGES can be used to limit 
the number of images that we use for training. We set it to 90,000, which is more 
than the total number of images we have. you can decrease it if necessary (e.g., 
if you run into memory limits of your machine). We also provide the paths to four 
files that we will use as test images. you can replace those to point to images of 
your own choice when you run this experiment.

from tensorflow.keras.applications import VGG19

from tensorflow.keras.applications.vgg19 import \

    preprocess_input

from tensorflow.keras.preprocessing.image import load_img

from tensorflow.keras.preprocessing.image import img_to_array

from tensorflow.keras.utils import Sequence

from tensorflow.keras.preprocessing.sequence import \

    pad_sequences

import pickle

import gzip

import logging

tf.get_logger().setLevel(logging.ERROR)

Code Snippet 16-6 Initialization Statements

EPOCHS = 20

BATCH_SIZE = 128

MAX_WORDS = 10000

READ_IMAGES = 90000

LAYER_SIZE = 256

EMBEDDING_WIDTH = 128

OOV_WORD = 'UNK'

PAD_INDEX = 0

OOV_INDEX = 1

START_INDEX = MAX_WORDS - 2

STOP_INDEX = MAX_WORDS - 1

MAX_LENGTH = 60

TRAINING_FILE_DIR = 'tf_data/feature_vectors/'
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Code Snippet 16-7 shows the functions we use to read the image captions. The 
function to read the captions reads the pickled directory file that we previously 
prepared. From this, we create a list image_paths with the filenames for the 
feature vectors and one list, dest_word_sequences, which contains the first 
image caption for each image. To keep things simple, we simply discard the 
alternative captions for each image. 

The list dest_word_sequences is equivalent to the destination language 
sentence in the language translation example. This function does not load all the 
feature vectors but just the paths to them. The reason for this is that the feature 
vectors for all the images consume a fair amount of space, so for many machines, 
it would be impractical to hold the entire dataset in memory during training. 

# Function to read file.

def read_training_file(file_name, max_len):
    pickle_file = gzip.open(file_name, 'rb')

    image_dict = pickle.load(pickle_file)

    pickle_file.close()

    image_paths = []

    dest_word_sequences = []

    for i, key in enumerate(image_dict):

        if i == READ_IMAGES:

            break

        image_item = image_dict[key]

        image_paths.append(image_item[0])

        caption = image_item[1]

        word_sequence = text_to_word_sequence(caption)

        dest_word_sequence = word_sequence[0:max_len]

        dest_word_sequences.append(dest_word_sequence)

    return image_paths, dest_word_sequences

Code Snippet 16-7 Functions to read the Directory with Image Captions

TEST_FILE_DIR = '../data/test_images/'

TEST_IMAGES = ['boat.jpg',

               'cat.jpg',

               'table.jpg',

               'bird.jpg']
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Instead, we read the feature vectors on the fly when they are needed. This is a 
common technique when working with large datasets.

Code Snippet 16-8 contains functions to tokenize and untokenize the sentences. 
These are similar, if not identical, to what we used in the language translation 
example. We finally call the functions to read and tokenize the image captions.

As previously mentioned, we cannot afford to keep the entire dataset in memory 
during training but need to create our training batches on the fly. We handle this 

# Functions to tokenize and un-tokenize sequences.

def tokenize(sequences):
     tokenizer = Tokenizer(num_words=MAX_WORDS-2, 
                           oov_token=OOV_WORD)

     tokenizer.fit_on_texts(sequences)

     token_sequences = tokenizer.texts_to_sequences(sequences)

     return tokenizer, token_sequences

def tokens_to_words(tokenizer, seq):
    word_seq = []

    for index in seq:

       if index == PAD_INDEX:

           word_seq.append('PAD')

       elif index == OOV_INDEX:

            word_seq.append(OOV_WORD)

       elif index == START_INDEX:

            word_seq.append('START')

       elif index == STOP_INDEX:

            word_seq.append('STOP')

       else:

            word_seq.append(tokenizer.sequences_to_texts(

                [[index]])[0])

    print(word_seq)

# Read files.

image_paths, dest_seq = read_training_file(TRAINING_FILE_DIR \

    + 'caption_file.pickle.gz', MAX_LENGTH)

dest_tokenizer, dest_token_seq = tokenize(dest_seq)

Code Snippet 16-8 Call the Function That reads the File and Functions to Tokenize 
the Sentences
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task by creating a class that inherits from the keras Sequence class in Code 
Snippet 16-9. In the constructor, we supply the paths to the feature vectors, as well 
as the tokenized captions, and the batch size. Just as for the language translation 
example, the recurrent network in the decoder will need the tokenized data both 
as input and output but shifted by one location and with a STArT token on the input 
side. This explains why we provide two variables dest_input_data and dest_
target_data to the constructor. We also need to provide the batch size.

# Sequence class to create batches on the fly.

class ImageCaptionSequence(Sequence):

    def __init__(self, image_paths, dest_input_data,

                 dest_target_data, batch_size):

        self.image_paths = image_paths

        self.dest_input_data = dest_input_data

        self.dest_target_data = dest_target_data

        self.batch_size = batch_size

    def __len__(self):
        return int(np.ceil(len(self.dest_input_data) /

            float(self.batch_size)))

    def __getitem__(self, idx):

        batch_x0 = self.image_paths[

            idx * self.batch_size:(idx + 1) * self.batch_size]

        batch_x1 = self.dest_input_data[

            idx * self.batch_size:(idx + 1) * self.batch_size]

        batch_y = self.dest_target_data[

            idx * self.batch_size:(idx + 1) * self.batch_size]

        image_features = []

        for image_id in batch_x0:

            file_name = TRAINING_FILE_DIR  \

                + image_id + '.pickle.gzip'

            pickle_file = gzip.open(file_name, 'rb')

            feature_vector = pickle.load(pickle_file)

            pickle_file.close()

            image_features.append(feature_vector)

        return [np.array(image_features),

                np.array(batch_x1)], np.array(batch_y)

Code Snippet 16-9 Sequence Class Used to Create Batches on the Fly During Training
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The __len__() method is expected to provide the number of batches that our 
dataset provides, which is simply the number of images divided by the batch size.

The main functionality in the class is the __getitem__() method, which 
is expected to return the training data for the batch number indicated by the 
argument idx. The output format of this method depends on what our network 
requires as input. For a single training example, our network needs a set of 
feature vectors as input from the encoder side and a shifted version of the target 
sentence as input to the decoder recurrent network. It also needs the original 
version of the target sentence as the desired output for the network. Thus, the 
output from this method should be a list with two elements representing the two 
inputs and a single element representing the output. The details become clearer 
when we later build our training network. There is one more thing to consider, 
though. The __getitem__() method is expected to return a batch instead of 
a single training example, so each of the three items we described will be an 
array where the number of elements is determined by the batch size. Because 
each one of the input and output elements for a given training example is itself a 
multidimensional array, it is easy to get lost with all the different dimensions.

One thing worth mentioning is that many implementations use a Python 
Generator function instead of extending the keras Sequence class. The benefit 
of using the keras Sequence class is that it produces deterministic results in the 
presence of multithreading.

The constructor for the ImageCaptionSequence class that was described 
earlier assumes that we already have created three arrays with appropriate 
input data. Two of these arrays (for the recurrent network in the decoder) 
directly correspond to what we created in the language translation example. 
This is shown in Code Snippet 16-10, where we also call the constructor for 
ImageCaptionSequence.

Code Snippet 16-10 Preparation of Training Data

# Prepare training data.

dest_target_token_seq = [x + [STOP_INDEX] for x in dest_token_seq]

dest_input_token_seq = [[START_INDEX] + x for x in

                        dest_target_token_seq]

dest_input_data = pad_sequences(dest_input_token_seq,

                                padding='post')
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We are now ready to define the encoder and decoder models and connect them. 
We start with an overview of the detailed architecture. This time, we start with an 
overview of the overall encoder-decoder network in Figure 16-4. VGG19 is not a 
part of the actual encoder model because we already did that processing offline, 
but we have included it as a dashed box in the lower left corner for completeness. 
We now walk though this figure with a focus on issues that are different from the 
language translation example.

dest_target_data = pad_sequences(

    dest_target_token_seq, padding='post',

    maxlen=len(dest_input_data[0]))

image_sequence = ImageCaptionSequence(

    image_paths, dest_input_data, dest_target_data, BATCH_SIZE)
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Figure 16-4 Block diagram of our encoder-decoder image-captioning model
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The architecture is a typical encoder-decoder architecture, although most of the 
encoding has already been done offline. There are still some remaining layers 
in the encoder model. The decoder side consists mainly of an embedding layer, 
one LSTM layer (dec_layer1), an attention layer, and a fully connected softmax 
layer (dec_layer2). It also has a couple of other layers that we discuss shortly. 
We note that the decoder is similar to the decoder in Chapter 15, “Attention and 
the Transformer,” but with a single recurrent layer. The recurrent layer and the 
attention layer feed straight into the fully connected softmax layer. Our network 
has a couple of simplifications. There is no feedback loop for the attentional 
vector. Further, we use the output of the recurrent layer to query the attention 
layer instead of the cell/hidden state that was used in Figure 15-6. The reason 
for these two simplifications is mainly to avoid introducing the concept of how to 
build custom layers in keras, and we did not manage to come up with an easy way 
of implementing those two concepts (attentional vector feedback loop and using 
the cell/hidden state to query the attention layer) without a custom keras layer.

Let us now study the encoder side in detail. Given our previous figures of 
attention, the three blue layers seem somewhat unexpected. Why is it not 
sufficient to feed the feature vectors to the attention layer and let the model 
attend to the regions of its choice? We cannot claim that we know the exact 
answer to that question, but it is not hard to believe that it is beneficial for the 
network to start with a global view of the image and then selectively use the 
attention mechanism to study individual details. We provide this global view 
by using enc_mean_layer to compute the elementwise average of the 196 
(14×14) feature vectors to end up with a single 512-element feature vector that 
represents the global view. We then feed that as initial state to our LSTM layer.

Given the parameters of our network, we could have taken the output from 
enc_mean_layer and directly fed it to the LSTM layer (mean_layer outputs 
512 values, and we have 256 LSTM cells each requiring h and c), but to make our 
network more flexible, we added two fully connected layers (enc_layer_c and 
enc_layer_h) between the mean_layer and the LSTM state inputs. We can 
now freely modify the number of LSTM cells, as long as we adjust the number of 
units in these two fully connected layers. A fair question is why to introduce the 
concept of averaging feature vectors instead of just keeping some more of the 
top layers of the VGG19 network. Could we not have used the output of the upper 

If you want to build complicated networks, building custom keras layers is a 
good skill to obtain.
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layers as state input and still use the output of the convolutional layer as attention 
input? The answer is that this would likely be a fine approach, but we simply 
followed what was done by xu, Ba, and colleagues (2015).

The decoder side is straightforward. The dec_query_layer is a fully connected 
layer that serves a purpose similar to that of the two fully connected layers on 
the encoder side. The query input on the attention layer is expected to be of the 
same dimension (512) as each of the feature vectors. By introducing the dec_
query_layer, we can now choose the number of LSTM units in dec_layer1 
independently from the feature vector size. The reason we feed the dec_query_
layer from the output of dec_layer1 instead of from its state outputs is that 
the attention layer requires an input for every timestep, and the keras LSTM layer 
only outputs the final state outputs, while its normal output can be told to provide 
a value for every timestep using the return_sequences=True parameter.

Two other things worth mentioning are the dec_reshape_layer and the 
dec_concat_layer. These layers do not do any computations. The Reshape 
layer reshapes the feature vectors from 14×14 to 196. The concat layer simply 
concatenates the outputs from dec_layer1 and dec_attention_layer into 
a single vector that can be used as input to the final layer.

Figure 16-5 shows the individual encoder and decoder models that are used 
as building blocks for the joint model. The TensorFlow implementation of the 
encoder is found in Code Snippet 16-11. Most things in this code snippet should 
be self-explanatory by now. The enc_mean_layer is implemented by a 
GlobalAveragePooling2D layer. It operates on the output of a convolutional 
layer, which has the dimensions width, height, and channels. The layer computes 
the average of all elements within a channel, which results in a vector with the 
same number of elements as there are channels in the input. We call the model 
enc_model_top because it represents only the top layers of the encoder where 
the bottom ones were precomputed by the VGG model.

Code Snippet 16-12 shows the implementation of the decoder model. We focus 
on the details that are different compared to the text translation example. Given 
how much time we have spent on discussing the internals of the Attention 
layer, it is a surprising how little code is needed. We simply instantiate it without 
any arguments, and it takes two inputs and produces a single output. We use 
a Reshape layer to change the dimensions of the feature vectors from 14×14 
to 196.
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Figure 16-5 Block diagrams of the individual encoder and decoder models used 
as building blocks

Code Snippet 16-11 Implementation of Encoder Model

# Build encoder model.

# Input is feature vector.

feature_vector_input = Input(shape=(14, 14, 512))

# Create the encoder layers.

enc_mean_layer = GlobalAveragePooling2D()

enc_layer_h = Dense(LAYER_SIZE)

enc_layer_c = Dense(LAYER_SIZE)

# Connect the encoding layers.

enc_mean_layer_output = enc_mean_layer(feature_vector_input)
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One thing to note is that we give the argument mask_zero=False to the 
Embedding layer. The reason is that, to use the masking feature, all layers 
downstream of the Embedding layer need to support that feature, and the 
Attention layer does not, so we simply have no choice but to turn off masking. 
The effect is that the network must learn to ignore the PAD value itself, but as 
previously discussed, this usually works fine.

Finally, the Concatenate layer is also simple to use and requires no arguments 
to instantiate; it simply takes two inputs that are concatenated into an output 
array where the width is the sum of the widths of the input arrays.

Code Snippet 16-12 Implementation of Decoder Model

enc_layer_h_outputs = enc_layer_h(enc_mean_layer_output)

enc_layer_c_outputs = enc_layer_c(enc_mean_layer_output)

# Organize the output state for encoder layers.

enc_layer_outputs = [enc_layer_h_outputs, enc_layer_c_outputs]

# Build the model.

enc_model_top = Model(feature_vector_input, enc_layer_outputs)

enc_model_top.summary()

# Build decoder model.

# Input to the network is feature_vector, image caption

# sequence, and intermediate state.

dec_feature_vector_input = Input(shape=(14, 14, 512))

dec_embedding_input = Input(shape=(None, ))

dec_layer1_state_input_h = Input(shape=(LAYER_SIZE,))

dec_layer1_state_input_c = Input(shape=(LAYER_SIZE,))

# Create the decoder layers.

dec_reshape_layer = Reshape((196, 512),

                            input_shape=(14, 14, 512,))

dec_attention_layer = Attention()

dec_query_layer = Dense(512)
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Finally, we create a joint model from the encoder and decoder in Code 
Snippet 16-13. This model will be used for training. Just as in the text translation 
example, we discard the state outputs from the decoder in this joint model. There 
is no need for explicit state management for this joint model because TensorFlow 
does it for us during training.

dec_embedding_layer = Embedding(output_dim=EMBEDDING_WIDTH,

                                input_dim=MAX_WORDS,

                                mask_zero=False)

dec_layer1 = LSTM(LAYER_SIZE, return_state=True,

                  return_sequences=True)

dec_concat_layer = Concatenate()

dec_layer2 = Dense(MAX_WORDS, activation='softmax')

# Connect the decoder layers.

dec_embedding_layer_outputs = dec_embedding_layer(

    dec_embedding_input)

dec_reshape_layer_outputs = dec_reshape_layer(

    dec_feature_vector_input)

dec_layer1_outputs, dec_layer1_state_h, dec_layer1_state_c = \

    dec_layer1(dec_embedding_layer_outputs, initial_state=[

        dec_layer1_state_input_h, dec_layer1_state_input_c])

dec_query_layer_outputs = dec_query_layer(dec_layer1_outputs)

dec_attention_layer_outputs = dec_attention_layer(

    [dec_query_layer_outputs, dec_reshape_layer_outputs])

dec_layer2_inputs = dec_concat_layer(

    [dec_layer1_outputs, dec_attention_layer_outputs])

dec_layer2_outputs = dec_layer2(dec_layer2_inputs)

# Build the model.

dec_model = Model([dec_feature_vector_input,

                   dec_embedding_input,

                   dec_layer1_state_input_h,

                   dec_layer1_state_input_c], 

                  [dec_layer2_outputs, dec_layer1_state_h,

                   dec_layer1_state_c])

dec_model.summary()
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Just as for the language translation example, we use the encoder and decoder 
separately during inference. However, in this image-captioning example, the 
encoder also needs to include the VGG19 layers, as we will not do inference on 
precomputed feature vectors. We therefore create yet another model in Code 
Snippet 16-14, which consists of the VGG19 network (except for the top layers) 
followed by our decoder model.

# Build and compile full training model.

# We do not use the state output when training.

train_feature_vector_input = Input(shape=(14, 14, 512))

train_dec_embedding_input = Input(shape=(None, ))

intermediate_state = enc_model_top(train_feature_vector_input)

train_dec_output, _, _ = dec_model([train_feature_vector_input,

                                    train_dec_embedding_input] +

                                    intermediate_state)

training_model = Model([train_feature_vector_input,

                        train_dec_embedding_input],

                        [train_dec_output])

training_model.compile(loss='sparse_categorical_crossentropy',

                       optimizer='adam', metrics =['accuracy'])

training_model.summary()

Code Snippet 16-13  Implement the Full Encoder-Decoder Training Model

# Build full encoder model for inference.

conv_model = VGG19(weights='imagenet')

conv_model_outputs = conv_model.get_layer('block5_conv4').output

intermediate_state = enc_model_top(conv_model_outputs)

inference_enc_model = Model([conv_model.input],

                            intermediate_state

                            + [conv_model_outputs])

inference_enc_model.summary()

Code Snippet 16-14 Encoder Used for Inference representing the Full Encoder 
Model That Can Take Images as Inputs
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We are finally ready to train and evaluate our model, and the code is found in 
Code Snippet 16-15. One key difference compared to past code examples is that 
instead of providing the training set, we provide the image_sequence object as 
argument to the fit() function. The image_sequence object will provide the 
training data batch by batch as the feature vectors are read from disk.

After each training epoch, we run through our four test images. The process for 
this is similar to what we did in the language translation example but with one 
difference. Instead of running an input sentence through the encoder model that 
was based on a recurrent network, we read an image from disk, preprocess it, 
and run it through our encoder model that is based on the convolutional VGG19 
network.

Code Snippet 16-15 Code to Train and Evaluate the Image-Captioning Model

for i in range(EPOCHS): # Train and evaluate model

    print('step: ' , i)

    history = training_model.fit(image_sequence, epochs=1)

    for filename in TEST_IMAGES:

        # Determine dimensions.

        image = load_img(TEST_FILE_DIR + filename)

        width = image.size[0]

        height = image.size[1]

        # Resize so shortest side is 256 pixels.

        if height > width:

            image = load_img(

                TEST_FILE_DIR + filename,

                target_size=(int(height/width*256), 256))

        else:

            image = load_img(

                TEST_FILE_DIR + filename,

                target_size=(256, int(width/height*256)))

        width = image.size[0]

        height = image.size[1]

        image_np = img_to_array(image)

        # Crop to center 224x224 region.

        h_start = int((height-224)/2)
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Figure 16-6 shows the four images that we used to evaluate our image-
captioning network. These images have nothing to do with the COCO dataset but 
are simply images that we provided. As shown in the code snippets, we printed 
out the predictions after each training epoch, and we now list some of the more 
noteworthy descriptions that the network produced.

The yacht picture resulted in two descriptions that caught our eyes. The 
descriptions make sense, although the wording of the first sentence sounds more 

        w_start = int((width-224)/2)

        image_np = image_np[h_start:h_start+224,

                            w_start:w_start+224]

        # Run image through encoder.

        image_np = np.expand_dims(image_np, axis=0)

        x = preprocess_input(image_np)

        dec_layer1_state_h, dec_layer1_state_c, feature_vector = \

            inference_enc_model.predict(x, verbose=0)

        # Predict sentence word for word.

        prev_word_index = START_INDEX

        produced_string = ''

        pred_seq = []

        for j in range(MAX_LENGTH):

            x = np.reshape(np.array(prev_word_index), (1, 1))

            preds, dec_layer1_state_h, dec_layer1_state_c = \

                dec_model.predict(

                    [feature_vector, x, dec_layer1_state_h,

                     dec_layer1_state_c], verbose=0)

            prev_word_index = np.asarray(preds[0][0]).argmax()

            pred_seq.append(prev_word_index)

            if prev_word_index == STOP_INDEX:

                break

        tokens_to_words(dest_tokenizer, pred_seq)

        print('\n\n')
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Figure 16-6 Four images used to evaluate our image-captioning network. Top left: A yacht 
docked in front of a couple of buildings in Split, Croatia. Top right: A cat on a desk in front 
of a keyboard and a computer monitor. Bottom left: A table with plates, utensils, bottles, 
and two bowls with crayfish. Bottom right: A seagull in front of an anchored sailboat in 
Santa Cruz, California, USA.
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like what a landlubber would say than what you would typically hear from a true 
boatman:

A large white ship is parked in the water.

A large white ship floating on top of a lake.

For the cat picture, the following two descriptions also make much sense, 
although the network mistook the keyboard and computer screen for a laptop in 
the second description:

A cat is laying on top of a wooden desk.

A cat rests its head on a laptop.

The network did not manage to identify the crayfish on the table but provided two 
decent descriptions of the picture:

A table topped with breakfast items and a cup of coffee.

A view of a table with a knife and coffee.

Finally, the picture of the seagull resulted in the following captions:

A large white bird is standing in the water.

A large white bird sitting on top of a sandy beach.

We selected these examples because they worked out well. The network also 
produced many nonsensical results:

A large cruise ship floating on top of a cruise ship.

A cat is sitting on a couch.

A group of friends sitting on a table with a knife.

A white and white and white sea water with a few water.

As an experiment, we also modified our network to output the attention score for 
each region of the image. Figure 16-7 highlights the nine regions with the highest 
attention scores for two of the images. 

We can see that the attention mechanism fully focuses on the yacht in one of 
the images, whereas in the image of the table, it focuses on one of the crayfish 
bowls, two of the plates, one of the bottles, and one of the forks. Our network did 
not reproduce the effect observed by xu, Ba, and colleagues (2015), where the 
attended region clearly moved from one region to another for each word. Instead, 
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in our experiments, the attended region turned out to be more static, although it 
did move a bit as the output sentences were produced. We hypothesize that the 
reason is that our network is fairly simple and does not have a feedback loop in 
which the output from the attention mechanism affects the input to the attention 
mechanism in the next timestep. As previously described, the network design 
in our programming example was chosen to be as simple as possible while still 
illustrating the use of attention. See the paper by xu, Ba, and colleagues for a 
more complex network and a more rigorous evaluation.

Concluding remarks on Image  
Captioning

In this chapter, we used the COCO dataset (Lin et al., 2015) and an image-
captioning application to illustrate the usage of the attention mechanism. If you 
are interested in experimenting further with image captioning, you can also 
consider trying out the smaller and simpler Flickr8k dataset (Hodosh, young, 
and Hockenmaier, 2013) or the newer and more extensive Conceptual Captions 
dataset (Sharma et al., 2018). In terms of the image-captioning application, there 
are many things that can be improved over our implementation. One thing would 
be to use a more modern and complicated convolutional network than VGG19 

Figure 16-7 Two of the test images with the attended regions highlighted



CHAPTEr 16 OnE-TO-MAny nETWOrk FOr IMAGE CAPTIOnInG

444

or a decoder based on more layers or on the Transformer architecture. Another 
option is to not precompute the feature vectors and instead train the model end 
to end. As described in Chapter 8, “Deeper Cnns and Pretrained Models,” the best 
approach is to first freeze the pretrained layers and do initial training of the newly 
added layers. Once that is done, you can unfreeze the layers and fine-tune the 
model end to end. Some of these techniques were used in the paper introducing 
the Conceptual Captions dataset, and it is worth noting that their evaluation 
indicated that their networks without attention over the image regions worked 
better than the ones that did use attention (Sharma et al., 2018). On the other 
hand, they also concluded that a decoder based on the Transformer (which itself 
uses self-attention) performed better than a model based on LSTM.

A different method to image captioning is described by Dai, Fidler, and Lin (2018). 
They use a compositional approach that aims at decoupling the process of 
determining what to say from how to say it. That is, although the basic techniques 
of neural image captioning were published relatively soon after the Alexnet paper 
(krizhevsky, Sutskever, and Hinton, 2012), new ideas are still being explored. It 
should not be considered a fully solved problem.

Before moving on to Chapter 17, “Medley of Additional Topics,” we take a step 
back and reflect on this programming example, which is the most complex 
programming example in this book. We note that it incorporates most of the 
concepts discussed so far. It contains fully connected, convolutional, and recurrent 
layers (using LSTM cells). It learns word embeddings and uses the attention 
mechanism. It demonstrates the power of transfer learning. It is an example of 
an encoder-decoder architecture, and it combines both image data (as input) and 
textual data (as output).

Just for fun, we also make a brief comparison between the complexity of our 
image-captioning network and some biological organisms. Our image-captioning 
network contains roughly 15 million units and 30 million unique weights. It is not 
obvious whether more complex cells such as LSTM should be counted as a single 
neuron or a handful of neurons and whether a weight that is shared among many 
neurons in a convolutional network should be counted as one or more synaptic 
connections. As a start, if we just want a rough comparison, we note that our 
15 million units are about the same order of magnitude as a frog with 16 million 
neurons. Our 30 million weights are about the same order of magnitude as the 
10 million synapses of a fruit fly. If we count the shared weights as if they were 
unique weights, they could potentially be comparable to the 1 billion synapses of 
a honeybee. We see that this is significantly less than a cat with its 760 million 
neurons and 10 trillion synapses. We ask ourselves, how come our cat is good at 
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ignoring us but has a hard time with converting an image to a textual description? 
A reasonable interpretation is that our image-captioning network is engineered 
for its task, and comparing it to a true biological system might not make much 
sense. Another interpretation is that, even if we find our image-captioning 
network reasonably complex, actual living organisms are way more complex, and 
we still have a long way to go before we are close to modeling something similar 
to a human brain. 

This concludes our in-depth description of computer vision and language 
processing. The network in this chapter is an example of a multimodal network 
in that it works with both text and images, also known as two different modalities. 
Multimodal deep learning is one of the topics of the next chapter.
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Chapter 17

Medley of Additional 
Topics

We have organized this book as a narrative in which each chapter to a large 
extent builds upon previous chapters. In Chapter 16, “One-to-Many Network for 
Image Captioning,” we brought together techniques from many of the previous 
chapters into a single image captioning application.

In reality, many of these concepts have evolved simultaneously and not 
necessarily in the order we presented them. Similarly, we sometimes found it 
difficult to include all important topics in our narrative. Therefore, if you are new 
to deep learning (DL), you now have a solid foundation, but you also have blind 
spots. We address some of these blind spots by introducing additional topics that 
we find important.

This chapter is different from other chapters in that it introduces multiple 
techniques, including multiple programming examples, that are somewhat 
unrelated to each other. We do not go into the details as much as in previous 
chapters. The overall goal is to ensure that you get some exposure to each of 
these topics, so you can make an informed choice whether to pursue them 
further. In addition, the networks implemented in the programming examples in 
this chapter are simpler than those in the last couple of chapters, so they should 
be relatively easy to understand.
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We discuss autoencoders, multimodal learning, multitask learning, network 
tuning, and neural architecture search, presented in that order. Without further 
ado, we start by describing autoencoders.

autoencoders
In Chapter 14, “Sequence-to-Sequence Networks and Natural Language 
Translation,” Chapter 15, “attention and the Transformer,” and Chapter 16, we 
saw examples of encoder-decoder architectures. The encoder converted an 
input into an intermediate representation. The decoder took this intermediate 
representation as input and converted it into the desired output. We used this 
general architecture for natural language translation and image captioning.

an autoencoder is a special case of the encoder-decoder architecture, where both 
the input value and the desired output value are identical. That is, the task for the 
autoencoder is to implement the identity function. This is shown in figure 17-1. 
The model consists of an encoder that creates an intermediate representation 
of the input data, followed by a decoder that is tasked with reproducing the input 
data from this intermediate representation.

Input
Encoder

Intermediate
representation

Decoder
Reproduced

input

Autoencoder

Figure 17-1 autoencoder architecture
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The exact architecture of the encoder and decoder depends on the use case and 
type of data. That is, for textual data, the encoder and decoder might be recurrent 
networks or based on the transformer architecture, and for other types of data 
they might be fully connected feedforward networks or convolutional networks.

an obvious question is why we would want to build such an architecture. What 
would be the use case? One key property plays a role in making them useful. as 
illustrated in the figure, the dimensionality of the intermediate representation 
is typically lower than the dimensionality of the input data which forces the 
model to find a compact intermediate representation. That is, the intermediate 
representation is a compressed version of the input data. The encoder 
compresses the data, and the decoder decompresses the data back to its original 
form. however, the intent is not to try to replace gzip, jpeg, or other compression 
algorithms. Instead, in most cases, the idea is to use the intermediate 
representation either directly or for further analysis or manipulation. We see 
some examples of this in the next section.

The idea of autoencoders has been around for a long time. One early example 
is described in a paper by rumelhart, hinton, and Williams (1986), who 
demonstrated a more compact representation of one-hot encoding (one solution 
would be standard binary encoding).

uSE CaSES fOr auTOENCODErS

as a first example of how to use autoencoders, let us consider a case where we 
want to determine whether two different sentences convey similar messages. 
as mentioned in Chapter 14, Sutskever, Vinyals, and Le (2014) analyzed the 
intermediate representations of a sequence-to-sequence network used for 
translation by transforming them into a 2D space and plotting the resulting 
vectors. figure 17-2 shows an adaptation of their resulting chart, which illustrates 
how sentences with the same meaning, but different sentence structures, are 
grouped together. That is, the intermediate representation serves as a sentence 
vector, where similar sentences are located close to each other in vector space. In 

an autoencoder is trained to output the same value on the output that is 
presented on the input. however, it does so by first encoding the inputs in a 
more compact intermediate representation. This intermediate representation 
can be used for further analysis.
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other words, once we have trained an encoder-decoder network on a translation 
task, we can use the encoder part of the network to produce such vectors.

One problem with this approach is that it can be costly to obtain training data 
for a translation network, given that each training example consists of the same 
sentence in two different languages. We can solve that by training our translation 
network to be an autoencoder. We simply train the sequence-to-sequence model 
to translate from one language to the same language—for example, English to 
English. Given that the intermediate representation is narrower than the input 
and output, the model is forced to come up with a meaningful intermediate 
representation, as in figure 17-2. Note that no change is needed to the translation 
network itself to make it an autoencoder. The only change is to the training data, 
where we train the network to output a sentence in the same language as the 
input.

It is worth pointing out the similarity between the word2vec algorithm and the 
autoencoder example we just described. In word2vec, we take a wide (one-hot 
encoded) representation of a single word, then go through an encoding step 
whereby we reduce its dimensionality to a narrow intermediate representation. 

Figure 17-2 Intermediate representation of a translation network. (Source: 
adapted from Sutskever, I., Vinyals, O., and Le, Q. (2014), “Sequence to Sequence 
Learning with Neural Networks,” in Proceedings of the 27th International 
Conference on Neural Information Processing [NIPS’14], MIT Press, 3104–3112.)
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This encoding step is then followed by a decoding step, which tries to predict not 
the word itself but its surrounding words in a wide representation. We have seen 
that word2vec can tease out semantics from the words it is trying to encode, so it 
is unsurprising that the autoencoder architecture can do the same for sentences.

a second example of a use case for an autoencoder is outlier detection. Imagine 
that we have trained an autoencoder to reproduce an English sentence as 
output when presented with an English sentence as input. If we now present an 
arbitrary English sentence to the network, we expect the output to be similar, if 
not identical, to the input. Specifically, we expect the value of the loss function to 
be small given that the objective of the training process was to minimize the loss 
function.

Now imagine that we use this same network but present a french sentence as 
input. It seems unlikely that an autoencoder trained on the English language 
will be good at reproducing a sentence in french. It has not had the opportunity 
to learn the french vocabulary or sentence structure. Therefore, the value of 
the loss function will be larger when the network is presented with an arbitrary 
french sentence than with an arbitrary English sentence. That is, a high loss value 
indicates that the current input data is different from the typical input data the 
autoencoder was trained on. In other words, a high loss indicates that the current 
input data is an outlier.

an important application of outlier detection is when applied to credit card 
transaction data. Each credit card transaction consists of a number of features 
such as amount, time of day, vendor, and location. We can group all of these 
features into a feature vector and use it as input to an autoencoder that we train 
to reproduce that same feature vector on its output. If we now present an atypical 
transaction to the network, it will not be as good at reproducing the vector on its 
output. That is, the loss value is higher, which indicates that this is an abnormal 
transaction that should be flagged as suspicious.

OThEr aSPECTS Of auTOENCODErS

an important aspect of the two preceding examples is that the autoencoder finds 
patterns in unlabeled data. In particular, in the second example, we do not assume 
that we have a set of labeled outliers that we teach the model to detect. We simply 
rely on the fact that outliers are not present (or at least are rare by definition) in 
the training data, and therefore the model will not be good at minimizing their 
loss. The fact that an autoencoder can find patterns in unlabeled data makes it a 



ChaPTEr 17 MEDLEy Of aDDITIONaL TOPICS

452

good candidate for a building block in an unsupervised learning algorithm. In that 
context it is common to feed the internal representation vectors to a so-called 
clustering algorithm that groups vectors into clusters where similar vectors are 
placed in the same cluster. 

another important aspect of the autoencoder is its use as a dimensionality 
reduction technique whereby the new narrower representation still maintains 
properties of the wider representation. The encoder can be used to reduce the 
number of dimensions, and the decoder can be used to expand the number of 
dimensions. The autoencoder is just one of many examples of dimensionality 
reduction techniques. hastie, Tibshirani, and friedman (2009) describe other 
methods for dimensionality reduction from the traditional machine learning (ML) 
field, the most common being principal component analysis (PCa).1

The basic autoencoder can be modified in various ways to be used in other 
applications. One example is the denoising autoencoder. The architecture is the 
same, but the training data is slightly modified. Instead of training the model with 
identical input and output data, a corrupted version of the data is used as input. 
The model is then trained to reproduce a correct version of corrupted input data. 
The resulting model can be used to removing noise from the input data—for 
example, image or video data.

PrOGraMMING EXaMPLE: auTOENCODEr fOr OuTLIEr DETECTION

In this programming example, we demonstrate how an autoencoder can be used 
for outlier detection. We do this by first training an autoencoder on the Modified 
National Institute of Standards and Technology (MNIST) dataset. Then we observe 
how the error is higher when the network is presented with an image that does 
not represent a handwritten digit. In Code Snippet 17-1, we start with the usual 
set of import statements, followed by loading the MNIST dataset.

1. PCa is used in traditional machine learning but was invented before the term machine learning was 
coined. Therefore, it might be more accurate to simply view it as a mathematical concept.

Clustering algorithms can be used to automatically group vectors into clusters 
where the vectors in a single cluster are similar to each other. k-means 
clustering is a well-known iterative algorithm and a good topic for further 
reading (hastie, Tibshirani, and friedman, 2009).
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Instead of standardizing the data to be centered around 0, we scale the data to be in 
the range 0 to 1. The reason is worth some discussion. The task for the autoencoder 
is to reproduce the input on its outputs. This implies that we need to define the 
input data and the output unit of the network in a way that makes this possible. 
for example, if we use input data centered around 0, and a logistic sigmoid as the 
output unit, then the network simply cannot solve the problem because the logistic 
sigmoid can output only positive values. When working with image data, we want 
the output range to be bounded to a range of valid values (typically integer values 
between 0 and 255 or floating-point values between 0 and 1). a common way to 
ensure this is to scale the input values to be between 0 and 1 and use a logistic 
sigmoid unit as output unit. another alternative would be to center the input around 
0 and use a linear output unit, but we would then need to postprocess the output 
data to ensure that they do not contain out-of-range values.

The next step is to define and train the model. This is shown in Code Snippet 
17-2. The encoder part of the model consists of a Flatten layer (changing 
the dimension from 28×28 to 784) followed by a single fully connected (Dense) 
layer with 64 units. The decoder consists of another fully connected layer 
with 784 units, followed by a Reshape layer that changes the dimension from 

import tensorflow as tf

from tensorflow import keras

from tensorflow.keras.utils import to_categorical

import numpy as np

import matplotlib.pyplot as plt

import logging

tf.get_logger().setLevel(logging.ERROR)

EPOCHS = 10

# Load traditional MNIST dataset.

mnist = keras.datasets.mnist

(train_images, train_labels), (test_images,

                               test_labels) = mnist.load_data()

# Scale the data.

train_images = train_images / 255.0

test_images = test_images / 255.0

Code Snippet 17-1 Initialization Code and Loading/Scaling the Dataset



ChaPTEr 17 MEDLEy Of aDDITIONaL TOPICS

454

784 to 28×28. That is, the decoder performs the inverse of the operations done by 
the encoder. The goal for the autoencoder is to generate an output image that is 
identical to the input image, and it has to do that by fully encoding the 28×28 (784) 
image in the intermediate representation vector of size 64.

We should point out that although we use fully connected layers for both the 
encoder and decoder in this example, when working with images, it is more 
common to use convolutional layers and some form of convolution-based 
upsampling layers. a detailed description of this can be found in appendix B, but 
we use fully connected layers in this example to keep things simple and because 
it is feasible when working with the small and simple images from MNIST.

In Code Snippet 17-3, we use the trained model to try to reproduce the images 
in the test dataset. after applying the model to all test images, we plot one of the 
test images next to its corresponding version produced by the network.

# Create and train autoencoder.

model = keras.Sequential([

    keras.layers.Flatten(input_shape=(28, 28)),

    keras.layers.Dense(64, activation='relu',

                       kernel_initializer='glorot_normal',

                       bias_initializer='zeros'),

    keras.layers.Dense(784, activation='sigmoid',

                       kernel_initializer='glorot_normal',

                       bias_initializer='zeros'),

    keras.layers.Reshape((28, 28))])

model.compile(loss='binary_crossentropy', optimizer = 'adam',

              metrics =['mean_absolute_error'])

history = model.fit(train_images, train_images,

                    validation_data=(test_images, test_images),

                    epochs=EPOCHS, batch_size=64, verbose=2,

                    shuffle=True)

Code Snippet 17-2 Building and Training the Model
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as shown in figure 17-3, the network does a decent job of recreating the image. 
The next step is to apply our autoencoder to a different image. We use a different 
dataset known as Fashion MNIST (Xiao, rasul, and Vollgraf, 2017). This dataset 
is designed to serve as a drop-in replacement for MNIST. It consists of the same 
number of training and test images, using the same 28×28 resolution. Just as 
for MNIST, each image belongs to one of ten classes. The difference compared to 
MNIST is that instead of depicting handwritten images, the images depict various 
pieces of clothing: dress, shirt, sneaker, and so on. Code Snippet 17-4 loads this 

# Predict on test dataset.

predict_images = model.predict(test_images)

# Plot one input example and resulting prediction.

plt.subplot(1, 2, 1)

plt.imshow(test_images[0], cmap=plt.get_cmap('gray'))

plt.subplot(1, 2, 2)

plt.imshow(predict_images[0], cmap=plt.get_cmap('gray'))

plt.show()

Code Snippet 17-3 Demonstrate the Behavior of the autoencoder on the Test 
Dataset

Figure 17-3 Test image (left) and reproduced image (right)
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dataset and uses the trained model to try to reproduce the fashion MNIST test 
images.

as shown in figure 17-4, the result is much worse than for MNIST. That is, our 
autoencoder has learned how to reproduce handwritten digits, but it has not 
learned to reproduce arbitrary images.

# Load Fashion MNIST.

f_mnist = keras.datasets.fashion_mnist

(f_train_images, f_train_labels), (f_test_images,

                              f_test_labels) = f_mnist.load_data()

f_train_images = f_train_images / 255.0

f_test_images = f_test_images / 255.0

# Predict and plot.

f_predict_images = model.predict(f_test_images)

plt.subplot(1, 2, 1)

plt.imshow(f_test_images[0], cmap=plt.get_cmap('gray'))

plt.subplot(1, 2, 2)

plt.imshow(f_predict_images[0], cmap=plt.get_cmap('gray'))

plt.show()

Code Snippet 17-4 Try the autoencoder on the fashion MNIST Dataset

Figure 17-4 Test image from fashion MNIST (left) and reproduced image (right)
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To quantify this further, in Code Snippet 17-5 we compute the mean absolute error 
for the autoencoder, both for all MNIST test examples and all fashion MNIST test 
examples. We then plot the results. It might have made more sense to compute the 
binary cross-entropy loss because that is what we used when training the network. 
however, in terms of illustrating the difference in error, any suitable error function 
will do, and we picked mean absolute error to simplify the code.

The resulting plot is shown in figure 17-5. It is clear that the error is smaller for 
the MNIST examples than for the fashion MNIST examples. If the error is larger 
than 0.02 (the boundary between blue and orange), it is likely that the image does 
not depict a handwritten digit. That is, an outlier has been detected.

We note that the blue and orange bars are not clearly separated. There is some 
overlap. To provide some insight into that, Code Snippet 17-6 plots the two MNIST 
test images that result in the biggest error.

# Compute errors and plot.

error = np.mean(np.abs(test_images - predict_images), (1, 2))

f_error = np.mean(np.abs(f_test_images - f_predict_images), (1, 2))

_ = plt.hist((error, f_error), bins=50, label=['mnist', 

                                               'fashion mnist'])

plt.legend()

plt.xlabel('mean absolute error')

plt.ylabel('examples')

plt.title("Autoencoder for outlier detection")

plt.show()

Code Snippet 17-5 Plot the Loss for Both MNIST and fashion MNIST

Code Snippet 17-6 find and Plot Biggest Outliers in MNIST Test Dataset

# Print outliers in mnist data.

index = error.argmax()

plt.subplot(1, 2, 1)

plt.imshow(test_images[index], cmap=plt.get_cmap('gray'))

error[index] = 0

index = error.argmax()
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Looking at the resulting images in figure 17-6, we see that they do represent 
outliers in the regular data. The left image is cropped in an unfortunate way, and 
the right image looks somewhat odd. That is, they truly can be considered outliers 
in the MNIST dataset.

Before moving on to the next topic, it is worth pointing out that, although MNIST 
and fashion MNIST are labeled datasets, we did not make use of the labels in this 
programming example. Neither did we make use of the fashion MNIST dataset for 
training the model. That is, we trained the model to distinguish between MNIST 
and fashion MNIST, as well as to find outliers in the test set of MNIST itself, solely 
by using the training images in the MNIST dataset.

