Datasets:
parquet-converter
commited on
Commit
•
0ea11d5
1
Parent(s):
facdfd1
Update parquet files
Browse files- .gitattributes +0 -60
- README.md +0 -123
- dataset/it.jsonl +0 -3
- dataset/label.json +0 -1
- dataset/nl.jsonl +0 -3
- dataset/pl.jsonl +0 -3
- dataset/pt.jsonl +0 -3
- dataset/ru.jsonl +0 -3
- dataset/es.jsonl → de/multinerd-test.parquet +2 -2
- dataset/fr.jsonl → en/multinerd-test.parquet +2 -2
- dataset/de.jsonl → es/multinerd-test.parquet +2 -2
- dataset/en.jsonl → fr/multinerd-test.parquet +2 -2
- it/multinerd-test.parquet +3 -0
- multinerd.py +0 -84
- nl/multinerd-test.parquet +3 -0
- pl/multinerd-test.parquet +3 -0
- pt/multinerd-test.parquet +3 -0
- ru/multinerd-test.parquet +3 -0
.gitattributes
DELETED
@@ -1,60 +0,0 @@
|
|
1 |
-
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
-
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
-
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
-
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
-
*.ftz filter=lfs diff=lfs merge=lfs -text
|
6 |
-
*.gz filter=lfs diff=lfs merge=lfs -text
|
7 |
-
*.h5 filter=lfs diff=lfs merge=lfs -text
|
8 |
-
*.joblib filter=lfs diff=lfs merge=lfs -text
|
9 |
-
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
10 |
-
*.lz4 filter=lfs diff=lfs merge=lfs -text
|
11 |
-
*.model filter=lfs diff=lfs merge=lfs -text
|
12 |
-
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
13 |
-
*.npy filter=lfs diff=lfs merge=lfs -text
|
14 |
-
*.npz filter=lfs diff=lfs merge=lfs -text
|
15 |
-
*.onnx filter=lfs diff=lfs merge=lfs -text
|
16 |
-
*.ot filter=lfs diff=lfs merge=lfs -text
|
17 |
-
*.parquet filter=lfs diff=lfs merge=lfs -text
|
18 |
-
*.pb filter=lfs diff=lfs merge=lfs -text
|
19 |
-
*.pickle filter=lfs diff=lfs merge=lfs -text
|
20 |
-
*.pkl filter=lfs diff=lfs merge=lfs -text
|
21 |
-
*.pt filter=lfs diff=lfs merge=lfs -text
|
22 |
-
*.pth filter=lfs diff=lfs merge=lfs -text
|
23 |
-
*.rar filter=lfs diff=lfs merge=lfs -text
|
24 |
-
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
25 |
-
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
26 |
-
*.tflite filter=lfs diff=lfs merge=lfs -text
|
27 |
-
*.tgz filter=lfs diff=lfs merge=lfs -text
|
28 |
-
*.wasm filter=lfs diff=lfs merge=lfs -text
|
29 |
-
*.xz filter=lfs diff=lfs merge=lfs -text
|
30 |
-
*.zip filter=lfs diff=lfs merge=lfs -text
|
31 |
-
*.zst filter=lfs diff=lfs merge=lfs -text
|
32 |
-
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
33 |
-
# Audio files - uncompressed
|
34 |
-
*.pcm filter=lfs diff=lfs merge=lfs -text
|
35 |
-
*.sam filter=lfs diff=lfs merge=lfs -text
|
36 |
-
