Datasets:
Tasks:
Token Classification
Modalities:
Text
Sub-tasks:
named-entity-recognition
Languages:
English
Size:
1K - 10K
License:
init
Browse files- README.md +79 -0
- dataset/label.json +1 -0
- dataset/test.json +0 -0
- dataset/train.json +0 -0
- dataset/valid.json +0 -0
- mit_movie_trivia.py +81 -0
README.md
ADDED
@@ -0,0 +1,79 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- en
|
4 |
+
license:
|
5 |
+
- other
|
6 |
+
multilinguality:
|
7 |
+
- monolingual
|
8 |
+
size_categories:
|
9 |
+
- 1K<n<10K
|
10 |
+
task_categories:
|
11 |
+
- token-classification
|
12 |
+
task_ids:
|
13 |
+
- named-entity-recognition
|
14 |
+
pretty_name: MIT Movie
|
15 |
+
---
|
16 |
+
|
17 |
+
# Dataset Card for "tner/mit_movie_trivia"
|
18 |
+
|
19 |
+
## Dataset Description
|
20 |
+
|
21 |
+
- **Repository:** [T-NER](https://github.com/asahi417/tner)
|
22 |
+
- **Dataset:** MIT Movie
|
23 |
+
- **Domain:** Movie
|
24 |
+
- **Number of Entity:** 12
|
25 |
+
|
26 |
+
### Dataset Summary
|
27 |
+
MIT Movie NER dataset formatted in a part of [TNER](https://github.com/asahi417/tner) project.
|
28 |
+
|
29 |
+
- Entity Types: `Actor`, `Plot`, `Opinion`, `Award`, `Year`, `Genre`, `Origin`, `Director`, `Soundtrack`, `Relationship`, `Character_Name`, `Quote`
|
30 |
+
|
31 |
+
## Dataset Structure
|
32 |
+
|
33 |
+
### Data Instances
|
34 |
+
An example of `train` looks as follows.
|
35 |
+
|
36 |
+
```
|
37 |
+
{
|
38 |
+
'tags': [0, 0, 0, 0, 0, 0, 0, 0, 5, 3, 4, 0],
|
39 |
+
'tokens': ['can', 'you', 'find', 'the', 'phone', 'number', 'for', 'the', 'closest', 'family', 'style', 'restaurant']
|
40 |
+
}
|
41 |
+
```
|
42 |
+
|
43 |
+
### Label ID
|
44 |
+
The label2id dictionary can be found at [here](https://huggingface.co/datasets/tner/mit_movie_trivia/raw/main/dataset/label.json).
|
45 |
+
```python
|
46 |
+
{
|
47 |
+
"O": 0,
|
48 |
+
"B-Actor": 1,
|
49 |
+
"I-Actor": 2,
|
50 |
+
"B-Plot": 3,
|
51 |
+
"I-Plot": 4,
|
52 |
+
"B-Opinion": 5,
|
53 |
+
"I-Opinion": 6,
|
54 |
+
"B-Award": 7,
|
55 |
+
"I-Award": 8,
|
56 |
+
"B-Year": 9,
|
57 |
+
"B-Genre": 10,
|
58 |
+
"B-Origin": 11,
|
59 |
+
"I-Origin": 12,
|
60 |
+
"B-Director": 13,
|
61 |
+
"I-Director": 14,
|
62 |
+
"I-Genre": 15,
|
63 |
+
"I-Year": 16,
|
64 |
+
"B-Soundtrack": 17,
|
65 |
+
"I-Soundtrack": 18,
|
66 |
+
"B-Relationship": 19,
|
67 |
+
"I-Relationship": 20,
|
68 |
+
"B-Character_Name": 21,
|
69 |
+
"I-Character_Name": 22,
|
70 |
+
"B-Quote": 23,
|
71 |
+
"I-Quote": 24
|
72 |
+
}
|
73 |
+
```
|
74 |
+
|
75 |
+
### Data Splits
|
76 |
+
|
77 |
+
| name |train|validation|test|
|
78 |
+
|---------|----:|---------:|---:|
|
79 |
+
|mit_movie_trivia |6900 | 760| 1521|
|
dataset/label.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"O": 0, "B-Actor": 1, "I-Actor": 2, "B-Plot": 3, "I-Plot": 4, "B-Opinion": 5, "I-Opinion": 6, "B-Award": 7, "I-Award": 8, "B-Year": 9, "B-Genre": 10, "B-Origin": 11, "I-Origin": 12, "B-Director": 13, "I-Director": 14, "I-Genre": 15, "I-Year": 16, "B-Soundtrack": 17, "I-Soundtrack": 18, "B-Relationship": 19, "I-Relationship": 20, "B-Character_Name": 21, "I-Character_Name": 22, "B-Quote": 23, "I-Quote": 24}
|
dataset/test.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