Figure 17-5 histogram of error for MNIST and fashion MNIST. The error value can 
be used to determine whether a given example represents a handwritten digit.

plt.subplot(1, 2, 2)

plt.imshow(test_images[index], cmap=plt.get_cmap('gray'))

plt.show()
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Multimodal Learning
The programming examples in this book have made use of different types 
of input data, such as written natural language, image data, and numerical 
data representing the price of an item. These different types of data can 
also be referred to as different modalities—that is, the mode in which the 
phenomenon is experienced or represented. Multimodal machine learning 
(multimodal ML) is the field of building models that use or relate to data with 
multiple modalities.

as previously mentioned, the image-captioning example in Chapter 16 is an 
example of a multimodal DL application. In this section, we describe a taxonomy 
introduced by Baltrušaitis, ahuja, and Morency (2017) in a survey paper on 
multimodal ML. as a part of this description, we point out where the image-
captioning example and other related examples fit into this taxonomy. We 
conclude with a small programming example of a classification network that uses 
two modalities of the same data as its inputs.

TaXONOMy Of MuLTIMODaL LEarNING

Baltrušaitis, ahuja, and Morency (2017) divide multimodal learning into five 
topics: representation, translation, alignment, fusion, and co-learning. We 
summarize these topics next, but in a slightly different order. We present fusion 
right after representation because these two topics are highly related to each 
other, particularly in the context of deep neural networks.

Figure 17-6 The two MNIST test examples resulting in the biggest errors
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REPRESENTATION

an important aspect of building a model is how to represent the input data. 
Working with multimodal data adds a dimension to this problem. One of the 
simplest ways to present multimodal data to a model is to concatenate the 
multiple feature vectors into a single vector. In some cases, this is impractical, 
such as if one modality is a time series with multiple timesteps and the other 
modality is a single feature vector. another problem is that one modality might 
unintentionally dominate the overall input.

for example, consider an image and a textual description of the same object. 
The image might consist of on the order of a million pixels, whereas the textual 
description might be just ten words. Without somehow explicitly communicating 
that the collection of ten words is equally important as the one million pixel 
values, it can be hard to train the network to make good use of the textual input. 
a way to address this issue is to build a network consisting of a set of parallel 
networks that process the different input modalities and then combine the 
results further into the network. having such parallel networks can also address 
the issue of different dimensions of the input data. for example, we can use 
a recurrent network to transform textual input data into a fixed-width vector 
representation. Similarly, we can use a convolutional network to convert image 
data into a vector representing higher-level features that are present in the 
image.

Once we have these separate input networks, another aspect is how to combine 
them further into the network. One solution is to concatenate the outputs of 
these input networks and feed into a fully connected layer that creates what 
Baltrušaitis, ahuja, and Morency (2017) call a joint representation of the multiple 
modalities. This is often the preferred method if the expected use case is that all 
modalities will be present when the network is later used for inference.

a different solution is to keep the modalities separate inside of the network but 
enforce some kind of constraint on how they relate to each other. Baltrušaitis, 
ahuja, and Morency call this a coordinated representation. an example of a 
constraint is that representations of the same type of object should be close to 
each other (in vector space) for the two modalities. This can be exploited in cases 
where only one modality is present during inference. We might train the network 
on images and text and form a coordinated representation. During inference, 
only one of the modalities is presented to the network, but the network can 
still perform the task it is trained to do. The three described solutions to how to 
represent two modalities are illustrated in figure 17-7.
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FUSION

Multimodal fusion is highly related to the topic of representation. The 
representation problem we just discussed applies to any use case where we 
work with multimodal input data. The data in the different modalities do not 
necessarily need to be two different views of the same entity. Our understanding 
of multimodal fusion is that it specifically refers to when we are trying to solve a 
task (e.g., classification or regression) but have multiple views of the same input 
data, in different modalities. an example is when trying to classify an object based 
on an image and a sound recording of the object.

In such a setting, multimodal fusion can be discussed in terms of the two 
extremes early fusion and late fusion. Early fusion refers to simply concatenating 
the input vectors, which is precisely the first alternative that we listed in the 
section about representation. Late fusion is to have multiple, separately trained 
models that are later combined. for example, in a classification task, we 
would train one network that does image classification and one that does text 
classification. We would then combine the output of these networks, for example, 
by a weighted voting system. Early and late fusion are illustrated in figure 17-8.

Early and late fusion are two extremes, and there are design points that are 
hybrids of the two. In the context of neural networks, the line is often blurred. for 
example, if we implement a classifier that uses a joint representation of the two 
input modalities, then fusion happens as a part of the model itself.

Flatten and concatenate

Text Image

Flatten and concatenate

Text TextImage Image

RNN RNNCNN CNN

Fully
connected

Fully connected

Concatenated representation Coordinated representationJoint representation

Training
constraint

Fully
connected

Figure 17-7 Concatenated modalities (left), joint representation (middle), and 
coordinated representation (right)
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TRANSLATION

an important part of multimodal learning is the concept of finding mappings 
between multiple modalities. finding such mappings is equivalent to translating 
from one modality into another.

We have already seen examples of translating between modalities. The task of 
our image-captioning network in Chapter 16 was to translate from an image (one 
modality) into a textual description of that same image (a different modality). 
We did this by using a convolutional network to convert the image into an 
intermediate vector representation of the data. This was fed as input data to 
an autoregressive recurrent network, which generated a corresponding textual 
description.

Similarly, in Chapter 14, we built a natural language translation network that 
translated from french to English. It is not readily apparent that this network 
can be considered a multimodal network given that both the input and output 
are textual data. however, one could argue that the descriptions in different 
languages are two different views of the overall language-independent message 
that they are trying to convey. regardless of the strict definition, we observe that, 
conceptually, the language translation network was much related to the image- 
captioning network, which clearly is multimodal.

The two networks we just discussed are both generative in nature. That is, the 
output is generated by the network based on an internal representation. another 
class of models are example-based models. Such models map the current input 
example to a previously seen training example and simply retrieve the output 

Flatten and concatenate

Text Image

Weighted voting

Text Image

Classifier Classifier

Early fusion Late fusion

Classifier

Figure 17-8 Examples of early fusion (left) and late fusion (right) in the context of 
classification
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corresponding to that training example. There are also combination-based 
approaches, where the outputs of multiple training examples are combined to 
form a predicted output during inference.

ALIGNMENT

In multimodal learning, alignment refers to mapping subcomponents of two 
or more modalities to each other. for example, given an image and a textual 
description of that image, we align these two inputs to each other by mapping 
words or phrases from the textual description to regions or objects in the image.

One technique that can be used for alignment is attention. In our description of 
attention in Chapter 15, we described how it can be used by a translation network 
to focus on the right set of words when producing the output sentence. Similarly, 
in the image-captioning example in Chapter 16, we saw how it can be used to 
focus on specific areas of the image. We can find the alignment between the 
two modalities by analyzing the dynamically computed weights in the attention 
mechanism. In fact, these dynamically computed weights are referred to as the 
alignment vector. Note that these two examples are somewhat special in that 
they find the alignment between a source modality and a destination modality as 
the destination is being generated. That is, it is a combination of alignment and 
translation.

Baltrušaitis ahuja, and Morency (2017) distinguish between explicit alignment and 
implicit alignment. In the explicit case, the task at hand is to find the alignment 
between two data sources. In the implicit case, alignment is done as an early step 
to improve the result of a later task. for example, a classification network will do 
better if it is fed with multiple modalities of the same input data, but that assumes 
that the two modalities are first aligned so they truly represent two different 
views of the same object.

CO-LEARNING

The fifth and last topic in this taxonomy is co-learning. This is a class of 
techniques whereby one modality is used to aid the process of training a model 
on another modality. Co-learning can be particularly useful when we do not have 
a labeled (or have only a partly labeled) dataset for one modality and we can 
complement it with another dataset in a different modality, especially if the other 
dataset happens to be more extensively labeled. We limit ourselves to mentioning 
a couple of examples of how we can co-learn with multiple datasets.

The first example, introduced by Blum and Mitchell (1998), is co-training. Consider 
a classification problem where we have a dataset that consists of mostly 



ChaPTEr 17 MEDLEy Of aDDITIONaL TOPICS

464

unlabeled data, and each training example consists of two views in different 
modalities—for example, an image and a textual description. We now train two 
separate classifiers on the few labeled examples. One classifier uses the image 
as input data, and the other uses the textual description. We can now use these 
classifiers to classify some random unlabeled examples and add to the labeled 
part of the dataset. after doing this iteratively a number of times, we end up with 
a larger dataset that can be used to train a combined classifier that uses both 
modalities as inputs. Blum and Mitchell showed that this approach significantly 
reduced the classification error rate compared to training on only the initial 
labeled dataset or using only one of the modalities.

Our second example is to make use of transfer learning and map the 
representation of two different modalities into the same representation. frome 
and colleagues (2013) performed an experiment where they combined text and 
image data. They first pretrained a word2vec model on a text corpus, resulting in 
a set of word embeddings. They then pretrained an image classification network 
on the ImageNet dataset. finally, they removed the top softmax layer from the 
image classification network and trained it further for a new task, using transfer 
learning. This new task was to produce the same embedding as the word2vec 
model produced when presented with the textual ImageNet label. That is, 
given a labeled image of a cat, the word vector for cat was first produced using 
word2vec. This was then used as the target value when fine-tuning the pretrained 
image classifier, with the softmax layer removed. During inference, an image is 
presented to the trained network, which outputs a vector in the same space as 
the word embeddings. The prediction is simply the word closest to the resulting 
vector. One result of training the model in this way is that even when it predicts 
the wrong result, its result is often meaningful because other related words are 
close in vector space.

These two examples represent two different categories of multimodal co-learning 
problems. The first example requires training examples in which each instance 
has associated data in both modalities. That is, each training example has both an 
image and a textual description. Baltrušaitis, ahuja, and Morency (2017) refer to 
this as parallel data. The second example also uses both image and textual data 
but with two different datasets. This is an example of nonparallel data. Note that 
there is still one connection point that ties the two modalities together, namely, 
the textual labels associated with each image. Baltrušaitis ahuja, and Morency 
also describe examples with hybrid data. One such case is where we do not have 
a dataset with parallel data for the two modalities that we want to connect, but 
we do have datasets with parallel data that connect these two modalities to a 
third common modality. We can use this third modality to bridge between the two 
desired modalities.
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PrOGraMMING EXaMPLE: CLaSSIfICaTION WITh MuLTIMODaL 
INPuT DaTa

In this programming example, we demonstrate how to train a classifier, using two 
input modalities. We use the MNIST dataset but in addition to the image modality, 
we also create a textual modality. We start with initialization code and loading and 
standardizing the MNIST dataset in Code Snippet 17-7.

Code Snippet 17-7 Initialization Code and Loading/Standardizing the MNIST  
Dataset

import tensorflow as tf

from tensorflow import keras

from tensorflow.keras.utils import to_categorical

from tensorflow.keras.preprocessing.text import Tokenizer

from tensorflow.keras.preprocessing.text \

    import text_to_word_sequence

from tensorflow.keras.preprocessing.sequence \

    import pad_sequences

from tensorflow.keras.layers import Input

from tensorflow.keras.layers import Embedding

from tensorflow.keras.layers import LSTM

from tensorflow.keras.layers import Flatten

from tensorflow.keras.layers import Concatenate

from tensorflow.keras.layers import Dense

from tensorflow.keras.models import Model

import numpy as np

import matplotlib.pyplot as plt

import logging

tf.get_logger().setLevel(logging.ERROR)

EPOCHS = 20

MAX_WORDS = 8

EMBEDDING_WIDTH = 4

# Load training and test datasets.

mnist = keras.datasets.mnist
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Code Snippet 17-8 creates the second input modality, which is a textual 
representation of each input example. To not make it too easy for the network, this 
textual view of the data is not complete but gives only partial information about 
the digit. for each training and test example, we alternate between specifying that 
the digit is odd or even and specifying that it is a high or low number. The textual 
modality created in this code snippet does not fully define what digit it is but can 
be helpful when an image is ambiguous.

Code Snippet 17-8 function to Create a Textual Modality of the Training and Test 
Examples

(train_images, train_labels), (test_images,

                               test_labels) = mnist.load_data()

# Standardize the data.

mean = np.mean(train_images)

stddev = np.std(train_images)

train_images = (train_images - mean) / stddev

test_images = (test_images - mean) / stddev

# Function to create second modality.

def create_text(tokenizer, labels):
    text = []

    for i, label in enumerate(labels):

        if i % 2 == 0:

            if label < 5:

                text.append('lower half')

            else:

                text.append('upper half')

        else:

            if label % 2 == 0:

                text.append('even number')

            else:

                text.append('odd number')

    text = tokenizer.texts_to_sequences(text)

    text = pad_sequences(text)

    return text
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The image classification network is similar to the example in Chapter 5, “Toward 
DL: frameworks and Network Tweaks,” but with an additional subnetwork that 
processes the textual input. This subnetwork consists of an Embedding layer 
and an LSTM layer. The output of the LSTM layer is concatenated with the image 
input and fed to a fully connected layer. This layer is followed by the final fully 
connected softmax layer that produces the classification. The implementation is 
shown in Code Snippet 17-9.

Code Snippet 17-9 Classification Network with Two Input Modalities

# Create second modality for training and test set.

vocabulary = ['lower', 'upper', 'half', 'even', 'odd', 'number']

tokenizer = Tokenizer(num_words=MAX_WORDS)

tokenizer.fit_on_texts(vocabulary)

train_text = create_text(tokenizer, train_labels)

test_text = create_text(tokenizer, test_labels)

# Create model with functional API.

image_input = Input(shape=(28, 28))

text_input = Input(shape=(2, ))

# Declare layers.

embedding_layer = Embedding(output_dim=EMBEDDING_WIDTH,

                            input_dim = MAX_WORDS)

lstm_layer = LSTM(8)

flatten_layer = Flatten()

concat_layer = Concatenate()

dense_layer = Dense(25,activation='relu')

output_layer = Dense(10, activation='softmax')

# Connect layers.

embedding_output = embedding_layer(text_input)

lstm_output = lstm_layer(embedding_output)

flatten_output = flatten_layer(image_input)

concat_output = concat_layer([lstm_output, flatten_output])
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after training the network for 20 epochs, we arrive at a validation accuracy of 
97.2%. To put this into context, we modified the method that creates the textual 
modality to always state 'lower half'. another option would have been to 
remove the textual input modality altogether, but then the network would have 
fewer weights, so we figured that it would be fairer to keep the textual input but 
make it provide no additional information. The resulting validation accuracy was 
96.7%, which indicates that the additional textual information was beneficial.

To further illustrate the effect of using the two input modalities, we do an 
experiment in Code Snippet 17-10. We first show all the information about a 
given test example. It turns out to be the digit 7, and the textual description was 
'upper half'. We then use the network to make a prediction, given this image 
and textual description as input. We print out digits and predicted probabilities, 
sorted on the basis of the probabilities. as expected, the network correctly 
predicts the digit as a 7.

dense_output = dense_layer(concat_output)

outputs = output_layer(dense_output)

# Build and train model.

model = Model([image_input, text_input], outputs)

model.compile(loss='sparse_categorical_crossentropy',

                       optimizer='adam', metrics =['accuracy'])

model.summary()

history = model.fit([train_images, train_text], train_labels,

                   validation_data=([test_images, test_text],

                                     test_labels), epochs=EPOCHS,

                       batch_size=64, verbose=2, shuffle=True)

Code Snippet 17-10  Perform Experiments with the Trained Multimodal Network

# Print input modalities and output for one test example.

print(test_labels[0])

print(tokenizer.sequences_to_texts([test_text[0]]))

plt.figure(figsize=(1, 1))

plt.imshow(test_images[0], cmap=plt.get_cmap('gray'))

plt.show()
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as a next step, we do another prediction, but this time we change the textual 
input to indicate 'lower half'. Looking at the probabilities, we see that 
the probabilities for the high digits have decreased. The results were not fully 
consistent from run to run, but in many cases, the probabilities changed enough 
so the prediction from the network changed from a 7 to a 3. This makes it clear 
that the network has learned to take both the image and the textual description 
into account.

Multitask Learning
In the previous section, we saw that multimodal learning can involve a single 
network simultaneously working on multiple representations of the same data. 
a different concept, although similar sounding, is multitask learning, which 
involves training a single network to simultaneously solve multiple separate 
tasks. Multimodal learning and multitask learning are orthogonal to each other 
but can also be combined. That is, we can create a single network that works on 

# Predict test example.

y = model.predict([test_images[0:1], np.array(

    tokenizer.texts_to_sequences(['upper half']))])[0] #7

print('Predictions with correct input:')

for i in range(len(y)):

    index = y.argmax()

    print('Digit: %d,' %index, 'probability: %5.2e' %y[index])

    y[index] = 0

# Predict same test example but with modified textual description.

print('\nPredictions with incorrect input:')

y = model.predict([test_images[0:1], np.array(

    tokenizer.texts_to_sequences(['lower half']))])[0] #7

for i in range(len(y)):

    index = y.argmax()

    print('Digit: %d,' %index, 'probability: %5.2e' %y[index])

    y[index] = 0
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multiple modalities of the same data to solve multiple tasks simultaneously. This 
is demonstrated in the programming example later in this section.

Why TO IMPLEMENT MuLTITaSk LEarNING

Let us start with reasoning about the benefit of having a single network solve 
multiple tasks by considering why it works and why it is beneficial. We touched 
on this topic in Chapter 4, “fully Connected Networks applied to Multiclass 
Classification,” when we described how to build a network for multiclass 
classification for handwritten digits. One potential solution was to create a 
separate network for each digit. That is, instead of one multiclass classification 
network, we could have built ten different digit detection networks. Our reasoning 
at that point was that there are commonalities between recognizing different 
digits. We did not elaborate at the time but now take this reasoning a step further. 
Let us consider the three digits 3, 6, and 8. The lower part of each digit is rounded. 
It would be inefficient to have three separate “rounded lower part detectors” 
when we can achieve the same functionality by sharing a single implementation. 
apart from this inefficiency with respect to the total number of neurons, it also 
turns out that sharing these neurons forces them to generalize better. Instead 
of overfitting to detect just a single digit, the neurons are forced to learn more 
general concepts, like detecting a rounded lower part as just mentioned.

The same reasoning applies to multitask learning. as long as a set of tasks are 
somewhat related, we can see efficiency gains and less overfitting by training the 
network to solve these tasks simultaneously. for example, at the end of Chapter 8, 
we briefly mentioned the computer vision tasks detection and segmentation 
(also discussed in detail in appendix B). In addition to classifying what types of 
objects are in an image, these tasks involve drawing a bounding box or detecting 
individual pixels belonging to the classified object. It is easy to see that there are 
commonalities between these tasks. regardless whether the network is tasked 
with classifying an object as a dog or drawing a bounding box around the dog, it is 
first helpful for it to be able to detect typical dog features.

It is worth noting that there is a connection point between transfer learning and 
multitask learning. In Chapter 16, we demonstrated how a convolutional network 
pretrained for object classification could be reused in the context of image 
captioning. Multitask learning does something similar. The difference is that 
instead of first training it on one task and then reusing it for a different task, the 
network is simultaneously trained and reused for two or more tasks.
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hOW TO IMPLEMENT MuLTITaSk LEarNING

In the previous section, we reasoned about why multitask learning should work 
and be beneficial, but the discussion was abstract. We now make it more concrete 
by describing the details of how it is done. The trick is to build a network that has 
multiple sets of output units. These sets of output units do not need to be of the 
same type. for example, consider a network that is tasked with both classifying 
an object and drawing a bounding box. One way of building such a network is 
to have one softmax output unit for classification and four linear output units to 
represent the four corners of the bounding box. These different output units are 
often known as heads, and the shared part of the network is known as trunk. That 
is, multitask learning can be done using a multiheaded network, as illustrated in 
figure 17-9. Note that a head does not necessarily consist of only a single layer, 
but each head can be a multilayered subnetwork.

The introduction of multiple output units also implies introducing multiple loss 
functions. The selection of these loss functions is straightforward. We use the 
same types as for a single-headed network. for example, we use categorical 
cross-entropy for a softmax branch used for multiclass classification, whereas 
we use mean squared error for a linear branch used for regression. We combine 
these multiple loss functions into a single loss function by simply computing a 
weighted sum. This raises the question of what weights to use. a simple solution 
is to just treat them as any other hyperparameters that need to be tuned when 
training the network.

Hidden layer(s)

Input

Classifier Regression

Shared
trunk

Multiple
heads

Task A Task B

Figure 17-9 Two-headed network for multitask learning. One head performs a 
classification task, and the other head performs a regression task.
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OThEr aSPECTS aND VarIaTIONS ON ThE BaSIC IMPLEMENTaTION

In the previous section, we described a basic network for multitask learning. as 
always, there are many possible variations on the basic implementation. In this 
section, we mention a couple of them.

So far, we have implicitly assumed that we train the network to solve multiple 
tasks because we need to solve all those tasks. however, multitask learning can 
also be used to improve a network where the goal is to solve a single task. We 
described how training a network to solve multiple tasks forces the shared parts 
of the network to learn generalized solutions. That is, the additional task can 
act as a regularizer that reduces overfitting. The network will thereby do better 
on the test set for the main task. With this background, we can now revisit the 
auxiliary classifier used in GoogLeNet. In Chapter 8, we described it as a way to 
fight vanishing gradients. a different way to view the auxiliary classifier is that 
it encourages the network to learn features at different detail levels. This can 
be viewed as increased generalization resulting from multitask learning (the 
auxiliary classifier acts as a second head to learn a secondary task).

The way parameters are shared in the basic network architecture described in the 
previous section is known as hard parameter sharing. This simply means that the 
trunk of the network is fully shared between the multiple heads. another option 
is soft parameter sharing. In such a setting, each task has its own corresponding 
network. however, during training, the combined loss function encourages the 
weights in some layers to be similar between the models. That is, the weights of 
the different networks will act as if they are shared in cases where it is beneficial, 
but they still have the freedom to be different from each other if that is more 
beneficial. That is, the weights are only softly shared between models.

karpathy (2019b) points out that multitask learning introduces some additional 
interesting trade-offs, especially in a team project setting. as previously 
described, an obvious and simple regularization technique is early stopping. That 
is, simply detect how many epochs result in the best performance on the test set 
and stop training at that point. This is trivial in the uni-task learning case, but it is 
not as straightforward in a multitask learning case. Consider the learning curves 
in figure 17-10. Do you stop training when task a, task B, or task C performs 
the best? This becomes particularly contentious when different people are 
responsible for different tasks but are sharing the trunk of the network due to 
resource constraints. a similar question is who gets to pick the weights for the 
joint loss function. The weights are likely to end up being different depending on if 
the owner of task a, task B, or task C gets to decide.
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We now move on to a programming example that combines multimodal and 
multitask learning. If you want to learn more about multitask learning, ruder 
(2017) and Crawshaw (2020) have written survey papers on the topic.

PrOGraMMING EXaMPLE: MuLTICLaSS CLaSSIfICaTION aND 
QuESTION aNSWErING WITh a SINGLE NETWOrk

In this programming example, we extend the multimodal network from the last 
programming example with an additional head to build a network that does 
multitask learning using multimodal inputs.

We teach the network to simultaneously do multiclass classification (identify 
the handwritten digit) and perform a simple question-answering task. The 
question-answering task is to provide a yes/no answer to a question about the 
digit in the image. The textual input will look similar to the textual input in the 
last programming example ('upper half', 'lower half', 'odd number', 
'even number'). however, instead of correctly describing the digit, the text 
is chosen randomly and represents a question. The network is then tasked with 
classifying the image into one of ten classes as well as with determining whether 
the answer to the question is yes or no (is the statement true or false). as always, 
we start with initialization code and loading the dataset in Code Snippet 17-11.

Figure 17-10 Learning curves for three different tasks in a multitask learning 
scenario
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import tensorflow as tf

from tensorflow import keras

from tensorflow.keras.utils import to_categorical

from tensorflow.keras.preprocessing.text import Tokenizer

from tensorflow.keras.preprocessing.text \

    import text_to_word_sequence

from tensorflow.keras.preprocessing.sequence \

    import pad_sequences

from tensorflow.keras.layers import Input

from tensorflow.keras.layers import Embedding

from tensorflow.keras.layers import LSTM

from tensorflow.keras.layers import Flatten

from tensorflow.keras.layers import Concatenate

from tensorflow.keras.layers import Dense

from tensorflow.keras.models import Model

import numpy as np

import logging

tf.get_logger().setLevel(logging.ERROR)

EPOCHS = 20

MAX_WORDS = 8

EMBEDDING_WIDTH = 4

# Load training and test datasets.

mnist = keras.datasets.mnist

(train_images, train_labels), (test_images,

                               test_labels) = mnist.load_data()

# Standardize the data.

mean = np.mean(train_images)

stddev = np.std(train_images)

train_images = (train_images - mean) / stddev

test_images = (test_images - mean) / stddev 

Code Snippet 17-11 Initialization Code for the Multitask Multimodal Network 
Example
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The next step is to extend the MNIST dataset with questions and answers. This 
is done in Code Snippet 17-12. The code alternates between the four questions/
statements for each training and test example. It then determines whether the 
answer is yes or no based on the ground truth label.

Code Snippet 17-12 Method used to Extend the Dataset with Questions and 
answers 

# Function to create question and answer text.

def create_question_answer(tokenizer, labels):
    text = []

    answers = np.zeros(len(labels))

    for i, label in enumerate(labels):

        question_num = i % 4

        if question_num == 0:

            text.append('lower half')

            if label < 5:

                answers[i] = 1.0

        elif question_num == 1:

            text.append('upper half')

            if label >= 5:

                answers[i] = 1.0

        elif question_num == 2:

            text.append('even number')

            if label % 2 == 0:

                answers[i] = 1.0

        elif question_num == 3:

            text.append('odd number')

            if label % 2 == 1:

                answers[i] = 1.0

    text = tokenizer.texts_to_sequences(text)

    text = pad_sequences(text)

    return text, answers

# Create second modality for training and test set.

vocabulary = ['lower', 'upper', 'half', 'even', 'odd', 'number']

tokenizer = Tokenizer(num_words=MAX_WORDS)
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The next step is to create the network. This is shown in Code Snippet 17-13. 
Most of the network is identical to the programming example for the multimodal 
network. The key difference is that in parallel with the ten-unit output layer for 
multiclass classification, there is a one-unit output layer for binary classification. 
Given that there are two separate outputs, we also need to supply two separate 
loss functions. In addition, we supply weights for these two loss functions to 
indicate how to weigh the two into a single loss function for training the network. 
The weights should be treated like any other hyperparameter. a reasonable 
starting point is to have the same weight for both losses, so we use 50/50. finally, 
when calling the fit method, we must provide ground truth for both heads of the 
model.

Code Snippet 17-13 Multitask Network with Multimodal Inputs

tokenizer.fit_on_texts(vocabulary)

train_text, train_answers = create_question_answer(tokenizer,

                                                   train_labels)

test_text, test_answers = create_question_answer(tokenizer,

                                                 test_labels)

# Create model with functional API.

image_input = Input(shape=(28, 28))

text_input = Input(shape=(2, ))

# Declare layers.

embedding_layer = Embedding(output_dim=EMBEDDING_WIDTH,

                            input_dim = MAX_WORDS)

lstm_layer = LSTM(8)

flatten_layer = Flatten()

concat_layer = Concatenate()

dense_layer = Dense(25,activation='relu')

class_output_layer = Dense(10, activation='softmax')

answer_output_layer = Dense(1, activation='sigmoid')

# Connect layers.

embedding_output = embedding_layer(text_input)

lstm_output = lstm_layer(embedding_output)
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The training process will now report one metric for each head. With our 50/50 
weights for the two loss functions, the network achieves a 95% validation 
accuracy on the classification task and a 91% accuracy on the question-answering 
task. If you are interested, you can change the loss function weights in favor of the 
question-answering task and see if you can thereby improve its accuracy.

Process for Tuning a Network
In the programming examples throughout this book, we have shown the results 
from various experiments with different network configurations, but we have 
not tried to formalize the methodology for training a network. In this section, we 
briefly outline a set of steps to follow when training your network. It is loosely 
inspired by an online blog post, which we recommend to anybody wanting a more 
extensive description (karpathy, 2019a).

first, you need to ensure that you have high-quality data. Our programming 
examples have included basic preprocessing of the data, but in general, it is 

flatten_output = flatten_layer(image_input)

concat_output = concat_layer([lstm_output, flatten_output])

dense_output = dense_layer(concat_output)

class_outputs = class_output_layer(dense_output)

answer_outputs = answer_output_layer(dense_output)

# Build and train model.

model = Model([image_input, text_input], [class_outputs,

                                          answer_outputs])

model.compile(loss=['sparse_categorical_crossentropy', 

                    'binary_crossentropy'], optimizer='adam',

                    metrics=['accuracy'],

                    loss_weights = [0.5, 0.5])

model.summary()

history = model.fit([train_images, train_text], 

                    [train_labels, train_answers],

                    validation_data=([test_images, test_text], 

                    [test_labels, test_answers]), epochs=EPOCHS,

                    batch_size=64, verbose=2, shuffle=True)
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beneficial to spend more time and effort on cleaning and sanity checking the data. 
In particular, it is often useful to visualize the data as scatter plots, histograms, 
or other types of charts to see if there are any obvious patterns or broken data 
points.

a second step is to create a naïve model that will serve as a baseline to compare 
against. Without such a model, it is hard to tell if your multilayer hybrid CNN/
rNN network with dropout and attention is doing anything good and is worth the 
complexity. your naïve model should be simple enough that you can convince 
yourself that the model implementation itself does not contain bugs. This will also 
help you ensure that your data preprocessing steps work as expected and that the 
data is properly presented to the model.

Now you are ready to build your DL model, but even at this step, you should start 
small. Create a tiny subset of your training dataset and create a fairly simple 
model that you think should be able to memorize the dataset. as an example, 
when we built our sequence-to-sequence network for language translation, we 
started with a dataset of just four sentences, each containing three to four words. 
Our initial model failed to memorize these sentences, which was caused by bugs 
in the model implementation as opposed to the model being too small or simple. 
Obviously, failure to learn a small dataset does not need to be caused by bugs 
in the model; it can also be that it is the wrong type of model or that you need to 
adjust other hyperparameters such as the optimizer type, learning rate, or weight 
initialization scheme. If you cannot get your model to memorize a tiny subset of 
your actual dataset, then there is a low probability that increasing the dataset will 
help. In addition, staying with a tiny dataset at this point will allow you to do rapid 
prototyping without long iteration times for training.

Once you have built a model that can memorize your tiny subset of the training 
dataset, you can increase the dataset size to something more challenging. 
Chances are that you will now run into issues with model capacity (i.e., you need 
a larger or more complex model). at this point, it is time to add layers or increase 
the size of the layers. While doing so, make sure not only to look at the training 
error but also to keep an eye on the test error. If the training error is decreasing 

for the record, obviously, we did not start with a four-sentence dataset. Just 
like everybody else, we were optimistic. We threw a real dataset at the model 
but had to gradually strip down both the model and the dataset to the very 
basics to find the bugs that prevented it from learning.
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but the test error is flat, then it is an indication that the network fails at 
generalizing and you should employ various regularization techniques. Start with 
the standard approaches, such as dropout and L2 regularization. If it is simple, 
especially when working with images, consider increasing your dataset size using 
data augmentation.

If you see your test error decreasing or your training error increasing, it is an 
indication that your regularization techniques work and that you have gotten 
overfitting under control. at that point, you can increase the size of the model 
again and see if that further reduces the error. It is often the case that you will 
need to go through multiple iterations of regularization and model size increases 
before you arrive at a model that is good enough for your intended use case.

at any point during this process, you can also experiment with different initial 
learning rates as well as different types of optimizers, such as adam, adaGrad, or 
rMSProp.

figure 17-11 summarizes this tuning process. however, tuning a deep neural 
network is often referred to as an art more than a science, so the flow chart 
should be considered only a starting point. To do all of the tuning tasks, you need 
a fair amount of persistence and must be willing to experiment with different 
network architectures and parameters. In this process, it is invaluable to have a 
fast computing platform that can do rapid iterations so you do not have to wait 
overnight for results.

finally, if you consider the process we described, it becomes clear that your 
training process has been heavily influenced not only by your training dataset but 
also by your test dataset. for all of these iterations, you have been guided by the 
model performance on the test dataset while tuning the hyperparameters. This 
applies even if you do not do the work iteratively but just run a large number of 
different configurations and pick the best one. In Chapter 5, we described two 
solutions to this issue. The first solution is to split your dataset into three subsets: 
training set, validation set, and test set. During the training process, you use only 
the training set and validation set. Once you are done iterating and have a trained 
model, you do a final evaluation of the model on the test set, which will now be 
your actual measurement of how well the model generalized to previously unseen 
data. The second solution is a technique known as cross-validation. It avoids 
splitting the dataset into three different parts, but at the expense of additional 
computations.
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Figure 17-11 Process for tuning a network
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The process we just described is based on the assumption that you are building 
your network from scratch. as stated in Chapter 8, if your problem type is well 
known, a pretrained model can be a very attractive option. Similarly, even if 
there does not exist a pretrained model for your exact problem type, you can 
still consider leveraging a pretrained model in a transfer-learning setting. In the 
tuning process, you would simply use the pretrained model as a building block 
as you experiment with different types of models. Just remember that it is often 
useful to freeze the pretrained weights during the first few epochs of training to 
ensure that the pretrained weights are not ruined in the process of training the 
randomly initialized weights in the layers you added to the pretrained model. 
you can later unfreeze the weights and do end-to-end fine-tuning of the full 
model.

WhEN TO COLLECT MOrE TraINING DaTa

a key question is when to collect more training data. This is often an expensive 
process. Therefore, it is important to not do it unless it is absolutely necessary. 
a good way of determining whether additional data will help is to experiment 
with existing data. Ng (2018) suggests plotting learning curves to determine 
whether the problem is truly lack of data or is caused by a model not suitable 
for the task at hand. Instead of training the model on the entire training dataset, 
we artificially reduce the size to a very small set of training examples. We then 
evaluate the model on the full test set. Then we increase the training dataset 
slightly, by adding back some of the training examples we previously removed, 
and again evaluate the model on the full test set. By doing this, we can see 
how the training and test error change as a function of training set size. This is 
illustrated in figure 17-12.

In the chart to the left, the training error is small when the training set is small. 
That is, the model manages to memorize the training examples. however, as 
the training dataset increases, the model’s performance worsens. further, the 
test error ends up similar to the training error as we add more training data. In 
this case, it is unlikely that adding more training data will help. More likely, the 
selected model is not a good match for the problem.

In the chart to the right, the training error is still low as the training set size is 
increased. further, the test error is still decreasing. This indicates that there is a 
good chance that increasing the size of the training set will result in an improved 
model.
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Neural architecture Search
as seen in the previous section, it is nontrivial to arrive at the right network 
architecture and the right set of hyperparameters for the training process. In 
Chapter 5, we briefly discussed how to automate the hyperparameter tuning 
process using exhaustive or random grid search. a related technique is to 
automate the process of exploring different network architectures, a field known 
as neural architecture search (NaS).

kEy COMPONENTS Of NEuraL arChITECTurE SEarCh

as the name implies, NaS treats the process of arriving at a feasible network 
architecture as a search problem. In a survey paper, Elsken, Metzen, and hutter 
(2019) describe how this search problem can be divided into three parts: search 
space, search strategy, and evaluation strategy. The roles these three elements play 
in the NaS process are illustrated in figure 17-13.

We first need to define an overall search space, or solution space. We then apply 
a search strategy to select a candidate solution, or a set of solutions, from this 
search space. We evaluate these candidates using an evaluation strategy. We 
repeatedly employ the search strategy and evaluation strategy until we find an 
acceptable solution. More details of each step in this process are found in the next 
few sections.

Figure 17-12 Learning curves. Left: The model does not do well on the existing training 
data. It is unlikely that adding more training data will help. right: The model does well on 
the existing training data, but there is a big gap between training and test errors. The test 
error has not flattened out, so adding more training data can help.
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SEARCH SPACE

a starting point is to define the search space. a first thought might be to not 
restrict it at all and to enable the search algorithm to find the best solution. 
Thinking more about it, adding some restrictions is necessary in a practical 
implementation. for example, if our chosen DL framework is Tensorflow using 
the keras aPI, then a reasonable restriction is that the defined model should be 
a valid keras model. Similarly, assuming a well-defined problem with an existing 
dataset, restricting the search space to a model that is compatible with the format 
of this dataset is also a reasonable assumption. That is, if we want to find a model 
that can do image classification for the CIfar-10 dataset, then it is reasonable to 

Define search space

START

DONE

Evaluate candidate(s)

Acceptable
solution?

NO

YES

Apply search strategy
to pick candidate

solution(s)

Figure 17-13 Process for neural architectural search
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restrict the search space to models that can accept images of resolution 32×32×3 
on its input and indicate ten probabilities as outputs. adding a size restriction to 
the model also makes intuitive sense.

Most of the restrictions we mentioned should be noncontroversial, but it is 
common to apply additional restrictions as well, with the need to strike a balance 
between making use of prior knowledge and finding new architectures. One 
option is to allow only sequential architectures, where we stack layers on top 
of each other. This restricts the models to what we can build with the keras 
Sequential aPI. This makes for an easy implementation but also significantly 
restricts the types of models that can be built.

We can loosen this restriction by allowing skip connections. We know that this has 
been beneficial for image classification. One challenge with skip connections is 
how to combine them with the output of the skipped layer and still form a valid 
input to the next layer. This is no different from our initial restriction that the 
model needs to be a valid keras model, but in practice, we must figure out the 
details of ensuring that the combination works.

another aspect is what building blocks to provide when coming up with the 
solution space. for example, in Chapter 8, we described the inception module 
(from GoogLeNet), which has shown to be useful in image classification. One 
option is to provide such handcrafted modules as building blocks to the search 
algorithm. This is not necessarily a restriction in the search space but does 
introduce human bias with respect to which solutions are more likely to be 
evaluated.

SEARCH STRATEGY

Once the search space is defined, a next step is to settle on a search algorithm 
to explore this solution space. Search algorithms is a huge topic, and we 
make no attempt at fully covering it. Instead, we describe three different 
algorithms of increasing complexity to give just a taste of some solutions that 
can be used.

Pure random search simply means that we repeatedly randomly select a 
solution from the solution space and determine if it is better than the best-known 
solution. This is done until we have found a solution that satisfies our needs. 
This algorithm is the same as the random grid search algorithm described 
in the context of hyperparameter tuning in Chapter 5, where the defined grid 
represents the search space. This algorithm is a global search algorithm, and in 
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theory, it will converge to the best solution if run for sufficiently long. In practice, 
the size of the search space combined with the cost of evaluating models 
prevents this algorithm from exploring even a small fraction of the search space. 
Therefore, this algorithm in isolation is not suitable for NaS, but it can be used 
as a first step to find a solution that can be used as a starting point for a local 
search algorithm.

Hill climbing is a local search algorithm, which iteratively refines a solution by 
exploring models that are similar to the currently best-known model. Given a 
model, we modify one parameter slightly in one direction and evaluate whether 
the modified model is better than the current model. If so, this is declared as 
the new best-known model, and we start a new iteration. If the new model is 
worse than the best-known model, we drop it and modify the parameter in the 
other direction. If that still does not improve the model, we move on to a different 
parameter. There are various variations on hill climbing. for example, in steepest 
ascent hill climbing, all neighboring solutions are first evaluated, and then the best 
out of these explored models is declared as the best-known model. In the context 
of NaS, modifying a parameter can involve modifying the size or type of a layer, 
adding a layer, removing a layer, and so on. a drawback of hill climbing is that it 
is a local search algorithm. Consequently, it is sensitive to what model is selected 
as a starting point, and the algorithm can get stuck in a local optimum. One way 
to partially address that issue is to do hill climbing multiple times from different 
starting points, also known as random restart hill climbing.

a third option is to use an evolutionary algorithm. Such algorithms are inspired 
by biological evolution whereby individuals of a population reproduce into new 
individuals, and the fittest individuals survive to the next iteration. That is, instead 
of refining a single model, as in hill climbing, we maintain a set (population) 
of models (individuals). We select well-performing models (parents) from this 
population and combine them to create new models (children), with the hope 
that the combination of two models leads to an even better model. Evolutionary 
algorithms also apply random changes (mutations) to the individuals, which 
results in exploring neighboring models similarly to what is done in hill climbing. 
a key issue is how to combine two individuals in a meaningful way. for the 
evolutional algorithm to work well, it is important that the new individual 
maintains (inherits) properties from its parents.

The behaviors of these three search algorithms are illustrated in figure 17-14. 
The assumed problem is image classification. for illustration purposes, we 
assume a severely constrained search space. Each model consists of a number 
of convolutional layers followed by a number of fully connected layers. all 
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parameters are fixed except for the number of convolutional and fully connected 
layers. That is, the search space is two-dimensional, which enables us to plot it. 
The best possible solution is shown as a green rectangle in each chart, and the 
circles represent candidates selected by the different search strategies. The color 
coding of the circles indicates whether the candidate is far away (red), somewhat 
close (yellow), or close (green) to the optimal solution.

In the case of uniform random search, the candidates are picked at random 
without making use of information gained from previous candidates. In the hill 
climbing case, the algorithm identifies a parameter and direction that lead to a 
better solution and selects that as the next candidate. It thereby gradually moves 
closer and closer to the best solution, but there is a risk that it gets stuck in a 
local minimum.

The evolutionary algorithm combines two parent solutions by using a crossover 
operation (indicated by C on the arrows). In our case, we simply assume that 
the crossover operation takes one parameter from each parent. We start with a 
population of candidate solutions 1a, 1b, 1c, and 1d. We combine the two parents 
1a and 1b, using the crossover operation, and arrive at 2a. Note that 2a is not 
strictly a mix of the two parents in the figure because we also randomly apply 
a mutation (indicated by M on the arrow) that modifies one of the parameters 
slightly. By chance, this moves 2a slightly closer to the best solution. In parallel, 
parents 1c and 1d are combined and result in the child 2b. The figure shows only 
these two individuals from generation 2, but in reality, we would generate more 
individuals and keep the better performing ones (natural selection). We then do 
another iteration in which parents 2a and 2b are combined into solution 3, which 
is close to the best possible solution. again, in reality, we would generate multiple 
individuals in the third generation as well to keep the population size constant.