*.raw filter=lfs diff=lfs merge=lfs -text
|
37 |
-
# Audio files - compressed
|
38 |
-
*.aac filter=lfs diff=lfs merge=lfs -text
|
39 |
-
*.flac filter=lfs diff=lfs merge=lfs -text
|
40 |
-
*.mp3 filter=lfs diff=lfs merge=lfs -text
|
41 |
-
*.ogg filter=lfs diff=lfs merge=lfs -text
|
42 |
-
*.wav filter=lfs diff=lfs merge=lfs -text
|
43 |
-
# Image files - uncompressed
|
44 |
-
*.bmp filter=lfs diff=lfs merge=lfs -text
|
45 |
-
*.gif filter=lfs diff=lfs merge=lfs -text
|
46 |
-
*.png filter=lfs diff=lfs merge=lfs -text
|
47 |
-
*.tiff filter=lfs diff=lfs merge=lfs -text
|
48 |
-
# Image files - compressed
|
49 |
-
*.jpg filter=lfs diff=lfs merge=lfs -text
|
50 |
-
*.jpeg filter=lfs diff=lfs merge=lfs -text
|
51 |
-
*.webp filter=lfs diff=lfs merge=lfs -text
|
52 |
-
dataset/it.jsonl filter=lfs diff=lfs merge=lfs -text
|
53 |
-
dataset/pt.jsonl filter=lfs diff=lfs merge=lfs -text
|
54 |
-
dataset/es.jsonl filter=lfs diff=lfs merge=lfs -text
|
55 |
-
dataset/fr.jsonl filter=lfs diff=lfs merge=lfs -text
|
56 |
-
dataset/nl.jsonl filter=lfs diff=lfs merge=lfs -text
|
57 |
-
dataset/pl.jsonl filter=lfs diff=lfs merge=lfs -text
|
58 |
-
dataset/ru.jsonl filter=lfs diff=lfs merge=lfs -text
|
59 |
-
dataset/de.jsonl filter=lfs diff=lfs merge=lfs -text
|
60 |
-
dataset/en.jsonl filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
README.md
DELETED
@@ -1,123 +0,0 @@
|
|
1 |
-
---
|
2 |
-
language:
|
3 |
-
- de
|
4 |
-
- en
|
5 |
-
- es
|
6 |
-
- fr
|
7 |
-
- it
|
8 |
-
- nl
|
9 |
-
- pl
|
10 |
-
- pt
|
11 |
-
- ru
|
12 |
-
multilinguality:
|
13 |
-
- multilingual
|
14 |
-
size_categories:
|
15 |
-
- <10K
|
16 |
-
task_categories:
|
17 |
-
- token-classification
|
18 |
-
task_ids:
|
19 |
-
- named-entity-recognition
|
20 |
-
pretty_name: MultiNERD
|
21 |
-
---
|
22 |
-
|
23 |
-
# Dataset Card for "tner/multinerd"
|
24 |
-
|
25 |
-
## Dataset Description
|
26 |
-
|
27 |
-
- **Repository:** [T-NER](https://github.com/asahi417/tner)
|
28 |
-
- **Paper:** [https://aclanthology.org/2022.findings-naacl.60/](https://aclanthology.org/2022.findings-naacl.60/)
|
29 |
-
- **Dataset:** MultiNERD
|
30 |
-
- **Domain:** Wikipedia, WikiNews
|
31 |
-
- **Number of Entity:** 18
|
32 |
-
|
33 |
-
|
34 |
-
### Dataset Summary
|
35 |
-
MultiNERD NER benchmark dataset formatted in a part of [TNER](https://github.com/asahi417/tner) project.
|
36 |
-
- Entity Types: `PER`, `LOC`, `ORG`, `ANIM`, `BIO`, `CEL`, `DIS`, `EVE`, `FOOD`, `INST`, `MEDIA`, `PLANT`, `MYTH`, `TIME`, `VEHI`, `MISC`, `SUPER`, `PHY`
|
37 |
-
|
38 |
-
## Dataset Structure
|
39 |
-
|
40 |
-
### Data Instances
|
41 |
-
An example of `train` of `de` looks as follows.
