File size: 8,130 Bytes
cd82dc6
57b101a
 
 
 
cf41f4f
f61e6ce
cf41f4f
57b101a
 
 
ac52381
57b101a
 
 
 
 
 
 
 
 
c49e9ca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4667e81
 
 
c49e9ca
 
 
 
 
 
 
 
 
 
 
cd82dc6
 
57b101a
cd82dc6
 
 
 
ac52381
cd82dc6
 
 
 
ac52381
cd82dc6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c56dd3d
cd82dc6
57b101a
 
cd82dc6
dc19568
 
 
cd82dc6
c56dd3d
cd82dc6
 
 
 
 
 
ac52381
cd82dc6
 
 
c56dd3d
cd82dc6
 
 
c56dd3d
cd82dc6
c56dd3d
cd82dc6
 
 
dc19568
 
 
cd82dc6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c56dd3d
cd82dc6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ac52381
cd82dc6
 
 
57b101a
cd82dc6
c56dd3d
cd82dc6
c56dd3d
cd82dc6
 
 
c56dd3d
cd82dc6
ac52381
 
 
 
 
 
cd82dc6
 
c56dd3d
cd82dc6
ac52381
 
 
 
 
 
cd82dc6
 
c56dd3d
cd82dc6
 
 
c56dd3d
cd82dc6
c56dd3d
cd82dc6
 
 
c56dd3d
cd82dc6
 
 
c56dd3d
cd82dc6
 
 
c56dd3d
cd82dc6
c56dd3d
cd82dc6
 
 
c56dd3d
cd82dc6
 
 
c56dd3d
cd82dc6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
---
annotations_creators:
- expert-generated
language_creators:
- crowdsourced
language:
- en
license:
- mit
multilinguality:
- monolingual
paperswithcode_id: docred
pretty_name: DocRED
size_categories:
- 100K<n<1M
source_datasets:
- original
task_categories:
- text-retrieval
task_ids:
- entity-linking-retrieval
dataset_info:
  features:
  - name: title
    dtype: string
  - name: sents
    sequence:
      sequence: string
  - name: vertexSet
    list:
      list:
      - name: name
        dtype: string
      - name: sent_id
        dtype: int32
      - name: pos
        sequence: int32
      - name: type
        dtype: string
  - name: labels
    sequence:
    - name: head
      dtype: int32
    - name: tail
      dtype: int32
    - name: relation_id
      dtype: string
    - name: relation_text
      dtype: string
    - name: evidence
      sequence: int32
  splits:
  - name: validation
    num_bytes: 3425030
    num_examples: 998
  - name: test
    num_bytes: 2843877
    num_examples: 1000
  - name: train_annotated
    num_bytes: 10413156
    num_examples: 3053
  - name: train_distant
    num_bytes: 346001876
    num_examples: 101873
  download_size: 458040413
  dataset_size: 362683939
---

# Dataset Card for DocRED

## Table of Contents
- [Dataset Description](#dataset-description)
  - [Dataset Summary](#dataset-summary)
  - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
  - [Languages](#languages)
- [Dataset Structure](#dataset-structure)
  - [Data Instances](#data-instances)
  - [Data Fields](#data-fields)
  - [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
  - [Curation Rationale](#curation-rationale)
  - [Source Data](#source-data)
  - [Annotations](#annotations)
  - [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
  - [Social Impact of Dataset](#social-impact-of-dataset)
  - [Discussion of Biases](#discussion-of-biases)
  - [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
  - [Dataset Curators](#dataset-curators)
  - [Licensing Information](#licensing-information)
  - [Citation Information](#citation-information)
  - [Contributions](#contributions)

## Dataset Description

- **Repository:** [https://github.com/thunlp/DocRED](https://github.com/thunlp/DocRED)
- **Paper:** [DocRED: A Large-Scale Document-Level Relation Extraction Dataset](https://arxiv.org/abs/1906.06127)
- **Point of Contact:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
- **Size of downloaded dataset files:** 21.00 MB
- **Size of the generated dataset:** 20.12 MB
- **Total amount of disk used:** 41.14 MB

### Dataset Summary

Multiple entities in a document generally exhibit complex inter-sentence relations, and cannot be well handled by existing relation extraction (RE) methods that typically focus on extracting intra-sentence relations for single entity pairs. In order to accelerate the research on document-level RE, we introduce DocRED, a new dataset constructed from Wikipedia and Wikidata with three features:
    - DocRED annotates both named entities and relations, and is the largest human-annotated dataset for document-level RE from plain text.
    - DocRED requires reading multiple sentences in a document to extract entities and infer their relations by synthesizing all information of the document.
    - Along with the human-annotated data, we also offer large-scale distantly supervised data, which enables DocRED to be adopted for both supervised and weakly supervised scenarios.

### Supported Tasks and Leaderboards

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

### Languages

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

## Dataset Structure

### Data Instances

#### default

- **Size of downloaded dataset files:** 21.00 MB
- **Size of the generated dataset:** 20.12 MB
- **Total amount of disk used:** 41.14 MB

An example of 'train_annotated' looks as follows.
```
{
    "labels": {
        "evidence": [[0]],
        "head": [0],
        "relation_id": ["P1"],
        "relation_text": ["is_a"],
        "tail": [0]
    },
    "sents": [["This", "is", "a", "sentence"], ["This", "is", "another", "sentence"]],
    "title": "Title of the document",
    "vertexSet": [[{
        "name": "sentence",
        "pos": [3],
        "sent_id": 0,
        "type": "NN"
    }, {
        "name": "sentence",
        "pos": [3],
        "sent_id": 1,
        "type": "NN"
    }], [{
        "name": "This",
        "pos": [0],
        "sent_id": 0,
        "type": "NN"
    }]]
}
```

### Data Fields

The data fields are the same among all splits.

#### default
- `title`: a `string` feature.
- `sents`: a dictionary feature containing:
  - `feature`: a `string` feature.
- `name`: a `string` feature.
- `sent_id`: a `int32` feature.
- `pos`: a `list` of `int32` features.
- `type`: a `string` feature.
- `labels`: a dictionary feature containing:
  - `head`: a `int32` feature.
  - `tail`: a `int32` feature.
  - `relation_id`: a `string` feature.
  - `relation_text`: a `string` feature.
  - `evidence`: a `list` of `int32` features.

### Data Splits

| name  |train_annotated|train_distant|validation|test|
|-------|--------------:|------------:|---------:|---:|
|default|           3053|       101873|       998|1000|

## Dataset Creation

### Curation Rationale

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

### Source Data

#### Initial Data Collection and Normalization

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

#### Who are the source language producers?

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

### Annotations

#### Annotation process

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

#### Who are the annotators?

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

### Personal and Sensitive Information

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

## Considerations for Using the Data

### Social Impact of Dataset

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

### Discussion of Biases

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

### Other Known Limitations

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

## Additional Information

### Dataset Curators

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

### Licensing Information

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

### Citation Information

```
@inproceedings{yao2019DocRED,
  title={{DocRED}: A Large-Scale Document-Level Relation Extraction Dataset},
  author={Yao, Yuan and Ye, Deming and Li, Peng and Han, Xu and Lin, Yankai and Liu, Zhenghao and Liu,   Zhiyuan and Huang, Lixin and Zhou, Jie and Sun, Maosong},
  booktitle={Proceedings of ACL 2019},
  year={2019}
}

```


### Contributions

Thanks to [@ghomasHudson](https://github.com/ghomasHudson), [@thomwolf](https://github.com/thomwolf), [@lhoestq](https://github.com/lhoestq) for adding this dataset.