1

1 2

3

4 5

23

4

6

Convolutional layers

Fu
lly

 c
on

ne
ct

ed
 la

ye
rs

Fu
lly

 c
on

ne
ct

ed
 la

ye
rs

Fu
lly

 c
on

ne
ct

ed
 la

ye
rs

Best

Convolutional layers

Best

Convolutional layers

Best

6 7

8

C

C

CC

C
C

M

Hill climbingUniform random search Evolutionary algorithm

9

5

9

7 8

2a 3

1c

2b 1d

1a

1b

Figure 17-14 Behaviors of three different search algorithms: uniform random 
search (left), hill climbing (middle), evolutionary search algorithm (right), where C 
represents cross-over and M represents mutation
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In the example, the crossover operation enables the evolutionary algorithm 
to converge faster than the hill climbing algorithm. however, the evolutionary 
algorithm can also get stuck in a local minimum, just like hill climbing. This might 
all sound very abstract at this point, but we soon make it more concrete with a 
programming example implementing these three algorithms.

as previously mentioned, the three algorithms represent just a small subset of 
available search algorithms. One common theme among the three is that none 
of them requires a gradient. another option is to define the models in a way that 
a gradient can be computed between multiple models, and then use gradient 
descent to search for the best model. Other approaches worth mentioning are 
reinforcement learning and Bayesian optimization. More details and references to 
how those and other algorithms have been applied to NaS can be found in the 
survey paper by Elsken, Metzen, and hutter (2019). a different survey paper by 
ren and colleagues (2020) is another resource to consult.

EVALUATION STRATEGY

The third step in the NaS process is to evaluate the candidate models during the 
search step. Note that the actual evaluation is performed as a step in the search 
algorithms we just described, but the way in which that is done is a separate topic. 
Ideally, we would want to fully train and evaluate each model for the same amount 
of time that we would normally train the final model in a production setting. This 
is often not feasible, given that fully training the final model might take multiple 
days. There is a direct trade-off between how much time we spend on training the 
candidate solutions and the number of solutions we have time to evaluate. It is often 
beneficial to reduce the amount of time spent on training each candidate solution 
and thereby enable the search algorithm to evaluate more solutions.

In their survey paper, Elsken, Metzen, and hutter (2019) describe a number of 
ways to reduce time spent on training the candidate models. We list some of the 
simpler ones here:

• Train for a reduced number of epochs.

• Train with a reduced dataset.

• Downscale the model.

• Extrapolate the learning curve to take the trend into account.

• Inherit weights from the previous iteration instead of training the model 
from scratch. This assumes that the models are sufficiently similar between 
iterations, so it is feasible to transfer weights from one model to the next.
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for more details about the these approaches as well as additional techniques, we 
encourage interested readers to follow up on references in the survey by Elsken, 
Metzen, and hutter.

PrOGraMMING EXaMPLE: SEarChING fOr aN arChITECTurE fOr 
CIfar-10 CLaSSIfICaTION

In this programming example, we explore NaS to find a suitable architecture 
for CIfar-10 classification. That is, we try to automatically arrive at a good 
architecture instead of hand-engineering it as we did in Chapter 7, “Convolutional 
Neural Networks applied to Image Classification.” We make no attempt at creating 
the most advanced NaS algorithm out there but focus on illustrating the concept 
by implementing three different search algorithms from scratch. The initial code 
is the same, regardless of what search algorithm is used. as always, we start 
with initialization code and loading the dataset in Code Snippet 17-14. We define 
some variables that are part of defining the search space, such as what types of 
layer can be used and what kind of parameters and values are valid for each type 
of layer.

Code Snippet 17-14 Initialization Code and Loading the Dataset

import tensorflow as tf

from tensorflow import keras

from tensorflow.keras.utils import to_categorical

from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import Lambda

from tensorflow.keras.layers import Dense

from tensorflow.keras.layers import Flatten

from tensorflow.keras.layers import Reshape

from tensorflow.keras.layers import Conv2D

from tensorflow.keras.layers import Dropout

from tensorflow.keras.layers import MaxPooling2D

import numpy as np

import logging

import copy

import random

tf.get_logger().setLevel(logging.ERROR)
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MAX_MODEL_SIZE = 500000

CANDIDATE_EVALUATIONS = 500

EVAL_EPOCHS = 3

FINAL_EPOCHS = 20

layer_types = ['DENSE', 'CONV2D', 'MAXPOOL2D']

param_values = dict([('size', [16, 64, 256, 1024, 4096]), 

                ('activation', ['relu', 'tanh', 'elu']),

                ('kernel_size', [(1, 1), (2, 2), (3, 3), (4, 4)]),

                ('stride', [(1, 1), (2, 2), (3, 3), (4, 4)]),

                ('dropout', [0.0, 0.4, 0.7, 0.9])])

layer_params = dict([('DENSE', ['size', 'activation', 'dropout']),

                     ('CONV2D', ['size', 'activation',

                                 'kernel_size', 'stride',

                                 'dropout']),

                     ('MAXPOOL2D', ['kernel_size', 'stride',

                                    'dropout'])])

# Load dataset.

cifar_dataset = keras.datasets.cifar10

(train_images, train_labels), (test_images,

                    test_labels) = cifar_dataset.load_data()

# Standardize dataset.

mean = np.mean(train_images)

stddev = np.std(train_images)

train_images = (train_images - mean) / stddev

test_images = (test_images - mean) / stddev 

# Change labels to one-hot.

train_labels = to_categorical(train_labels,

                              num_classes=10)

test_labels = to_categorical(test_labels,

                             num_classes=10)
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The next step is to build some infrastructure for automatically generating models. 
To keep things simple, we impose significant restrictions on the search space. 
To start with, we allow only sequential models. In addition, given our knowledge 
of the application (image classification), we impose a rigid structure on the 
network. We view the network as a combination of a bottom subnetwork and a top 
subnetwork. The bottom part consists of a combination of convolutional and max-
pooling layers, and the top part consists of fully connected layers. In addition, we 
allow dropout layers after any layer, and we also add a flatten layer between the 
bottom and the top to ensure that we end up with a valid Tensorflow model.

The methods in Code Snippet 17-15 are used to generate a random model within 
this constrained search space. There is also a method that computes the size 
of the resulting model in terms of the number of trainable parameters. Note 
that these methods do not have anything to do with Tensorflow but is our own 
representation of a network before invoking the DL framework.

Code Snippet 17-15 Methods to Generate a Network with random Parameters 
Within the Defined Search Space

# Methods to create a model definition.

def generate_random_layer(layer_type):

    layer = {}

    layer['layer_type'] = layer_type

    params = layer_params[layer_type]

    for param in params:

        values = param_values[param]

        layer[param] = values[np.random.randint(0, len(values))]

    return layer

def generate_model_definition():

    layer_count = np.random.randint(2, 9)

    non_dense_count = np.random.randint(1, layer_count)

    layers = []

    for i in range(layer_count):

        if i < non_dense_count:

            layer_type = layer_types[np.random.randint(1, 3)]

            layer = generate_random_layer(layer_type)

        else:

            layer = generate_random_layer('DENSE')
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The next set of methods takes the model definition created in the previous code 
snippet and creates and evaluates a corresponding Tensorflow model for a 
small number of epochs. This is all shown in Code Snippet 17-16. The method 
that evaluates the model imposes a size restriction. If the requested model has 
too many parameters, the method simply returns an accuracy of 0.0. The search 

        layers.append(layer)

    return layers

def compute_weight_count(layers):

    last_shape = (32, 32, 3)

    total_weights = 0

    for layer in layers:

        layer_type = layer['layer_type']

        if layer_type == 'DENSE':

            size = layer['size']

            weights = size * (np.prod(last_shape) + 1)

            last_shape = (layer['size'])

        else:

            stride = layer['stride']

            if layer_type == 'CONV2D':

                size = layer['size']

                kernel_size = layer['kernel_size']

                weights = size * ((np.prod(kernel_size) *

                                   last_shape[2]) + 1)

                last_shape = (np.ceil(last_shape[0]/stride[0]),

                              np.ceil(last_shape[1]/stride[1]),

                              size)

            elif layer_type == 'MAXPOOL2D':

                weights = 0

                last_shape = (np.ceil(last_shape[0]/stride[0]),

                              np.ceil(last_shape[1]/stride[1]),

                              last_shape[2])

        total_weights += weights

    total_weights += ((np.prod(last_shape) + 1) * 10)

    return total_weights
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algorithm that invokes the method will need to check for this and, if needed, 
generate a smaller model.

Code Snippet 17-16 Translate a Model Definition into a Tensorflow Model and 
Evaluate That Model for a Small Number of Epochs

# Methods to create and evaluate model based on model definition.

def add_layer(model, params, prior_type):
    layer_type = params['layer_type']

    if layer_type == 'DENSE':

        if prior_type != 'DENSE':

            model.add(Flatten())

        size = params['size']

        act = params['activation']

        model.add(Dense(size, activation=act))

    elif layer_type == 'CONV2D':

        size = params['size']

        act = params['activation']

        kernel_size = params['kernel_size']

        stride = params['stride']

        model.add(Conv2D(size, kernel_size, activation=act,

                         strides=stride, padding='same'))

    elif layer_type == 'MAXPOOL2D':

        kernel_size = params['kernel_size']

        stride = params['stride']

        model.add(MaxPooling2D(pool_size=kernel_size,

                               strides=stride, padding='same'))

    dropout = params['dropout']

    if(dropout > 0.0):

        model.add(Dropout(dropout))

def create_model(layers):
    tf.keras.backend.clear_session()

    model = Sequential()

    model.add(Lambda(lambda x: x, input_shape=(32, 32, 3)))

    prev_layer = 'LAMBDA' # Dummy layer to set input_shape

    prev_size = 0
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We now have all the building blocks to implement our first and simplest search 
algorithm, namely, pure random search. This is shown in Code Snippet 17-17. 
It consists of an outer for loop that runs for a fixed number of iterations. Each 
iteration randomly generates and evaluates a model. There is an inner loop to 
handle the case when the generated model is too big. The inner loop simply 
repeatedly generates random models until one is generated that adheres to the 
size restriction.

Code Snippet 17-17 Implementation of the Pure random Search algorithm

    for layer in layers:

        add_layer(model, layer, prev_layer)

        prev_layer = layer['layer_type']

    model.add(Dense(10, activation='softmax'))

    model.compile(loss='categorical_crossentropy',

                  optimizer='adam', metrics=['accuracy'])

    return model

def create_and_evaluate_model(model_definition):
    weight_count = compute_weight_count(model_definition)

    if weight_count > MAX_MODEL_SIZE:

        return 0.0

    model = create_model(model_definition)

    history = model.fit(train_images, train_labels,

                        validation_data=(test_images, test_labels),

                        epochs=EVAL_EPOCHS, batch_size=64,

                        verbose=2, shuffle=False)

    acc = history.history['val_accuracy'][-1]

    print('Size: ', weight_count)

    print('Accuracy: %5.2f' %acc)

    return acc

# Pure random search.

np.random.seed(7)

val_accuracy = 0.0



ChaPTEr 17 MEDLEy Of aDDITIONaL TOPICS

494

as the program runs, you will see how 500 different models are evaluated for 
three epochs each and their accuracy is printed along with the accuracy of the 
best model so far. In our experiment, the evaluation accuracy for the best model 
ended up being 59%.

as already described, randomly generating models without making any use of the 
observations of the behavior of past models is an inefficient way of trying to find 
the best solution. The next step is to implement the hill climbing algorithm. This 
is done in Code Snippet 17-18. We create a helper method that randomly adjusts 
one of the parameters slightly to move an existing model into a neighboring 
model in the allowed search space. The first for loop determines the index of the 
boundary between the bottom (non-dense) and top (dense) layers. The next step 
is to determine whether to increase or decrease the capacity of the model. This is 
followed by determining whether to add/remove a layer or tweak parameters of 
an existing layer. Much of the logic is there to ensure that the modified model still 
stays within the boundaries of what is a legal model.

The actual hill climbing algorithm is implemented at the bottom of the code 
snippet. It assumes an initial model and gradually tweaks it in the direction that 
improves prediction accuracy. The implemented version of the algorithm is known 
as stochastic hill climbing. a parameter is modified at random, and if the resulting 
model is better than the previously best-known model, the change is kept. 
Otherwise, it is reverted, and another tweak is tried. The given implementation 
assumes that the hill climbing algorithm is run after doing random search, so 
there is a promising model to start from.

for i in range(CANDIDATE_EVALUATIONS):

    valid_model = False

    while(valid_model == False):

        model_definition = generate_model_definition()

        acc = create_and_evaluate_model(model_definition)

        if acc > 0.0:

            valid_model = True

    if acc > val_accuracy:

        best_model = model_definition

        val_accuracy = acc

    print('Random search, best accuracy: %5.2f' %val_accuracy)
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Code Snippet 17-18  hill Climbing algorithm

# Helper method for hill climbing and evolutionary algorithm.

def tweak_model(model_definition):
    layer_num = np.random.randint(0, len(model_definition))

    last_layer = len(model_definition) - 1

    for first_dense, layer in enumerate(model_definition):

        if layer['layer_type'] == 'DENSE':

            break

    if np.random.randint(0, 2) == 1:

        delta = 1

    else:

        delta = -1

    if np.random.randint(0, 2) == 1:

        # Add/remove layer.

        if len(model_definition) < 3:

            delta = 1 # Layer removal not allowed

        if delta == -1:

            # Remove layer.

            if layer_num == 0 and first_dense == 1:

                layer_num += 1 # Require >= 1 non-dense layer.

            if layer_num == first_dense and layer_num == last_layer:

                layer_num -= 1 # Require >= 1 dense layer.

            del model_definition[layer_num]

        else:

            # Add layer.

            if layer_num < first_dense:

                layer_type = layer_types[np.random.randint(1, 3)]

            else:

                layer_type = 'DENSE'

            layer = generate_random_layer(layer_type)

            model_definition.insert(layer_num, layer)

    else:

        # Tweak parameter.

        layer = model_definition[layer_num]

        layer_type = layer['layer_type']
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The hill climbing algorithm takes the best model from the random search 
experiment and gradually refines it. after evaluating 500 different models, our 
evaluation accuracy was 74%.

for both the random search algorithm and the hill climbing algorithm, our 
evaluation strategy was to evaluate each solution for only three epochs. We made 
the assumption that the resulting validation error would be a good indicator of 
how well the model would perform after more training. To get a more accurate 
evaluation of how well the best model actually performs, Code Snippet 17-19 

        params = layer_params[layer_type]

        param = params[np.random.randint(0, len(params))]

        current_val = layer[param]

        values = param_values[param]

        index = values.index(current_val)

        max_index = len(values)

        new_val = values[(index + delta) % max_index]

        layer[param] = new_val

# Hill climbing, starting from best model from random search.

model_definition = best_model

for i in range(CANDIDATE_EVALUATIONS):

    valid_model = False

    while(valid_model == False):

        old_model_definition = copy.deepcopy(model_definition)

        tweak_model(model_definition)

        acc = create_and_evaluate_model(model_definition)

        if acc > 0.0:

            valid_model = True

        else:

            model_definition = old_model_definition

    if acc > val_accuracy:

        best_model = copy.deepcopy(model_definition)

        val_accuracy = acc

    else:

        model_definition = old_model_definition

    print('Hill climbing, best accuracy: %5.2f' %val_accuracy)
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evaluates the best model for 20 epochs. as expected, the increased number 
of epochs increases the test accuracy. In our experiment, we ended up with an 
accuracy of 76%. That result is comparable to the best configuration in Chapter 7 
if we take into account that we trained that configuration for 128 epochs.

The third search algorithm that we implement is an evolutionary algorithm. It is 
shown in Code Snippet 17-20. We start by defining the number of simultaneous 
candidate solutions in the population to be 50. a key part of the evolutionary 
algorithm is the crossover operation, which combines two existing solutions 
(parents) into a new solution (child) that inherits properties of both of its parents. 
The approach we have taken is to simply take the bottom (non-dense) layers 
from one of the parents and combine it with the top (dense) layers from the 
other parent. The thinking here is that the task of the bottom layers is to extract 
useful features from the image, and the task of the top layers is to perform the 
classification. If one of the parents has a good structure for extracting features 
and the other parent has a good structure for doing a classification based on a 
good set of features, then an even better model can be found by combining the 
two. We confirmed that this works in practice with a hand-engineered example. 
The crossover method also has logic to combine all layers from the parent 
models if the parent models are sufficiently small.

The evolutionary algorithm starts by generating and evaluating a population 
of random models. It then randomly generates new models by tweaking and 

# Evaluate final model for larger number of epochs.

model = create_model(best_model)

model.summary()

model.compile(loss='categorical_crossentropy',

              optimizer='adam', metrics=['accuracy'])

history = model.fit(

    train_images, train_labels, validation_data =

    (test_images, test_labels), epochs=FINAL_EPOCHS, batch_size=64,

    verbose=2, shuffle=True)

Code Snippet 17-19 Evaluate the Best-known Model for a Larger Number of  
Epochs
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combining models in the existing population. There are three ways that a new 
model can be created:

• Tweak an existing model.

• Combine two parent models into a child model.

• Combine two parent models into a child model and apply a tweak to the 
resulting model.

Once new models have been generated, the algorithm probabilistically selects 
high-performing models to keep for the next iteration. In this selection process, 
both the parents and the children participate, which is also known as elitism 
within the field of evolutionary computation.

Code Snippet 17-20 Evolutionary algorithm

POPULATION_SIZE = 50

# Helper method for evolutionary algorithm.

def cross_over(parents):
    # Pick bottom half of one and top half of the other.

    # If model is small, randomly stack top or bottom from both.

    bottoms = [[], []]

    tops = [[], []]

    for i, model in enumerate(parents):

        for layer in model:

            if layer['layer_type'] != 'DENSE':

                bottoms[i].append(copy.deepcopy(layer))

            else:

                tops[i].append(copy.deepcopy(layer))

    i = np.random.randint(0, 2)

    if (i == 1 and compute_weight_count(parents[0]) +

        compute_weight_count(parents[1]) < MAX_MODEL_SIZE):

        i = np.random.randint(0, 2)

        new_model = bottoms[i] + bottoms[(i+1)%2]

        i = np.random.randint(0, 2)

        new_model = new_model + tops[i] + tops[(i+1)%2]



NEuraL arChITECTurE SEarCh

499

    else:

        i = np.random.randint(0, 2)

        new_model = bottoms[i] + tops[(i+1)%2]    

    return new_model

# Evolutionary algorithm.

np.random.seed(7)

# Generate initial population of models.

population = []

for i in range(POPULATION_SIZE):

    valid_model = False

    while(valid_model == False):

        model_definition = generate_model_definition()

        acc = create_and_evaluate_model(model_definition)

        if acc > 0.0:

            valid_model = True

    population.append((acc, model_definition))

# Evolve population.

generations = int(CANDIDATE_EVALUATIONS / POPULATION_SIZE) - 1

for i in range(generations):

    # Generate new individuals.

    print('Generation number: ', i)

    for j in range(POPULATION_SIZE):

        valid_model = False

        while(valid_model == False):

            rand = np.random.rand()

            parents = random.sample(

                population[:POPULATION_SIZE], 2)

            parents = [parents[0][1], parents[1][1]]

            if rand < 0.5:

                child = copy.deepcopy(parents[0])

                tweak_model(child)

            elif rand < 0.75:

                child = cross_over(parents)
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The code first generates and evaluates a population of 50 random models. It then 
repeatedly evolves and evaluates a new population of 50 individuals. after having 
evaluated ten generations, or 500 individuals in total, the evaluation accuracy of 
the best solution in our experiment ended up at 65%, which was worse than the 
hill climbing algorithm. Just as for the hill climbing algorithm, you can get a more 
accurate evaluation by training the best model for a larger number of epochs 
using the Code Snippet 17-19. for our model from the evolutionary algorithm, this 
resulted in a test accuracy of 73%.

The results can vary significantly from run to run given that all three search 
algorithms are stochastic. Our results indicate that the hill climbing algorithm is 
better than the specific evolutionary algorithm we implemented, and both of them 
are better than the pure random search. The main purpose of this programming 
example was not to arrive at the most optimized solution but to illustrate and 
demystify these three approaches to automatically finding a network architecture. 
We did have some problems with out-of-memory errors, which seemed related 
to creating a large number of models after each other in the same program. 
Depending on your machine configuration, you might have to reduce the number 
of iterations or maximum model size.

            else:

                child = cross_over(parents)

                tweak_model(child)

            acc = create_and_evaluate_model(child)

            if acc > 0.0:

                valid_model = True

        population.append((acc, child))

    # Randomly select fit individuals.

    population.sort(key=lambda x:x[0])

    print('Evolution, best accuracy: %5.2f' %population[-1][0])

    top = np.int(np.ceil(0.2*len(population)))

    bottom = np.int(np.ceil(0.3*len(population)))

    top_individuals = population[-top:]

    remaining = np.int(len(population)/2) - len(top_individuals)

population = random.sample(population[bottom:-top],

                               remaining) + top_individuals

best_model = population[-1][1]
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IMPLICaTIONS Of NEuraL arChITECTurE SEarCh

NaS provides a path to automatically generating DL models and thereby 
enabling practitioners not skilled in network architectures to build their own 
problem-specific models. as an example, Jin, Song, and hu (2019) introduced a 
NaS framework known as auto-keras. using this framework, searching for an 
architecture for a classifier is reduced to an import statement and a couple of 
lines of code:2

from autokeras import StructuredDataClassifier

search = StructuredDataClassifier(max_trials=20)

search.fit(x = X_train, y = y_train)

however, as seen in the previously described programming example, this 
comes at a significant computational cost. One open issue with respect to NaS is 
whether it truly will result in a general solution and thereby remove the need for 
detailed DL skills among practitioners. at least in the near future, it seems likely 
that practitioners will still need to know the basics about their specific problem 
domain and use NaS as a tool that helps with finding the best solution within a 
well-defined solution space. another central question, raised by Thomas (2018), 
is whether every new problem needs its own unique architecture. It might well 
be that the best way to enable a large number of nonexperts to make use of DL 
is by making it easy to use transfer learning based on pretrained models. These 

2. as usual, you would also need to load a dataset and ensure that it is in the right format.

at this point, it is fun to take a step back and look at what we just did. We used 
an algorithm inspired by biological sexual reproduction to evolve a population 
of models implementing an architecture that is inspired by biological neurons. 
The result was a model that can classify images based on what type of object 
is present in the image. Not too long ago, this would have sounded like total 
science fiction, and it is easy to spin it in a way that makes an outsider think 
that we are evolving our own little lifeform in our lab. In reality, it is just a 
simple Python script consisting of less than 300 lines of code. Then again, lines 
of code might not be the most meaningful metric. Perhaps we will soon have a 
sufficiently expressive library, where we can solve any human-level task with a 
single line of code:

model.add_brain(neurons=8.6e10, connections_per_neuron=7000)
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pretrained models would be developed by a smaller set of experts with access to 
the vast computational power needed for finding new complicated architectures.

Concluding remarks
In this chapter, we discussed autoencoders, multimodal learning, multitask 
learning, network tuning, and NaS. If your goal is to apply DL to industry 
problems, then we believe that the section about network tuning is at least as 
important as knowing the latest and greatest network architectures. Without a 
good methodology, it is easy to waste time and resources on the wrong things or 
simply fail to reap benefits of DL in cases where DL actually is a good solution.

however, we do want to provide a word of caution. DL is not the solution to 
everything, and even in application areas where DL does a good job, there can be 
more efficient solutions. It is often the case that a well-thought-out engineered 
solution to a problem requires significantly less computational power than a 
DL-based solution. Similarly, if an engineered solution is not practical, sometimes 
it is the case that a traditional ML technique is more efficient than a DL-based 
solution. Therefore, as with any other engineering task, it is important to consider 
different solutions and pick the right tool to apply to your specific problem.

This concludes our presentation of different DL techniques, and we are ready to 
move on to the final chapter, where we discuss some important ethical aspects of 
DL as well as provide pointers for further reading.
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Chapter 18 

Summary and 
Next Steps

In this last chapter of the book, we start with a section that summarizes what we 
think you should have learned from the book, to give you an opportunity to identify 
things that you might have missed. An important aspect when you start applying 
your newly gained skills is that you do so in a responsible manner. To stress 
this, we have included a discussion about data ethics and algorithmic bias. We 
conclude by listing some areas of deep learning (DL) that we have omitted, and 
we outline some potential paths forward to continue your learning process after 
finishing this book.

Things You Should Know by Now
This book has introduced a large number of concepts, and if you have not been 
exposed to them in the past, it might be somewhat overwhelming. This section 
summarizes the major concepts so you can sanity check that you did not miss 
anything significant. You can use this section to identify concepts that you might 
want to revisit before moving on in your DL studies.

This book has described a number of different problem types that can be 
addressed with DL. They include binary classification, multicategory classification, 
regression, and time-series prediction. We also showed examples of converting 
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data from one representation to another, such as from one language to another 
or creating a textual description from an image. We also touched on sentiment 
analysis of textual data and outlier detection.

The basic building blocks for the neural networks that we have used to solve 
these problems are units/neurons that are all variations on the rosenblatt 
perceptron. For the simplest units, the only difference is the activation function, 
where we have mostly used linear, tanh, logistic sigmoid, and rectified linear 
unit (reLu). We have also used a more complex unit known as long short-term 
memory (LSTm).

We combined these units into different types of layers or network architectures, 
such as fully connected feedforward networks, convolutional networks, and 
recurrent networks, where each network type is good for solving a specific set of 
problems. We have also shown how different network types can be combined into 
hybrid architectures, including the fairly complicated encoder-decoder networks 
used in the later chapters, and how they can be extended to include attention. We 
described the Transformer architecture, which employs self-attention. Finally, 
we showed examples of networks that work on multiple modalities, as well as 
multiheaded networks used for multitask learning.

All of these networks have been trained using stochastic gradient descent (SGD), 
in which the gradients are computed using the backpropagation algorithm. This 
requires an appropriate loss function, and we looked at mean squared error (used 
for linear output units), cross-entropy (for sigmoid output unit), and categorical 
cross-entropy (for softmax output layers). As part of this process, you need to 
decide on a weight initialization scheme, a learning rate, as well as whether you 
want to use vanilla SGD or a more advanced optimizer such as Adam or rmSProp.

During training, we have had to pay attention to training error versus test error 
and employed various techniques in cases when learning did not proceed 
as desired. We looked at various techniques to fight exploding and vanishing 
gradients that prevented the network from learning at all and explored various 
regularization techniques for cases in which the network managed to learn the 
training set but did not generalize to the test set. Examples of such regularization 
techniques are early stopping, L1 and L2 regularization, dropout, and data 
augmentation. related to all of these parameters, we discussed methods for 
tuning your network and selecting hyperparameters, and we also discussed the 
concept of neural architecture search (NAS) to automate the processes of finding 
a model architecture.
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To train a network, we need a dataset. In this book, we have used standard 
datasets such as mNIST, Boston housing, CIFAr-10, and COCO. We have also used 
downloaded data not specifically intended for DL—for example, quarterly sales 
data, the book Frankenstein, and a set of sentences translated from French to 
English.

To use these datasets, we have frequently had to convert the data into suitable 
representations by standardizing numerical data, ensuring that image data 
is properly represented as one or more channels, one-hot encoding textual 
data when working with individual characters, or creating dense encodings of 
words, also known as word embeddings. We learned how such word embeddings 
could encode both grammatical features and semantics of the words that they 
represent. related to this is vector representation of entire sentences, which we 
saw can be used for sentiment analysis.

We hope that all of the above at least seems vaguely familiar to you after reading 
this far in the book. If you feel that you need to revisit something, then just browse 
the green boxes throughout the book until you find the topic that you missed. You 
can also consult the cheat sheets in Appendix J for a visual summary of many of 
the concepts.

Ethical AI and Data Ethics
Throughout this book, we have pointed out various examples of ethical problems 
arising from training models on datasets that are not sufficiently diverse or 
contain human biases. These examples fall under the wider topics of ethical 
artificial intelligence (AI) and data ethics.

Ethics involves identifying and recommending right and wrong behavior. Data 
ethics is a subfield, which relates to these aspects in the context of data, in 
particular, personal data. In other words, any discussions about what is right 
and wrong to do with personal data have to do with data ethics. Similarly, ethical 
AI relates to these topics in the overall context of AI, of which data is just one 
component.

As is typically the case with new technologies, legislation has a hard time keeping 
up with the pace of innovation, which causes a void of checks and balances. This 
makes it especially important for you, as a practitioner, to act responsibly to avoid 
causing harm. In this section, we give a brief introduction to this topic and provide 
some pointers for further reading.
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One problem arises when a trained model is used in a setting for which it was 
never intended. For example, if a model is known to contain human biases, then 
using it in law enforcement is a bad idea. mitchell and colleagues (2018) proposed 
a way of addressing this. When releasing a model, they recommend also releasing 
documentation describing details about the model and its intended use case. 
This piece of documentation is known as a model card and is based on a template 
with a predefined set of topics. The model card is similar to the datasheet for 
datasets discussed in Chapter 4, “Fully Connected Networks Applied to multiclass 
Classification” (Gebru et al., 2018), but instead of documenting the dataset, the 
model card documents the model.

A major challenge with ethics is that different people have different views on what 
is right and wrong. This implies that there are no exact answers, and it is easy to 
make mistakes due to personal biases and blind spots. To some extent, this can 
be addressed in a team setting. Throughout the product development phases, 
identify and discuss potential problems with the application and the algorithms 
and data it is based on. Ideally, this is done in a diverse team with multiple 
perspectives. however, even a homogenous team or a single person can use their 
empathy to identify problems that apply only to people other than themselves. 
maintaining a checklist of specific problems to look for, as well as topics or 
questions to consider, can facilitate these discussions.

PrOBLEmS TO LOOK OuT FOr

much of this section is based on a book chapter, “Data Ethics,” in Deep Learning for 
Coders with fastai and PyTorch (Thomas, howard, and Gugger, 2020) on Data Ethics. 
The authors discuss the following four problems as particularly relevant: recourse 
and accountability, feedback loops, bias, and disinformation. We provide an overview 
and examples of these topics before moving on to a checklist of questions to 
consider in these product discussions.

THE NEED FOR RECOURSE AND ACCOUNTABILITY

regardless of how well intentioned an algorithm is, it is likely that things 
will go wrong in some cases. There need to be ways to address recourse and 
accountability, possibly by bypassing the system, to avoid putting people in catch-
22 situations. This requires the system designer, provider, and maintainer to 
assume accountability instead of just blaming the system.

A good example of such a problem is the uS credit score agencies that collect 
and aggregate personal financial data into a single score for every uS consumer. 
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Other companies and institutions rely on this score to determine if a consumer 
should be allowed to take out a loan, get a credit card, or sign up for a cell phone 
plan. Needless to say, sometimes things go wrong, and a person ends up with 
an inaccurate score. Correcting these inaccuracies involves much time and 
bureaucracy. many of these problems could be solved if the companies involved 
assumed more accountability and provided more streamlined ways of resolving 
inaccuracies.

One can argue that this is more of an organizational problem than a technology 
problem. however, in order to solve such a problem, all parts of the system 
need to work together, and as a developer of new technology, you can play a 
key role by raising questions of accountability and recourse early in a system’s 
design. Another prime example of this is the No Fly List maintained by the 
uS government. Accidentally ending up on this list can have devastating 
consequences that are extremely hard to resolve. A cartoon by Sorensen 
illustrates this (Sorensen, n.d.). Although the details of how somebody ends up 
on this list are kept secret, it is not hard to envision that technology and data are 
used in one or more steps in the process.

FEEDBACK LOOPS

Whenever designing a system, it is important to consider whether it can lead to 
the system running out of control. This is particularly important when the actions 
of the system affect the environment that the system works in. That is, the output 
at one point in time will affect the inputs at a later point in time.

One example of such feedback loops described by Thomas, howard, and Gugger 
(2020) is YouTube’s recommendation system. The observation is that people 
tend to get drawn to controversial content, including conspiracy theories that are 
simply not true. It also turns out that the same group of people who get drawn 
to videos of conspiracy theories watch a lot of YouTube videos. This combination 
resulted in YouTube’s recommendation system starting to recommend more and 
more videos of conspiracy theories, attracting and radicalizing more and more 
extremist viewers. In short, the system achieved its intended goal to attract users 
who spend a lot of time using the system, but it came with an unintended negative 
side effect on society.

Another example of a feedback loop is when an automatic tool is used to identify 
suitable candidates in a hiring process. Consider a case where the tool is trained 
on data describing the individuals who are currently successful within this 
occupation. If this occupation is currently dominated by a specific group of people 
(e.g., male employees), the model may well detect this bias. It will then use this 
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bias when identifying candidates and suggest mostly male applicants. De-Arteaga 
and colleagues (2019) describe how this can compound existing imbalances. 
Because the system suggests mostly male applicants, even more men will be 
hired, which in turn can widen the gender gap even further within that occupation.

Feedback loops are not only problematic for affected individuals and society 
at large. The company providing the service is also at great risk. Baer (2019) 
describes a case in which a bank used an algorithm to automatically identify 
low-risk customers and raise their credit limit. The algorithm identified low-
risk customers by looking at their credit utilization (percentage of used credit 
compared to upper limit), and if it was below a certain threshold, then the upper 
limit was raised. The moment their credit limit was raised, the utilization fell 
further because utilization is a function of the upper limit. This in turn caused 
the system to further increase the credit limit. A number of iterations later, the 
customers would have close to unlimited credit, which led to people spending 
more than they could afford and put the bank at great risk.

DISINFORMATION

One important subfield of DL is generative models. We have only briefly touched 
on this topic in the context of autocompletion of text, but DL can be used to 
generate larger bodies of text as well. These models can be used to generate 
and spread disinformation, which can take the form of Twitter bots (Wojcik et al., 
2018) generating and retweeting fake news.

Similarly, generative DL models can produce realistic-looking images and videos. 
Such models have been used to create videos in which the appearance of a 
person is altered to look like somebody else. Falsified video is known as deepfake 
(Sample, 2020) and has been used in malicious ways to mislead and cause harm.

BIAS

We have already touched on bias in datasets, but there are multiple types and 
sources of bias. Suresh and Guttag (2019) discuss six distinct types of bias to 
be aware of when working with machine learning (mL). Each type of bias is 
associated with a particular step in the mL pipeline:

• Historical bias is bias present in the real world. Even if a language model were 
trained on all text that had ever been written, the text would be affected by 
human bias of the authors.
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• Representation bias is an outcome of sampled data not being representative of 
the world. If we use only the English version of Wikipedia to train our model, 
then it is not representative of other languages. Further, it is not representative 
of all English text either, because Wikipedia represents a special kind of 
content.

• Measurement bias results from measuring one feature and using it as a 
proxy for the true feature that we are trying to measure. If we use criminal 
convictions as a proxy for criminal activity, but our justice system employs 
racial profiling, or convictions are biased in other ways, then our measure of 
criminal activity will be biased.

• Aggregation bias results from the model combining distinct subgroups in an 
incorrect way. For example, imagine creating a model that produces a medical 
diagnosis without having access to patient gender or ethnicity. Given that 
gender and ethnicity often play a role in properly diagnosing a patient, this 
model will do worse for certain groups. Instead, it can be better to develop 
separate models for different groups or provide the model with inputs to 
distinguish between the different groups.1 A good way to detect this kind of 
problem is to not only look at the overall performance metric of the model but 
also compute it individually for different subgroups and ensure that the model 
performs similarly across subgroups.

• Evaluation bias results from the way the model is evaluated. For example, if the 
test dataset or the evaluation metrics are poorly chosen, then there is a risk 
that the resulting model will not do well when deployed.

• Deployment bias is bias arising from the deployed model being used or 
interpreted in a way that was not originally intended.

To illustrate how these concepts can be applied in practice, consider Figure 18-1, 
which originally was posted on Twitter. The left image is a low-resolution image 
of Barack Obama, the 44th president of the united States. The right image is the 
output of a model known as PuLSE that is designed to create a realistic-looking 
high-resolution image of a face using a low-resolution image as input (menon, 
Damian, hu, et al., 2020). Although the model had been shown to work well on a 
test dataset, this example indicates that the model is biased toward outputting 
a face resembling a white person. It does not do well when applied to a face of a 
person of color.

1. using different models for different groups can introduce its own set of problems and can be 
somewhat controversial.
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PuLSE makes use of a model known as StyleGAN (Karras, Laine, and Aila, 2019) 
to generate high-resolution images. The StyleGAN model was trained on the 
Flickr-Faces hQ (FFhQ) dataset. This dataset was introduced in the same paper 
as StyleGAN and was obtained by crawling the Flickr website for pictures of faces. 
Only pictures under permissive licenses were used. PuLSE itself does not train 
any additional parameters but simply uses the pretrained model, so no additional 
dataset was used for training. The Celeb hQ dataset (Karras et al., 2018) was used 
to evaluate PuLSE. Celeb hQ is derived from the CelebA dataset (Liu et al., 2015), 
which consists of pictures of faces of celebrities.

Let us now reason about the types of biases that made things go wrong. First, 
consider the question whether the intent was to build a model that works for 
any individual in the world or only for people who use Flickr. Clearly, if the intent 
was to build a model that works for all people in the world, then representation 
bias has been introduced by using images only from Flickr in the training data. 
Even if the intent was to build a model only for Flickr users, there would still be 
representation bias given that only images under permissive licenses were used.

Second, the model might suffer from aggregation bias. A starting point to address 
this bias is to detect it. This is typically done by looking at accuracy metrics 
for individual subgroups as opposed to using only a single accuracy metric for 
the entire test set. In this specific example, the subgroups would be different 
ethnicities. No accuracy metric was used, but the output of the model was simply 

Figure 18-1 Left: A low-resolution image of Barack Obama. right: The resulting 
output from the original PuLSE model. The goal of the model is to provide a 
realistic high-resolution image that could correspond to the low-resolution image. 
The resulting image indicates that the model suffers from racial bias. (Source: 
From https://twitter.com/Chicken3gg/status/1274314622447820801)

https://twitter.com/Chicken3gg/status/1274314622447820801
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inspected to determine whether the generated face looked realistic. That is, using 
a more diverse test dataset to confirm that the model worked well for minorities 
would have uncovered this problem.

Third, using the Celeb hQ dataset for testing introduces evaluation bias. It is 
unlikely that the physical appearance of celebrities represents the physical 
appearance of the general population. Further, the Celeb hQ has been shown to 
not be very diverse. In fact, when Karras and colleagues (2019) introduced the 
FFhQ dataset, they said that this new dataset “includes vastly more variation than 
CelebA-hQ in terms of age, ethnicity and image background, and also has much 
better coverage of accessories such as eyeglasses, sunglasses, hats, etc.”

Finally, we find it likely that deployment bias plays a role, although this is 
somewhat subtle. As previously mentioned, PuLSE makes use of StyleGAN. To 
ensure that the generated images look realistic, PuLSE restricts the search space 
StyleGAN is allowed to consider. It does so by imposing a constraint on the input 
parameters to StyleGAN. It is unclear to us whether this is how the StyleGAN 
model was originally intended to be used. That is why we suspect that deployment 
bias causes problems in this case, especially given that the original StyleGAN 
paper clearly shows that the model is capable of generating high-quality realistic 
images of people of color.

In a more recent version of the PuLSE paper, menon, Damian, ravi, and rudin 
(2020) added a section about bias in which they discuss these concerns, including 
the theory that the constraint PuLSE imposes on the input parameters is part of 
the problem. On the other hand, they also point out that another study has shown 
that there is demographic bias in the images generated by StyleGAN (Salminen 
et al., 2020). This bias is likely to affect the output of any downstream model that 
uses the model unless the downstream model somehow removes this bias.

This later version of the PuLSE paper (menon, Damian, ravi, and rudin, 2020) 
also includes an evaluation of the model on the FairFace dataset (Kärkkäinen 
and Joo, 2019). The dataset is specifically designed to provide a better balance 
with respect to race composition. They also released an updated version of the 
model itself that has the ability to report failure to converge instead of producing 
an image that poorly matches the low-resolution image. Finally, they include a 
model card that details the intended use case and more details about the model 
including ethical considerations.

This section focused on bias, and it is easy to fall into the trap of thinking that 
just getting an unbiased dataset solves the problem. There are additional ethical 
aspects to consider when working with images of people. In particular, it is 
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important to consider whether it is ethical to use the images in the first place. 
Did the people in the pictures give their consent to use the pictures? Did they give 
their consent to use them for the use case you are working on? These are the 
kinds of questions that researchers and practitioners working with this kind of 
data should ask themselves.

ChECKLIST OF QuESTIONS

Apart from being aware of the specific problems we just discussed, Thomas 
(2019) recommends that teams ask themselves the following checklist of 
questions throughout the development cycle of a project:

• Should we even be doing this?

• What bias is in the data?

• Can the code and data be audited?

• What are the error rates for different subgroups?

• What is the accuracy of a simple rule-based alternative?

• What processes are in place to handle appeals or mistakes?

• how diverse is the team that built it?

Other good questions to consider can be found in Ethics in Tech Practice: A Toolkit 
(Vallor, 2018). We also recommend reading “Data Ethics” (Thomas, howard, and 
Gugger, 2020), which much of this section is based on. Another resource that we 
have found useful is Baer’s Understand, Manage, and Prevent Algorithmic Bias: A 
Guide for Business Users and Data Scientists (2019).

Things You Do Not Yet Know
This book includes a large number of topics within the DL field, but it does 
not cover everything. Therefore, we conclude this final chapter with a brief 
description of some important topics that we have omitted and provide some 
ideas of ways to continue your learning process.
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rEINFOrCEmENT LEArNING

The mL field is often partitioned into three distinct branches:

• Supervised learning

• unsupervised learning

• reinforcement learning

most of the mechanisms described in this book fall into the category of 
supervised learning, although we have also seen some examples of unsupervised 
learning.

The third branch, reinforcement learning, has not been used in this book, but we 
briefly describe how it relates to the other two branches. We encourage interested 
readers to read other resources on this topic.

In a supervised learning algorithm, the model learns from a labeled dataset 
that represents the specific ground truth we want the model to learn. In an 
unsupervised learning algorithm, however, the dataset is not labeled, and the 
algorithm is responsible for finding structure in the data. reinforcement learning 
is different from both of these settings in that an agent learns to interact with an 
environment, with the goal of maximizing a cumulative reward function. That is, 
the agent is not provided with a ground truth that defines correct behavior but is 
given feedback (the reward) detailing whether an action, or series of actions, is 
good or bad. The agent itself needs to explore the space of possible sequences of 
actions and learn how to maximize its reward.