|
42 |
-
|
43 |
-
```
|
44 |
-
{
|
45 |
-
'tokens': [ "Die", "Blätter", "des", "Huflattichs", "sind", "leicht", "mit", "den", "sehr", "ähnlichen", "Blättern", "der", "Weißen", "Pestwurz", "(", "\"", "Petasites", "albus", "\"", ")", "zu", "verwechseln", "." ],
|
46 |
-
'tags': [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 0, 0, 0 ]
|
47 |
-
}
|
48 |
-
```
|
49 |
-
|
50 |
-
### Label ID
|
51 |
-
The label2id dictionary can be found at [here](https://huggingface.co/datasets/tner/multinerd/raw/main/dataset/label.json).
|
52 |
-
```python
|
53 |
-
{
|
54 |
-
"O": 0,
|
55 |
-
"B-PER": 1,
|
56 |
-
"I-PER": 2,
|
57 |
-
"B-LOC": 3,
|
58 |
-
"I-LOC": 4,
|
59 |
-
"B-ORG": 5,
|
60 |
-
"I-ORG": 6,
|
61 |
-
"B-ANIM": 7,
|
62 |
-
"I-ANIM": 8,
|
63 |
-
"B-BIO": 9,
|
64 |
-
"I-BIO": 10,
|
65 |
-
"B-CEL": 11,
|
66 |
-
"I-CEL": 12,
|
67 |
-
"B-DIS": 13,
|
68 |
-
"I-DIS": 14,
|
69 |
-
"B-EVE": 15,
|
70 |
-
"I-EVE": 16,
|
71 |
-
"B-FOOD": 17,
|
72 |
-
"I-FOOD": 18,
|
73 |
-
"B-INST": 19,
|
74 |
-
"I-INST": 20,
|
75 |
-
"B-MEDIA": 21,
|
76 |
-
"I-MEDIA": 22,
|
77 |
-
"B-PLANT": 23,
|
78 |
-
"I-PLANT": 24,
|
79 |
-
"B-MYTH": 25,
|
80 |
-
"I-MYTH": 26,
|
81 |
-
"B-TIME": 27,
|
82 |
-
"I-TIME": 28,
|
83 |
-
"B-VEHI": 29,
|
84 |
-
"I-VEHI": 30,
|
85 |
-
"B-SUPER": 31,
|
86 |
-
"I-SUPER": 32,
|
87 |
-
"B-PHY": 33,
|
88 |
-
"I-PHY": 34
|
89 |
-
}
|
90 |
-
```
|
91 |
-
|
92 |
-
### Data Splits
|
93 |
-
|
94 |
-
| language | test |
|
95 |
-
|:-----------|-------:|
|
96 |
-
| de | 156792 |
|
97 |
-
| en | 164144 |
|
98 |
-
| es | 173189 |
|
99 |
-
| fr | 176185 |
|
100 |
-
| it | 181927 |
|
101 |
-
| nl | 171711 |
|
102 |
-
| pl | 194965 |
|
103 |
-
| pt | 177565 |
|
104 |
-
| ru | 82858 |
|
105 |
-
|
106 |
-
### Citation Information
|
107 |
-
|
108 |
-
```
|
109 |
-
@inproceedings{tedeschi-navigli-2022-multinerd,
|
110 |
-
title = "{M}ulti{NERD}: A Multilingual, Multi-Genre and Fine-Grained Dataset for Named Entity Recognition (and Disambiguation)",
|
111 |
-
author = "Tedeschi, Simone and
|
112 |
-
Navigli, Roberto",
|
113 |
-
booktitle = "Findings of the Association for Computational Linguistics: NAACL 2022",
|
114 |
-
month = jul,
|
115 |
-
year = "2022",
|
116 |
-
address = "Seattle, United States",
|
117 |
-
publisher = "Association for Computational Linguistics",
|
118 |
-
url = "https://aclanthology.org/2022.findings-naacl.60",
|
119 |
-
doi = "10.18653/v1/2022.findings-naacl.60",
|
120 |
-
pages = "801--812",
|
121 |
-
abstract = "Named Entity Recognition (NER) is the task of identifying named entities in texts and classifying them through specific semantic categories, a process which is crucial for a wide range of NLP applications. Current datasets for NER focus mainly on coarse-grained entity types, tend to consider a single textual genre and to cover a narrow set of languages, thus limiting the general applicability of NER systems.In this work, we design a new methodology for automatically producing NER