dataset/train.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
dataset/valid.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
mit_movie_trivia.py
ADDED
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
""" NER dataset compiled by T-NER library https://github.com/asahi417/tner/tree/master/tner """
|
2 |
+
import json
|
3 |
+
from itertools import chain
|
4 |
+
import datasets
|
5 |
+
|
6 |
+
logger = datasets.logging.get_logger(__name__)
|
7 |
+
_DESCRIPTION = """[FIN NER dataset](https://aclanthology.org/U15-1010.pdf)"""
|
8 |
+
_NAME = "fin"
|
9 |
+
_VERSION = "1.0.0"
|
10 |
+
_CITATION = """
|
11 |
+
@inproceedings{salinas-alvarado-etal-2015-domain,
|
12 |
+
title = "Domain Adaption of Named Entity Recognition to Support Credit Risk Assessment",
|
13 |
+
author = "Salinas Alvarado, Julio Cesar and
|
14 |
+
Verspoor, Karin and
|
15 |
+
Baldwin, Timothy",
|
16 |
+
booktitle = "Proceedings of the Australasian Language Technology Association Workshop 2015",
|
17 |
+
month = dec,
|
18 |
+
year = "2015",
|
19 |
+
address = "Parramatta, Australia",
|
20 |
+
url = "https://aclanthology.org/U15-1010",
|
21 |
+
pages = "84--90",
|
22 |
+
}
|
23 |
+
"""
|
24 |
+
|
25 |
+
_HOME_PAGE = "https://github.com/asahi417/tner"
|
26 |
+
_URL = f'https://huggingface.co/datasets/tner/{_NAME}/raw/main/dataset'
|
27 |
+
_URLS = {
|
28 |
+
str(datasets.Split.TEST): [f'{_URL}/test.json'],
|
29 |
+
str(datasets.Split.TRAIN): [f'{_URL}/train.json'],
|
30 |
+
str(datasets.Split.VALIDATION): [f'{_URL}/valid.json'],
|
31 |
+
}
|
32 |
+
|
33 |
+
|
34 |
+
class FinConfig(datasets.BuilderConfig):
|
35 |
+
"""BuilderConfig"""
|
36 |
+
|
37 |
+
def __init__(self, **kwargs):
|
38 |
+
"""BuilderConfig.
|
39 |
+
|
40 |
+
Args:
|
41 |
+
**kwargs: keyword arguments forwarded to super.
|
42 |
+
"""
|
43 |
+
super(FinConfig, self).__init__(**kwargs)
|
44 |
+
|
45 |
+
|
46 |
+
class Fin(datasets.GeneratorBasedBuilder):
|
47 |
+
"""Dataset."""
|
48 |
+
|
49 |
+
BUILDER_CONFIGS = [
|
50 |
+
FinConfig(name=_NAME, version=datasets.Version(_VERSION), description=_DESCRIPTION),
|
51 |
+
]
|
52 |
+
|
53 |
+
def _split_generators(self, dl_manager):
|
54 |
+
downloaded_file = dl_manager.download_and_extract(_URLS)
|
55 |
+
return [datasets.SplitGenerator(name=i, gen_kwargs={"filepaths": downloaded_file[str(i)]})
|
56 |
+
for i in [datasets.Split.TRAIN, datasets.Split.VALIDATION, datasets.Split.TEST]]
|
57 |
+
|
58 |
+
def _generate_examples(self, filepaths):
|
59 |
+
_key = 0
|
60 |
+
for filepath in filepaths:
|
61 |
+
logger.info(f"generating examples from = {filepath}")
|
62 |
+
with open(filepath, encoding="utf-8") as f:
|
63 |
+
_list = [i for i in f.read().split('\n') if len(i) > 0]
|
64 |
+
for i in _list:
|
65 |
+
data = json.loads(i)
|
66 |
+
yield _key, data
|
67 |
+
_key += 1
|
68 |
+
|
69 |
+
def _info(self):
|
70 |
+
return datasets.DatasetInfo(
|
71 |
+
description=_DESCRIPTION,
|
72 |
+
features=datasets.Features(
|
73 |
+
{
|
74 |
+
"tokens": datasets.Sequence(datasets.Value("string")),
|
75 |
+
"tags": datasets.Sequence(datasets.Value("int32")),
|
76 |
+
}
|
77 |
+
),
|
78 |
+
supervised_keys=None,
|
79 |
+
homepage=_HOME_PAGE,
|
80 |
+
citation=_CITATION,
|
81 |
+
)
|