A famous example of how DL has been applied in the field of reinforcement 
learning is when mnih and colleagues (2013) showed how a model learned to play 
Atari video games. The agent learned what user input to provide to the game to 
maximize the resulting score. It did not have labeled examples of what user action 
to take given a specific input (the pixels on the screen) but had to explore the set 
of available actions and learn which ones led to the best cumulative reward (the 
final score of the game).

VArIATIONAL AuTOENCODErS AND GENErATIVE ADVErSArIAL 
NETWOrKS

In Chapter 12, “Neural Language models and Word Embeddings,” we saw an 
example of how a language model can be used to generate content. Given the 
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beginning of a sentence, the model generated a plausible continuation. This 
generated text is not simply a recording of a previously seen sentence but can 
take the form of a newly generated, previously unseen text sequence. however, 
it is not a random sequence but a sequence that adheres to learned grammatical 
structure. Further, in Chapter 17, we saw how an autoencoder can be used to 
re-create an image given a narrower intermediate representation. however, 
we have not yet seen examples of a model that can generate previously unseen 
images. Two popular models for doing this are the variational autoencoder (VAE) 
and the generative adversarial network (GAN).

The VAE, introduced by Kingma and Welling (2013), is based on the normal 
autoencoder that was described in Chapter 17. The idea is that once an 
autoencoder is trained to reproduce images, the decoder part of the network can 
be used to generate new images. We simply take an intermediate representation 
and modify it slightly, with the expectation that the decoder will output a new 
valid output image. It turns out that if we do this with a regular autoencoder, the 
result is often poor. The way the autoencoder is trained does not necessarily lead 
to the result that a small change in the intermediate representation results in a 
correct or realistic output. The variational autoencoder is a modified version of 
the autoencoder in which the training process is changed to encourage the model 
to behave more accurately in that respect.

The GAN, introduced by Goodfellow and colleagues (2014), takes a different 
approach. Instead of training a single model to reproduce an input image, we train 
two different models to do two different tasks. One model, known as the generator, 
is trained to generate an image based on a random set of inputs. This is similar 
to how the decoder component of an autoencoder generates an image based on 
a narrow intermediate representation, but with the distinction that the generator 
network is not provided with a ground truth image to reproduce. Instead, its 
objective is to fool the other network, which is known as the discriminator. The 
discriminator is trained to discriminate between true images from the dataset 
and images generated by the generator. These two networks are adversarial in 
nature (hence the name of the approach) in that the generator continuously tries 
to improve its ability to fool the discriminator and the discriminator continuously 
tries to improve its ability to call the generator’s bluff. The net effect is a 
generator that can generate images that cannot be distinguished from images 
in the dataset, based on random inputs. By varying this random input, random 
output images are generated.

VAEs showed some early promise but lost popularity with the emergence of GANs, 
which demonstrated better results. In particular, images generated by VAEs were 
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often blurry. however, in a recent paper, Vahdat and Kautz (2020) demonstrated 
how a type of VAE can be used to generate sharp images. Their work could spawn 
a renewed interest in the VAE field.

In this section, we described VAEs and GANs in the context of image generation 
because that is the most popular application area for these techniques. however, 
the concepts are more general and can be applied to other types of data as well.

NEurAL STYLE TrANSFEr

The two techniques we just described can be used to generate images that 
have the same appearance as images in the training dataset. Another important 
generative technique, introduced by Gatys, Ecker, and Bethge (2015), is neural 
style transfer. This technique is used to separate content from style in an 
image. In this context, content refers to the objects depicted in an image, and 
style refers to properties such as texture and color schemes of objects in 
an image.

Neural style transfer is able to extract content from one image and style from 
a second image, and then combine the two into a new image. In their paper, 
Gatys, Ecker, and Bethge demonstrate examples of combining the content of 
a photograph with the style from paintings by famous artists. The resulting 
generated image contains the same objects as in the photograph but in the style 
of paintings by J. m. W. Turner, Vincent van Gogh, Edvard munch, Pablo Picasso, 
and Wassily Kandinsky.

rECOmmENDEr SYSTEmS

DL has had a big impact on recommender systems. Such systems are used by 
many online services to guide users to content and products that they are likely 
to be interested in. For example, online shopping sites often suggest items to buy 
based on previous purchases. Similarly, movie and music streaming services 
provide suggestions on movie titles and songs that a user might be interested in 
based on what they previously have shown interest in. A key component to these 
systems is to not only look at historical patterns for an individual user but also 
learn from usage patterns of other users on the same site. Zhang and colleagues 
(2019) have written a survey paper containing many useful references that 
provide more information about recommender systems.
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mODELS FOr SPOKEN LANGuAGE

This book has focused on images and written natural language. Another 
important topic within human–computer interaction is spoken natural language. 
Just as DL has revolutionized computer vision and textual language processing, 
it has also led to significant breakthroughs in speech recognition (speech-to-
text) and speech synthesis (text-to-speech). You can find an overview of speech 
recognition work in a review paper by Nassif and colleagues (2019). Some 
examples of speech synthesis are Tacotron (Wang et al., 2017), Tacotron 2 (Shen 
et al., 2018), Flowtron (Valle et al., 2020), and TalkNet (Beliaev, rebryk, and 
Ginsburg, 2020). We encourage you to read some of the referenced papers and, if 
nothing else, follow some links from the papers to online demos to get an idea of 
how well it works!

Next Steps
We end this book with providing some ideas for further reading. There are 
multiple paths to take depending on your goals and interests, so we outline a few 
potential directions.

Perhaps you feel that you are done with theory for a while and just want to code. 
Perhaps you have a real problem that you want to try to solve. If so, just go for 
it! If you need some inspiration, we recommend that you seek out some of the 
many tutorials that can be found online and start exploring. If you want a bit more 
guidance, then you might want to pick up the book Deep Learning with Python 
(Chollet, 2018), which contains many useful code examples, including examples 

It is not clear to us where the name Tacotron comes from, but our best guess 
is that it is a wordplay on talk-a-tron, which sounds similar to Detectron, a 
framework for CNN-based object detection and related techniques. On the 
other hand, a footnote in the Tacotron paper states that some of the authors 
really like taco, whereas some of the others prefer sushi, so maybe we should 
not overanalyze this topic.

DL for speech recognition and for speech synthesis are good topics for future 
reading.
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of the just mentioned techniques neural style transfer and image generation with 
VAE and GAN.

Another option is to dive deeper into a specific topic by reading the corresponding 
appendix in this book. The book is also sprinkled with yellow boxes with 
suggestions for further reading, and we have provided plenty of references to use 
as starting points to familiarize yourself with the historical research literature 
on the topic. You can then search online for more recent publications that cite 
the papers you found relevant and learn about the most recent findings. If you do 
choose to focus on a specific topic, you should also be prepared to spend time on 
the non-DL-specific parts of the chosen field. For example, if you want to work on 
language models, you need to understand the perplexity metric, and if you want to 
work on machine translation, you need to understand the BLEu score. After all, DL 
is just a collection of methods that can be applied to a wide set of problems, and 
to do well on a certain problem, you need to understand the problem domain, the 
solution space (both DL and non-DL), and the success metrics. Perhaps you found 
this book interesting but feel that you want some insight into traditional mL and to 
learn about some topics not covered by this book, such as reinforcement learning, 
VAEs, GANs, and neural style transfer. In that case, you can consider reading the 
two-volume book Deep Learning: From Basics to Practice (Glassner, 2018). much 
of the first volume will introduce you to traditional mL concepts and basic neural 
networks, and the second volume focuses on DL.

If you want a deeper and more mathematical understanding of the field, consider 
reading Deep Learning (Goodfellow, Bengio, and Courville, 2016). Specifically, 
we recommend this book for anybody who wants to do academic research 
and publish papers within the DL field. The book starts with an overview of 
mathematics and probability theory that is useful in mL in general and DL in 
particular. It continues with an overview of traditional machine learning, followed 
by a thorough description of the DL field.

Another option is to take online classes. Three such alternatives we have found 
useful are classes offered by NVIDIA Deep Learning Institute,2 Andrew Ng’s 
Coursera classes,3 and mL/DL classes from the Lazy Programmer.4 Another 
alternative is to watch some Lex Clips videos5 on YouTube. Jeremy howard and 
rachel Thomas provide a great set of free courses through their fast.ai research 

2. https://www.nvidia.com/dli
3. https://www.coursera.org
4. https://lazyprogrammer.me
5. https://www.youtube.com/lexclips

https://www.nvidia.com/dli
https://www.coursera.org
https://lazyprogrammer.me
https://www.youtube.com/lexclips
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group.6 If these courses appeal to you, then you can also consider reading howard 
and Gugger’s Deep Learning for Coders with fastai and PyTorch (2020), which 
teaches DL from scratch. Although the book has much overlap with Learning Deep 
Learning, the authors take more of a top-down approach that many readers might 
find useful.

This section represents our thoughts on how to proceed, but DL is a rapidly 
evolving field with new papers being published every week, and books almost as 
frequently, so you should use your own judgment. We hope that you found this 
book useful and that it has given you the knowledge and inspiration needed to 
continue your quest of Learning Deep Learning.

6. Making Neural Nets Uncool Again, https://www.fast.ai

https://www.fast.ai
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Appendix A

Linear Regression and 
Linear Classifiers

This appendix logically follows Chapter 3, “Sigmoid Neurons and Backpropagation.”

As described in the preface, the approach we are taking in this book is to take a 
fast track to exciting parts of deep learning (DL). As such, we decided to not start 
the book with a number of traditional machine learning (ML) topics. Inspired by 
Nielsen (2015), we spent the three first chapters on binary classification problems 
using perceptrons and multilevel networks. Binary classification involves 
determining whether the inputs should result in an output belonging to one out 
of two classes. A more common way to introduce ML is to start with a regression 
problem, where we predict a real number instead of a discrete class. This is 
described in the next couple of sections.

We then move on to describe a couple of linear methods for binary classification. 
That is, we solve the type of problems studied in Chapters 1 to 3 but using 
traditional ML techniques. 

Linear Regression as a Machine 
Learning Algorithm

Assume that we have a number of training examples, consisting of one or more 
input values and an associated real-valued output. This is a regression problem. 
From an ML perspective, this problem involves training a mathematical model 
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to predict the expected output value when presented with input values. We will 
make this more concrete in the following sections. Perhaps the simplest model 
to attempt to solve a problem like this is to use linear regression. We start with 
considering the case of a single input variable.

UNIVARIATE LINEAR REgREssIoN

We use a made-up problem to illustrate the use of linear regression with a 
single input variable. Assume that you are running an ice cream shop and you 
want to get some idea of how much ice cream you will sell tomorrow. You have 
made the observation that the amount of ice cream you sell seems to be related 
to the temperature each day, so you want to explore whether you can predict 
the ice cream demand by using the temperature forecast. To get some insight 
into whether this idea seems promising, you create a scatter plot of historical 
temperature data and ice cream demand. The red markers in Figure A-1 show 
what that might look like.

Using the red markers, we can try to fit some kind of curve to the data to come 
up with a formula that we can use to predict the demand given a specific 
temperature. The figure shows how we have fit a green straight line of the form:

y ax b= +

where y represents the demand, and x represents the temperature. For the line 
in the figure, the parameters are a = 2.0 and b = −112. An obvious question is how 

Figure A-1 Relationship between temperature and number of ice cream cones 
sold. For readers more familiar with the Celsius temperature scale, a rule of 
thumb is that 61°F is about 16°C and 82°F is about 28°C (just flip the digits).



LINEAR REgREssIoN As A MAChINE LEARNINg ALgoRIThM

521

we came up with these two parameters, and that is the job of our ML algorithm. 
For our linear regression case, we can come up with an analytical solution, but in 
some cases, it can be more efficient to use an iterative algorithm. We will see both 
examples in a couple of sections. First, we look at variations of this regression 
problem. 

MULTIVARIATE LINEAR REgREssIoN

The model in the last section was fairly limited, in that it used only a single 
input variable. We could envision that ice cream demand is related not only to 
the outside temperature but also to the amount of advertisement that has been 
shown on television the day before. We can handle this additional variable by 
extending our linear model to two dimensions. Figure A-2 shows an example of 
such a model. In this figure, we do not show any of the actual data points but just 
the predictions by the model.

With two input variables, our prediction now takes the form of a plane as opposed 
to a straight line. We can see how the number of ice cream cones sold increases 
with both temperature and the number of minutes of advertisement. The equation 
for our plane is

0 1 1 2 2z x xβ β β= + +

where z is the demand, x
1
 represents advertisement, and x

2
 represents 

temperature. The parameters are b
0
 = −112, b

1
 = 0.5, and b

2
 = 2.0. Just like before, 

it is the task for our ML algorithm to come up with these parameters.

Figure A-2 Model for ice cream demand as a function of temperature and 
advertisement
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There is nothing magical about having just two input variables. This model 
generalizes to n input variables where we end up with an n-dimensional 
hyperplane. The only issue is that it is hard to visualize. 

MoDELINg CURVATURE WITh A LINEAR FUNCTIoN

Although we have extended the model to use an arbitrary number of input 
variables, the model is still somewhat limited in that it can do a good job of 
modeling dependencies only where a straight line or a (hyper) plane can fit the 
data well. We can easily imagine cases where this is not so. For example, going 
back to our ice cream example, let us consider a greater temperature range than 
just 61°F to 82°F. If we extend the upper end of the range to 100°F (about 38°C), 
we could imagine that as the temperature increases, ice cream demand does not 
increase as much because people might choose to stay inside air-conditioned 
buildings instead of buying ice cream. This is shown in Figure A-3.

In addition to fitting a green straight line to the data, we have included a curve 
(blue) based on a second-order polynomial:

y x x0 1 2
2β β β= + +

In this formula, y is the demand, x is the temperature, and x2 is the squared 
temperature. The parameters are b

0
 = −220, b

1
 = 5.0, and b

2
 = −0.02. Just as for 

our previous examples, it is the task of the ML algorithm to come up with these 
parameters for our linear regression problem. At this point, you might wonder if 
we just misspoke when we called this a linear regression problem given that the 

Figure A-3 Data points where a quadratic curve is a better fit to the data than a 
straight line
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resulting curve looks very much quadratic as opposed to linear. however, linear 
refers to the parameters that we are estimating (b

0
, b

1
, . . ., b

n
), so as long as we 

do not raise these parameters to a power, or apply other nonlinear operations on 
them, this is still considered a linear model. Therefore, the problem is a linear 
regression problem. If this seems unintuitive, consider the multivariate case in the 
previous section. Assuming that you agree that it was straightforward to extend 
the univariate case to two or more variables, then the preceding equation is not 
that different. The model does not know that we created the second variable (x2) 
by squaring the first one. It could just as well have been an independent variable 
that happened to take on the same value as the square of x.

This example used only a single input variable (temperature), but we created 
another variable (squared temperature) from that variable, so the model still had 
two inputs. We can extend this to include higher-order polynomials as well. We 
can also combine it with the type of model that we saw in the previous section, 
where we had multiple input variables (temperature and advertisement), and then 
create higher-order polynomials of all the original input variables. By doing so, we 
arrive at fairly complex models, which still all are considered linear models.

Computing Linear Regression 
Coefficients

so far, we have described how linear regression can be used to predict real-
valued numbers, also known as a regression problem, but we have not described 
how to come up with the parameters (coefficients) for the solution. There are 
multiple good ways of fitting a straight line to a number of data points. Perhaps 
the most common way of doing it is known as ordinary least squares (oLs) and 
is based on minimizing the mean squared error (MsE). If you have seen oLs in 
the past, chances are that you have also seen a closed-form solution. That is, a 
solution that can be computed by manipulating mathematical symbols as opposed 
to computing an approximate solution with numerical methods. We soon discuss 
the closed-form solution, but first we describe how we can use gradient descent 
to arrive at a numeric solution iteratively. gradient descent was described in 
Chapter 2, “gradient-Based Learning.” We start by formulating our hypothesis of 
what the solution looks like. If we have n input variables, the most straightforward 
linear regression hypothesis is

0 1 1 2 2y w w x w x w xn n= + + +…+
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but as previously shown, we can think of more complicated cases where we 
include higher-order terms as well. We can now solve our linear regression 
problem iteratively using gradient descent. We use the MsE as a loss function:

m
y y mean squared error

i

m
i i1

ˆ                 
1

2

∑( ) ( )−( ) ( )

=

When using this loss function for linear regression, we end up with a convex 
optimization problem, which implies that any local minimum is also a global 
minimum. This means that as long as we pick the learning rate to be small 
enough, gradient descent will always converge to the optimum solution. This 
might all sound great, but it is worth noting that the optimum solution is in the 
context of the assumed hypothesis space. If a linear function cannot solve the 
problem or cannot solve it well, the optimum set of parameters for our linear 
function can still result in a bad solution.

As mentioned, it is also possible to compute a closed-form solution to this 
problem. We do not go through this in detail but we outline the approach and state 
the final solution. If you are interested, there are plenty of books that describe 
linear regression in detail. For example, both hastie, Tibshirani, and Friedman 
(2009) and goodfellow, Bengio, and Courville (2016) discuss it in the context of ML. 

The closed-form solution is based on the same thinking as gradient descent. 
We have our stated loss function (MsE), and we want to minimize it. This is 
done by expanding the sum in the preceding formula for all training examples, 
and then computing the derivative and solving it for zero. If we have just a 
handful of training examples and just a single input dimension, it is somewhat 
straightforward to do this with regular algebra, but as the number of input 
examples or dimensions increases, it quickly becomes hairy. A solution to this 
problem is to instead state our problem in terms of matrices and vectors and 
then solve it with linear algebra.1 It can be shown that if we arrange all our input 
vectors in a matrix X, and the output values in a vector y, then we can compute a 
vector b that consists of the coefficients that minimize the loss using the following 
formula:

β ( )=
−1

X X XT T y

1. our description is very terse and meant mostly as a refresher for readers who have already studied 
how to solve linear regression with linear algebra. If you have not seen this before, you will most likely 
need to consult a more extensive text on the topic.



CLAssIFICATIoN WITh LogIsTIC REgREssIoN

525

The formula uses a construct that we have not seen in this book before, namely, 
the inverse of a matrix, which is denoted as a superscript −1 to a matrix. In the 
this formula, the matrix that is inverted (XTX) is a matrix resulting from a matrix 
multiplication, but it is decoupled from the matrix inverse operation itself. We do 
not describe the details of how to invert a matrix, but it is worth pointing out that 
not all matrices can be inverted. Further, it is computationally costly to invert 
large matrices. Because of this computational cost, in cases where we have a 
large number of training examples (in the hundreds of thousands or millions), it 
is often preferable to use gradient descent even though a closed-form solution 
exists. This concludes our discussion about linear regression, and we now move 
on to a related method, which can be used for classification instead of regression.

Classification with Logistic Regression
In Chapter 1, “The Rosenblatt Perceptron,” and Chapter 2, we used a perceptron 
to solve binary classification problems, but there are other types of classification 
algorithms as well, one important example being logistic regression. The name is 
somewhat confusing given that it solves a classification problem as opposed to a 
regression problem. The name likely originates from logistic regression being a 
variation of linear regression, which we soon see.

Let us now assume that we are ice cream customers instead of owners of an ice 
cream shop. Let us further assume that we really like ice cream and want to buy 
ice cream regardless of the temperature. however, we do not like standing in 
line, so if the line is too long, we do not want to go to the ice cream shop. To avoid 
wasting our time by going to the ice cream shop just to discover that the line is 
too long, we want to come up with a model that uses the temperature as input 
data and tries to predict whether or not the line is too long. From our perspective, 
the exact length of the line does not matter. Either it is short enough that we 
are willing to wait in it or it is too long, so we go home. That means that this is a 
binary classification problem—the value we are trying to predict is either true (too 
long) or false (short enough).

Figure A-4 shows an attempt at solving this problem with linear regression. The 
red marks show the actual cases of too long a line (value = 1) and a short enough 
line (value = 0), and we see a green straight line attempted to fit to the data points. 
A first observation is that it is not possible to perfectly predict whether the line 
is too long from the temperature alone because there is overlap between the 
data points at the top and at the bottom. This should not be a surprise. A second 
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observation is that our straight line predicts a real-valued number as opposed to 
a discrete value. We could address this issue by assuming that the value 0.5 is a 
threshold: Anything greater than 0.5 is interpreted as too long, and anything less 
than 0.5 is interpreted as short enough. The observant reader will notice that this 
is exactly what the perceptron does.

If we look at Figure A-4 and consider the ice cream example in the previous 
sections, where we saw that a quadratic curve fit the data best, it seems like it 
would make sense to explore whether we can fit the data better with a function 
other than a straight line.

Figure A-5 shows an attempt to do so. We have plotted a shifted version of 
the logistic sigmoid function in the same chart as the data points that indicate 
whether or not the ice cream line is too long.

For reference, the formula for the logistic sigmoid function2 follows. It has already 
been extensively used in the book as a neuron activation function.

  :   
1

1
logistic function S x

e x)( =
+ −

Looking at the chart, a first observation is that this function looks like a much 
better choice than a straight line. A second observation is that it does not seem 
like it is much of an improvement over the perceptron. The curve in Figure A-5 

2. What is described here is a specific instance of a logistic function. It is just one of multiple members 
of the family of logistic functions.

Figure A-4 Attempt at using linear regression to solve a binary classification 
problem
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looks similar to the curve in Chapter 1, Figure 1-3, which illustrated the sign 
function used by the perceptron. This in turn is the same behavior as applying a 
threshold to the straight line in Figure A-4. That is, these three approaches are 
much related to each other. however, one benefit of logistic regression is that the 
curve in Figure A-5 does not have discontinuities as do the perceptron function 
and any other threshold-based approach. This implies that as long as we come 
up with a feasible cost function, we can directly apply gradient descent without 
any caveats related to discontinuities. Without further explanation, a feasible cost 
function for logistic regression is shown here:

m
y ln y y ln y cross entropy loss

i

m
i i i i1

ˆ 1 1 ˆ      -  
1

∑ ( )( ) ( ) ( ) ( )− ⋅ + − ⋅ −( ) ( ) ( ) ( )

=

This cost function is known as the cross-entropy loss function, and it is also 
used in the context of neural networks (described in Chapter 5 “Toward DL: 
Frameworks and Network Tweaks”). In the context of logistic regression, the 
cross-entropy loss function has the nice property that the logistic regression 
problem ends up being another example of a convex optimization problem. That 
is, given a small enough value of the learning rate parameter, gradient descent 
will always converge to an optimal solution. As opposed to linear regression, 
there is no known closed-form solution for the general case of logistic regression. 
We now move on to show how we can state our logistic regression problem in a 
way that solves the XOR problem.

Figure A-5 Chart showing how a logistic sigmoid function can fit the data points 
indicating whether the ice cream line is too long
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Classifying XOR with a Linear Classifier
The logistic sigmoid function, combined with the cross-entropy loss function, 
results in a convex optimization problem known as logistic regression. It can be 
solved iteratively with gradient descent. still, logistic regression suffers from the 
same limitation as the perceptron when it comes to linear separability. Figure 
A-6 illustrates this for a problem with two input variables (x

1
 and x

2
), where 

we see that it is impossible to draw a straight line that perfectly separates the 
two classes. This type of chart was introduced in Chapter 1 in the context of the 
behavior of a perceptron. It was further revisited in Chapter 2.

given our previous observation that a straight line is somewhat limiting, it 
should not come as a surprise that we now explore whether we can modify our 
classification function further to try to address problems that are not linearly 
separable. We do this by revisiting the XOR problem that we have already seen 
is not linearly separable. Figure A-7 shows how we can separate the two classes 
(pluses and minuses) if we are allowed to use a more complex shape than a 
straight line. There are multiple ways of solving it, but we think that an ellipse is a 
reasonable approach. The left part of the figure shows that it is trivial to draw an 
ellipse such that it separates the pluses from the minuses.

When we looked at a similar chart for the perceptron, we saw that the straight 
line that represented the decision boundary originated from a 3D plot of a plane, 
and the decision boundary was the line on the plane where the z-value was 0 
(because that was where the sign function changed its output value). We can 

Figure A-6 Example of how logistic regression cannot perfectly solve a problem 
that is not linearly separable
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do the same in this case, but we start with the equation for an ellipse centered 
around 0 and rotated by an angle q.

x x

a

x x

b

cos sin sin cos
11 2

2

1 2

2θ θ θ θ( ) ( ) ( ) ( )−





+
+





=

If we solve this equation for 0 and call the resulting formula z, we get an equation 
that is greater than 0 outside of the ellipse and less than 0 inside the ellipse. 
The equation is shown here, and z is plotted against x

1
 and x

2
 in the right part of 

Figure A-7.

z
x x

a

x x

b

cos sin sin cos
11 2

2

1 2

2θ θ θ θ( ) ( ) ( ) ( )=
−





+
+





−

If we now use z as input to the logistic sigmoid function, it can be used to correctly 
classify the data points for the XOR problem, assuming that we can come up with 
all the constants in the expression.

The expression for z can be rearranged to the following:

0 1 1 2 2 1
2

3 2
2z w w x x w x w x= + + +

where

10w = −

Figure A-7 how the XOR problem can be solved by using the function of an ellipse 
instead of a straight line
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That is, z is still a linear expression with respect to the parameters w
0
, w

1
, w

2
, and 

w
3
, which implies that we can use logistic regression to solve the XOR problem as 

long as we provide it with the inputs x
1
x

2
, x

1
2, and x

2
2.

Before concluding this section, we should point out that using the formula for an 
ellipse is not the only way to solve this problem, and an even simpler solution is 
to use only the two terms x

1
 and x

1
x

2
, which results in a solution similar to what is 

shown in Figure A-8.

An obvious question is how to figure out what kind of terms to include in our 
equations to arrive at solutions of this kind. The process of coming up with these 
inputs, also called features, is known as feature engineering and is an important 
part of traditional ML. The role of feature engineering is less important in the 
context of DL, where the responsibility of extracting features primarily belongs to 
the learning algorithm. Chapter 3 showed this with an example of how a neural 
network could learn to solve the XOR classification problem. Let us now move on 
to another important linear classifier.

Figure A-8 Alternative logistic regression solution to the XOR problem
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Classification with support Vector 
Machines

As already mentioned, both the perceptron and logistic regression are examples 
of linear classifiers. Another important linear classifier in ML is the support 
vector machine (sVM). This section provides a brief introduction to sVMs.

In the context of logistic regression, we saw that all data points were used when 
solving the optimization problem to determine parameters of the model. The 
sVM takes a different approach. Consider all the data points in Figure A-9. For 
now, ignore the dashed lines and the arrows. We see that the green line perfectly 
separates the two classes, but we could construct a number of other variations 
on the green line and still manage to perfectly separate the classes. For example, 
we could shift the line right, left, up, or down a little bit or modify its slope or do 
a combination of shifting and changing slope. A reasonable question is whether 
it makes sense to worry about the data points far from the current decision 
boundary, such as those in the upper right corner of the figure. These data 
points will be correctly classified regardless of how we do these minor tweaks. 
Therefore, one approach is to pay attention only to the data points close to the 
decision boundary and draw the line to fit them well. An sVM does just that by 
identifying a limited set of data points that define the boundary.

In addition to the decision boundary (solid green line in the figure), the sVM 
defines a margin that consists of the distance between two parallel lines (dashed 
magenta lines in the figure) that are on each side of the boundary. The sVM 

Figure A-9 Decision boundary for a support vector machine
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selects a decision boundary in a way that the distance between these two dashed 
lines (the margin) is maximized. As shown in the figure, this implies that a number 
of data points are right on these lines. We can say that the lines are supported by 
these data points. The vectors from the origin to these points are called support 
vectors, which gives the algorithm its name.

As we have previously seen, there exist cases that are not perfectly separable but 
where a straight line still makes sense. For example, noise in the data could cause 
classes to overlap, or the overlap could be caused by some unknown variable not 
included in the model. This is illustrated in Figure A-10, where a small number 
of pluses and minuses are located on the wrong side of the decision boundary. 
It is still possible to use an sVM for such cases, but there is now an additional 
trade-off to make. We can increase the margin by allowing more of the training 
examples to violate the margin constraint (fall on the wrong side of the margin 
line). Conversely, we can reduce the number of training examples that violate the 
margin constraint by reducing the margin. This trade-off is controlled by a tunable 
parameter to the training algorithm.

We have seen that logistic regression can be used for the XOR problem if we first 
combine the raw input variables into new variables (features). Not surprisingly, 
this can be done for an sVM as well. A challenge with this approach, not only for 
sVMs, is that we need to compute all of these additional input features before 
we can do training or classification. In some cases, this can be computationally 
expensive. A key property of the sVM is that we can employ a technique known as 

Figure A-10 support vector machine for a case where the classes are not linearly 
separable but where a straight line still makes sense as the decision boundary
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the kernel trick to reduce the computational cost of working in this transformed 
input space.

We do not describe the details of how the kernel trick works because we would 
first need to go into the mathematics of the sVM algorithm itself. however, we 
do want to point out one thing that we find nonobvious from some descriptions. 
The special thing about the sVM and the kernel trick is not that they enable 
classification with additional (engineered) input features to solve problems that 
are not linearly separable. As previously described, that can be done with logistic 
regression as well. The significance of the kernel trick in conjunction with sVMs is 
that it can be used to reduce the computational complexity of working with these 
additional input features.

This concludes our descriptions of linear classifiers. The perceptron, logistic 
regression, and sVM represent only a subset of the available algorithms. other 
examples are linear discriminant analysis (LDA) and naïve Bayes. The sVM 
algorithm has also been extended to the regression problem domain, with a 
related algorithm known as support vector regression. hastie, Tibshirani, and 
Friedman (2009) describe these and additional techniques and is a good source 
for future reading. 

Evaluation Metrics for a Binary Classifier
It is often the case that we can come up with multiple different models when 
attempting to solve a classification problem. A key question is how to evaluate 
which model is best. Intuitively, it seems like the model with the highest accuracy 
would be a good choice, where accuracy is defined in the following way:

 

 
accuracy

correct predictions

total predictions
=

As often is the case, things are not that simple. Consider the case where the 
task at hand is to predict whether a patient is in the early stages of a serious 
medical condition given a number of variables. Further assume that, on 
average, only five out of 100 of patients have this condition. A model that always 
predicts that a patient does not have the condition will have 95% accuracy 
but is practically useless. A model that correctly identifies four out of five of 
the patients that have the condition and incorrectly identifies another five of 
the patients as having the condition will have only a 94% accuracy because it 
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misclassified (1 + 5)/100. however, it is much more useful as an initial tool to 
identify what patients require further screening. This highlights the need to look 
at other metrics in addition to accuracy. A common starting point is to organize 
the actual classes as well as the predicted classes into a table known as a 
confusion matrix, as shown in Table A-1. The rows represent predicted classes, 
and the columns represent actual classes. As an example, the model predicted 
that the condition is present for four patients who had the condition. This is 
represented by the number 4 in the upper left cell for which the condition is 
both predicted as present and truly present, also known as a true positive (TP). 
In all, there are four combinations, the three remaining being false positive (FP), 
false negative (FN), and true negative (TN). 

FP is also known as a type I error, and FN is known as a type II error. It is 
useful to distinguish between the two because different types of errors can 
have vastly different consequences. In this example, it is easy to envision that 
it is worse to fail to identify a patient who has a condition than to incorrectly 
identify a healthy patient as having the condition if the purpose is to identify 
patients for further screening and treatment if necessary. We can use the 
numbers in the table to compute a large number of metrics that can be used to 
gain further insight into how the predictor works. Table A-2 contains three such 
metrics that are commonly used, including accuracy. some of the terms in the 
table sometimes go by other names. For example, recall is sometimes known 
as sensitivity.

Recall is a good metric if we are interested in how certain we are that the model 
will identify patients that we intend to identify. In the example, it is important 
that this metric shows a high percentage. similarly, a low precision will indicate 
that we identify many false positives, which implies additional cost in terms of 
both additional screening as well as emotional distress for patients who will 

Table A-1 Confusion Matrix for the Envisioned Predictor

ACTUAL CLASS

Condition present Condition not 
present

Predicted Class Condition present 4 TP 5 FP

Condition not 
present

1 FN 90 TN
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now worry that they have a serious condition until they get more accurate test 
results.

This example showed that we gain additional insight into the strengths and 
weaknesses of a model by considering metrics other than accuracy. however, 
even if we do have the confusion matrices for a number of models, it is not always 
obvious which model to pick. one technique that can provide additional insight 
is to plot each model in receiver operating characteristic (RoC) space. This is a 2D 
plot with false-positive rate on the x-axis and true-positive rate on the y-axis. 
Figure A-11 shows such a plot for five different models, each represented by a 
single data point in the plot.

Table A-2 Three Common Metrics Computed from the Confusion Matrix

METRIC FORMULA DESCRIPTION

Accuracy TP TN

P N

4 90

5 95
94%

+

+
=

+

+
=

Percentage of all predictions that 
were correctly predicted

Recall TP

TP FN

4

4 1
80%

+
=

+
=

Percentage of the true outcomes 
that were identified by the 
predictor

Precision TP

TP FP

4

4 5
44%

+
=

+
=

Percentage of the predicted true 
outcomes that were actually true

Figure A-11 Five models plotted in receiver operating characteristic space
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The data points are the following:

1. The model described in our example with a false-positive rate of 0.05 and a 
true-positive rate of 0.8.

2. A more sensitive model, which identifies all five patients with the condition 
but results in 20 false positives. It has a false-positive rate of 0.21 and a true-
positive rate of 1.

3. A less sensitive model, which identifies only three out of five patients with the 
condition but results in only one false positive. Its false-positive rate is 0.01 
and true-positive rate is 0.6.

4. The model that always predicts “no condition” with a false-positive rate of 0 
and a true-positive rate of 0.

5. A coin-flip with a false-positive rate of 0.5 and a true-positive rate of 0.5.

If it is not obvious how we arrive at these false- and true-positive rates, then 
we encourage you to write out the confusion matrix and compute the metrics to 
confirm.

Looking at the plot, we see that the data points for our naïve models (always 
predicted true, and random) are located on the diagonal, and our better 
models are above the diagonal. From that perspective, if a data point ever 
ends up below the diagonal, a first thought is that it is a bad model because its 
performance is worse than if outcomes were picked randomly. This is a true 
observation, but given that we work with binary classification, it is trivial to 
transform a model that is consistently worse than chance into a good model by 
simply doing the opposite of what the model predicts. That is, if you recomputed 
the metrics for the bad model but interpreted a true prediction as false and a 
false prediction as true, you would end up with a data point that is located above 
the diagonal in in the plot.

For models that are based on a continuous-valued parameter, such as a threshold 
value, different values of that parameter will result in different points in RoC 
space. If we plot these different points as the parameter is varied, we end up with 
something known as an ROC curve. The RoC curve can then be used to select a 
parameter value that strikes an appropriate balance between false- and true-
positive rates.
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Finally, it is sometimes good to have a single score to use when evaluating a 
model without having to think of the trade-off between false- and true-positive 
rates. In such cases, a good candidate is the F

1
 score:

F score
TP

TP FP FN
 

2

2

2 * 4

2 * 4 5 1
0.571 =

+ +
=

+ +
=

A high score corresponds to a good model. The numbers in this equation 
correspond to the confusion matrix in Table A-1. If the predictor had predicted 
everything correctly, then the F

1
 score would end up being 1.

It should now be clear that it is important to carefully consider what metric is 
appropriate for each problem. The metrics described in this section serve as a 
good starting point of alternatives to consider.
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Appendix B

Object Detection and 
Segmentation

This appendix logically follows Chapter 8, “Deeper CNNs and Pretrained Models.”

Our detailed descriptions of convolutional networks in Chapter 7, “Convolutional 
Neural Networks Applied to Image Classification,” and Chapter 8 focused on 
object classification. The objective was to determine which one, out of a large 
number of classes, the image represented. This is a fairly simplified view of the 
world. It is often the case that an image contains many different objects belonging 
to different classes, which results in more complicated tasks. Three such tasks 
are object detection, semantic segmentation, and instance segmentation. They 
are all illustrated in Figure B-1. Object detection involves identifying the location 
(drawing a bounding box) and type of individual objects in an image. That is, it is a 
combination of a localization and classification problem. Semantic segmentation 
involves identifying to what type of object each pixel in an image corresponds. 
Instance segmentation is similar, but more detailed, in that the task is to identify 
the image pixels for each detected object instance.

In the next couple of sections, we describe some popular methods for object 
detection, semantic segmentation, and instance segmentation. We do not go 
into as much detail as in previous chapters, but we focus on providing intuitive 
descriptions with the goal of giving you a big picture of how the techniques work.
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Object detection
We already know how to classify an image to arrive at the most probable type 
of object in that image. We do it with a number of convolutional layers, followed 
by some fully connected layers, and finally by a softmax layer that provides a 
probability for each class. We also know that we can use a linear output unit to 
predict numerical values. This is known as a regression problem. That is exactly 
what we want to do when we predict a bounding box, with the variation that we 
want to predict four values: the two coordinates (x, y) for the top left corner and 
the two parameters width and height (w, h).

Figure B-2 shows a simple network architecture that begins with convolutional 
layers for image feature extraction, followed by some fully connected layers. After 
that, the network is split into two sibling branches (also known as heads). One is a 
classification branch, consisting of one or more fully connected layers and ending 
with a softmax output function. The other branch solves the regression problem 
of predicting the bounding box parameters. It is also built from fully connected 
layers, but because the output should be real-valued, the output units need to be 
linear units without any activation functions. As described in Chapter 5, “Toward 
dL: Frameworks and Network Tweaks,” ReLU is a reasonable activation function 
to start with for the hidden units.

given the network in Figure B-2, it is not hard to envision a naïve solution to the 
detection problem. We can design the network to expect a small image as input. 
We train this classification network with training examples where one class 

Figure B-1 Left: Object detection—detect objects, draw bounding boxes around them, and 
classify them. middle: Semantic segmentation—identify all pixels that correspond to a 
specific object type. Right: Instance segmentation—identify pixels for individual instances 
of each object. These images are produced using an implementation of mask R-CNN, which 
is described at the end of this appendix. The algorithm also detected the background as a 
“dining table,” but we manually suppressed that to make the images less cluttered.
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represents “no object” (i.e., background). We train the bounding box branch to 
output the coordinates for a bounding box around the object. Once this is done, 
we can repeatedly apply this network to different regions of a larger image (e.g., 
by using a sliding window approach, to find regions that the network classifies 
as containing an object). This naïve implementation is computationally expensive 
because the network is evaluated a large number of times for a single image, and 
another limitation is its fixed input region size.

Not surprisingly, the success that AlexNet demonstrated on classification was 
shortly followed by attempts to use similar techniques for object detection. 
This resulted in rapid advances in detection in parallel with the advances in 
classification that were described in Chapter 8. Of particular interest is a series 
of papers that gradually refined an initial technique to be both more accurate 
and more efficient. The series started with a technique known as region-based 
CNN (girshick et al., 2014), which was followed by a faster version known as Fast 
R-CNN (girshick, 2015). Shortly thereafter, an even faster version was published 
under the creative name Faster R-CNN (Shaoqing et al., 2015). The next few 

Fully connected layers

Image

Convolutional layers

Branch for bounding
box regression

Branch for
classification

One-hot output 4 real-valued outputs

Fully connected layers with
softmax output

Fully connected layers
with linear output

Figure B-2 Network that can both classify an object and predict the parameters 
for a corresponding bounding box
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sections outline this progression while omitting many of the details. Some of the 
included details are there only to make the description understandable but are 
not relevant for the more recent techniques. In such cases, we try to point that out 
so that you can avoid spending too much time on them.

R-CNN

The region-based CNN (or R-CNN) technique consists of a combination of deep 
learning (dL) and other more traditional computer vision techniques. All the steps 
of the R-CNN algorithm are shown in Figure B-3.

Instead of using the sliding window approach outlined previously, it starts 
by identifying region proposals using one of a number of existing computer 
vision techniques. We do not describe these techniques in detail because one 
of the improved versions of the model (Faster R-CNN) later replaces it with a 
dL-based technique. For the purpose of understanding how R-CNN works, we just 
assume that there is a preprocessing step applied to the image, which identifies 
approximately 2,000 rectangle-shaped regions of various sizes. These regions 
are candidates for containing an object, but there may well be plenty of false 
positives.

The next step in R-CNN is to run a CNN-based classification network on each 
region proposal, and like the network in our earlier naïve approach, this network 
can also classify regions as not containing an object. R-CNN uses a variation of 
the AlexNet architecture for classification. The network is first pretrained on 
ImageNet. That is, R-CNN makes use of transfer learning. Next, instead of using 
the full network as is, the final layer (softmax) is removed, so the output of the 
network is a vector of 4,096 elements. This 4,096-dimensional feature vector is 
used as input to both the classification step and the bounding box refinement step 
(described shortly).

CNN without
softmax

Classification Bounding box
refinement

Traditional
computer vision

Pretrained neural
network

Support vector
machines

Class-specific
linear models

Region proposalsImage Bounding box

Class

Done once per region proposal

Figure B-3 R-CNN pipeline. Only one of the steps is based on deep learning.
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If you read the paper, you will note that for classification, instead of using a 
softmax layer, R-CNN uses support vector machines (SVms; also discussed in 
Appendix A), which is a binary classification technique from traditional machine 
learning (mL). The SVms use the 4,096-dimensional feature vector as input. For 
all practical purposes, you can still envision the classification as being done by a 
final softmax layer, although the accuracy will be slightly different. One detail to 
deal with is that the proposed rectangular regions are of arbitrary size and aspect 
ratios. For R-CNN, this issue is resolved by warping the image region (changing 
the size and aspect ratio) to the expected input size, after first having added some 
padding to reduce the risk that the original region proposal cropped the object. We 
will see in a later section that Fast R-CNN uses a different approach. 

It might seem like 2,000 regions is a large number of regions. However, it is 
significantly fewer than what a sliding window would result in. Still, many of the 
regions will overlap, so the next step in the algorithm (not shown in the figure) 
is to analyze this overlap and make a call of whether two regions truly classify 
different objects. This overlap analysis does not use dL but uses a metric known 
as intersection over union (IoU), which is compared to a threshold value.

Now that the algorithm has detected and classified a number of objects, the final 
step in R-CNN is to refine the bounding box for each detected object. The thinking 
is that the original region proposals were created by a simple algorithm and are 
not expected to have high accuracy. Now that a smaller number of objects has 
been identified, a more accurate predictor can come up with better bounding 
boxes. For R-CNN, this is done using a class-specific linear regression model. 
That is, if there are K classes, the algorithm will train K linear regression models. 
When R-CNN later has detected and classified an object, it uses the corresponding 
linear regression model to refine the bounding box for a given object. The linear 
regression model uses the coordinates from the original region proposal as 
well as the 4,096 features extracted by the network as inputs. Thus, this model 
has access to complex information about the object that it is trying to create a 
bounding box for. We omit the exact details of how this bounding box refinement 
works and note that later models use techniques fully based on neural networks 
instead of linear regression models.

The topic of using SVms versus softmax in the final layer has been studied in 
various contexts (Agarap, 2018; Lenc and Vedaldi, 2015; Liu, Ye, and Sun, 2018; 
Tang, 2013). At this point, the community seems to have settled on softmax as 
the default choice, but using SVms is definitely an alternative to keep in mind.
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FAST R-CNN

One major performance bottleneck in R-CNN is that each of the 2,000 region 
proposals results in a forward pass through the convolutional network. 
Addressing this issue is one of the key contributions in the follow-up work that 
resulted in Fast R-CNN. Other changes include using VggNet-16 instead of 
AlexNet, and instead of SVm and linear regression, it uses neural networks for the 
classification and bounding box refinement.

The first step in Fast R-CNN is to run the entire image through the convolutional 
and max pooling layers of a pretrained VggNet-16 model. That is, the two fully 
connected layers and the softmax layer have been removed. This results in 

a feature map of the dimensions 
32

   
32

W H
× , where W and H are the width and 

height of the input image.1 Fast R-CNN relies on receiving approximately 2,000 
region proposals from a simple model, just as R-CNN did. given one such region 
of interest for the input image, it is easy to find a mapping to the corresponding 
rectangular region in the feature map. We can now use those features as inputs to 
our classification network. This is the main source of speedup in Fast R-CNN over 
R-CNN. Instead of doing a forward pass for each region proposal through all the 
convolutional layers, we do a single forward pass for the entire image. Although the 
entire image is larger than each region proposal, it is not 2,000 times larger because 
many of the proposals have overlapping regions, resulting in a significant speedup.

As opposed to warping the image into fixed dimensions, the model uses a layer 
called a region of interest (ROI) pooling layer. This layer is applied to the feature 
map and uses max pooling to convert the ROI of the feature map into a feature 
map of size 7×7. This is the same size as the input to the fully connected layers 
that we had removed from the model. Therefore, we can connect the output of the 
ROI pooling layer to the pretrained fully connected layers. Figure B-4 illustrates 
how the ROI pooling layer converts an arbitrarily sized region into fixed size.

The figure shows how a 4×8 region can be converted into a 2×2 region, but 
in reality, in Fast R-CNN the target size is 7×7. The figure shows only a single 
channel, although the feature map consists of 512 channels in practice. 
As mentioned previously, the output of the ROI pooling layer feeds two 
fully connected layers. The output of these two fully connected layers is a 
4,096-dimensional feature vector that feeds two separate sibling networks. 

1. A network consisting solely of convolutional layers and pooling layers can accept an image of any 
dimensions as input given some minor padding. The denominator (32) results from the network having 
five pooling layers, each reducing the dimensions by a factor of two.
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One of the networks is responsible for classifying the region as one out of many 
object types or as not an object (background). This network is simply a fully 
connected layer, followed by a softmax layer with K+1 outputs to classify the 
region as either containing one out of K different objects or no object at all. The 
second network operates side by side with its sibling and is responsible for 
predicting a more accurate bounding box. This network is also a fully connected 
network but with K sets of four outputs, representing the four coordinates for K 
different bounding boxes. That is, the set of four outputs to consider depends on 
which type of object the network detected. The overall architecture is shown in 
Figure B-5.

One thing to note is that these coordinates are not specified in terms of an 
absolute number of pixels. Instead they are expressed in terms of parameterized 
offsets compared to the region proposal that was input to the network. For 
completeness, assume that our training example provides a set of ground truth 
coordinates G
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2. It is not completely clear to us why this parameterization is good, but the R-CNN paper where it 
was introduced (girshick et al., 2014) stated that “as a standard regularized least squares problem, 
this can be solved efficiently in closed form.” This parameterization might be beneficial even for Fast 
R-CNN, where a network is in charge of finding a solution, or a different parameterization might have 
worked equally well.
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9 4
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8 7    3    2

Figure B-4 How max pooling is used to convert an arbitrarily sized region of 
interest into fixed dimensions.
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It is worth noting that R-CNN used only dL to solve the feature extraction step in 
the object detection pipeline. Fast R-CNN, on the other hand, additionally uses dL 
for the classification and bounding box prediction steps. The region proposals are 
still created using a more traditional approach.

FASTER R-CNN

After the optimizations introduced with Fast R-CNN, the region proposal step 
emerged as a performance bottleneck. Faster R-CNN addresses this bottleneck by 
extending the neural network to provide its own region proposal instead of relying 
on a separate step up front. The full image is run through the convolutional layers 
from a pretrained VggNet-16 to create a feature map, just as for Fast R-CNN. This 
feature map is used as input to a region proposal network (RPN), which creates 
the region proposals that were created by a more traditional computer vision 

Fully connected layers

Image

Convolutional layers

Branch for bounding
box refinement

Fully connected layer with
softmax output

Fully connected layer
with linear output

Branch for
classification

One-hot output
(K classes)

K sets of 4 real-
valued outputs

Region
proposal

ROI max pooling

Feature map

Done once

Done once per
region

proposal

Region selection

Figure B-5 Overall architecture of the Fast R-CNN network
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technique in the past models. This RPN is the key contribution in Faster R-CNN. 
It nicely increases performance and results in an end-to-end dL solution to the 
entire object detection problem.

The RPN is a network that takes N×N features as input (where N = 3 in the paper 
[Shaoqing et al., 2015]), predicts whether the corresponding area in the original 
image contains one or more objects, and if so, provides region proposals for 
those objects. Sliding the RPN over the feature map produces region proposals 
for all objects in the image. given that there is no straightforward (or any?) way 
to make a network have an arbitrary number of outputs, the RPN is limited to 
providing K region proposals (where K = 9 in the paper) for each set of N×N 
input features. The RPN consists of one fully connected ReLU layer followed 
by two fully connected sibling layers. One of the sibling layers provides K 
outputs, where each output indicates whether or not an object is present. The 
second sibling layer provides K sets of four outputs, where each set of four 
outputs is used to indicate locations of regions corresponding to the objects 
that the network deemed as being present. This is similar to the classification 
and bounding box refinement network that we described for Fast R-CNN, but 
remember that the RPN serves a different purpose.

This description of the RPN is not complete. The network includes one 
additional mechanism to make the region proposal functionality work better. 
This mechanism is based on anchor boxes. An anchor box is a rectangle of a 
specific size and aspect ratio that is centered at the current position of the RPN. 
Each of the K region proposals is based on an anchor box with unique size and 
aspect ratio. In particular, for K = 9, the anchor boxes correspond to all nine 
combinations of three different sizes and three different aspect ratios. The three 
sizes used in the paper are 1282, 2562, and 5122, and the three aspect ratios are 
1:2, 1:1, and 2:1, resulting in the combinations (1282, 1:2), (1282, 1:1), (1282, 2:1), 
(2562, 1:2), (2562, 1:1), and so on. The final region proposals are computed by 
combining a specific anchor box with the coordinates predicted by the network. 
For example, if the second output of the first sibling layer indicates that an object 
is present, then the second set of outputs in the other sibling layer will predict the 
coordinates in relationship to the anchor box of size 1282 pixels and 1:1 aspect 
ratio. The coordinates are parameterized in the same way as for the bounding 
box refinement described for R-CNN. The RPN, including the anchor boxes, is 
illustrated in Figure B-6.

Now that we have both a feature map and region proposals, the rest of the 
network is identical to Fast R-CNN. That is, we use these region proposals to 
identify a part of the feature map to run through the ROI max pooling layer to 
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produce a fixed-sized feature vector. This feature vector is then input to the 
remaining network that classifies the region as belonging to a specific class 
or not being an object. The sibling network further refines the region proposal 
to arrive at a refined bounding box. The overall architecture is shown in 
Figure B-7. 

A fair question is why it is fast to use a sliding window approach when we 
previously have made a point that sliding windows is inefficient. The reasons that 
a sliding window approach is feasible in this case are that the search space and 
computational cost of the network have been reduced. First, the RPN is applied to 
the output of the convolutional layers. This output is of lower resolution than the 
original image. Second, the anchor box approach used by the RPN can propose 
multiple sizes and aspect ratios at once and thereby removes the need to evaluate 
the network once for each combination of size and aspect ratio. Finally, the RPN 
is a very small network, so it is not overly costly to evaluate a large number 
of times. It is a classification network that works with nine different classes, 
as it identifies, at most, nine regions per sliding window location. This can be 
compared to the number of different object types that the overall network needs 
to be able to classify, which is orders of magnitudes larger.

Faster R-CNN concludes our description of object detection techniques. The next 
few sections focus on a different problem, known as semantic segmentation.
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Figure B-6 Left: Region proposal network. The network consists of two sibling branches. 
The bounding box parameters are predicted relative to one out of K predefined anchor 
boxes of fixed size and aspects. Right: Anchor boxes.
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Semantic Segmentation
The task of semantic segmentation involves assigning each pixel in an image to 
an object class by painting all pixels for a certain type of object in the same color. 
For example, an input image with two cats and a dog could result in an output 
image where the pixels for the two cats are yellow, the pixels for the dog are red, 
the ground pixels are green, and all sky pixels are blue. A key property of this task 
is that the width and height dimensions of the output are the same as the width 
and height dimensions of the input. However, the number of channels is different 
between the input and the output. The input typically has three input channels 
(RgB), and the output has the same number of channels as the number of classes, 
which was four in the example just described. Figure B-8 shows a naïve attempt 
at creating a network that fulfills these properties.
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Figure B-7 Faster R-CNN architecture
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It consists of a convolutional network, without any pooling layers and with a 
stride of 1 for all layers. The number of channels increases as we move into 
the network. The output layer contains the same number of channels as the 
total number of object types that we want to be able to classify. If we pad 
the boundaries of each layer properly, the output layer will end up with the 
right size.

This network has no pooling layers or large strides for the convolutions. Their 
absence is inefficient because the layers deeper into the network not only have 
many channels but also are both high and wide (see middle layer in Figure B-8). 
This means that the total number of values (features) increases for each layer in 
the network. On the contrary, in a typical CNN the width and height decrease as 
we move deeper into the network, which results in a reduced or constant total 
number of features.

To enable using a more traditional CNN (where the resolution decreases inside the 
network) in the context of semantic segmentation, we need to somehow increase 
the resolution again in the final layers to arrive at an output layer with the right 
dimensions. The next section describes how this can be done.

UPSAmPLINg TECHNIQUES

Increasing the resolution of an image is known as upsampling. It can be done 
in many different ways, most of which are not specific to dL. We start by 
describing two common techniques known as nearest neighbor interpolation and 
bilinear interpolation. Figure B-9 illustrates a scenario in which we upsample 
a 3×3 image by 2× into a 6×6 image. The leftmost part of the figure shows the 

Input
image

Conv layer
6 channels

Conv layer
12 channels

Conv output layer
5 channels

Annotated
image

Figure B-8 Simple architecture for semantic segmentation. The width and height 
of all layers are of the same size to result in an output with the same resolution 
as the input image. Each 3d box represents a convolutional layer with a number 
of channels.
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original 3×3 pixel image. To the right of that is an illustration of the desired 6×6 
output image. Further right, the two images are overlaid on top of each other. 
Somewhat unintuitively, an upsampled pixel (red) does not fall equidistantly 
between the original pixels (blue). Instead, each pixel happens to be located in 
a position where it is close to one specific original pixel and farther away from 
other original pixels. given that background, nearest neighbor interpolation is 
trivial to explain. Each upsampled pixel simply takes on the value of the closest 
original pixel. That is, each group of four upsampled pixels will take on the same 
color as the original pixel located in the center of the four upsampled pixels. 
Although the resulting image consists of 36 pixels, it will never consist of more 
than nine unique colors. Needless to say, this results in a pixelated appearance 
of the upsampled image.

One way to address the pixelation issue is to interpolate between the colors of the 
neighboring pixels. There are many ways of doing this; perhaps the most common 
one is bilinear interpolation. This is illustrated in the right half of the figure. 
Consider the bright red pixel and its distances to the four blue surrounding pixels. 
We measure the distance in terms of the fraction of the distance between these 
four blue pixels. The closest blue pixel is 1/4 of the distance in each direction (x 
and y). The farthest one is 3/4 of the distance in each direction. The other two 
are (1/4, 3/4) and (3/4, 1/4) distances away. We now compute a weight for each 
pixel, where the weight is computed as (1 − x

distance
) × (1 − y

distance
). That is, the 

weight of the closest pixel is (3/4) × (3/4) = 9/16. The weight of the pixel furthest 
away is (1/4) × (1/4) = 1/16. The weights of the two other pixels are both (1/4) × 
(3/4) = 3/16. Note that the weights are not proportional to the Euclidian distances 
between the red pixel and the blue pixel. Instead, the weight is computed as the 
product of the distances in each of the two (x, y) dimensions. more details about 
interpolation techniques can be found in texts about computer graphics, such as 
Real-Time Rendering (Akenine-möller et al., 2018).
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Figure B-9 2× upsampling
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Conveniently, bilinear interpolation can be implemented using a form of 
convolution. This is illustrated in the left part of Figure B-10. The trick is to first 
space the pixels apart and insert dummy pixels with 0 values in between each 
original pixel. The figure shows the original pixels in blue and the dummy pixels 
in gray. We can now use a 4×4 convolutional kernel to calculate the value of the 
pixel at the center of these 4×4 pixels. The values of all 16 elements of the kernel 
are found in the figure. A fair question is why the convolutional kernel needs to 
have 16 nonzero values when it will be applied to only four pixels with nonzero 
values. The answer is that the relative location of the 0-valued pixels changes as 
we move the kernel to compute the value of neighboring pixels.

Using the same technique, it is possible to construct a convolutional kernel that 
implements nearest neighbor interpolation. It is simply a 2×2 kernel with the 
value of all elements being 1.

It can be somewhat confusing to mentally visualize how the original pixels, the 
dummy pixels, and the resulting interpolating pixels relate to each other. The 
rightmost part of Figure B-10 shows them all in the same figure.

3/16 9/16 9/16 3/16

3/16 9/16 9/16 3/16

1/16 3/16 3/16 1/16

1/16 3/16 3/16 1/16

 =  Original pixel =  Zero padding  =  Computed (interpolated) pixel

Bilinear interpolation using
convolution kernel

4x4 convolutional kernel

Relationship between pixel
positions

resulting
pixel

for current
kernel

position

Figure B-10 Bilinear interpolation implemented using convolution. In reality, we 
need to pad the edges of the original image with more 0 values or apply other 
techniques to enable us to compute the edge pixels.
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DECONVOLUTION AND UNPOOLING

Using the preceding framework, nearest neighbor and bilinear interpolation are 
only two special cases of convolutional kernels that we can implement. Instead 
of carefully selecting the weights in the kernel, these weights can be learned as 
part of training the network. In the dL field, the combination of interspersing the 
original pixels by 0-valued dummy pixels followed by applying a convolutional 
kernel is often referred to as a deconvolution operation. This naming derives from 
the fact that a normal convolutional layer downsamples an image (assuming a 
stride greater than one), whereas the operation we just described upsamples the 
image. That is, to some extent, the upsampling operation reverses the original 
convolution operation. However, deconvolution is a somewhat unfortunate 
name given that there already exists a different mathematical operation called 
deconvolution. From that perspective, unless the context is clear, it makes sense 
to refrain from using this term. Other names for this operation are transposed 
convolution and fractional striding.

Using a convolutional layer with a stride greater than 1 is not the only way to 
downsample images in a convolutional network. Another technique is the max 
pooling operation, which groups (pools) a region of pixels together and selects 
the maximum valued pixel. The left and middle parts of Figure B-11 illustrate the 
max pooling operation. For each group (pool) of four pixels, the maximum valued 
ones are indicated by more intense red color and a red square. The middle part of 
the figure illustrates how each group of four pixels in the original image results 
in a single pixel in the image after max pooling. The green square indicates the 
position of the original pixel that had the max value.

just as deconvolution can be used to undo convolution, we can undo max pooling 
with an operation known as unpooling. This is illustrated in the right part of 
Figure B-11. The unpooling is similar to the first step of bilinear interpolation 
or deconvolution in that it pulls apart the pixels and inserts 0-valued dummy 
pixels. However, instead of placing the dummy pixels uniformly, it makes use of 
information from a preceding max pooling operation. The figure shows how the 

Max
pooling

Un-
pooling

Figure B-11 max pooling and unpooling
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unpooling operation places the nonzero pixels in locations that correspond to 
where the maximum value originated before the max pooling operation. In reality, 
an unpooling operation does not typically follow directly after a max pooling 
operation, but there are multiple other operations interspersed between the two.

RELATIONSHIP BETWEEN DECONVOLUTION AND CONVOLUTION

In addition to the naming confusion between the deconvolution operation and 
the mathematical deconvolution operation, our impression is that there is some 
confusion with respect to how a deconvolution layer relates to a convolution 
layer. The deconvolution layer was first introduced by Zeiler and colleagues 
(2010). In subsequent work (Zeiler and Furgus, 2014; Zeiler, Taylor, and Fergus, 
2011), the authors also introduced the unpooling operation and built networks 
that combined the two. This was in the context of reversing the effect of prior 
convolution and max pooling layers. They used unpooling and deconvolution to 
map features inside an image network back to pixel space. That is, there was a 
one-to-one correspondence between convolution/deconvolution and max pooling/
unpooling in the network. However, Zeiler and colleagues did not train the weights 
of the deconvolution layer separately. Instead, they reused the weights from 
the convolutional layer because they simply wanted to reverse the operation. 
To make each weight affect the appropriate pixel, the matrix representing the 
convolutional kernel needed to be transposed. This is the basis for the alternative, 
and perhaps better, name transposed convolution. In cases where the weights 
for the deconvolutional layer are learned separately, the point of transposing the 
matrix is moot. It simply does not matter how we arrange the initial weights of the 
matrix, given that they are initialized with random values anyway.

Combining unpooling and deconvolution is a source of confusion. We have 
described deconvolution as being an upsampling operation in which we first 
separate the pixels and then apply a convolution with a transposed kernel. A 
fair question is what happens in the case where we combine unpooling and 
deconvolution. The unpooling operation results in separating the pixels, so having 
the deconvolution layer separating them further is typically not desired. This can 
be avoided by using a stride of 1 for the deconvolution layer. The stride parameter 
controls how much to pull the input apart, and we have implicitly assumed a 
stride of 2 in all our examples. Setting the stride to 1 results in the output size 
being the same as the input size, just as for a convolutional layer with stride 1.

This is similar to how a convolution followed by max pooling is handled. We 
typically either use a combination of convolution with stride 1 and a max pooling 
layer or use a stride greater than 1 and simply omit the max pooling layer. In the 
former case, the max pooling layer does the downsampling, and in the latter, 
downsampling is baked into the convolution. This is all illustrated in Figure B-12.
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This takes us to what we think is a great source of confusion when dealing with 
deconvolution layers. The deconvolution layer first pulls the inputs apart and 
then performs a normal convolution but with a transposed version of the weight 
matrix. In the case where we have a stride of 1, the input is not pulled apart. 
Further, if the weights are learned (the normal use case), then the transpose 
operation does not have practical importance. That is, the deconvolution layer is 
equivalent to a convolutional layer! Still, it is common to see implementations that 
use unpooling layers followed by deconvolution layers with a stride of 1, possibly 
to make it clear that the overall network is upsampling.

AVOIDING CHECKERBOARD ARTIFACTS

One issue with the deconvolution approach is that it has been shown to result in 
checkerboard artifacts (Odena, dumoulin, and Olah, 2016). This often happens 
regardless whether you use unpooling and deconvolution with stride 1 or you 
skip the unpooling and have larger stride in the deconvolution. going back to the 
example where convolution is used to implement bilinear interpolation, this is not 

Use of pooling

Convolutional layer
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Max pool stride = 2

xn–
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Deconvolution layer
stride = 1 Deonvolution layer

stride = 2

2n × 2n 2n × 2n

Convolution Deconvolution

Figure B-12 Convolution/pooling and unpooling/deconvolution. Neither 
convolution nor deconvolution changes the dimensions of the input when using 
a stride of 1. Convolution/pooling downsamples and unpooling/deconvolution 
upsamples.

Using a deconvolution layer with a stride of 1 and learned weights seems like a 
very convoluted way of implementing a convolution.
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entirely surprising. We see that we are applying a convolution to an input image 
that has many zeros in a very regular pattern. In the case of bilinear interpolation, 
we carefully selected the weights given our knowledge of this input pattern. If 
we had not done that, it is not surprising that the grid of zeros in the input can 
result in a similar pattern on the output. Technically, the convolutional kernel 
has the freedom to learn bilinear interpolation, but why make it so hard for the 
network? Would it not be better to simply first apply nearest neighbor or bilinear 
interpolation followed by a convolution? Odena and colleague studied this issue 
and concluded that using nearest neighbor interpolation followed by a regular 
convolution yielded the best result.

There are a number of variations on these concepts. The convolutional kernel can 
be initialized to do bilinear interpolation and then adjusted by the training process 
(Long, Shelhamer, and darrell, 2017). This can be combined with first doing 
unpooling to still make use of the information from a preceding max pooling step 
(Badrinarayanan, Kendall, and Cipolla, 2017).

In practice, for many applications, simply upsampling the image using either 
nearest neighbor or bilinear interpolation followed by a normal convolution is 
easy to implement and yields good results. This example seems to be a case 
where the community simply was overcomplicating the problem.

Now that we know how to do upsampling, we are ready to describe more 
advanced networks for semantic segmentation that can use lower resolution 
layers in the middle of the network. We describe the deconvolution network (Noh, 
Hong, and Han, 2015) and the U-Net (Ronneberger, Fischer, and Brox, 2015), which 
both are logical extensions of what we have just described. Both networks are 
examples of fully convolutional networks (FCNs), which are characterized by only 
having convolutional, downsampling, and upsampling layers. They both build on 
work by Long, Shelhamer, and darrell (2017), who had previously proposed using 
FCNs for semantic segmentation.

In many applications, upsampling using nearest neighbor or bilinear 
interpolation followed by a convolutional layer yields good results. We also 
think it is easier to understand than the transposed convolution (deconvolution) 
layer.
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dECONVOLUTION NETWORK

given the upsampling techniques just described, the deconvolution network 
proposed by Noh, Hong, and Han (2015) is straightforward. It is an extension of 
the naïve semantic segmentation network outlined earlier. The difference is that it 
uses pooling layers to reduce the dimension of the layers deeper into the network 
instead of keeping it constant. This is followed by unpooling and deconvolutional 
layers to restore the width and height of the output layer to the same dimensions 
as in the input image.

The first part of the network is a VggNet-16 network but without the final softmax 
layer. If you recall, VggNet-16 ends with two fully connected layers and a softmax 
layer. It might seem strange that the two fully connected layers are not discarded 
as the softmax layer is. How can a network with fully connected layers result 
in a fully convolutional network? The answer is that, as pointed out by Long, 
Shelhamer, and darrell (2017), a fully connected layer with 4,096 neurons can be 
viewed as a convolutional layer with width = 1, height = 1, and 4,096 channels. 
The remaining part of the network mirrors the convolution and max pooling 
layers. Unpooling layers replace the max pooling layers, and deconvolution layers 
with a stride of 1 replaces the convolution layers (Figure B-13).

224x224
112x112

56x56

28x28 14x14
1x1

Downsampling half (VGGNet) Upsampling half

64
128

256

512
512

4096

Max
pool Max

pool
Max
pool Max

pool Max
pool Un-pool

Un-pool
Un-pool

Un-pool
Un-pool3

224x224

21

224x224
Input
image

Output
segmentation

map

Figure B-13 deconvolution network for semantic segmentation. Each group 
of slices represents a VggNet building block, and each slice represents a 
convolutional layer. The number of channels for each layer is stated at the top and 
matches what is used in VggNet-16. The dimensionality reduction is done using 
2×2 max pooling (shown as text but not explicitly as layers in the figure). The 
upsampling half of the network uses unpooling and deconvolutions that mirror 
the downsampling half.
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The input to the network is a 224×224×3 RgB image. The output from the 
network is a segmentation map of the dimensions 224×224×21. Each of the 
224×224 pixels in the input image has a corresponding 21-element vector in the 
segmentation map. This vector identifies whether the pixel corresponds to one of 
20 different object types or does not correspond to an object at all. 

U-NET

Looking at the deconvolution network in Figure B-13, it seems magical how the 
network can use data from the narrowest part of the network (4,096 values) to 
recreate pixel data at the input resolution (50,000+ pixels). In a previous section, 
we justified the use of this low-dimensional intermediate representation with the 
need for efficiency. Not surprisingly, it turns out that the semantic segmentation 
result improves if the deconvolutional part of the network gets access to 
more data. In particular, it is beneficial if it can see both the low-dimensional 
intermediate representation and higher-dimensional representations originating 
closer to the input of the network. Ronneberger, Fischer, and Brox (2015) 
introduced U-Net, which does just that.

In the upsampling half of the network, at each upsampling step, the output is 
concatenated with the output from a previous layer (in the downsampling half 
of the network) with comparable resolution. Thus, the network can make use of 
detailed pixel data close to the input as well as more coarse-grained hierarchical 
representations from deep inside of the network. This is illustrated in Figure B-14.

Looking at the upsampling half of the network, a white block represents the 
output of a convolutional layer that has been copied from the downsampling part 
of the network. A red block represents a convolutional layer that upsamples the 
output from the immediately preceding layer. The white and red blocks are now 
concatenated and used as input by the next convolutional layer (blue blocks in the 
figure). The figure omits the input image and the output segmentation map.

Now that we have described a couple of different networks for semantic 
segmentation, we move on to a highly related topic: instance segmentation.

If you happen to know something about jPEg compression, then it might not 
seem that magical that the narrowest part of the network is only 4,096 values, 
but let us ignore that for now and not ruin the dramatic introduction to this 
section.
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Instance Segmentation with mask R-CNN
In the semantic segmentation problem, all instances of a certain object type result 
in the same color in the output image. A related problem is instance segmentation. 
It assigns different colors to different instances even if they are of the same type. 
That is, two different cats in an image should result in two different colors in the 
output image.

This problem is a mix of object detection and semantic segmentation. The model 
needs to identify individual objects and then, for each object, identify the pixels 
that are associated with the object. We can solve this problem by building on top 
of Faster R-CNN, which already addressed the problem of localizing an object.
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Figure B-14 The U-Net name is self-explanatory, but in reality, the network has 
the same horizontal hourglass shape as the previously shown deconvolution 
network. The key difference in the U-Net is that we copy output from layers from 
the downsampling to the upsampling part of the network and concatenate them 
with the upsampled layers.
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Mask R-CNN is a model that extends the Faster R-CNN model to also implement 
the instance segmentation task (He et al., 2017). The key enabler is a third branch 
of the network that operates in parallel with the classification branch and the 
bounding box refinement branch. This third branch uses the feature map as 
input and upsamples it. Its output is the pixel mask that identifies the pixels that 
correspond to the identified object. If you think about it, adding an upsampling 
branch to the feature map results in something similar to the deconvolution 
network described earlier. That is, this output layer will provide semantic 
segmentation for each region proposal, which implies that we have all the 
information available to do instance segmentation. The classification branch tells 
us if the region proposal contained an object, and if so, to what class that object 
belongs. The segmentation branch provides one channel for each object class, 
indicating which pixels belong to each class. Now we simply use the output of the 
classification branch to select which channel from the segmentation branch is of 
interest. This channel represents the pixels associated with the detected object. 
If desired, we can also make use of the bounding box branch so we can draw a 
bounding box around the object. The overall architecture is shown in Figure B-15.
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Figure B-15 The full architecture of the mask R-CNN network
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To conclude the description of mask R-CNN, we also note that in addition to the 
segmentation branch, He and colleagues introduced an ROI align layer to replace 
the ROI max pooling layer. The ROI align layer includes some interpolation 
between values instead of just using max pooling operations. This makes it better 
at preserving spatial relationships, which enables the segmentation branch to do 
a better job of identifying the exact pixels to highlight.

Another thing to note is that the final mask resolution is limited to 28×28 pixels 
in the paper (He et al., 2017). For objects that exceed that size, the masks are 
scaled down before training. during inference, if a predicted bounding box is 
larger, then the mask predicted by the network needs to be upscaled to the size 
of the bounding box. We suspect that this design choice was made to reduce 
computational needs or because it reduced the number of required training 
iterations.

Finally, all our figures of R-CNN, Fast R-CNN, Faster R-CNN, and mask R-CNN 
contain a block somewhat loosely specified as “convolutional layers,” also known 
as the backbone of these networks. The detection and segmentation networks 
evolved over a number of years, during which time we saw rapid progress in 
convolutional network architectures. This progress carried over to the field of 
detection and segmentation, and the backbone of the networks was made more 
complex over time. R-CNN was based on AlexNet, whereas Fast and Faster R-CNN 
used VggNet. mask R-CNN was evaluated using a number of different backbones, 
including ResNet and ResNext (xie et al., 2017) with a couple of different depths 
as well as a Feature Pyramid Network (FPN) proposed by Lin, doll, and colleagues 
(2017).

Instead of providing a programming example in this appendix, we encourage you 
to try out implementations that are available for download. The segmentation 
example figure in the beginning of this appendix was produced with a 
TensorFlow implementation of mask R-CNN (Mask R-CNN for Object Detection 
and Segmentation, 2019). It took us less than 15 minutes to download, install, 
and try out the demo application using the pretrained network to do instance 
segmentation on one of our own images.

This concludes our description of object detection, semantic segmentation and 
instance segmentation. It should now be clear that exceeding human ability in 
image classification does not imply that dL can do everything. There exist plenty 
of more complicated tasks to solve.
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Appendix C

Word Embeddings 
Beyond word2vec 
and GloVe

This appendix logically follows Chapter 13, “Word Embeddings from word2vec and 
GloVe.”

The word embeddings we discussed in Chapter 13 come with some limitations 
that more recent embedding schemes have addressed. Specifically, the 
embeddings we discussed have no way of handling out-of-vocabulary words, even 
if the new word is just a minor variation of a known word. For example, consider 
a case where the word dog was included in the training data, but its plural version 
dogs was not and hence does not have a corresponding embedding. It would be 
useful to have an embedding scheme that somehow can handle this case.

A different limitation is that there is only a single embedding corresponding to a 
specific word, even if that word has different meanings in different contexts. For 
example, consider the word can in the sentence “Can I have a can of soda?” The 
first occurrence is a modal verb and the second is a noun. It would be useful if 
these two instances of the same word resulted in two different embeddings.

In this appendix, we describe a few different schemes, which address these 
limitations. We begin by describing wordpieces and FastText embeddings. Both 
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of these methods make use of the fact that a word can be divided into smaller 
units (subwords), but the methods still operate at a coarser granularity than just 
individual characters. These two schemes address only the out-of-vocabulary 
issue but not the issue of different meanings in different contexts. We then 
describe a method that operates on single characters, which also addresses only 
the out-of-vocabulary issue. However, the character-based method is also used as 
a building block in a more advanced scheme known as ELMo (Embeddings from 
Language Models), which addresses both out-of-vocabulary words and context-
dependent embeddings.

Wordpieces
This method is not an embedding scheme in itself but simply a way of creating 
a vocabulary consisting of subwords instead of the full words. We can then use 
any suitable method for learning embeddings for these subwords, including 
learning the embeddings jointly with the application where they are used. The 
technique was originally developed for a voice search system in Japanese and 
Korean (Schuster and Nakajima, 2012) and was also used for a natural language 
translation application used in production (Wu et al., 2016). It is also used by a 
model known as BERT, which is described in Appendix D (Devlin et al., 2018).

The wordpieces are created in the following way. The initial vocabulary consists of 
the individual characters found in the training corpus. Wu and colleagues (2016) 
limited the number of characters to approximately 500 for Western languages 
to avoid polluting the vocabulary with rare characters. The remaining characters 
are replaced by a special out-of-vocabulary symbol. The vocabulary is used to 
build a simple language model (not neural network based). The next step is to 
add new symbols to the vocabulary by combining two existing symbols. That is, at 
the very beginning, we combine two characters into a new two-character symbol, 
which is added to the vocabulary. Adding all possible combinations of existing 
symbols clearly does not make sense, because some of them will not result in 
character sequences that are common, or that even exist, in the training corpus. 
This especially applies later in the process when each symbol consists of more 
characters. Instead, the candidate symbol is chosen on the basis of how well 
the language model would behave if that symbol wore added to the vocabulary. 
That is, we create K2 candidate symbols (assuming K existing symbols in the 
vocabulary), evaluate K2 language models, and pick the symbol that resulted in 
the best language model. This process is repeated until a user-defined number 
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of symbols have been added to the vocabulary. These symbols are now our 
wordpieces that we later use to create word embeddings.

To make it more concrete, we walk through a small example. Assume a training 
corpus that is based on the very limited alphabet e, i, n, and o. The vocabulary 
starts out with just those four symbols. To identify the next symbol to add to the 
vocabulary, we create all 16 combinations: ee, ii, nn, oo, ei, en, eo, ie, in, io, and so 
on. We now want to identify which of these new 16 symbols result in the best 
language model if added to the vocabulary. That is, we create one language model 
with a vocabulary consisting of the symbols {e, i, n, o, ee}. We compare that to the 
language model that instead uses the symbols {e, i, n, o, ii} and so on. Once all 16 
models have been evaluated, we pick the one that results in the best language 
model, which in our example happens to result in {e, i, n, o, no}. We now repeat 
the process, this time with 25 possible combinations. The vocabulary gradually 
grows, with one new symbol for each iteration:

{e, i, n, o, no}

{e, i, n, o, no, in}

{e, i, n, o, no, in, on}

{e, i, n, o, no, in, on, one}

{e, i, n, o, no, in, on, one, ni}

{e, i, n, o, no, in, on, one, ni, ne}

{e, i, n, o, no, in, on, one, ni, ne, nine}

The resulting vocabulary will consist of all individual characters as well as 
n-grams of various sizes. Wu and colleagues (2016) found that a vocabulary 
between 8K and 32K produced good results for their natural language translation 
task. What we described was a naïve implementation. In reality, there are 
implementation optimizations to reduce the computational complexity.

An input sentence can now be broken up into wordpieces using this vocabulary. If 
a word exists in the wordpiece vocabulary, it is left unchanged, and otherwise it is 
broken up into two or more pieces using the words in the wordpiece vocabulary. 
For example, the resulting vocabulary in our example does not contain the word 
none, so it would be formed by concatenating the two wordpieces n and one. Given 
that the vocabulary contains individual characters, it is always possible to form 
any word by combining pieces that exist in the vocabulary.

A wordpiece that begins a word is prepended with a special character (e.g., an 
underscore). That makes it possible to unambiguously recreate the original text 
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once it has been broken up into wordpieces. In the original paper (Schuster and 
Nakajima, 2012), the special symbol was added to a wordpiece if it ended a word 
as well, but the scheme was simplified in the subsequent paper (Wu et al., 2016). 
Moving on from our toy example, we look at the following example from the paper:

Word: Jet makers feud over seat width with big orders at stake

wordpieces: _J et _makers _fe ud _over _seat _width _with _big _orders _at 
_stake

In the example, we can see that the words Jet and feud were not in the vocabulary 
and were therefore broken up into two pieces each. For Jet, this resulted in _J and 
et, where the underscore symbol in front of J indicates that it is the beginning of 
the word. We can now use any suitable method to learn word embeddings using 
the wordpieces as vocabulary.

FastText
FastText (Bojanowski et al., 2017) is a direct extension of the word2vec continuous 
skip-gram model. The intent is to create word embeddings that can handle out-
of-vocabulary words. As described in Chapter 13, the training objective for the 
continuous skip-gram model is to, given a word, predict words that surround 
that word in a sentence. This was done by training a binary classifier to output 1 
for words surrounding the word and 0 for some other randomly selected words 
(known as negative samples).

FastText modifies the representation of the input word to include some of its 
internal structure. For each word in the input dataset, in addition to each word, 
the model also forms all character n-grams for the word. We have previously 
looked at n-grams consisting of n consecutive words, but we can apply the same 
concept to characters inside a word. For the rest of this appendix, n-gram will 
refer to n consecutive characters instead of words. FastText limits itself to n-grams 
where n is greater than or equal to 3 and less than or equal to 6. The first n-gram 
in a word is prepended with a start symbol, <, and the last n-gram in a word 
is appended with an end symbol, >. To give an example from Bojanowski and 
colleagues’ paper (2017), the word where results in the following n-grams:

<wh, whe, her, ere, re>, <where>

The example only shows n-grams of size 3, so in reality, there will be more 
n-grams as well. As shown, the start and end symbols are added to the original 
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word itself as well. This implies that an n-gram that happens to be identical to a 
full word will still be treated as a separate word. For example, the n-gram her will 
be treated as a different word from the full word <her>.

In the FastText model, each word as well as all the n-grams have a corresponding 
vector. We form the embedding for a specific word by averaging the vectors for 
the word and all its n-grams. From a training objective perspective, this results in 
that we train the model not only to predict surrounding words from a given word 
but also to predict the surrounding words from the given word’s internal n-grams.

When using FastText, out-of-vocabulary words will simply be represented by the 
average of the n-grams of that word. It is not hard to imagine how this can lead 
to a vector that is similar to a vector of an existing word in the case where the 
out-of-vocabulary word is just a slight variation of that existing word. FastText 
embeddings have been created for a large number of languages and are available 
online to download.

Character-Based Method
Instead of breaking up words into subwords before training the model, another 
approach to handling out-of-vocabulary words is simply to work on characters 
instead of words. This might seem unintuitive because we are talking about word 
embeddings, but we can build a model that outputs word embeddings using 
characters instead of words or subwords as input. We describe such a model 
in this section. Another important aspect of this model is that it is the basis 
for another model used to produce context-dependent word embeddings. We 
describe this follow-on model in the next section.

In Chapter 11, “Text Autocompletion with LSTM and Beam Search,” and 
Chapter 12, “Neural Language Models and Word Embeddings,” we saw examples 
of neural language models that work on characters as well as on words. The 
ones in our code examples were based on recurrent networks. These models 
were autoregressive in that the predicted output symbol was fed back as input 
to the network in the next timestep. Kim et al. describe a language model that 
is similar but uses a hybrid approach (Kim et al., 2016). It uses characters as 
inputs but predicts words on the output. Further, it is more complicated in that 
it uses character embeddings that are run through a 1D convolutional network 
followed by a highway network. This produces word embeddings that are then fed 
to the recurrent layer. We start by describing these initial layers that operate on 
characters and produce word embeddings.
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The overall idea with this word embedding scheme is that a word can be char-
acterized by the n-grams it contains. To gain some insight into what the scheme 
does, imagine that you have a vector where each entry indicates whether a specific 
n-gram is present in the word. The entry is set to 1 if the n-gram is present and to 
0 if the n-gram is not present. That is, we create a bag-of-character-n-grams. This 
vector can now be used as an embedding. Two words that are different  variations 
of a single word (e.g., the singular form and the plural form), will get similar 
 embeddings. Only the n-grams for the suffixes will differ. Some examples are 
shown in Figure C-1 for the word supercalifragilisticexpialidocious, which is the title 
of a song from the famous children’s movie Mary Poppins (Sherman and Sherman, 
1963). It would be unlikely to find that full word in the vocabulary unless a very 
specific training corpus was used. However, many of the building blocks (n-grams) 
commonly occur in other texts.

The figure shows how we can create a bag-of-n-grams from many of the n-grams 
formed by consecutive characters of that word (top row) as well as the two 
variations subcalifragilisticexpialidocious and supercalirobusticexpialidocious. 
The n-grams are chosen to work well for this example. We also included three 
totally unrelated n-grams (to the very right in the figure) that do not appear in the 
words, to illustrate that not all known n-grams will appear in the input words. This 
example illustrates how these three related words end up with word vectors that 
are similar to each other but different from unrelated words.

The character-based embeddings that we discuss in this section are similar to 
this scheme but with two important differences. First, instead of deciding up front 
what n-grams to look for, the n-grams are learned by the model. Second, instead 
of using a binary number to indicate whether an n-gram is present, each entry in 
the vector is a real-valued number. The magnitude of the value is a measure of 

Bag-of-character-n-grams

super cali fragilistic expiali docious

sub cali fragilistic expiali docious

super cali robustic expiali docious

Input word

super cali fragi expia docsub robust

1 0 1 1 0 1 1

0 1 1 1 0 1 1

1 0 1 0 1 1 1

spoon ful sug

0

0

0

0

0

0

0

0

0

Figure C-1 Bag-of-n-grams based on some of the n-grams in the word 
supercalifragilisticexpialidocious and two variations on that word

We recognize that “totally unrelated n-grams” might be a somewhat strong 
statement for this case.
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how similar the n-grams from the current word are to the target n-grams. Even 
n-grams that were not present in the training set can influence the output. This is 
illustrated in Figure C-2. Some of the target n-grams are slightly different from 
the ones in the previous figure to illustrate the approximate matching. The vector 
entries are now real-valued and indicate similarity between the target n-grams 
and the n-grams found in the words.

Both figures have ordered the n-grams in the same order as they show up in the 
words that we analyze, but in reality, the order is arbitrary, as a bag-of-n-grams 
does not capture the order among the n-grams. In particular, it is not the case 
that each n-gram is scored only on the specific part of the word that has the same 
color in the figure. The score is based on all n-grams in the word. For example, 
consider the n-gram robust. It might seem odd that it has gotten a score of 0.1 
instead of 0.0 for the words that contain fragilistic, given that fragilistic does not 
have any similarity with robust. However, there are other parts of the word that 
have some commonalities—for example, docious contains the letters o, u, and s in 
the same order as robust.

The approximate bag-of-n-grams can be implemented using a 1D convolution, 
which is illustrated on the right side of Figure C-3. We are already familiar with 
2D convolutions (left part of the figure) where we are sliding a K×K kernel over 
an image. The kernel computes a weighted sum of the pixel at the center of 

super calista fragile expiate docentsub robust

1.0 0.2 0.7 0.9 0.1 0.9 0.8

0.3 1.0 0.7 0.9 0.1 0.9 0.8

1.0 0.2 0.7 0.1 1.0 0.9 0.8

Approximate bag-of-character-n-grams

super cali fragilistic expiali docious

sub cali fragilistic expiali docious

super cali robustic expiali docious

Input word

spoon ful sug

0.1

0.05

0.1

0.1

0.1

0.05

0.2

0.1

0.2

Figure C-2 Approximate-bag-of-n-grams where each vector entry indicates similarity to 
the target n-gram

2D Convolution 1D Convolution

Figure C-3 Difference between 2D (left) and 1D (right) convolutions
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the kernel and the surrounding pixels. We saw that the kernel acts as a feature 
identifier and thereby creates a feature map that indicates where certain features 
in the image are present. We can apply the same concept but in one dimension 
with a 1D kernel of width w that we sweep over all the characters in a word. At 
any given point, the kernel will compute a weighted sum of the character directly 
under the kernel as well as the surrounding characters. With a width of w, it can 
thereby identify an n-gram consisting of w characters. The convolution results in a 
1D feature map that indicates where in a word a specific n-gram is present.

One thing that we glossed over in the preceding discussion is how the individual 
characters are represented. As shown in Figure C-3, each pixel in an image 
consists of multiple color channels, so the 2D convolution operates in three 
dimensions. Similarly, we encode each character as a vector of elements, so the 
1D convolution operates in two dimensions, as shown in the figure. An obvious 
way of encoding a character as a 1D vector is to use one-hot encoding. Another 
way is to learn a dense character embedding to reduce the number of elements in 
the vector. That is the method used by Kim and colleagues (2016).

We are now ready to present the process of creating a word embedding from a 
string of characters. The process is illustrated in Figure C-4.

A word consists of a string of j characters. Each character is converted to a 
d-dimensional embedding by an embedding layer. We input this set of character 
vectors into a 1D convolution layer. This discussion has been limited to only a single 
kernel, that is, a single output channel, represented by a single horizontal track 
in Figure C-4. The kernel of width w is applied to all j characters of the word and 
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representing
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Convert to
embeddings

of size d

j vectors of
size d

Apply 1D kernel
of width w to all locations to

detect n-gram 1
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representing presence of n-
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character string

Select
the max
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(lookup table)
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Select
the max

value

m-
dimensional 
output vector

n-gram 2 present?

n-gram m present?

Figure C-4 Creating word embedding from a string of characters
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results in a vector with j−w+1 elements (instead of j because padding is not used). 
This vector indicates the location where the n-gram corresponding to the kernel is 
found. However, we are not interested in knowing the location of the n-gram, but 
only whether it is contained in the word. Thus, the convolutional layer is followed 
by a max pooling operation with a single output. This produces a single element of 
our m-dimensional word embedding. This process is repeated once for each output 
channel, as represented by the different colored tracks in the figure. Each channel 
identifies its own n-gram, and the combined output of all the channels forms a word 
embedding given a string of characters. This implies that a word embedding will be 
formed even for words that were not present in the training dataset.

One drawback of this embedding is that the only similarity between words it is 
likely to capture is similarity in spelling. Kim and colleagues (2016) addressed 
that shortcoming by passing the embedding through a multilevel network to 
produce the final embedding. The thinking is that this additional network can 
capture interactions between the n-grams. One finding was that a regular fully 
connected feedforward network did not do very well, but a highway network did. 
As described in Chapter 10, “Long Short-Term Memory,” a highway network is a 
feedforward network with skip connections controlled by trainable gates. The full 
network is shown in Figure C-5.

1D convolution, tanh, 2048 channels

Max pooling

Char
1 Char jChar 2

Embedding
layer

Embedding
layer

Embedding
layer

Highway, ReLU, 2048

Highway, ReLU, 2048

Fully connected, linear, 512 Change dimensions

Capture interaction
between n-grams

Basic embedding
from previous figure

Figure C-5 Full network to produce character-based word embeddings
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Kim and colleagues used these character-based word embeddings as input to a 
language model based on a single recurrent layer using long short-term-memory 
(LSTM) cells, followed by a softmax layer to predict the next word. The dimensions 
in Figure C-5 are somewhat different than what the authors used, and there is 
also an additional projection layer (fully connected without activation function) 
at the end of the network. This matches the network that is the base of the ELMo 
embeddings described in the next section.

ELMo
Embeddings from language models, also known as ELMo (Peters et al., 2018), 
is based on a language model that uses the character-based embeddings from 
the previous section. This language model was first studied by Jozefowicz and 
colleagues (2016) and uses two bidirectional LSTM-based recurrent layers. That 
study compared a number of different configurations of layers and sizes. We 
focus on the specific configuration that was later used by Peters and colleagues 
(2018) for the ELMo embeddings. A key property of these embeddings is that 
they are context dependent; that is, a single word can have different embeddings 
depending on the context in which the word is used. That is not the only way 
that ELMo is different from other embeddings that we have studied. Instead of 
just using the pretrained embeddings as is, these embeddings have specific 
parameters that are intended to be tuned by the end application.

Clearly, to make word embeddings context dependent, the embedding for a word 
cannot be retrieved by a lookup from just the word itself. Instead, surrounding 
words (the context) is also needed. ELMo solves this issue by using a bidirectional 
language model to generate the embeddings. We have previously seen examples 
of how language models predict the next word given the preceding words. A 
bidirectional language model has access to both preceding and subsequent words 
of the word that it tries to predict.

A key observation is that the embeddings fed to a language model are context 
independent, but the representations in the hidden layers and the output layer of 
the language model include accumulated information about surrounding words. 
In particular, for a bidirectional language model, these representations will be 
affected by both historical and future words—that is, by the full context. The 
language model used by ELMo is illustrated in Figure C-6.
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ELMo

Starting from the bottom, the first module produces a context-independent word 
embedding using the character-based word embedding scheme described in 
the previous section. This module consists of the character embedding layer, 
1D convolution, max pooling, highway networks, and projection layer. The 1D 
convolution uses 2,048 kernels1 (it can look for 2,048 n-grams) of different sizes, 
but the projection layer reduces the word embedding dimension to 512. All of this 
is inside of what is denoted “Character embedding module” in the figure.

The bidirectional language model is based on two bidirectional LSTM layers, 
each having 4,096 units in each direction. The output layer is a softmax layer 
that predicts the missing word in a sequence. This prediction is necessary when 
training the model, but the prediction can be discarded when using the model to 
produce the context-dependent word embedding.

The hidden states of each of the LSTM layers are fed through a projection 
layer that reduces the dimensionality from 4,096 to 512. Because each LSTM 
is bidirectional, each layer results in a vector of 1,024 (2×512) entries after 

1. The 2,048 kernels used in ELMo look for n-grams of different lengths. The size and number of 
kernels are [1, 32], [2, 32], [3, 64], [4, 128], [5, 256], [6, 512], [7, 1024], using the notation [kernel size, 
number of kernels]. For example, the model has 64 output channels that represent n-grams of size 3 
(kernel size: 3; kernel count: 64).
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Figure C-6 Bidirectional language model to generate ELMo embeddings
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concatenation. The input layer consists of only 512 entries, but we concatenate it 
with a copy of itself, and we end up with three sets of 1,024 entries, shown at the 
top right in the figure.

ELMo embeddings are produced by running the text for which we want 
embeddings through the language model, and for each word fed to the model, 
we record these three vectors. The ELMo embedding is formed by computing a 
single vector that is a weighted sum of these three vectors. The weights to use 
are application specific and are learned by the end-user model. This is illustrated 
in Figure C-7.

The figure shows the language model unrolled in time, with the words can, i, have, 
a, can as input. We note that the first and last words (colored green) both are can, 
but they have different meanings. The language model outputs three vectors (E1, 
E2, and E3) for each timestep, and the ELMo embedding is a weighted sum of the 
three vectors. For the two instances of the word can, E1 will be the same because 
it is context independent. E2 and E3 depend on the surrounding words, and the 
resulting ELMo embeddings for the two words are thereby different (indicated 
by the second instance being colored in red). Although ELMo embeddings can 
be used in isolation, Peters and colleagues (2018) showed that it is beneficial to 
combine them with another context-independent embedding scheme. Figure C-7 
shows how this can be done, using pretrained GloVe vectors as the context-
independent scheme.
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Figure C-7 Process of forming context-dependent embeddings by concatenating ELMo 
embeddings with any other context-independent embedding
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As already mentioned, the weights used to combine the three vectors are trained 
in conjunction with training the model that uses the ELMo vectors. These three 
weights (s

1
, s

2
, s

3
) are softmax normalized so that they add up to 1. In addition, a 

single scaling factor (γ) is learned that is applied to the final vector. That is, the 
task-specific ELMo embedding is given by

  1 2 3 ,         11 2 3 1 2 3ELMo s E s E s E where s s stask task task task taskγ )(= + + + + =

Related Work
In our description of the character-based embeddings introduced by Kim and 
colleagues (2016), we noted how the convolution and max pooling operations 
result in an approximate bag-of-character-n-grams (or just bag-of-n-grams for 
short). We described in Chapter 12 that there are two main variations of bag-of-
n-grams. They can indicate either the presence of each n-gram (binary element) 
or the count of each n-gram. Wieting and colleagues (2016) did the latter in their 
work on CHARAGRAM embeddings. They explicitly created a bag-of-n-grams 
instead of using convolutions and used the resulting vector as input to a single 
fully connected layer using the ReLU activation function.

Athiwaratkun, Wilson, and Anandkumar (2018) introduced an embedding scheme 
similar to FastText but with the ability to capture multiple word senses and 
uncertainty information. This enabled the scheme to handle rare, misspelled, or 
even unseen words. They named their scheme Probabilistic FastText.

ELMo is not the only existing scheme for context-dependent embeddings. It 
builds on work on contextualized word vectors, or CoVe for short (McCann et al., 
2017). In that work, the authors produced context-dependent embeddings from a 
machine translation model instead of from a language model. Another difference 
compared to ELMo is that CoVe uses only the representation from the top layer of 
the model, whereas ELMo uses a combination of multiple layers when forming the 
embedding.

This appendix described some techniques to make word embeddings more 
versatile than the word2vec and GloVe embeddings described in Chapter 13. 
Another body of work that builds on word embeddings is document or paragraph 
embeddings. The objective is to find an embedding for an entire phrase instead 
of for a single word. We mention some examples here to provide references 
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for future reading. The first one is doc2vec (Le and Mikolov, 2014). The training 
objective used is to predict the next word in a paragraph. That is, doc2vec is 
similar to the language model–based approach described in Chapters 12 and 13, 
but the technique is modified to produce an embedding for a sequence of words 
instead of for a single word. Mimicking the development of word embeddings, 
the skip-thought model (Kiros et al., 2015) is a generalization of the continuous 
skip-gram model from word2vec. The training objective is to predict surrounding 
sentences given an input sentence, and the result is an embedding for that 
input sentence. Finally, sent2vec (Pagliardini, Gupta, and Jaggi, 2018) composes 
sentence embeddings using word embeddings and n-gram embeddings as 
building blocks.
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Appendix D

GPT, BERT, and 
RoBERTa

This appendix logically follows Chapter 15, “Attention and the Transformer.”

In Chapter 15, we described the Transformer architecture and how it can be 
used for natural language translation. Transformers have also been used as 
building blocks to solve other natural language processing (NLP) problems. In this 
appendix, we describe three such examples.

A key idea is to pretrain a basic model on a large text corpus. As a result of this 
pretraining, the model learns general language structure. This model then can 
be either used as is to solve a different kind of task or extended with additional 
layers and fine-tuned for the actual task at hand. That is, these kinds of models 
make use of transfer learning. We saw an example of how this can be done 
for images in Chapter 16, “One-to-Many Network for Image Captioning.” There 
we used a VGGNet pretrained on the ImageNet dataset as basis for our image-
captioning network. The network learned how to extract useful image features on 
the classification task used for pretraining. In the end task, we added the decoder 
part of the network that generated image captions, using these extracted features 
as input.

Similarly, the models discussed in this appendix learn to extract features from 
text data during pretraining. This process is also related to how word embeddings 
were learned in Chapter 12, “Neural Language Models and Word Embeddings,” 
and Chapter 13, “Word Embeddings from word2vec and GloVe.” There we 
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pretrained a model on text data, which resulted in the first layer of the model 
(the embedding layer) learning useful word representations. This embedding 
layer could then be reused in other models. The models in this appendix take this 
concept one step further. Instead of being limited to reusing only the embedding 
layer, multiple layers of the pretrained model are reused in the end application.

GPT
The Generative Pre-Training (GPT; Radford et al., 2018) model is a neural 
language model, similar to what was described in Chapter 12. Given a sequence 
of input words, the model is trained to predict the next word. We have already 
seen how such a model can be used to do text autocompletion. That is, the 
pretraining task is to generate text, which gives the model its name.

The language model introduced in Chapter 12 was based on long short-term 
memory (LSTM) layers, whereas GPT is based on the Transformer architecture 
(described in Chapter 15). To understand this, it is helpful to go back to the natural 
language translation network from Chapter 14, “Sequence-to-Sequence Networks 
and Natural Language Translation.” It is an LSTM-based encoder-decoder 
architecture in which the encoder produces an intermediate representation, and 
the decoder network generates a translation in the target language. That is, the 
decoder is a language model that uses the intermediate representation as a 
starting point. From that perspective, the decoder component of the Transformer 
is a language model based on self-attention layers instead of LSTM layers. One 
key difference when using the decoder as a standalone language model is that 
there is no need to include the attention layer that attends to the intermediate 
representation produced by the encoder, simply because the encoder does not 
exist. The masked self-attention layer is still present. The basic building block 
is shown on the left side of Figure D-1. The right side of the figure shows how 
multiple such building blocks (12 in the GPT model) are combined, just as in the 
Transformer architecture.

Figure D-2 illustrates pretraining of the model. The model is presented with an 
arbitrary sentence on its input. In the figure, we use “gpt is pre trained on an lm 
task” as an example. The ground truth the model is trained to predict is the same 
sentence but shifted by one word. That is, the first output word corresponds to the 
second word in the sentence. The masked self-attention mechanism prevents the 
model from cheating by “looking into the future” of the input sentence.
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Each red box in the figure corresponds to a layer using a softmax activation function 
to provide the probabilities for all words in the vocabulary. This pretraining is done 
on unlabeled data and can thereby be done on massive amounts of text.

After pretraining, the model is fine-tuned for the specific task, using labeled 
data. The inputs to the model, as well as the output layer, are modified slightly to 
better suit the end task the model is being used for. Figure D-3 illustrates this for 
a similarity task in which the model is presented with two sentences as an input. 
The task is to determine whether the two sentences are similar. To do so, the 
input needs to be modified to be able to represent two sentences, which is done 
with a learned delimiter (DELIM) token. In addition, the input is augmented with a 
START token in the beginning and an END token at the end.

Apart from modifying the format of the input sequence, the output layer is also 
modified. The GPT paper (Radford et al., 2018) describes how the modification 
can be done for a handful of different types of tasks. For the similarity task 
illustrated here, there is no natural order between the two sentences, so the 
recommendation is to evaluate the model twice. For the second evaluation, the 
order of the two sentences is swapped. The outputs corresponding to the END 
token for each of these two evaluations are then added elementwise. It is the raw 
output from the transformer module that is used—that is, the softmax layer is 
discarded. The vector that results from this addition is used as input to a linear 
classifier, which is trained to indicate whether the two sentences are similar.

Another use case is sentiment analysis for which the input is just a single text 
sequence, so no delimiter token is used. Further, only one evaluation of the 
network is required. Just as for the similarity task, a linear classifier is simply 

GPT
(Transformer decoder)

[START] [DELIM] [END]gpt is good gpt does well

N/A N/A N/A N/A N/A N/A N/A N/A Output

Text 1 Text 2Input

Output

Figure D-3 Fine-tuning task
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trained using the outputs corresponding to the END token as inputs. Details of 
how to use the network outputs to solve other types of tasks can be found in the 
original GPT paper.

There are a few more details worth mentioning. In the original Transformer paper 
(Vaswani et al., 2017), the positional encoding was computed using a formula, 
as described in Chapter 15. The GPT model handles this task differently in that 
the positional encodings are learned. Figure D-4 illustrates how the input to the 
Transformer decoder is created by adding the word embedding to a learned 
position embedding of the same dimensionality.

Another detail is how the loss function is constructed. Instead of training only the 
linear classifier, it turns out that it is beneficial to train the model to act as a language 
model during the fine-tuning step as well. Therefore, the fine-tuning loss function is 
a weighted sum of the language model loss function and the end-task loss function. 
Finally, GPT does not use a vocabulary of full words but uses a technique known as 
byte-pair encoding (Sennrich, Haddow, and Birch, 2016). This technique is based on 
subwords and can thereby avoid the problem with out-of-vocabulary words similar 
to some of the already-described techniques in Appendix C.

When GPT was introduced, it showed significant improvement over existing models 
in 9 out of 12 evaluated tasks. GPT was also studied in the context of zero-shot task 
transfer. In such a setting, a pretrained model is applied to a different end task 
but without fine-tuning the model for that end task. One example from the paper 
is the task of sentiment analysis. Sennrich, Haddow, and Birch (2016) did this by 
first concatenating the sentence with the word very and feeding this text sequence 
into the model. The output of the model was then interpreted by looking at the 
probabilities the model assigned to the two words positive and negative for the 
next predicted word. When evaluated on a sentiment analysis test set, the model 
correctly assigned higher probability to the word positive in many cases when the 
sentence expressed a positive sentiment, and vice versa. That is, even though the 
model had not been explicitly trained on the task of sentiment analysis or even 
exposed to the training part of the dataset, it had managed to learn this task from 

ESTART EDELIM EENDEgpt Eis Egood Egpt Edoes Ewell

E0 E1 E2 E3 E4 E5 E6 E7 E8
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Figure D-4 How input embeddings are created for GPT
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an unrelated body of text, using unsupervised learning. A more detailed evaluation 
of the GPT architecture on zero-shot task transfer has been done in later studies 
(Puri and Catanzaro, 2019; Radford et al., 2019), using GPT-2, which is a scaled-up 
version of the GPT model. Brown and colleagues (2020) have done further studies 
on the GPT architecture and have shown how an even bigger model (GPT-3) can 
solve end tasks in a transfer-learning setting using limited or no fine-tuning.

BERT
A model known as Bidirectional Encoder Representations from Transformers (BERT; 
Devlin et al., 2018) takes a somewhat different approach than GPT. BERT makes 
use of the observation that there are both backward and forward dependencies 
between words in a sentence. We touched on this in the section about bidirectional 
recurrent neural networks (RNNs) in Chapter 11, “Text Autocompletion with LSTM 
and Beam Search.” The masked self-attention layers in the Transformer decoder 
explicitly prevent the network from considering dependencies on future symbols. 
BERT, on the other hand, is based on the encoder part of the Transformer 
architecture, which does not have this limitation.

To accommodate for the bidirectional property of the architecture, BERT does not 
use the traditional language model as its pretraining task. Instead, it is trained 
on two tasks known as masked language model and next-sentence prediction. The 
model is trained on both of these tasks simultaneously. The details of these two 
pretraining tasks are described next.

MASKED LANGUAGE MODEL TASK

As described for GPT, the language model pretraining task consists of predicting 
the next word in a sentence. In the masked language model pretraining task for 
BERT, the objective is to predict a number of missing (masked) words using both 
historical and future words in a sentence. Consider the input sentence “my dog is 
a hairy beast,” which is a sentence similar to what was used in the paper (Devlin 
et al., 2018). We take this sentence and randomly mask a number of words and 
the model is trained to predict the missing words. The input examples are formed 
in the following manner:

• Fifteen percent of the words in an input sentence are selected to be masked 
(e.g., the word hairy).

• For 80% of the selected masked words, the word embedding is replaced by a 
special mask embedding, so we end up with “my dog is a [MASK] beast.”
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• For 10% of the selected masked words, the word embedding is replaced by the 
embedding for a randomly selected word, so we might end up with “my dog is a 
apple beast.”

• For the remaining 10% of the selected masked words, we do not replace the word 
embedding but instead use the embedding for the correct word, so we end up with 
“my dog is a hairy beast.” This might sound like the word does not get masked 
after all, but the distinction between this word and the non-masked words is that 
the model is still evaluated on the basis of whether it manages to predict this word.

BERT will try to predict all the words in the sentence, including the ones that are 
not masked, but from a training perspective, the model is scored according to how 
well it does on only the 15% masked words.

NEXT-SENTENCE PREDICTION TASK

Whereas the masked language task aims to teach the model sentence structure, 
the next-sentence prediction task aims to teach the model relationships between 
two sentences. This task is a classification problem with the two categories 
IsNext and NotNext. The model is presented with two sentences, and the goal is to 
determine whether the second sentence logically follows the first sentence. If so, 
it should classify the example as the category IsNext. If the second sentence does 
not logically follow the first sentence, then the model should classify the example 
as NotNext. That is, we have two cases during training:

• In 50% of the cases, simply present two consecutive sentences from the text 
corpus and train the model to output the category IsNext. An example is the 
sentence “the man went to [MASK] store” followed by “he bought a gallon 
[MASK] milk.” Note that some of the words are masked because the two 
training tasks are performed at the same time.

• In 50% of the cases, present two unrelated (nonconsecutive) sentences from 
the text corpus and train the model to output the category NotNext. An example 
is the sentence “the man went to [MASK] store” followed by “penguins [MASK] 
flight ##less birds.”

The two hash signs before less indicate that it is a wordpiece. BERT uses 
wordpieces as tokens instead of the full words. Wordpieces were described in 
Appendix C and come with the advantage of better handling of out-of-vocabulary 
words. In short, if a word does not exist in the training vocabulary, it will be 
replaced by a sequence of subwords. These wordpieces are run through a regular 
embedding layer to create embeddings. In this example, the word flightless was 
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not in the vocabulary and was therefore broken up into the two pieces flight and 
less. The hash sign notation follows the notation in the BERT paper (Devlin et al., 
2018) and is different from the underscore notation used in Appendix C.

Although these examples used actual sentences, in reality, the BERT pretraining 
task uses a broader definition, where a sentence is simply a consecutive 
collection of words from the corpus. Thus, each “sentence” might well consist 
of multiple actual sentences with the restriction that the total number of words 
for the two sentences cannot exceed the model width, which for the typical BERT 
model is 512 words.

BERT INPUT AND OUTPUT REPRESENTATIONS

To be able to handle the two pretraining tasks we just presented, as well as other 
NLP tasks, BERT needs to be able to accept two sentences as an input. It also 
needs to be able to output a category prediction (IsNext or NotNext) as well as a 
word prediction corresponding to each word in the input sentences. BERT handles 
this with a combination of special tokens and a concept known as segment 
embeddings. Figure D-5 shows the organization of input and output tokens for 
BERT. The input consists of a classification token CLS, followed by the tokens for a 
first sentence (e.g., the question in a question-answering task). The first sentence 
ends with a separation token SEP. It is followed by tokens for an optional second 
sentence (e.g., the answer), which again ends with the SEP token.

BERT
(Transformer encoder)

CLS SEP SEPwho are you i am bert

Tc T1 T1 T2T2 T3 T3TSEP TSEP

Question Answer

Classification
output

Input

Output

Figure D-5  BERT inputs and outputs. The input begins with a special 
classification CLS token. It is followed by a sequence of question tokens and 
a sequence of answer tokens. Each of those two groups ends with a special 
separation SEP token.
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For tasks that require only a single input sentence (e.g., sentiment analysis), the 
input is simply a CLS token, followed by the question, and ending with a SEP token.

The output from BERT takes the form of one vector corresponding to each input 
symbol (word). The CLS token in the input results in a corresponding output that 
can be used for tasks that need to aggregate information for the entire sentence 
instead of for just an individual word. An example of such a task is a classification 
task. To use this output position for classification, we train a linear classifier using 
the output vector from this position as input, similar to how is done for GPT, as 
described earlier. That is, we extend BERT with an additional fully connected layer 
with a softmax output matching the number of categories we want to classify. 
This fully connected layer uses the CLS output vector as its input. For the next-
sentence pretraining task, this softmax layer would have the two outputs IsNext 
and NotNext (technically, it could have a single logistic sigmoid neuron as its 
output given that it is only two categories).

Apart from the CLS and SEP tokens, there is also the masking token MASK that 
has already been described. It is not shown in Figure D-5, but for the masked 
language model task, this token would replace one or more input words.

BERT learns positional embeddings just as the GPT model does. One could argue 
that the combination of special tokens and positional embeddings should be 
sufficient. However, to further simplify for the network to learn, BERT also learns 
segment embeddings. There is one segment embedding E

A
 corresponding to the first 

sentence and one segment embedding E
B
 corresponding to the second sentence. E

A
 

is added to each word embedding of the first sentence, and E
B
 is added to each word 

embedding of the second sentence, as illustrated in Figure D-6.

Word
embedding

Segment
embedding

Position
embedding

Resulting
embedding

ECLS Ewho Eare Eyou ESEP ESEPEi Eam Ebert

+ + + + + + + + +

+ + + + + + + + +

= = = = = = = = =

E1 E2 E3 E4 E5 E6 E7 E8E0

EA EA EA EA EA EB EB EB EB

Figure D-6 How input vectors to the encoder network are formed. Each input 
vector is a sum of three embeddings. The first is the embedding corresponding to 
the word. The second is a segment embedding (indicating whether the word is a 
part of the question or answer). The third is a position embedding.
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APPLYING BERT TO NLP TASKS

BERT has been shown to be versatile and has been applied to a wide variety of 
tasks. The original paper (Devlin et al., 2018) presented state-of-the-art results in 
no less than 11 NLP tasks. We list just some of them here:

• Sentiment analysis of text, similar to the tweet and movie review examples 
discussed in Chapter 12.

• Spam detection.

• Determine whether a second sentence is an entailment, a contradiction, or 
neutral with respect to the first sentence.

• Given a question and a text paragraph that contains the answer, identify 
the specific set of words that answers the question. For example, given 
the question “Where do water droplets collide with ice crystals to form 
precipitation?” and the paragraph “Precipitation forms as smaller droplets 
coalesce via collision with other rain drops or ice crystals within a cloud,” the 
goal for the network is to produce within a cloud on its output. 

To solve these tasks, the starting point is a BERT model pretrained on the masked 
language model and next-sentence prediction task. BERT is then augmented with 
additional layers that are fine-tuned for the task at hand. For example, for the 
first three tasks, we add a fully connected network followed by a softmax output 
to provide a classification. For the fourth task (identifying the answer), BERT is 
augmented with a mechanism that, together with the individual word outputs, is 
trained to indicate the start and end positions in the answer sentence. These two 
positions indicate the specific sequence of words that contains the actual answer.

Just as for the Transformer, Alammar (2018a) has written a blog post describing 
BERT, including links to an implementation available for download.

RoBERTa
The BERT architecture spawned many follow-on studies applying BERT to 
different NLP problems. Other studies presented modifications to the BERT 
architecture to improve on the results of the original model. Liu, Ott, and 
colleagues (2019) noted that it is challenging to compare the results from 
different studies because they often are done with different training parameters 
and datasets, some of which are not publicly available. Therefore, instead of 
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modifying BERT, the authors decided to replicate the BERT study and explore 
the impact of training parameters and dataset size. They found that BERT was 
significantly undertrained. By modifying the training approach and using a larger 
dataset, they managed to make the original BERT architecture perform even 
better. They even found it to perform better than the more recently published 
work that had extended the BERT architecture. We note that these findings are not 
without controversy, which is discussed in the related work section later in this 
appendix. Liu, Ott, and colleagues named their work RoBERTa, which is short for a 
Robustly Optimized BERT Pretraining Approach. We summarize the key findings in 
this section.

In the original BERT paper (Devlin et al., 2018), the masked language modeling 
task was trained by first statically masking words in the training dataset and 
then using this masked version of the dataset repeatedly for each training epoch. 
Instead of statically masking the dataset up front, RoBERTa dynamically masks 
words during training. The model will therefore see different words being masked 
during the different training epochs.

BERT uses the two pretraining tasks masked language model and next-
sentence prediction. In the original BERT paper, Devin and colleagues did an 
ablation study and concluded that the next-sentence prediction task was helpful 
because the model accuracy on downstream tasks decreased when only using 
the masked language model as the training objective. Interestingly, when 
Liu, Ott, and colleagues (2019) replicated the study, they came to a different 
conclusion. They found that the model performed better when they used only 
the masked language model as a pretraining task. The reason for these two 
differing conclusions is subtle. We see the following when reading the BERT 
paper. In the description of the ablation study where they run without next-
sentence prediction pretraining, Devin and colleagues (2018) state that they 
“use the exact same pretraining data.” Our interpretation is that, just as for the 
baseline system, 50% of the training examples will consist of two noncontiguous 
sentences. The only difference is that the model is scored only on the basis of 
its ability to predict masked words.

Liu, Ott, and colleagues (2019) took a different approach for RoBERTa. In the 
case where they use only the masked language model as a pretraining task, they 
additionally make sure to use only a contiguous sequence of text. When they 
present their opposite conclusion on next-sentence prediction, they state, “It is 
possible that the original BERT implementation may only have removed the loss 
term while still retaining the SEGMENT-PAIR input format.” We find it plausible 
that they did indeed identify the difference between the two experiments, and 
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it seems consistent with the statement in the BERT paper. Overall, it is not 
surprising that when next-sentence prediction is not included as a pretraining 
task, the model will benefit from all training examples containing contiguous 
blocks of text instead of having 50% of the examples consist of two unrelated 
blocks of texts concatenated together. Somewhat related, Lan and colleagues 
(2020) introduced A Lite BERT (ALBERT) and showed that using a pretraining task 
known as sentence order prediction (SOP) in addition to the masked language 
model pretraining task resulted in improvements over the next-sentence 
prediction pretraining task.

A third set of changes introduced by RoBERTa is to use a larger mini-batch size, 
increased number of training epochs, and a significantly larger training dataset. 
Liu, Ott, and colleagues (2019) evaluated mini-batch sizes from 256 (used in 
BERT) up to 8K. The conclusion was that a mini-batch size of 2K was the best 
choice when holding the total amount of computations constant. However, to 
enable more parallelism for the case with larger dataset sizes, they used a 
mini-batch size of 8K for the largest experiments. BERT had used a dataset 
consisting of a combination of books and Wikipedia, totaling 16 GB. For RoBERTa 
the dataset size was increased tenfold to 160 GB by using three additional text 
corpora. Finally, the RoBERTa study also increased the number of training steps1 
by fivefold.

All in all, these changes resulted in better results than other previously reported 
improvements over BERT. Liu and colleagues explicitly point out that they decided 
not to explore a different architecture but that it can be considered as future work. 
Overall, this study illustrates that not only model architecture is important, but so 
are training parameters and training data. We touch on this topic again at the very 
end of this appendix.

Historical Work Leading Up to  
GPT and BERT

Both GPT and BERT rely on unsupervised pretraining followed by supervised task 
specific fine-tuning. This is known as semi-supervised learning. GPT was not the 
first model to use semi-supervised learning in the NLP field. In Chapter 13, we 

1. We talk about training steps (mini-batches) instead of epochs because the total number of training 
examples included in an epoch is not constant when the dataset size is increased.
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described how word embeddings can be learned in an unsupervised manner and 
then used in a subsequent supervised learning task. In that case, only the weights 
from the first layer (the embedding layer) are transferred to the model to use for 
fine-tuning.

Dai and Le (2015) took this concept one step further in their work on semi-
supervised sequence learning in the context of text classification (e.g., sentiment 
analysis). They studied two different pretraining tasks. One was a language 
model task, similar to what we described in Chapter 12, where the objective is 
to predict the next word from a sequence of preceding words. The other was an 
autoencoder task where the model first consumes an input word sequence and 
creates an internal representation. The objective is then to generate that same 
word sequence on its output. Dai and Le showed that an LSTM-based RNN for text 
classification performed better if it was initialized with weights learned from one 
of these two tasks instead of just using randomly initialized weights.

Whereas Dai and Le had used domain-specific text (e.g., movie reviews) for the 
unsupervised pretraining, Howard and Ruder (2018) showed that they could 
improve model performance by pretraining on a large body of text not directly 
related to the end task. This observation, in combination with the fact that the 
pretraining task is unsupervised, is significant. Instead of requiring carefully 
selected and labeled data, the pretraining task can use all of the vast amounts 
of textual data that are available online. Howard and Ruder showed impressive 
results on multiple text classification tasks. They used a language model as the 
pretraining task and named their work Universal Language Model Fine-tuning 
(ULMFiT).

We can now put GPT and BERT into context. GPT is similar to ULMFiT but is 
based on the Transformer decoder block instead of an LSTM-based model. 
GPT uses a language model as the pretraining task just as ULMFiT does. 
BERT is based on the Transformer encoder block. However, instead of using 
the language model pretraining task, BERT uses a form of the autoencoder 
pretraining task that was also used by Dai and Le (2015). The pretraining task 
used in BERT has been referred to as a denoising autoencoder because the 
task is not truly to reproduce the same output as the data presented as input. 
Instead, the objective for BERT is to recreate a sentence given a corrupted 
version (some words have been replaced by MASK tokens). A key difference 
between GPT and BERT is that the pretraining task for BERT is bidirectional. 
This implies that BERT can make use of both historical and future words in a 
sentence when predicting the output.
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Other Models Based on the Transformer
As described in Chapter 15, the Transformer relies fully on attention and does not 
use recurrence. One drawback of this is that the length of the historical context 
has a hard limit. To address this issue, Dai and colleagues (2019) extended 
the Transformer by combining it with recurrent connections. They called it the 
Transformer-XL, where XL means eXtra Long. To enable the model to work with 
variably sized input, they also modified the positional encodings to be based on 
relative positions instead of absolute positions. All in all, the Transformer-XL can 
identify longer-term dependencies than the original Transformer.

Enhanced Representation through Knowledge Integration, or ERNIE, uses the 
same architecture as BERT but improves on its performance by modifying how it 
is trained (Sun et al., 2019). One such modification is to mask multiword entities 
instead of single words. For example, if the input sentence contains the two 
consecutive words Harry Potter, it would treat both words as an entity instead of 
as two separate words. That is, during pretraining, in a case where BERT would 
mask one of the two words, ERNIE would mask both words together. Similarly, 
ERNIE groups multiple words into phrases. For example, the three words a series 
of would all be masked together because they form a phrase. ERNIE 2.0 adds 
additional tweaks to the training process along with more pretraining tasks 
(Sun et al., 2020). It also adds the concept of a task-specific embedding, which 
is dependent on what task the model is currently expected to solve. This task-
specific embedding is used in addition to the positional embedding and segment 
embedding that were shown in Figure D-6. ERNIE 2.0 improves over BERT on 
multiple NLP tasks in both English and Chinese.

Whereas ERNIE largely kept the BERT architecture unchanged (except for the 
task embedding used to modify the input), XLNet made changes to the model 
itself (Yang et al., 2019). First, it taps into the improvements on the Transformer 
architecture by using Transformer-XL instead of the original Transformer. That 
is, it uses recurrent connections and the associated changes to the positional 
encodings. The other major change is somewhat subtle. Yang and colleagues 
noted that while the masked language model pretraining task (the denoising 
autoencoder task mentioned previously) for BERT is powerful, it does not 
resemble what the model will see for the end task. The traditional language 
model used by GPT is more realistic. In particular, the BERT training objective 
makes the assumption that the masked words (15% of all words) are independent. 
That is not true, because they occur in the same sentence, and dependencies 
between words in the same sentence are expected. XLNet tries to get the best of 
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both worlds by using a language model approach but using multiple permutations 
of the word order of the input sentence, including future words. This enables the 
model to benefit from the bidirectionality from BERT while avoiding the issue of 
dependencies between masked words.

Yang and colleagues (2019) showed that XLNet outperforms BERT. On the 
other hand, the RoBERTa study (Liu, Ott, et al., 2019) concluded that the BERT 
architecture outperformed XLNet when addressing the undertraining issue. 
However, the comparison does not end there. The most recent version of the 
XLNet paper (Yang et al., 2019) includes an attempt at doing a fair comparison 
between XLNet and RoBERTa and showed that XLNet was still better, in particular 
for tasks that involve longer context. Yang and colleagues hypothesize that it 
results from the Transformer-XL based architecture.

This back-and-forth illustrates that it is hard to pinpoint the effect of architecture 
versus training process. Therefore, doing a fair comparison between two 
architectures can be difficult. Another big challenge is that the models and 
datasets have now gotten to a size that training the model requires huge 
computational resources. To illustrate this, we consider the following sentence 
from the RoBERTa paper: “We pretrain our model using 1024 V100 GPUs for 
approximately one day” (Liu, Ott, et al., 2019). As another example, Shoeybi 
and colleagues (2019) used 512 V100 GPUs to sustain 15.1 petaflops across an 
application in their work on Megatron-LM. Similarly, in their work on the Text-
To-Text Transfer Transformer (T5), Raffel and colleagues (2019) describe that 
training the models requires a great deal of computation, and they use slices of 
tensor processing unit (TPU) pods. They further describe a TPU pod as a multirack 
ML supercomputer consisting of 1,024 TPU chips. At the time of these studies, a 
V100 GPU was the most high-end GPU available for DL training, and a TPU is a 
special built chip to accelerate tensor operations. Getting access to a system with 
512 to 1,024 of them for an extended period of time was not cheap. Bender and 
colleagues (2021) further explore the topic of big language models and training 
data size from different angles, including environmental impact and ethics. 
Given these concerns, it would not surprise us if more efficient language model 
architectures will emerge over time. We are also hopeful that the ethical concerns 
are taken seriously and that the industry and research community come up with 
innovative ways of ensuring that language models trained on large datasets do 
not cause harm.
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Appendix E

Newton-Raphson 
versus Gradient 
Descent

This appendix is related to Chapter 2, “Gradient-Based Learning.”

The pervasive method for adjusting the weights in deep learning (DL) is gradient 
descent. It is an iterative method used to minimize the output value of a function. 
We believe that many readers are already familiar with a different iterative 
minimization method known as Newton-Raphson. We have included this appendix 
for readers who are curious about how the two methods relate to each other.

We describe Newton-Raphson in a single dimension, similarly to how we 
introduced gradient descent in Chapter 2. The method can be used both to find a 
solution (root) to an equation as well as to solve an optimization problem (find the 
minimum). We start with the root finding method.

We often feel bad for poor Raphson, whose name is often left out—the method 
is more commonly referred to as just Newton’s method.
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Newton-Raphson Root-Finding Method
In Chapter 2, we noted that we can state our learning problem mathematically as 
trying to solve the following equation for a given training example:

y ŷ 0− =

We never tried to solve that particular problem with gradient descent but instead 
introduced the mean squared error (MsE) function and changed our problem into 
a minimization problem. Let us now instead see how we can use the root-finding 
version of Newton-Raphson to solve this equation.

In the single dimension case, where we have a function1 y = f(x), the method will 
find the value of x that results in f(x) = 0. The Newton-Raphson method starts with 
an initial guess of the solution x

0
 and then iteratively refines it until an x that is 

close enough to the actual solution is found. Figure E-1 shows geometrically how 
the Newton-Raphson method works.

We start with an initial guess of x
0
 = 1.75. We insert it into f(x) and conclude that 

the result is not 0. From the chart, we can see that f(x
0
) is about 4.5 (the height of 

the red dashed line). We create the equation for the tangent (orange line in chart), 
solve it for y = 0, and arrive at a new guess: x

1
 = 1.28. We insert that value into f(x) 

and see that the result is about 1.0 (the height of the purple dashed line), which 
is still not close enough to 0. We make a new attempt, calculate the tangent for a 

1. In this context, y does not refer to the network output, but simply refers to any mathematical 
function that we want to solve for zero

Figure E-1 The Newton-Raphson method 
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second iteration (green line), and arrive at a new guess: x
2
 = 1.06. We insert that 

value into f(x), see that it is close to 0, and our conclusion is that x = 1.06 is an 
approximate solution to the equation f(x) = 0.

Looking at Figure E-1, we can derive a formula for computing the refined value 
x

n+1
 given a previous x

n
. The following equality follows from the figure:

1

f x
f x

x xn
n

n n

) )( (
′ =

− +

To understand why, let us assume that n = 0. The derivative (left side of equality) 

is the same as the slope of the orange line. This slope can be computed as 
∆
∆

y

x
, 

where Δy is the height of the dashed red line and Δx is the distance between x
0
 

and x
1
. We note that Δy for a given iteration n can be computed as f(x

n
), which 

is the numerator on the right side of the stated equality. similarly, Δx can be 
computed as (x

n
 − x

n+1
), which is the denominator. This explains why the equality 

holds true. solving for x
n+1

, we get

1x x
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n

n
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′+

which is how we iteratively find a solution according to the Newton-Raphson 
method. The method works even if the initial guess of x results in a negative 
function value, because the subtraction in the formula in combination with the 
negative function value will result in x

n+1
 becoming greater than x

n
.

NEWToN-RAPhsoN APPLIED To oPTIMIZATIoN PRoBLEMs

We noted in Chapter 2 that, in reality, we want to use an error function that 
combines the error of multiple training examples into a single metric, such as 
the MsE:

1
ˆ                 

1

2

m
y y mean squared error

i

m
i i∑ )( )(−) )( (

=

We also described that doing so causes an issue in that there might not exist 
a solution where the error function is 0. This is illustrated in the upper part of 
Figure E-2, which plots an error function based on MsE. The initial guess x

0
 is 

fairly close to the minimum value of the error, but because Newton-Raphson tries 
to find a point where the function is 0, it takes a long step to the left (orange line), 
followed by a long step to the right (green line), and never converges. It is clear 
that using a root-finding algorithm on an equation that has no roots is pointless.
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Instead, we can use the optimization version of Newton-Raphson. Just like 
gradient descent, this version aims at minimizing the function instead of solving 
it for 0. We do this by applying Newton-Raphson to the derivative of the original 
function, because a derivative of 0 implies an extreme point, such as a local 
minimum. This is done in the bottom part of Figure E-2, which plots the derivative 
of the already studied function in the upper part of the figure. We provide an initial 
guess x

0
, and the algorithm takes a step (orange line) to a point x

1
 and overshoots 

the solution. It then takes another step (green line almost exactly on top of the 
blue function) to x

2
, which is very close to the actual solution.

Figure E-2 Top: Newton-Raphson on the original function f(x). The algorithm does 
not converge because the function has no 0 roots. Bottom: Newton-Raphson on 
the derivative f'(x). The algorithm finds a point where the derivative is 0, which 
corresponds to a local minimum for the original function f(x).
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Relationship Between Newton-Raphson 
and Gradient Descent

one challenge with the optimization version of Newton-Raphson is that we first 
need to compute the derivative of the error function to arrive at the function 
to solve for 0, and then we need to compute the derivative of this new function 
for each step. That is, we need to compute both the derivative and the second 
derivative of the error function. More formally, the optimization version of 
Newton-Raphson is a second-order optimization method. Gradient descent, 
on the other hand, is a first-order optimization method in that it requires only 
the first derivative. This reduces the amount of both computation and storage 
needed, which is significant when optimizing a function consisting of millions of 
parameters.
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Appendix F

Matrix Implementation 
of Digit Classification 
Network

This appendix is related to Chapter 4, “Fully Connected Networks Applied to 
Multiclass Classification.”

This appendix contains two alternative implementations of the digit classification 
network. In the first implementation, the idea is to organize the weights for all the 
neurons in a layer into a single matrix, where each row in the matrix represents a 
neuron. The weighted sums for an entire layer of neurons can then be computed by 
multiplying this matrix by the input vector. We then extend it to handle mini-batches 
as well. We organize all the input examples of a mini-batch into a single matrix. The 
weighted sums for an entire layer of neurons for all input examples in the mini-
batch can then be computed by a single multiplication of these two matrices.

Single Matrix
Starting with the implementation without mini-batches, the only functions that 
have changed compared to the code example in Chapter 4 are forward_pass, 
backward_pass, and adjust_weights. They are shown in Code Snippet F-1. 
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Code Snippet F-1 Functions for Forward Pass, Backward Pass, and Adjusting 
Weights

def forward_pass(x):
    global hidden_layer_y

    global output_layer_y

    # Activation function for hidden layer.

    hidden_layer_z = np.matmul(hidden_layer_w, x)

    hidden_layer_y = np.tanh(hidden_layer_z)

    hidden_output_array = np.concatenate(

        (np.array([1.0]), hidden_layer_y))

    # Activation function for output layer.

    output_layer_z = np.matmul(output_layer_w,

        hidden_output_array)

    output_layer_y = 1.0 / (1.0 + np.exp(-output_layer_z))

def backward_pass(y_truth):
    global hidden_layer_error

    global output_layer_error

    # Backpropagate error for each output neuron.

    error_prime = -(y_truth - output_layer_y)

    output_log_prime = output_layer_y * (

        1.0 - output_layer_y)

    output_layer_error = error_prime * output_log_prime

    # Backpropagate error for each hidden neuron.

    hidden_tanh_prime = 1.0 - hidden_layer_y**2

    hidden_weighted_error = np.matmul(np.matrix.transpose(

        output_layer_w[:, 1:]), output_layer_error)

    hidden_layer_error = (

        hidden_tanh_prime * hidden_weighted_error)

def adjust_weights(x):
    global output_layer_w

    global hidden_layer_w

    delta_matrix = np.outer(

        hidden_layer_error, x) * LEARNING_RATE

    hidden_layer_w -= delta_matrix
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In these functions, we no longer loop over the individual neurons and do 
dot products, but instead, we handle an entire layer in parallel using matrix 
operations.

The forward_pass function is straightforward. We use the numPy matmul 
function to multiply the weight matrix by the input vector and then apply the 
activation function tanh on the resulting output vector. We then append a bias 
needed for the output layer using the concatenate function and do the matrix 
multiplication and activation function for the output layer as well.

The backward_pass function is not much more complicated. We compute the 
derivatives of the error function and the activation function but note that all these 
computations are done on vectors (i.e., all neurons in parallel). Another thing to 
note is that the mathematical operators +, -, and * are elementwise operators. 
That is, there is a big difference between using * and the matmul function. 
one thing to note is the call to np.matrix.transpose and the indexing we 
do with output_layer_w[:, 1:]. The transpose operation is needed to 
make the dimensions of the weight matrix match what is needed for a matrix 
multiplication with the error vector. The indexing is done to get rid of the bias 
weights when computing the error terms for the hidden neurons because the 
bias weight from the output layer is not needed for that operation. All in all, if 
you are not fluent in matrix algebra, it is hard to see through what is going on 
in the function. one way to convince yourself that it is doing the right thing is to 
expand the vector and matrix expressions with a pen and paper for a small-sized 
problem (like two neurons) and see that it does the same thing as in our previous 
implementation.

The adjust_weights function is slightly tricky. For each of the two layers, we 
need to create a matrix with the same dimensions as the weight matrix for that 
layer but where the elements represent the delta to subtract from the weights. 
The elements of this delta matrix are obtained by multiplying the input value that 
feeds into a weight by the error term for the neuron that the weight connects 

    hidden_output_array = np.concatenate(

        (np.array([1.0]), hidden_layer_y))

    delta_matrix = np.outer(

        output_layer_error,

        hidden_output_array) * LEARNING_RATE

    output_layer_w -= delta_matrix
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to and finally multiplying by the learning rate. We already have the error terms 
arranged in the vectors hidden_layer_error and output_layer_error. 
Similarly, we have the input values for the two layers arranged in the vectors x 
and hidden_layer_y. For each layer we now combine the input vector with 
the error vector using the function np.outer which computes the outer product 
of the two vectors. It results in a matrix where the elements are all the pairwise 
products from the elements in the two vectors, which is exactly what we want. We 
multiply the matrix by the learning rate and then subtract from the weight matrix. 
Again, the best way to convince yourself that it does the right thing is to walk 
through a small example, possibly in a Python interpreter, to see how the vectors 
and matrices are combined.

When we run this program, we get very similar output compared to the 
non-matrix implementation, but it runs faster because of the more efficient 
implementation using matrix-vector multiplications instead of loops.

Mini-Batch Implementation
We now take this example one step further and introduce mini-batches. We take 
multiple input examples and organize them into a matrix where each column 
is an input vector, and the number of columns is the same as the mini-batch 
size. We can now calculate the weighted sums for all neurons in a layer for all 
examples in a mini-batch by multiplying these two matrices. The result will 
be a new matrix with all the weighted sums for that layer for all examples 
in that mini-batch. We do the same calculation for each layer and then do 
backpropagation for the entire mini-batch in a similar manner. Finally, we 
construct N update matrices, where N is the number of examples in the mini-
batch. We then calculate the elementwise mean of all of these matrices. This 
results in a final matrix that we can subtract from the weight matrix to update 
the weights, using the average gradient computed from the mini-batch. The 
initialization code and the functions to print progress and plot are unchanged, 
so we do not repeat them in this example.

The code representing the neurons and connections is shown in Code Snippet F-2. 
The variables that were previously vector variables have now become matrices 
where the new dimension is the mini-batch size. The programming example 
assumes that the variable BATCH_SIZE has been initialized with the value 32.



MInI-BATCh IMPlEMEnTATIon

603

Code Snippet F-3 shows the functions for the forward pass, backward pass, 
and weight adjustment. The forward_pass function is straightforward. The 
only difference is that when creating the input to the output layer, we now need 
to extend it with a vector of bias terms instead of just a single bias term. It is a 
vector because there needs to be one bias element for each example in the mini-
batch. Another difference is that x is now a matrix representing a batch of training 
examples instead of a vector representing a single example. The code itself has 
not changed, but it is worth noting that the arguments to matmul are now two 
matrices instead of a matrix and a vector.

The backward_pass function is unchanged, although the input y_truth now is 
a matrix. The same applies to the global variables hidden_layer_error and 
output_layer_error that are used in the function.

In adjust_weights, we need to append a vector of bias terms (technically, a 
matrix where one dimension is 1) to the outputs from the hidden layer where 
the vector length represents the mini-batch size. We have added a for loop that 
loops through all the examples in the mini-batch, accumulates the deltas in the 
delta_matrix, and then divides by the mini-batch size. This is how we compute 
the average of the gradient. We then simply do the weight update just as in the 
previous implementation but now using this averaged matrix instead.

def layer_w(neuron_count, input_count):
    weights = np.zeros((neuron_count, input_count+1))

    for i in range(neuron_count):

        for j in range(1, (input_count+1)):

            weights[i][j] = np.random.uniform(-0.1, 0.1)

    return weights

# Declare matrices and vectors representing the neurons.

hidden_layer_w = layer_w(25, 784)

hidden_layer_y = np.zeros((25, BATCH_SIZE))

hidden_layer_error = np.zeros((25, BATCH_SIZE))

output_layer_w = layer_w(10, 25)

output_layer_y = np.zeros((10, BATCH_SIZE))

output_layer_error = np.zeros((10, BATCH_SIZE))

Code Snippet F-2 Matrices representing Weights, outputs, and Error Terms for 
the Mini-Batch Implementation
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Code Snippet F-3 Functions for Forward Pass, Backward Pass, and Weight 
Adjustment for the Mini-Batch Implementation

def forward_pass(x):
    global hidden_layer_y

    global output_layer_y

    # Activation function for hidden layer.

    hidden_layer_z = np.matmul(hidden_layer_w, x)

    hidden_layer_y = np.tanh(hidden_layer_z)

    hidden_output_array = np.concatenate(

        (np.ones((1, BATCH_SIZE)), hidden_layer_y))

    # Activation function for output layer.

    output_layer_z = np.matmul(output_layer_w,

        hidden_output_array)

    output_layer_y = 1.0 / (1.0 + np.exp(-output_layer_z))

def backward_pass(y_truth):
    global hidden_layer_error

    global output_layer_error

    # Backpropagate error for each output neuron.

    error_prime = -(y_truth  - output_layer_y)

    output_log_prime = output_layer_y * (

        1.0 - output_layer_y)

    output_layer_error = error_prime * output_log_prime

    # Backpropagate error for each hidden neuron.

    hidden_tanh_prime = 1.0 - hidden_layer_y**2

    hidden_weighted_error = np.matmul(np.matrix.transpose(

        output_layer_w[:, 1:]), output_layer_error)

    hidden_layer_error = (

        hidden_tanh_prime * hidden_weighted_error)

def adjust_weights(x):
    global output_layer_w

    global hidden_layer_w

    delta_matrix = np.zeros((len(hidden_layer_error[:, 0]),

                             len(x[:, 0])))
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Finally, Code Snippet F-4 shows the training loop for the mini-batch implementation. 
The for loops that loop over the training and test examples are now changed 
to handle one mini-batch per iteration. This includes logic to collect a number of 
training examples into a matrix that is then passed to the forward and backward 
pass functions.

We cheated a little bit in the outer loops (index j) by not properly handling the end 
of the training and test sets if they are not evenly divisible by the mini-batch size. 
Instead of worrying about how to use partially filled matrices, we simply skip the 
final few training and test examples. This would not be acceptable in a production 
implementation but makes the code shorter and easier to understand.

    for i in range(BATCH_SIZE):

        delta_matrix += np.outer(hidden_layer_error[:, i],

                                 x[:, i]) * LEARNING_RATE

    delta_matrix /= BATCH_SIZE

    hidden_layer_w -= delta_matrix

    hidden_output_array = np.concatenate(

        (np.ones((1, BATCH_SIZE)), hidden_layer_y))

    delta_matrix = np.zeros(

        (len(output_layer_error[:, 0]),

        len(hidden_output_array[:, 0])))

    for i in range(BATCH_SIZE):

        delta_matrix += np.outer(

            output_layer_error[:, i],

            hidden_output_array[:, i]) * LEARNING_RATE

    delta_matrix /= BATCH_SIZE

    output_layer_w -= delta_matrix

Code Snippet F-4 Training loop for the Mini-Batch Implementation

index_list = list(range(int(len(x_train)/BATCH_SIZE)))

# Network training loop.

for i in range(EPOCHS): # Train EPOCHS iterations

    np.random.shuffle(index_list) # Randomize order

    correct_training_results = 0

    for j in index_list:

        j *= BATCH_SIZE
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When we run this implementation, we will get a different behavior than we got 
with our previous implementation. Using mini-batches results in the updates 
being done with different gradients, and there are also fewer total weight updates 
per epoch. As a result, it can make sense to experiment with different parameter 
values for our new configuration. our experiments indicate that, for our mini-
batch implementation with a mini-batch size of 32, we see better learning if we 
increase the learning rate from 0.01 to 0.1.

        x = np.ones((785, BATCH_SIZE))

        y = np.zeros((10, BATCH_SIZE))

        for k in range(BATCH_SIZE):

            x[1:, k] = x_train[j + k]

            y[:, k] = y_train[j + k]

        forward_pass(x)

        for k in range(BATCH_SIZE):

            if(output_layer_y[:, k].argmax()

                    == y[:, k].argmax()):

                correct_training_results += 1

        backward_pass(y)

        adjust_weights(x)

    correct_test_results = 0

    for j in range(0, (len(x_test) - BATCH_SIZE),

                   BATCH_SIZE): # Evaluate network

        x = np.ones((785, BATCH_SIZE))

        y = np.zeros((10, BATCH_SIZE))

        for k in range(BATCH_SIZE):

            x[1:, k] = x_test[j + k]

            y[:, k] = y_test[j + k]

        forward_pass(x)

        for k in range(BATCH_SIZE):

            if(output_layer_y[:, k].argmax()

                    == y[:, k].argmax()):

                correct_test_results += 1

    # Show progress

    show_learning(i, correct_training_results/len(x_train),

                  correct_test_results/len(x_test))

plot_learning() # Create plot 
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Appendix G

Relating Convolutional 
Layers to Mathematical 
Convolution

This appendix is related to Chapter 7, “Convolutional Neural Networks Applied to 
Image Classification.”

The intent of this appendix is to give a brief description of the mathematical 
definition of convolution and to bridge the gap between the definition and its 
application in convolutional networks. This description targets readers who 
already have some familiarity with convolution. If you have not previously 
encountered the concept, you might first need to consult a more extensive text 
on convolution, which can typically be found in any book on signals and systems. 
One such book is written by Balmer (1997). Somewhat counterintuitively, we think 
it is questionable whether understanding convolution in detail will provide much 
benefit with respect to basic understanding of convolutional networks.

If you have encountered convolution in the past, chances are that it was 1D 
convolution in the context of signal processing1 and most likely was applied 

1. Chances are that we are wrong and that we are projecting our experience onto you. It might be that 
convolution was used for analog audio in our days, but nowadays people encounter convolution in 
digital image processing.
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to continuous signals. A common use case for convolution in this context is to 
establish the impulse response of an audio filter2 to determine the characteristics 
of the filter—that is, how much signals of different frequencies will be attenuated. 
In contrast, in the context of deep learning (Dl)-based image classification, we 
typically use 2D convolution applied to discrete signals. The convolutional kernel 
is used as a pattern/feature identifier. From an implementation perspective, it is 
common to do the related operation cross-correlation instead of convolution. We 
get to that at the end of this description.

A convolution is an operation applied to two functions f(t) and g(t) and results in 
a new function (f * g)(t), where * is the convolution operator. More specifically, the 
function resulting from the convolution is defined as

∫ τ τ τ( )( ) ( ) ( )= −
∞

∞

−

f g t f g t d*  

Given that convolution is an integral, the value of the convolution represents the 
area under a curve. The curve that we integrate over is obtained by multiplying f 
by a mirrored and time-shifted version of g. The variable t determines how much 
to time-shift the function g.

To make this more concrete,3 for the example of an audio filter, f would represent 
the audio signal and g would represent the filter function. See Figure G-1 for 
a graphical representation. The upper two charts show two functions, f and g. 
The lower left chart shows how g has been mirrored around the y-axis and time 
shifted. Over time, we slide this mirrored version of g from left to right. Each 
time-shifted location of g results in a value of our convolution function. The figure 
shows how the convolution is calculated for an input value of 2. We first compute 
the product between f and g (mirrored and time shifted by 2), which results in the 
red curve in the figure. We then integrate over this function, which results in the 
green curve. That is, the green curve represents the area under the red curve.

The lower right chart shows the full convolution function for all input values. It 
peaks at 3.0, which is the area under the red curve when g is in a location where it 
fully overlaps f.

2. Audio filters can be used to control how much to suppress treble versus bass in an audio system.
3. As mentioned earlier, we assume that you have encountered convolution before. If not, this will 
hardly be concrete to you.
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now consider the case where we apply convolution to a discrete signal instead of 
a continuous signal—for example, discrete samples of a continuous audio signal. 
Then the integral is replaced by a sum:

∑[ ] [ ] [ ]( ) = −
∞

∞

=−

f g i f m g i m
m

*

In many cases, it is inconvenient (and unrealistic) to work with infinity, so we fall 
back on working with finite sequences, and the discrete convolution changes to

∑[ ] [ ] [ ]( ) = −
=−

f g i f m g i m
m M

M

*

Figure G-2 shows a graphical representation of discrete convolution, using 
discrete versions of f and g from the previous figure. In the lower left chart, we 
have chosen to time shift g by 1 as opposed to 2, as in the previous example. We 

Product of f
and mirrored
and shifted g

Mirrored g(x)
sliding to the

right

Area
under the
red curve

Figure G-1 upper left: Function f(x). upper right: Function g(x). lower left: 
Convolution process. A mirrored version of g(x) is slid from left to right. The red 
curve represents the product of these two curves. The convolution represents the 
area under this red curve.
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omitted the red curve and added dashed lines connecting the data points for each 
function in the lower left chart to make it more readable.

In the case of an audio signal, convolution is done in the time domain where the 
independent variable is time. The output at time t will be a function of the inputs at 
times t, t−1, . . ., t−n. A different use case is image processing, where convolution 
is done in the spatial domain and in two dimensions. Instead of computing an 
output based on a series of historical values, an image filter computes a pixel 
value by using a region of pixels as input values. This can be used to blur or 
sharpen an input image but also to perform edge detection. The latter use case 
starts to become related to our convolutional networks.

here is the formula for discrete 2D convolution:

∑ ∑[ ] [ ] [ ]( ) = − −
=− =−

f g i j f i j g i m j n
m M

M

n N

N

* ,   , ,  

Figure G-2 Discrete convolution. The charts mimic the charts in Figure G-1, but 
g is shifted by 1 instead of 2.



611

  RElATInG COnvOluTIOnAl lAyERS TO MAThEMATICAl COnvOluTIOn

If we inspect the equation, we see that it is almost the same computation as is 
used when feeding M×N grayscale pixels (a single color channel) as inputs to 
a neuron, assuming that f represents the pixels and g represents the neuron 
weights. The two indices i and j represent the location of the pixel in the center 
of the receptive field. The one complicating factor is the negative signs in the 
arguments to the g function. These need to be changed to positive signs to match 
the computations where we fed pixel values to a neuron.

This brings us to the concept of cross-correlation. If we replace the negative 
signs in the g function by positive signs, then the equation no longer describes a 
convolution operation. Instead, it describes the related operation cross-correlation. 
In the case of neural networks, this has little significance given that the function 
g (defined by the neuron weights) is automatically learned during training, so it 
is just a matter of which weights get what values. From that perspective, it does 
not matter if the actual implementation of the neural network flips the matrix 
that holds the weights corresponding to g, or if it keeps the matrix the way it 
is described in the preceding equation. The result will be the same regardless 
whether we have implemented a convolutional network or a cross-correlational 
network. To avoid any confusion, we state the mathematical formula for 2D 
cross-correlation:

f g i j f i j g i m j n
m M

M

n N

N

∑ ∑[ ] [ ] [ ]( ) = + +
=− =−

* ,   , ,  

note that the minus signs in the convolution formula are replaced by plus signs 
in the cross-correlation formula. It is now clear how the convolution operation 
relates to the pattern identifier that we use in our convolutional network.
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Appendix H

Gated Recurrent Units

This appendix is related to Chapter 10, “Long Short-Term Memory.”

In Chapter 10, we introduced long short-term memory (LSTM), which was 
introduced by Hochreiter and Schmidhuber in 1997. In 2014, Cho and colleagues 
(2014b) introduced the gated recurrent unit (GRU), which was described as 
“motivated by the LSTM unit but is much simpler to compute and implement.” 
Both LSTM and GRU are frequently used in modern recurrent neural networks 
(RNNs). To refresh your memory, we start with Figure H-1 of an LSTM-based layer, 
which was previously shown in Chapter 10, Figure 10-6.

When looking at this network of LSTM cells, a valid question is why we need 
two different sets of states. It seems like it would be possible to construct a 
constant error carousel (CEC) with just a single set of states. The GRU does 
just that, as well as removes the output activation and the output gate. It 
also combines the remember gate and forget gate into a single update-gate. 
Two different versions of the GRU are shown in Figure H-2. The reason there 
are two different versions is that the original version of the paper where the 
GRU was proposed contained one implementation (Cho et al., 2014a), but this 
implementation was somewhat revised in a later version (Cho et al., 2014b). 
We discuss both implementations.

A GRU cell does not have a separate internal state but implements the CEC 
using the global recurrent connections. It also combines the remember gate 
and forget gate into a single update gate.
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The original implementation is shown on the left. The c-state for the CEC has been 
removed from the cell, and the CEC is now using the output from the previous 
timestep, indicated by the leftmost input arrow in the figure. This is a single 
(scalar) value, and each cell receives its own output from the previous timestep. 
All the other inputs in the figure are vector inputs, corresponding to all x-values 
for the current timestep as well as all output values from the previous timestep.

The leftmost logistic sigmoid neuron (computing the value z) is known as the 
update gate. It replaces the forget gate and remember gate in the LSTM. As shown 
in the figure, instead of directly multiplying z by the incoming h-value, the node 
marked as 1− means that we first compute (1−z), which makes the leftmost 
multiplication in the figure act as a forget gate, whereas the unchanged z-value is 
used to gate the value coming from the activation function (shown as Act). That is, 
when the update gate output is 1, the CEC will be updated with the output of the 
activation function, whereas when the update gate output is 0, it will remember 
the state from the previous timestep.

Let us now look at what the input to the activation function is (i.e., what will feed 
into the new value that the cell will remember). The second logistic sigmoid 
neuron from the left (computing the value r) is known as the reset gate. This gate 
determines how much the state from the previous timestep should affect the 
newly computed value. This calculation is done by first computing a weighted 
sum of the output from the previous timestep by feeding h(t−1) to a neuron with 
no (linear) activation function (shown as Lin in the figure). We then multiply the 
two together to form a single value. This value is then added to the output from a 
weighted sum of the x-inputs (done by the rightmost Lin neuron) for the current 
timestep. The sum of these two values is then fed into the activation function. All 
in all, the combination of the set of nodes in the right corner of the GRU can be 
viewed as a single neuron, which receives inputs h(t−1) that have been scaled by 
the r-value and inputs x(t) that have not been scaled. Bias terms have been omitted 
from the figure.

To summarize, the GRU introduces a number of simplifications compared to 
an LSTM cell. There is no internal cell state. The GRU still has the ability to 
remember state across many timesteps by computing the output as a weighted 
sum of the output state from the previous timestep (instead of the internal state) 
and the input activation function for the current timestep. These two weights are 
dynamically controlled just as for LSTM, but instead of using two separate gates 
(remember and forget), it uses a single update gate. Finally, the GRU does not have 
an output gate or output activation function. The output is simply the weighted 
sum of the input activation from the current timestep and the output state from 
the previous timestep.
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Alternative GRU Implementation
Let us now look at the alternative implementation on the right side of Figure H-2. 
At a first glance, it looks like a simpler implementation, but note that the input to 
the activation neuron (the rightmost neuron named Act) receives a vector r * h(t−1). 
In this expression, r is a vector, and * represents the elementwise product. That is, 
to use this version of the GRU, we need to first compute a vector of reset values 
outside of the unit. We will see details of this soon, but first let us consider what 
this unit does. Just as in the previous version of the GRU, the candidate value 
that can be remembered by the cell is computed by the activation neuron, which 
receives inputs h(t−1) that have been scaled elementwise by r-values and inputs x(t) 
that have not been scaled. In other words, the key difference is that the scaling is 
done before the matrix multiplication of h(t−1) by the weight matrix, whereas in the 
first version of the GRU, the scaling was done after the matrix multiplication.

Network Based on the GRU
Figure H-3 shows an RNN layer built from reset-after GRU. The number of 
parameters (weights) to learn is three times as many as for a simple RNN. 
Compared to LSTM, we no longer have two sets of state in the network, and there 
is only a single activation function and two gate functions.

Figure H-4 shows an RNN layer built from reset-before GRU. We have omitted 
many connections to focus only on the inputs to the activation neuron. As 
previously noted, we now need to compute an r-value for each element of h(t−1) 
outside of the units to first scale each h(t−1) value before feeding it into the cells. 

This second version (reset-before) is the most common version of GRU (although 
Keras implements both). According to Chung and colleagues (2014), limited 
experiments have shown that both alternatives are comparable in their ability to 
learn (as mentioned in a single footnote in the study). With no significant learning 
advantage, it might seem odd that one would come up with this second version of 
the GRU given how it complicates the network topology. The explanation is likely 

There are two versions of the GRU: reset-before and reset-after.
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that many people do not necessarily think about the units in isolation, but they 
look at the entire layer of units as a building block. Figure H-5 shows how a GRU 
layer (bottom) compares to an LSTM layer (top), using the same style as used in 
Understanding LSTM Networks (olah, 2015).

As you can see in the lower part of the figure, the reset gate (output r) is applied to 
the vector h(t−1) before it is fed to the tanh neurons—that is, this is the reset-before 
variation (the second version that we studied in this appendix). Clearly, when 
looking at the entire layer as an entity, this variation does not look as convoluted 
as when we looked at individual units.

Equation H-1 describes a GRU layer using matrix notation. This is again 
describing the reset-before variation, where we multiply h(t−1) by r(t) (elementwise) 
in (3) before doing the matrix multiplication with W.
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Figure H-3 Recurrent neural network layer built from reset-after GRU. This figure 
does not show unrolling in time.
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Equation H-1 Equations describing a GRU layer
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If we instead want to describe the version with reset-after, we simply replace 
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Figure H-4 Recurrent neural network layer built from reset-before GRU. This 
figure does not show unrolling in time.
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When working at this abstraction level, the two variations are similar to each 
other.

With respect to deciding between using LSTM or using GRU, we do not know of a 
way to tell beforehand which unit will be the best choice. LSTM can sometimes do 
better than GRU because of its larger number of tunable parameters. on the other 
hand, LSTM can also do worse than GRU. It often makes sense to try both types of 
units and use the one that works best for the problem in question.
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x x
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h(t–1)

tanh
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h(t)
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Figure H-5 A layer of LSTM (top) and a layer reset-before GRU (bottom). (Source: 
Adapted from olah, C., Understanding LSTM Networks, August 2015, https:// 
colah.github.io/posts/2015-08-Understanding-LSTMs.)

It turns out that, from an implementation perspective, it can be beneficial to do 
the reset after the matrix multiplication (Keras Issue Request, 2016).

http://colah.github.io/posts/2015-08-Understanding-LSTMs
http://colah.github.io/posts/2015-08-Understanding-LSTMs
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Appendix I

Setting Up a 
Development 
Environment

This appendix describes how to set up a suitable development environment to try 
out the code examples presented throughout this book. The code examples should 
work on any platform that is capable of running Python 3 and either TensorFlow 
or PyTorch (depending on which deep learning [DL] framework you like to use), 
such as Linux, MacOS, and Windows. The examples in the first few chapters are 
feasible to run on a CPU-only platform, but for the more advanced examples, your 
experience will be much better if you get access to a graphics processing unit 
(GPU)-accelerated platform,1 either by having your own GPU or by renting it by the 
minute from a cloud service such as Amazon Web Services (AWS).

Similarly, the programming examples in the first four chapters do not require 
a DL framework but can be run using only Python, some basic libraries, and 
the Modified National Institute of Standards and Technology (MNIST) dataset. 
Therefore, if you are eager to get started, then you can begin with the first few 
sections of this appendix and stop after the section about MNIST. Then get back to 
installing a DL framework once you are ready to start reading Chapter 5, “Toward 
DL: Frameworks and Network Tweaks.”

1. Nothing prevents you from running all programming examples on a CPU, but it will take longer.
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If you want to focus on the PyTorch version of the code examples, then consider 
reading the last section of this appendix, which highlights some key differences 
between PyTorch and TensorFlow.

Python
All examples in this book are based on Python 3.x. If you are new to Python, you 
might not be aware that Python 3 is a different language (although similar) than 
Python 2, so it is key that your Python version is at least 3.0. The exact version 
does not matter that much as long as it is compatible with the version of the DL 
framework you are using. Chances are that you already have Python installed on 
your system, and you can check whether it is installed as well as the version by 
typing one of the following two command lines in your shell/command prompt:

python --version

python3 --version

It might be that python is aliased to version 3, or it might refer to version 2, 
so make sure that you pick the right one. If Python is not installed, it should 
be straightforward to download and install it from https://www.python.org/
downloads.

Once you have Python installed, you should be able to get through the initial 
examples that do not require a DL framework. running the examples should be as 
simple as changing to the directory containing the Python file you want to run, and 
then providing the filename as an argument when starting Python:

python3 my_example.py

You will also need the packages numpy, matplotlib, idx2numpy, and pillow, 
which are used for numerical computations, plotting, reading the MNIST dataset, 
and images. You can check whether they are installed by typing the following 
command, which will print all installed packages:

pip3 list

If not, you will want to install them. First, make sure to upgrade pip3 to the most 
recent version, and then install the packages:

pip3 install pip3

pip3 install numpy

https://www.python.org/downloads
https://www.python.org/downloads
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pip3 install matplotlib

pip3 install idx2numpy

pip3 install pillow

Programming Environment
Although it is possible to simply put all code in a text file and run it from the 
Python interpreter at the command prompt, we strongly believe that a more 
advanced programming environment improves both debug capability and 
productivity. We make no claims that what we describe is the best or only 
environment, but we do find it reasonable. Thus, if you are new to Python and do 
not want to spend much time researching the best options, we suggest that you 
simply go with our recommendations.

JUPYTEr NOTEBOOK

Jupyter Notebook is an environment where you write and run your programs in a 
Web browser. If you come from a more traditional programming environment, it 
might seem odd at first, but if you try it out, you will discover that there are some 
nice features. One of the more useful features is that you can run, modify, and 
rerun parts of your program without restarting from the beginning. The declared 
variables will keep their state. You can try things until you get them right and can 
easily inspect any variable by adding new print statements. If you come from a 
more traditional programming environment, you might argue that this can be 
done with a traditional debugger as well. We still urge you to try it out because we 
believe that you will see great benefit in Jupyter Notebooks once you get the hang 
of it. You can also nicely mix and match code and documentation. We have made 
all the programming examples in this book available as Jupyter Notebook files 
in addition to providing traditional Python files. More information about how to 
install Jupyter Notebook can be found on http://jupyter.org.

Depending on your platform and environment, you might have to add the following 
line at the top of your file to get the plots right with Jupyter:

%matplotlib inline

This is known as a built-in magic command that directs Jupyter how to handle 
plots.

http://jupyter.org
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USING AN INTEGrATED DEvELOPMENT ENvIrONMENT

Although Jupyter Notebooks are good for prototyping, we believe that anytime 
you get serious about building a larger application, you should be using a proper 
integrated developer environment (IDE), where you can easily break up and 
partition your program into multiple files.

Another benefit of an IDE is how it typically comes with a debugger that allows 
you to set breakpoints and single step into functions deep inside of the DL 
framework as opposed to just relying on an error message and a stack trace. 

There are many popular IDEs. We recommend using PyCharm found at http://
www.jetbrains.com/pycharm.

Another alternative is to use Eclipse supplemented by the PyDev extension. 
This alternative is an easy way of getting started if you are already familiar with 
Eclipse. Information about how to install Eclipse and PyDev can be found at http://
www.eclipse.org/downloads and http://www.pydev.org. 

Programming Examples
All programming examples have been tested with TensorFlow 2.4 and PyTorch 
1.8.0. Python files and Jupyter notebooks can be downloaded from https:// 
github.com/NvDLI/LDL/ or http://ldlbook.com.

The root of the repository contains four top-level directories:

• data is where datasets (see next section) should be downloaded to.

• stand_alone contains code examples that do not rely on a DL framework.

• tf_framework contains code examples that rely on the TensorFlow 
framework.

• pt_framework contains code examples that rely on the PyTorch framework.

There is a one-to-one mapping between the code examples in the two directories 
tf_framework and pt_framework.

The naming of each code example follows the pattern cXeY_DESCRIPTION.py 
where X represents the chapter number, Y the example number in that chapter, 
and DESCRIPTION is a brief description of what the example is doing.

http://www.jetbrains.com/pycharm
http://www.jetbrains.com/pycharm
http://www.eclipse.org/downloads
http://www.eclipse.org/downloads
http://www.pydev.org
https://github.com/NvDLI/LDL/
http://ldlbook.com
https://github.com/NvDLI/LDL/
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Each code example is expected to be run from within the directory where the 
code example is located, as it uses a relative path to access the dataset. That 
is, you first need to change to the stand_alone directory before running code 
examples located in that directory.

Because of the stochastic nature of DL algorithms, the results may vary from 
run to run. That is, it is expected that your results will not exactly reproduce the 
results stated in the book.

SUPPOrTING SPrEADSHEET

Apart from the described top-level directories, the root of the repository also 
contains a spreadsheet named network_example.xlsx. The spreadsheet 
provides additional insight about the basic workings of neurons and the learning 
process. There are three tabs, each corresponding to a specific section of the 
initial chapters:

• perceptron_learning corresponds to the section “The Perceptron 
Learning Algorithm” in Chapter 1, “The rosenblatt Perceptron.”

• backprop_learning corresponds to the section “Using Backpropagation to 
Compute the Gradient” in Chapter 3, “Sigmoid Neurons and Backpropagation.”

• xor_example corresponds to the section “Programming Example: Learning 
the XOR Function” in Chapter 3. 

Datasets
For most of the programming examples in this book, you need access to various 
datasets or other resources. Some of these are included with the code examples or 
in the DL framework, and others need to be downloaded to your local computer. We 
have listed the ones that you need to download. All program examples assume that 
the downloaded datasets are placed in the directory named data in the root of the 
code example directory tree.

MNIST

The MNIST Database of handwritten digits can be obtained from http://yann.lecun 
.com/exdb/mnist.

http://yann.lecun.com/exdb/mnist
http://yann.lecun.com/exdb/mnist
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Download the following files:

train-images-idx3-ubyte.gz

train-labels-idx1-ubyte.gz

t10k-images-idx3-ubyt.gz

t10k-labels-idx1-ubyte.gz

Once downloaded, gunzip them to the data/mnist/ directory. You need the 
Python package idx2numpy to use this version of the MNIST dataset. This 
package is not available on all platforms. See the book Web site (http://ldlbook 
.com) for alternative solutions. 

BOOKSTOrE SALES DATA FrOM US CENSUS BUrEAU

Sales data from the United States Census Bureau can be obtained from https://
www.census.gov/econ/currentdata.

Select Monthly Retail Trade and Food Services and click the Submit button. That 
should take you to a page where you need to specify five different steps, as shown 
in Figure I-1. Make the same selections as shown in the figure, and make sure 
that the checkbox Not Seasonally Adjusted is checked. Then click the GET DATA 
button.

That should result in a table with data values. Download it to a comma-separated 
values (CSv) file by clicking the link TXT. remove the first few lines in the 

Figure I-1 Fields to populate to download the correct data file

http://ldlbook.com
http://ldlbook.com
https://www.census.gov/econ/currentdata
https://www.census.gov/econ/currentdata
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downloaded CSv file so the file starts with a single line containing headings 
saying “Period,value” followed by one line for each month. Further, remove any 
lines with non-numerical values, such as “NA”, at the end of the file. Name the file 
book_store_sales.csv and copy to the data directory.

FrANKENSTEIN FrOM PrOJECT GUTENBErG

The text of Mary Shelley’s Frankenstein can be downloaded from  
https://www.gutenberg.org/files/84/84-0.txt.

rename the file to frankenstein.txt and copy to the data directory.

Glove WOrD EMBEDDINGS

The Glove word embeddings file, which is close to 1 GB in size, can be 
downloaded from http://nlp.stanford.edu/data/glove.6B.zip.

Unzip it after downloading and copy the file glove.6B.100d.txt to the 
data directory.

ANKI BILINGUAL SENTENCE PAIrS

The Anki bilingual sentence pairs can be downloaded from  
http://www.manythings.org/anki/fra-eng.zip. 

Unzip it after download and copy the file fra.txt to the data directory.

COCO

Create a directory named coco inside of the data directory.

Download the following file:

http://images.cocodataset.org/annotations/annotations_trainval2014.zip 

Unzip it and copy the file captions_train2014.json to the directory coco.

Download the following 13 GB file:

http://images.cocodataset.org/zips/train2014.zip

Unzip it into the data/coco/ directory so the path to the unzipped directory 
is data/coco/train2014/.

https://www.gutenberg.org/files/84/84-0.txt.rename
https://www.gutenberg.org/files/84/84-0.txt.rename
http://nlp.stanford.edu/data/glove.6B.zip
http://www.manythings.org/anki/fra-eng.zip
http://images.cocodataset.org/annotations/annotations_trainval2014.zip
http://images.cocodataset.org/zips/train2014.zip
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Installing a DL Framework
There are multiple ways of installing both TensorFlow and PyTorch, and to some 
extent, it depends on the platform you are using. In this section, we describe some 
general directions. We distinguish between four different methodologies:

• System installation

• virtual environment installation

• running in a Docker container

• Using a cloud service

The code examples for this book have been tested with TensorFlow version 2.4 
and PyTorch version 1.8.0. 

SYSTEM INSTALLATION

This is the most straightforward way to install a framework in that it does not 
make use of any mechanisms to isolate it from the rest of the system. You install 
the framework on your system as well as any packages/libraries that it depends 
on. If you are lucky, this is simple, but if you are unlucky, you run into problems 
because you already have some of the libraries installed but you have the wrong 
versions. You can then decide to upgrade or downgrade to a suitable version, 
but that might break other pieces of software on your system that depend on 
a specific installed version. Still, if you do not feel like learning about virtual 
environments or Docker containers at this point, you can give it a shot. Simply 
type the following in your shell to install TensorFlow:

pip3 install tensorflow

If you want to install a specific version that is not the latest version, for example, 
version 2.4 that the code examples were developed for, then type

pip3 install tensorflow==2.4

Similarly, use the following command line to install PyTorch:

pip3 install torch torchvision
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If you want to install a specific version that is not the latest version, then you need 
to find out what versions of torch and torchvision are compatible with each other, 
and then install the correct versions together. For example, for PyTorch 1.8.0,

pip install torch==1.8.0 torchvision==0.9.0

Pay attention to any error messages that show up as the frameworks are 
installed. Error messages can indicate dependencies on a missing package or that 
an already installed package has the wrong version. If the latter is the case, you 
need to decide whether you are comfortable with starting to tweak the versions of 
the conflicting package or prefer to move on to a virtual environment.

vIrTUAL ENvIrONMENT INSTALLATION

This is similar to the system installation process, but first you install the 
virtualenv tool. This tool lets you create one or more virtual environments 
on your system. The benefit from this tool is that each virtual environment can 
have its own version of a package installed. Thus, if you already have one version 
of a package installed on your system and your framework requires a different 
package, then you do not need to remove the existing version. Instead, you 
install the framework and all the packages that it depends on in its own virtual 
environment. The details of how to install the virtualenv tool and create a 
virtual environment can be found at https://virtualenv.pypa.io.

GPU ACCELErATION

Additional steps are needed if you want to use GPU acceleration. You need to 
install CUDA and CuDNN. The details will depend on what system you are running.

For detailed information about TensorFlow installation, with and without GPU 
acceleration, see tensorflow.org/install.

For PyTorch, the equivalent information can be found at https://pytorch.org/
get-started/locally.

However, you do not need GPU acceleration for the first few programming 
exercises, so you might want to start with a simple setup and worry about GPU 
acceleration later. 

https://virtualenv.pypa.io
http://tensorflow.org/install
https://pytorch.org/get-started/locally
https://pytorch.org/get-started/locally
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DOCKEr CONTAINEr

Another option is to use a Docker container. This is a way of getting away from 
the process of installing the framework altogether. Instead, you first install the 
Docker Engine on your system. You then download a Docker image, which has 
everything you need (TensorFlow or PyTorch and any libraries that they depend 
on) already installed on this image. You then tell the Docker Engine to create a 
Docker Container based on that image. A Docker Container isolates the software 
that is running inside it from its environment, somewhat like a virtual machine, 
but more lightweight, as it does not contain the operating system itself. Using 
Docker Containers is a popular way of running DL frameworks, and it is perhaps 
also the simplest way of configuring them to make use of the GPU on your system.

USING A CLOUD SErvICE

Finally, if you do not want to install anything on your system, you can instead use 
a cloud service. Using a cloud service is also a good alternative if you do not have 
a system with a GPU but still want to be able to play around with GPU acceleration 
before deciding to buy one.

One alternative is Google Colab, which provides machine access for free, including 
GPU acceleration. It already has TensorFlow and PyTorch installed. You will need 
to learn how to enable access to data on your Google Drive account for any code 
examples that require datafiles as input.

Another alternative is AWS, where you can rent a machine by the minute. AWS 
offers preconfigured machines ready to run TensorFlow and PyTorch, but there 
is a little bit of a learning curve to get started, including setting up an account, 
deciding what machine to rent, figuring out how to rent persistent storage that 
does not get wiped when you shut down the machine, and configuring a security 
group and network access. The benefit is that there is no work of configuring the 
DL frameworks because they are already set up by AWS.

TensorFlow Specific Considerations
Because TensorFlow is the framework used for all the programming examples 
in this book, the book is sprinkled with information about TensorFlow. We still 
figured that it makes sense to specifically spell out here that TensorFlow can 
be somewhat verbose, especially when using a GPU. If you want to reduce the 
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verbosity when running the programs, you can set the environment variable 
TF_CPP_MIN_LOG_LEVEL to 2. It can be done with the following command line 
if you use bash:

export TF_CPP_MIN_LOG_LEVEL=2

Alternatively, you can add the following code snippet at the top of each program:

import os

os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'

Key Differences Between PyTorch and 
TensorFlow

In this section, we point out some key differences between PyTorch and 
TensorFlow. We try to highlight these differences in the documentation of each 
PyTorch programming example as well, but we believe that it is helpful to have 
them summarized here in a single place. Note that most of what is described here 
requires skills taught throughout this book, so rather than reading this section up 
front, we recommend revisiting this section over the course of reading the book.

Overall, when comparing the experience of programming for PyTorch versus 
TensorFlow with the Keras API, our opinion is that the differences fall into one 
major and one minor category. The major difference is that some things that are 
handled by the Keras API need to be explicitly handled in PyTorch. This makes it 
slightly harder to get started for a beginner but pays off in the long run in terms 
of providing flexibility when you want to do something slightly off the beaten path. 
The minor differences simply consist of a number of minor design/API choices 
that are different between the two frameworks.

Both frameworks are rapidly evolving. Therefore, this section is likely to get 
outdated over time. We recommend that you consult the most up-to-date 
documentation for the framework you use.

NEED TO WrITE OUr OWN FIT/TrAINING FUNCTION

In our opinion, for a beginner, one of the bigger obstacles in PyTorch compared to 
Tensorflow (using the Keras API) is the need to write your own function to train 
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your model. In Tensorflow, once you have defined a model, you simply call the 
function fit() with a set of suitable parameters, and the framework handles a 
lot of the details, including running the forward pass, running the backward pass, 
and adjusting the weights. In addition, it computes and prints out a number of 
useful metrics like loss and accuracy for both the training set and the test set. In 
PyTorch, you must handle these mechanics yourself.

Although this might seem cumbersome, in reality, it is not that much code to 
write. In addition, as we show in our code examples, it is simple to write your 
own library function that can be reused across many models. This is a prime 
example of where we think it is a little bit harder to get started with PyTorch 
than with Tensorflow. On the other hand, it is very powerful to be able to easily 
modify this piece of code. That is illustrated by the natural language translation 
example (Chapter 14, “Sequence-to-Sequence Networks and Natural Language 
Translation”) and image captioning example (Chapter 16, “One-to-Many Network 
for Image Captioning”), where our TensorFlow implementations of the training 
loop are somewhat convoluted.

As a part of writing your own training loop, you will need to include the following 
steps:

• Call the zero_grad() method on the chosen optimizer to inform the 
optimizer that it should reset all gradients to zero, since the default is to 
accumulate gradients over multiple steps

• Call to an instance2 of a Module object, which results in a call to the 
forward() method to run the forward pass

• Compute loss and call backward() to run the backward pass

• Call the step() method on the chosen optimizer to update the weights based 
on the current gradient

Apart from explicitly handling forward pass, loss computation, backward pass, 
and weight adjustment, you also need to implement functionality to break 
up your training and test data into mini-batches. This is typically done using 
a DataLoader object. When using TensorFlow with the Keras API, all this 
functionality is handled by the fit() function.

2. In Python 3, you can use the instance variable name of an object as a function name. When you call 
this function, it will invoke the object’s __call__() method. In PyTorch, the __call__() method for 
a Module object will invoke the forward() method.
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ExPLICIT MOvES OF DATA BETWEEN NumPy AND PyTorch

The Keras API in TensorFlow uses NumPy arrays as its representation of tensors. 
For example, when passing a tensor to a model, the format is expected to be in 
the form of a multidimensional NumPy array. In contrast, in PyTorch you need to 
explicitly convert data between NumPy arrays and PyTorch tensors.

PyTorch keeps track of information to be able to do automatic differentiation 
(using backpropagation) on PyTorch tensors. That is, as long as you work on 
PyTorch tensors, you can use any computation supported by the tensor data type 
when defining a function, and you will later be able to automatically compute 
partial derivatives of that function. The explicit move to and from a tensor enables 
PyTorch to track what variables to provide this functionality for.

There are a few different functions related to this:

• from_numpy()converts from NumPy array to PyTorch tensor.

• numpy()converts from PyTorch tensor to NumPy array.

• detach()creates a PyTorch tensor that shares storage with the original 
PyTorch tensor but for which automatic differentiation is not supported.

• clone()creates a PyTorch tensor from a PyTorch tensor but where storage is 
not shared between the two tensors.

• item()converts a single element in a PyTorch tensor into a NumPy value.

• with torch.no_grad() turns off support for automatic differentiation 
within the scope of this construct.

For a beginner, it can be challenging to understand how these functions and 
constructs all relate, especially when encountering a combined expression such 
as detach().clone().numpy(). It is like with anything else. It takes some 
time to get used to, but once you understand it, it is not that complicated.

ExPLICIT TrANSFEr OF DATA BETWEEN CPU AND GPU

In addition to explicitly moving data between NumPy and PyTorch, you must 
explicitly move data (and models) between the CPU and the GPU. It is done using 
the two functions:

• to(DEVICE) moves data to a specific device (typically GPU).

• cpu() moves data to the CPU.

http://torch.no_grad(
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In our opinion, this is easier to get familiar with, but it can still trip you in the 
beginning, especially when combined with the mechanisms given previously, 
and you might run into a combined expression such as .cpu().detach().
numpy().

ExPLICITLY DISTINGUISHING BETWEEN TrAINING AND INFErENCE

Some types of layers, such as Dropout and BatchNormalization, behave differently 
during training than during inference. In TensorFlow, this is handled automatically 
because the framework has explicit functions for training (fit) and inference 
(predict). As described previously, in PyTorch, you must write these functions 
yourself. Therefore, you must also explicitly tell a model when it is being used for 
training or inference. This is done using the following functions:

• train()sets a model in training mode.

• eval() sets a model in inference mode.

For a beginner, it is easy to mix up the functionality of eval() and no_grad(), 
which was described earlier. Both can make sense to use during inference. 
The distinction is that eval() is required to get the correct behavior, whereas 
no_grad() is an optimization to not track the extra state needed for auto-
differentiation (which is not needed during inference).

SEQUENTIAL vErSUS FUNCTIONAL API

We are now moving on to the differences that are minor but good to know about. 
Most of our TensorFlow programming examples use the Keras Sequential API. 
PyTorch has a very similar concept in the nn.Sequential class.

For the more advanced programming examples, it is a little bit different. For 
TensorFlow, we use the Keras Functional API where the process of declaring 
layers is separate from connecting them together. In PyTorch, this is handled 
differently by instead creating a custom model by inheriting from the nn.Module 
class and overriding the forward() function.

In our opinion, both methodologies are of a similar complexity level when using 
supported layer types, but the PyTorch methodology might be somewhat simpler 
when implementing layers that are not natively supported by the framework. The 
programming example in Chapter 16 is an example of this, where we implement 
the functionality of an attention layer in the PyTorch version. As a side note, that 
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highlights another minor difference in that TensorFlow provides an attention 
layer, whereas PyTorch does not.

LACK OF COMPILE FUNCTION

In TensorFlow, before calling the fit() function to train a model, you have to 
call the compile() function to select a loss function and an optimizer. This is 
not needed in PyTorch and likely follows from the fact that you write your own 
training loop in PyTorch. As a part of that process, you explicitly invoke your loss 
function and optimizer, so there is no need to tell the framework up front what 
functions to use.

rECUrrENT LAYErS AND STATE HANDLING

For recurrent layers (e.g., LSTM), there are two key differences to highlight 
between TensorFlow and PyTorch. First, stacking LSTM layers in PyTorch can be 
done by simply providing a parameter to the LSTM layer constructor instead of 
having to declare multiple instances after each other.

Second, in the programming examples that use recurrent layers, we show how 
TensorFlow has functionality to declare a recurrent layer as either stateful or 
not, and we make use of this when we build autoregressive models. The stateful 
concept does not explicitly exist in PyTorch, but we show how to emulate it in our 
PyTorch versions of the programming examples.

CrOSS-ENTrOPY LOSS

There are two key differences between the cross-entropy loss implementation 
in PyTorch compared to Tensorflow. First, in PyTorch, the cross-entropy loss 
function implicitly also models the logistic sigmoid function of the last neuron, 
or the softmax in the case of a multiclass classification problem. That is, when 
defining the network, you should use a linear output unit instead of also defining 
an activation function. Second, in PyTorch, the cross-entropy loss function expects 
an integer target instead of a one-hot encoded target. That is, there is no need to 
one-hot encode the target value. This results in a more efficient implementation 
from a memory usage perspective.

If you use TensorFlow, there are options to get the same behavior, but they need 
to be explicitly specified because the default behavior is different.
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vIEW/rESHAPE

NumPy provides a function reshape() that can be used to change the 
dimensions of a NumPy array, and TensorFlow has the corresponding function 
for changing the shape of tensors. PyTorch has the same kind of functionality 
implemented by a function named view().
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Appendix J

Cheat Sheets

Larger versions of these cheat sheets can be downloaded from http://informit.com/title/9780137470358.

+

W1
W2

w0

Wn

X1
X2

Xn

z
Activation

y

Activation functions for output units

Activation functions for hidden units

Input encodings

Standardized
numerical

values

One-hot
encoded
classes

Word
embeddings

from
embedding layer

tanh ReLU

elu softplus maxout

leaky ReLU

logistic softmax linear

Feedforward network

Artificial neuronX0 = 1
(bias)

http://informit.com/title/9780137470358
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+x

xr z
1–

x

tanh

tanh
x +

x

h(t–1)

h(t–1)

c(t–1)

Type Description Example usage

Fully connected

Convolutional

Sparsely connected. Employs
weight sharing. Consists
of multiple channels. Each
channel is often arranged in
two dimensions.

Image processing (2D
convolution) and text
processing (1D
convolution)

Simple recurrent

Recurrent connections. Output
from previous timestep is
used as input. Weight sharing
between timesteps.

Sequential data of
variable length, e.g.,
text processing

Long short-term
memory (LSTM)

Gated recurrent
unit (GRU)

Long sequences, e.g.,
text processing

Long sequences, e.g.,
text processing

Recurrent layer with more
complex units. Each unit
contains an internal memory
cell. Gates control when to
remember and forget.

Simplified version of LSTM. No
internal memory cell but still has
gates to control when to
remember or forget previous
output value.

Embedding

Attention
Extract information from
long text sequences or
images

Output vector is a weighted
sum of multiple input vectors.
The weights are dynamically
chosen to attend to the
most important vector.

Convert textual input
data into word
embeddings

Converts sparse one-hot
encoded data into a dense
representation. Implemented as
lookup table.

Adjustable
weights

LinLinLin

Layer types

Each neuron connects to each
output in preceding layer. Also
known as projection layer if no
activation function is used.

Cases where
specialized layers do
not provide additional
value

σ

σσ

σσ

X(t)

X(t)
h(t)

h(t)

h(t)

c(t)

Wd0 Wd1 Wd2 Wd3 Wd4

WE02

WE01

WE00

WE40

WE41

WE42

tanh

x

+
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Linear algebra representation

W = U =

w1,1 w1,2 ... w1,n u1,1 u1,2  ... u1,m

w2,1 w2,2  ... w2,n u2,1 u2,2  ... u2,m

wn,1 wn,2  ... wn,n un,1 un,2  ... un,m

b =

b1 h1 x1
x2

xm

h2

hn

b2

bn

h = x =

NnN1

w1,1 wn,1

h1
(t–1), h2

(t–1), ..., hn
(t–1) h1

(t–1), h2
(t–1), ..., hn

(t–1)x1
(t), x2

(t), ..., xm
(t) x1

(t), x2
(t), ..., xm

(t)

b1

h1
(t) hn

(t)

Weighted sum for single neuron: z = wx

Weighted sums for fully connected layer for mini-batch: Z = WX

Weighted sums for fully connected layer: z = Wx

Recurrent layer: h(t) = tanh(Wh(t–1) + Ux(t) + b)

NOTE: Bias term is implicit in all but the recurrent case above

w1,2 w1,n u1,1

u1,2

u1,m un,m

un,1

bn

wn,2wn,n

un,2

...... ...
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Algorithm Description

Stochastic gradient
descent (SGD)

Gradient is computed based on a mini-batch of
training examples.

Momentum
Addition to SGD where weight adjustment
depends on gradient from previous adjustments as
well as the current gradient.

AdaGrad Variation on SGD that adaptively adjusts the
learning rate during training.

Adam Variation on SGD with both adaptive learning
rate and momentum.

RMSProp Variation on SGD that normalizes gradient using
the root mean square (RMS) of recent gradients.

Training algorithm variations

Datasets

Big dataset: 60/20/20 (train/validation/test)

Small dataset: 80/20 (train/test) and k-fold cross-validation

Typical splits
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Regression
Binary
classification

Multi class
classification

Non sequential
House price estimation
based on size and
location

Diagnose patient
based on symptoms

Classify hand-written
digits

Time series or
sequential
prediction

Predict future sales based
on historical data

Predict if it will rain
tomorrow based on
historical weather data

Text auto-completion

Examples of network architectures for different problem types

Fully connected layers

Convolutional layers
(optionally with pooling)

Fully connected layers

Logistic output
neuron

Softmax output layer

Fully connected layers

Linear output layer

Embedding layer

Fully connected layers

Softmax output layer

Recurrent layers
(simple, GRU, or LSTM)

Recurrent layers
(simple, GRU, or LSTM)

Generic binary classification Generic regression Image classification

Language model

Embedding layer Embedding layer

Fully connected layers

Softmax output layer

Recurrent layers
(simple, GRU, or LSTM)

Encoder-decoder for language translation

Problem types
Softmax output unit
Categorical cross-
entropy loss function

Logistic output unit
Cross-entropy loss
function

Linear output unit
Mean squared error (MSE)
loss function

Recurrent
networks can
handle variable
sequence length.
Alternatively,
pad/crop to fixed
length.
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Word embeddings

Word vector arithmetic: King – Man + Woman = Queen

Word embedding schemes

Embedding
scheme

Notes

The “classic,” derived using
heuristics.word2vec

GloVe

wordpieces

FastText

Mathematically derived.

Handles out-of-vocabulary words
by working on subwords.

Extension of word2vec to handle
out-of-vocabulary words.

Same word results in di�erent
embeddings depending on context.

ELMo
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Transformer-based NLP architectures

Traditional NLP techniques

n-gram

Extension of n-gram model.

Extension of bag-of-words
with some notion of word
order.

Bag-of-word but working on
characters instead of words.

Unordered document
summarization technique.

Building block in sentiment
analysis and document
comparison.

See above.

See above.

Determine similarities
between words.

Find likely sentence
candidate in speech
recognition. Text auto-
completion.

Simple statistical language
model. Computes probability
of word sequence.

skip-gram

bag-of-
words

bag-of-
ngrams

character-
based bag-
of-ngrams

BERT: Transformer encoder,
bidirectional with self-attention

Transformer: Encoder-decoder
architecture with both attention
and self-attention

GPT: Transformer decoder,
unidirectional with self-attention

DescriptionTechnique Application examples
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Computer vision

LeNet,
LeNet-5

Detection

Semantic segmentation

Instance segmentation

Models: R-CNN, Fast R-CNN,
Faster R-CNN

Models: Deconvolution network,
U-Net

CNN before DL boom.

AlexNet

VGGNet

Inception

ResNet

E�cientNet

Networks for classification; also used as
backbone in other models

Deep hybrid architectures.

Inception v2,
v3, v4,
Inception-
ResNet,
ResNeXt

Depthwise separable
convolutions for more e�cient
implementation.

MobileNets,
Exception

Explored trade-o�s between
multiple dimensions for more
e�cient architecture.

Introduced skip connections.
Much deeper than previous
networks.

Complex building block with
parallel paths. Used by
GoogLeNet.

Demonstrated importance of
depth.

First DL-based ImageNet
winner.

Network Key properties

Model: Mask R-CNN

Computer vision

LeNet,
LeNet-5

Detection

Semantic segmentation

Instance segmentation

Models: R-CNN, Fast R-CNN,
Faster R-CNN

Models: Deconvolution network,
U-Net

CNN before DL boom.

AlexNet

VGGNet

Inception

ResNet

E�cientNet

Networks for classification; also used as
backbone in other models

Deep hybrid architectures.

Inception v2,
v3, v4,
Inception-
ResNet,
ResNeXt

Depthwise separable
convolutions for more e�cient
implementation.

MobileNets,
Exception

Explored trade-o�s between
multiple dimensions for more
e�cient architecture.

Introduced skip connections.
Much deeper than previous
networks.

Complex building block with
parallel paths. Used by
GoogLeNet.

Demonstrated importance of
depth.

First DL-based ImageNet
winner.

Network Key properties

Model: Mask R-CNN
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hyperparameter tuning, 146–150
network tuning, 479

Crossover operations in NAS, 486–487
CUDA BLAS (cuBLAS) library, 20
cuDNN library, 20
Curvature modeling, 522–523

D
DAGs (directed acyclic graphs), 19
Data augmentation in regularization, 229–231
data directory, 624
Data ethics, 505–512
Data moves in PyTorch vs. TensorFlow,  

633–634
Data points, standardizing, 107
Datasets

cheat sheet, 661
generalization, 98–100
human bias in, 96–97
hyperparameter tuning and information 

leakage, 100
for programming examples, 625–627
RNNs, 264
training networks, 92–100

Datasheets for datasets, 97
Dead neurons, 138
Debuggers in IDEs, 624
Decision boundaries for support vector 

machines, 531–532
Decoder model. See Encoder-decoder 

architecture and model
Deconvolution in semantic segmentation

checkerboard artifacts, 555–556
convolution relationship, 554–555
networks, 557–559
overview, 553–554

Deep neural networks (DNNs)
house prices example, 161–165
multiple perceptrons, 19

DELIM tokens in GPT, 580
Dendrites in biological neurons, 1–2
Denoising autoencoders, 452, 589
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Dense encoding, 101
Dense layers in digit classification, 121
Dependencies in BERT, 582
Deployment bias, 509
Depthwise separable convolutions, 232–234
Derivatives

gradient-based learning, 41–44
gradient descent, 46

detach() function, 633
Development environments, 621–622

datasets, 625–627
framework installation, 628–630
programming environments, 623–624
programming examples, 624–625
Python, 622–623
PyTorch vs. TensorFlow, 631–636
TensorFlow, 630–631

Differentiable functions in gradient descent, 
60–61

Digit classification
example, 104–114
implementation, 118–124
import statements, 118–119
loading datasets, 119–120
loss function, 103–104
matrix implementation, 599–606
network architecture, 102–103
network creation, 120–122
programming example, 118–124
training, 122–123

Dimensions
autoencoder reduction of, 452
convolutional layers, 177

Directed acyclic graphs (DAGs), 19
Direction in vectors, 44
Discriminators in GAN, 514
Disinformation, 508
Distributed representations of words, 303–304, 

310, 314
DNNs (deep neural networks)

house prices example, 161–165
multiple perceptrons, 19

Docker containers, 630
Document vectors in sentiment analysis of text, 

338
Documentation, releasing, 506
Dot products

description, 23
matrices, 29
vectors, 57
word2vec, 353

Dropout
recurrent dropout, 265

convolutional layers, 197
regularization, 167–169

E
Early fusion in multimodal learning,  

461–462
Early stopping for datasets, 99
Eclipse IDE, 624
EfficientNets, 234–235
Eigenvalues, 250
Elements of matrices, 24
Ellipses in logistic regression, 529
ELMo embeddings, 572–575
elu function, 139–140
Embedding images, 418–419
Embedding layers

CBOW model, 346–347
continuous skip-gram model, 349
GloVe, 356–361
neural language models, 345–346
optimized continuous skip-gram model,  

350
self-attention, 408
sequence-to-sequence learning, 367
Transformer, 411
word2vec, 352–355

Encoder-decoder architecture and model
attention technique, 394–399, 404
autoencoders. See Autoencoders
image captioning, 418–419, 432–438
neural machine translation, 379–384
sequence-to-sequence learning, 366–368
Transformer, 411–415

Encoding text, 285–287
END tokens in GPT, 580–581
Enhanced Representation through Knowledge 

Integration (ERNIE), 590
Environments in reinforcement learning, 513
Epochs, 111
ERNIE (Enhanced Representation through 

Knowledge Integration), 590
Error function

backpropagation, 76–78, 81
gradient computation, 70–73

Error term in multiclass classification, 103–104
Errors in datasets, 99–100
Estimated weights in linear output units, 160
Ethical AI, 505–512
Ethics, 505–506

checklist, 512
problem areas, 506–512

Euclidean distance for vectors, 338–340
eval() function, 634
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Evaluation bias, 509
Evaluation metrics for binary classifiers, 

533–537
Evolutionary algorithm in NAS, 485–487, 

498–500
Example-based models in multimodal learning, 

462–463
Excitatory synaptic signals, 2
Excited neurons, 1
Exhaustive grid search in hyperparameter 

tuning, 147
Explicit alignment in multimodal learning, 463
Exploding gradient problems

clipping for, 142
mitigating, 267–272
RNNs, 273

Exponential functions in gradient descent, 62
Extreme Inception, 234

F
F scores for binary classifiers, 536
False negatives (FNs) in binary classifiers, 534
False positives (FPs)

binary classifiers, 534–535
pattern identification, 56

Fashion MNIST dataset, 455–459
Fast R-CNN, 541, 544–546
Faster R-CNN, 541, 546–549
FastText, 566–567
Feature engineering in logistic regression, 530
Feature identification in gradient-based 

learning, 57
Feature maps

combining, 180–181
convolutional layers, 177, 179–181
Fast R-CNN, 544
Faster R-CNN, 546–547

Feature Pyramid Network (FPN), 561
Feature vectors in image captioning, 424–426
Feedback

neural language models, 325–326
text prediction, 288–289

Feedback loop issues, 507–508
Feedforward module in Transformer, 412
Feedforward networks

backpropagation, 87–89
cheat sheet, 658
language models, 310–311
limitations, 241–242
multiple perceptrons, 18–19
RNNs, 247
sentiment analysis of text, 341

FFhQ (Flickr-Faces hQ) dataset, 510–511

Filters, audio, 608–611
Fine tuning, 226–228
fit() function

digit classification, 122
multitask learning, 476
neural machine translation, 377, 385
PyTorch vs. TensorFlow, 632

fit_on_texts() function, 322
Fixed length datasets for time series, 264
Flatten layer, 121
Flickr-Faces hQ (FFhQ) dataset, 510–511
Folds in cross-validation, 149–150
Forecasting problem. See Book sales 

forecasting problem
Forget gates in LSTM, 281
Forward passes

backpropagation, 60, 75–80
Fast R-CNN, 544
MNIST learning, 109–111
word2vec, 352
xOR example, 86

FPN (Feature Pyramid Network), 561
Fractional striding, 553
Frameworks, 117

concluding remarks, 150–151
cross-entropy loss function, 130–136
gradient descent variations, 141–143
hyperparameter tuning and cross-validation, 

146–150
initialization and normalization techniques, 

126–129
installation, 628–630
network and learning parameters, 143–146
programming example, 118–124
saturated neurons, 124–126
vanishing gradients, 124–126, 136–141

Frankenstein text, 627
from_numpy() function, 633
Fully connected layers, combining, 181–185
Fully connected networks, 153–154

backpropagation, 87–89
Boston Housing dataset, 160–161
concluding remarks, 170
generalization, 166–168
house prices example, 161–165
multiclass classification. See Multiclass 

classification
multiple perceptrons, 18–19
output units, 154–160
regularization, 169–170
weights and calculations, 186

Fully connected softmax layer in text encoding, 
286–287
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Function composition in backpropagation, 
67–68

Functional API, 634–635
Functions in Python, 120
Fusion in multimodal learning, 461–462

G
GANs (generative adversarial networks), 

513–515
Garbage-in/garbage-out (GIGO) problem in 

datasets, 96–97
Gated Recurrent Units (GRUs)

alternate implementation, 616
networks based on, 616–619
overview, 613–615
sequence-to-sequence learning, 368

Gated units in LSTM, 272–273, 275, 281
Gating functions in LSTM, 278–279
Gender biases in neural language models, 333
Generalization

datasets, 98–100
regularization for, 166–168

Generative adversarial networks (GANs), 
513–515

Generative Pre-Training (GPT), 578–582
Generators in GAN, 514
Geometric description for learning algorithm, 

51
Geometric interpretation for perceptrons, 30–32
get_weights() function, 326
__getitem__() method, 431
GIGO (garbage-in/garbage-out) problem in 

datasets, 96–97
Global pooling. See Pooling
Glorot initialization

vanishing gradients, 270, 272
weight initialization, 126–127

glorot_uniform() function, 127
GloVe algorithm, 343

concluding remarks, 361–362
properties, 356–361
word embeddings file, 627

Google Colab, 630
GPT (Generative Pre-Training), 578–582
GPUs. See Graphics processing units (GPUs)
Gradient-based learning

concluding remarks, 57
constants and variables, 48
derivatives and optimization problems, 

41–44
gradient descent, 44–48
learning algorithm analytic motivation,  

49–50

learning algorithm explanation, 37–41
learning algorithm geometric  

description, 51
pattern identification, 54–57
plots, 52–54

Gradient clipping, 142, 270, 272
Gradient descent

backpropagation, 60
learning problem, 44–46
linear regression, 523–524
logistic regression, 527
mini-batch, 114–115
modified neurons, 60–66
multidimensional functions, 46–48
Newton-Raphson method, 597
variations, 141–143

Gradients
backpropagation, 69–80
cheat sheet, 662
GoogLeNet, 213
issues, 267–272
vanishing. See Vanishing gradients

Graphics processing units (GPUs)
acceleration, 629
AlexNet, 172
convolutional networks, 201
data transfer, 633
Google Colab, 630
mini-batches, 114
offload computations, 20–21
Transformer, 591

Grid search in hyperparameter tuning,  
146–148

Ground truth, 7
GRUs. See Gated Recurrent Units (GRUs)

H
Handwritten digits

classification example, 104–114
Fashion MNIST dataset, 455–458
MNIST dataset, 93, 97
network architectures, 102–103
programming example, 118–124

Hard attention, 405–406
Hard parameter sharing in multitask learning, 

472
He initialization

cross-entropy loss function, 144
vanishing gradients, 270, 272
weight initialization, 126–127

he_normal() function, 127
Head units in multitask learning, 471
Heads in networks, 540–541
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Hidden layers
digit classification, 102
house prices example, 162–163
multiple perceptrons, 19
neural language models, 345
RNNs, 245
sequence-to-sequence learning,  

367–368
vanishing gradients in, 136–141

Hidden outputs in RNNs, 243
Hidden states

alignment vectors, 400, 402
RNNs, 246

Hidden units, 139
Hierarchical softmax

CBOW model, 346–347
continuous skip-gram model, 348
word2vec, 344–346

Highway networks, 282
Hill climbing in NAS, 485, 494–496
Hiring practice issues, 507–508
Historical bias, 508
Historical sales data in book sales forecasting 

problem, 254–255
History of Neural Networks, xxviii–xxxi
House prices

Boston Housing dataset, 161–165
regularization, 169–170

Human biases
in datasets, 96–97
neural language models, 332–333

Hybrid data in multimodal learning, 464
Hyperbolic tangent (tanh) function

activation function, 136–137,  
139–141

alignment vectors, 402
backpropagation, 78, 269–270
batch normalization, 129
convolutional layers, 200
derivative of, 75
Glorot initialization, 126–127
gradient descent, 61–67
LSTM, 273, 276–278
recurrent layers, 243–244

Hyperparameters
datasets, 100
learning rate, 8
tuning, 146–150

I
Identity functions for autoencoders, 448
IDEs (integrated development environments), 

624

idx2numpy package
MNIST dataset reading, 94
versions, 622

Image captioning
architecture, 417–421
attention, 420–421
concluding remarks, 443–445
encoder-decoder architecture, 418–419, 

432–438
feature vectors, 424–426
import statements, 422–423, 426–427
initialization statements, 427–428
json files, 422–425
programming example, 421–443
reading functions, 428
tokens, 429–430
training and evaluating, 439–443
training data, 431–432

Image classification
CIFAR-10 dataset, 173–175
concluding remarks, 201–203
convolutional neural networks, 171–173
feature maps, 180–181
fully connected layers, 181–185
programming example, 175–179, 190–200
sparse connections and weight sharing, 

185–190
ImageNet challenge, 171
Images

autoencoders, 454–457
MNIST dataset, 94–95

Implicit alignment in multimodal learning, 463
Import statements

digit classification, 118–119
image captioning, 422–423, 426–427

Inception module in GoogLeNet, 210–214
Inference

Mask R-CNN, 561
multiclass classification, 100–101
neural language models, 325
neural machine translation, 384
PyTorch vs. TensorFlow, 634

Information leakage in test datasets, 100
Information theory, 133
Inhibitory synaptic signals, 2
Initialization

autoencoders, 453
book sales forecasting problem, 253–254
convolutional layers, 191–192
image captioning, 427–428
learning algorithm, 8–9
MNIST learning, 104–105
multimodal learning, 465–466
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multitask learning, 474–475
NAS, 488–489
neural language models, 319–320
neurons, 107–108
ResNet implementation, 223–224
saturated neurons, 126–129
text autocompletion, 292–293
xOR learning example, 82–83

Input activation in LSTM, 276, 278
Input word embedding in word2vec, 352–354
Inputs

attention technique, 394
autoencoders, 448, 453–454
BERT, 584–585
book sales forecasting problem, 251–253, 

263–264
Boston Housing dataset, 160–161
cheat sheet, 664
curvature modeling, 523
digit classification, 121
gradient computation, 73
gradient descent, 48
language models, 310–311
learning algorithm, 8–9, 12
learning algorithm analytic motivation, 50
learning algorithm geometric  

description, 51
linear regression, 521–523
logistic regression, 528–530
LSTM, 281
multimodal learning, 460–461
multiple perceptrons, 17–20
multitask learning, 476–477
neural language models, 321
pattern identification, 55–56
perceptrons, 2–3
plots, 52–53
prediction problems, 239
RNNs, 242–243
standardization in saturated neurons, 128
text autocompletion, 300–302
Transformer, 411–412
two-input example, 4–7

Instance segmentation
with Mask R-CNN, 559–561
object detection, 540

Instantiation of neurons, 107–108
Integrated development environments (IDEs), 

624
Intermediate representation

autoencoders, 448–450
natural language translation, 389–391

Internal weights in plots, 53

Interpolation
Mask R-CNN, 561
semantic segmentation, 550–553, 555–556

Intersection over union (IoU) metric, 543
Iris Dataset, 93
IsNext category in BERT, 583–585
item() function, 633

J
Jaccard similarity, 338–339
Joint representation in multimodal learning, 

460–461
json files for image captioning, 422–425
Jupyter Notebook environment, 623–624

K
K-fold cross-validation, 149–150
k-means clusters for autoencoders, 452
Keras Functional API

constants, 372
encoder-decoder model, 379–384
import statements, 371
introduction, 368–371
programming example, 371–387
reading files, 373
training and testing models, 385–387

Kernel in convolutional layers, 177
Kernel size

AlexNet, 173
convolutional layers, 178–179, 181, 183, 

192–193, 195–197
depthwise separable convolutions, 232
GoogLeNet, 210
VGGNet, 206–207

Kernel trick for support vector machines, 533
Keys

alignment vectors, 401
multi-head attention, 410–411
self-attention, 409

L
L1 regularization, 166–167, 169–170
L2 regularization, 166–167, 169–170
Labeling datasets, 92
Language-independent representation in 

sequence-to-sequence learning, 366–367
Language models. See Neural language models
Language models vs. computational complexity 

reduction, 344–346
Late fusion in multimodal learning, 461–462
Layers

AlexNet, 172
alignment vectors, 401–403
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Layers (Continued)
autoencoders, 453–454
backpropagation, 81
CBOW model, 346–347
cheat sheet, 659
combining, 181–185, 245–246
continuous skip-gram model, 348–349
convolutional neural networks, 175–179
digit classification, 102, 121
ELMo, 573
Fast R-CNN, 544–545
GloVe, 356–361
GoogLeNet, 211, 213
house prices example, 162–163
image captioning, 424, 433–436
LSTM, 278–280
Mask R-CNN, 560–561
multiple perceptrons, 19
neural language models, 344–346
neural machine translation, 379–384
optimized continuous skip-gram model, 350
output units, 154–155
regularization, 167–168
ResNet, 215–222
RNNs, 242–245
self-attention, 408
semantic segmentation, 549–550, 554
sequence-to-sequence learning, 366–368
transfer learning, 228
Transformer, 411
unrolling, 246–247
vanishing gradients, 136–141
VGGNet, 206–209
word embeddings, 316–319
word2vec, 352–355

LDA (linear discriminant analysis), 533
leaky ReLU function, 139–140
Learning algorithm

analytic motivation, 49–50
geometric description, 51
initialization statements, 8–9
intuitive explanation, 37–41
linear regression as, 519–523
multiclass classification, 101
perceptrons, 7–15
ResNet, 216–217
training loops, 10
weight decay, 166

Learning curve plots, 481–482
Learning parameter tweaking, 143–146
Learning problem solutions with gradient 

descent, 44–48
Learning process with saturated neurons, 125

Learning rate
gradient descent, 46
learning algorithm, 8

Leibniz notation, 68
LeNet, 171, 201
__len__() method, 431
Linear algebra

cheat sheet, 660
perceptron implementation, 20–21

Linear classification
plots, 53
xOR, 528–530

Linear discriminant analysis (LDA), 533
Linear output units, 154–155, 159–160
Linear regression

coefficients, 523–525
curvature modeling, 522–523
as machine learning algorithm, 519–523
multivariate, 521–522
R-CNN, 543
univariate, 520–521

Linear separability, 15–16, 32, 56
load_data function, 455
load_img function, 224
Loading

CIFAR-10 dataset, 191–192, 488
digit classification datasets, 119–120
GloVe embeddings, 356–357
MNIST dataset, 94, 119, 465

Logistic function
backpropagation, 269
gradient computation, 70
gradient descent, 61–67

Logistic output units, 154–155
Logistic regression

classification with, 525–527
support vector machines, 532–533
xOR classification, 528–530

Logistic sigmoid function
activation function, 136
backpropagation, 269–270
binary classification problems, 155–156
classification with, 526–527
digit classification, 121
LSTM, 273, 275
saturated output neurons, 130–133

Logistic sigmoid neurons, 615
Logistic sigmoid units, 453
Logit function, 155
Long short-term memory (LSTM), 265–266

activation functions, 277–278
alternative view, 280–281
cell networks, 278–280
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character-based embedding, 572
concluding remarks, 282–283
ELMo, 572–574
gradient health, 267–272
GRUs, 613–615
highway networks, 282
image captioning, 433–434
introduction, 272–277
neural language models, 322
neural machine translation, 379–384
programming example, 291–298
PyTorch vs. TensorFlow, 635
sequence-to-sequence learning,  

366–368
skip connections, 282

Longer-term text prediction, 287–289
Loss functions

autoencoders, 451, 457
backpropagation, 269
convolutional layers, 200
digit classification, 122–124
GPT, 581
gradient computation, 70–71
logistic regression, 527
multiclass classification, 103–104, 158
multitask learning, 471
neural machine translation, 383–384
output units, 154–155
PyTorch vs. TensorFlow, 635
saturated neurons, 130–136
tweaking, 144–145
weight decay, 166

LSTM. See Long short-term memory (LSTM)

M
Machine learning algorithm, linear regression 

as, 519–523
MAE (mean absolute error)

autoencoders, 457–458
book sales forecasting problem, 259–260

Magnitude of vectors, 44
Many-to-many networks in text autocompletion, 

301
Many-to-one networks in text autocompletion, 

301
Mask R-CNN, 559–561
MASK tokens in BERT, 585
Masked language model task in BERT, 582–583
Masked self-attention mechanism in GPT, 578
Masking words in RoBERTa, 587
Mathematical convolution, 607–611
Mathematical representation for recurrent 

layers, 243–244

matmul function, 601
matplotlib package, 622
Matrices

binary classifiers, 534–535
convolutional layers, 177
dot products, 29
extending vectors to, 24–25
linear regression, 525
matrix-matrix multiplication, 26–30
matrix-vector multiplication, 25–26
mini-batch implementation, 602–606
neural machine translation, 375
recurrent layers, 243–244
single, 599–602
summary, 28–29
tensors, 30
word2vec, 353–354

Max pooling
AlexNet, 173
backpropagation, 228–229
character-based embedding, 571
convolutional layers, 183, 197–199
Fast R-CNN, 544–545
Faster R-CNN, 547–548
GoogLeNet, 211–214
ResNet, 218
semantic segmentation, 554, 556
VGGNet, 206–209

Maximum-likelihood estimation, 133
maxout function, 139–140
Maxout units, 156
Mean absolute error (MAE)

autoencoders, 457–458
book sales forecasting problem, 259–260

Mean squared error (MSE)
backpropagation, 269
book sales forecasting problem,  

259–260
convolutional layers, 200
gradient computation, 70–71
gradient descent, 45
linear output units, 154–155, 160
linear regression, 523–524
multitask learning, 471

Mean squared error (MSE) loss function for 
saturated output neurons, 130–134

Means in datasets, 107
Measurement bias, 509
Megatron-LM, 591
Metric cosine distance in sentiment analysis of 

text, 339–340
Metrics for binary classifiers, 533–537
Mini-batch gradient descent, 114–115
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Mini-batch implementation for matrices, 
602–606

MLP. See Multilevel perceptrons
MNIST learning. See Modified National Institute 

of Standards and Technology (MNIST) 
dataset

MobileNets network, 234
Modalities in multimodal learning. See 

Multimodal learning
Model cards, 506
Modified National Institute of Standards and 

Technology (MNIST) dataset
bias in, 97
contents, 93
description, 625–626
exploring, 94–96
loading, 94, 119, 465
multimodal learning, 465
multitask learning, 475
outlier detection program, 452, 457–459

Modified National Institute of Standards and 
Technology (MNIST) learning

forward pass, backward pass, and weight 
adjustment functions, 109–111

initialization section, 104–105
neuron instantiation and initialization, 

107–108
progress reporting, 108–109
reading datasets, 105–107
training loop, 112–114

Modified neurons in gradient descent, 60–66
Momentum in gradient descent, 141
Movie Reviews Dataset, 334
MSE. See Mean squared error (MSE)
Multi-head attention, 407, 410–411
Multiclass classification

concluding remarks, 115–116
datasets used in, 92–100
digit classification, 102–103
example, 104–114
initialization statements, 104–105
introduction, 91–92
learning algorithm, 101
loss function, 103–104
mini-batch gradient descent, 114–115
multitask learning, 473–477
neuron instantiation and initialization, 

107–108
output units, 154–158
progress reporting, 108–109
reading datasets, 105–107
training and inference, 100–101
training loop, 112–114

Multidimensional arrays in house prices 
example, 164

Multidimensional functions in gradient descent, 
46–48

Multidimensional tensors, 30
Multilevel networks

gradient computation, 69–80
gradient descent, 60–66

Multilevel perceptrons, 19
Multimodal learning, 459

alignment, 463
classification networks, 467–468
co-learning, 463–464
experiments, 468–469
fusion, 461–462
initialization statements, 465–466
programming example, 465–469
representation, 460–461
taxonomies, 459–464
training and testing, 466–467
translation, 462–463

Multiple dimensions in neural language models, 
329–332

Multiple input variables in book sales 
forecasting problem, 263–264

Multiple neurons per layer in  
backpropagation, 81

Multiple perceptrons, combining, 17–20
Multiplication

matrix, 29
matrix-matrix, 26–30
matrix-vector, 25–26

Multitask learning, 469–470
benefits, 470
implementing, 471
initialization statements, 474–475
inputs, 476–477
programming example, 473–477
variations, 472–473

Multivariate linear regression, 521–522

N
n-gram model language model

vs. neural language models, 311–312
overview, 307–309

n-grams
character-based embedding, 567–571
FastText, 566–567

Naïve models
binary classifiers, 536
network tuning, 478

Naïve prediction code for book sales forecasting 
problem, 255–256, 260
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Naïve solution for object detection, 540–541
Names for weights, 69
NAND gates

learning algorithm, 8, 11
two-input example, 5

NAS. See Neural architecture search (NAS)
Natural language processing (NLP)

BERT tasks, 584, 586
cheat sheet, 666
Transformer, 407

Natural language translation
concluding remarks, 391
encoder-decoder model, 366–368
experimental results, 387–389
intermediate representation, 389–391
Keras Functional API, 368–371
language model examples, 313
programming example, 371–387
sequence-to-sequence networks, 363–365
use case, 306–307

Nearest neighbor interpolation, 550–551
Negative samples

FastText, 566
optimized continuous skip-gram model,  

350
Nesterov momentum in gradient descent, 141
Network architectures, 87–89
Network-in-network architecture in GoogLeNet, 

210
Networks

backpropagation, 87–89
constants and variables, 48
creating, 120–122
digit classification, 102–103
fully connected, 154–160
learning algorithm, 7
LSTM, 278–280
multiclass classification, 101
parameter tweaking, 143–146
saturated neurons and vanishing gradients, 

124–126
training and inference, 100–101
tuning, 477–482

Neural architecture search (NAS)
components, 482–483
evaluating, 487–488
implementing, 493–494
implications, 500–501
initialization statements, 488–489
model evaluation, 497–498
model generation, 490–491
programming example, 488–501
search space, 483–484

search strategy, 484–487
tensorflow model, 492–493

Neural language models
concluding remarks, 342
examples, 307–312
GPT, 578–582
human biases, 332–333
inference models, 325
initialization section, 319–320
programming example, 319–329
sentiment analysis of text, 334–341
subtraction, 329–332
training examples, 320–322
training process, 323
use cases, 304–307
word embeddings, 303–304, 315–319

Neural machine translation
encoder-decoder model, 379–384
programming example, 371–387
tokens, 372–377
training sets and test sets, 378, 385–387

Neural machine translator (NMT), 395, 405
Neural networks. See Deep neural networks
Neural style transfer, 515
neuron_w() function, 83
Neurons

artificial, 2–3
biological, 1–2
instantiation and initialization, 107–108
saturated, 124–126

Newton-Raphson method, 593
gradient descent, 597
optimization problems, 595–597
root-finding, 594–596

Next-sentence prediction task in BERT,  
583–584

NLP (natural language processing)
BERT tasks, 584, 586
cheat sheet, 666
Transformer, 407

NMT (neural machine translator), 395, 405
No Fly List, 507
no_grad() function, 634
Nonlinear activation functions, 138
Nonlinear functions in LSTM, 273
Nonnormalized vectors, 339–340
Nonparallel data in multimodal learning, 464
Nonsaturating neurons in vanishing gradients, 

270, 272
norm() function, 327
Normalization

ResNet, 221
saturated neurons, 126–129
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Normalization (Continued)
Transformer, 411
vanishing gradients, 270, 272

Normalized vectors in sentiment analysis of 
text, 339–340

NotNext category in BERT, 583–585
numpy() function, 633
numpy package

arrays, 260
contents, 20
versions, 622

O
Object detection, 539–540

Fast R-CNN, 544–546
Faster R-CNN, 546–549
instance segmentation, 559–561
overview, 540–542
R-CNN, 542–543

Offload computations, 21
OLS (ordinary least squares) in linear 

regression, 523
One-hot encoding

character-based embedding, 570
multiclass classification, 101, 107
text, 285–287, 292–294, 297
word embeddings, 312, 316–317, 321–322

One-to-many case in text autocompletion,  
301

One-to-many networks for image captioning. 
See Image captioning

Online classes, 517–518
Online learning, 114–115
Online shopping sites, 515
Optimization problems

gradient-based learning, 41–44
Newton-Raphson method, 595–597

OR functions, 15
Ordinary least squares (OLS) in linear 

regression, 523
Out-of-vocabulary words

character-based embedding, 567–572
FastText, 567
GPT, 581
wordpieces, 564, 583

Outlier detection
autoencoders, 451
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