annotations, and address the aforementioned limitations by introducing a novel dataset that covers 10 languages, 15 NER categories and 2 textual genres.We also introduce a manually-annotated test set, and extensively evaluate the quality of our novel dataset on both this new test set and standard benchmarks for NER.In addition, in our dataset, we include: i) disambiguation information to enable the development of multilingual entity linking systems, and ii) image URLs to encourage the creation of multimodal systems.We release our dataset at https://github.com/Babelscape/multinerd.",
|
122 |
-
}
|
123 |
-
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
dataset/it.jsonl
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:08ab92f2ff04710d3d06ed14e48144ce9e06b6005f60f7464c60e0e246d0538e
|
3 |
-
size 59584208
|
|
|
|
|
|
|
|
dataset/label.json
DELETED
@@ -1 +0,0 @@
|
|
1 |
-
{"O": 0, "B-PER": 1, "I-PER": 2, "B-LOC": 3, "I-LOC": 4, "B-ORG": 5, "I-ORG": 6, "B-ANIM": 7, "I-ANIM": 8, "B-BIO": 9, "I-BIO": 10, "B-CEL": 11, "I-CEL": 12, "B-DIS": 13, "I-DIS": 14, "B-EVE": 15, "I-EVE": 16, "B-FOOD": 17, "I-FOOD": 18, "B-INST": 19, "I-INST": 20, "B-MEDIA": 21, "I-MEDIA": 22, "B-PLANT": 23, "I-PLANT": 24, "B-MYTH": 25, "I-MYTH": 26, "B-TIME": 27, "I-TIME": 28, "B-VEHI": 29, "I-VEHI": 30, "B-SUPER": 31, "I-SUPER": 32, "B-PHY": 33, "I-PHY": 34}
|
|
|
|
dataset/nl.jsonl
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:81a42e492e3b22e0cd38be687976cde0425ab2825979fff676b6c7ef6f7e414f
|
3 |
-
size 39621455
|
|
|
|
|
|
|
|
dataset/pl.jsonl
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:4ac94a2574933491091af59a848e5376a699de7d7b8241fce9d1b1210edaf855
|
3 |
-
size 44953474
|
|
|
|
|
|
|
|
dataset/pt.jsonl
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:d0266b95f3cb9867ad5a83e947ce7b7f9bd3a9edc605b5d3f09b3d5d341286b6
|
3 |
-
size 51433608
|
|
|
|
|
|
|
|
dataset/ru.jsonl
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:1621b8600571cbe9180c3c25becc01c41776192ff4a8691a961eb1bc49de1358
|
3 |
-
size 51908152
|
|
|
|
|
|
|
|
dataset/es.jsonl → de/multinerd-test.parquet
RENAMED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ec93fe570ee8ac075bceb20912b8ac98075099838b839fbf20813824c7ea70b5
|
3 |
+
size 14028603
|
dataset/fr.jsonl → en/multinerd-test.parquet
RENAMED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a41f72ae2091d3cc6c52cb070416657244bd4e2584ed09f9843798983984c88b
|
3 |
+
size 14899109
|
dataset/de.jsonl → es/multinerd-test.parquet
RENAMED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7a01e3d368ba26fb718575438b40bcfc3610381c9d510a017c9334c1e0e83a39
|
3 |
+
size 17484674
|
dataset/en.jsonl → fr/multinerd-test.parquet
RENAMED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:385232b6658a5928b4c0eca87dabcd4fc98255193cdb22843999e1a6b0323a4e
|
3 |
+
size 16928254
|
it/multinerd-test.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:de190e81c629da43971a8741cc7371a1a4cddd1d7c3e2de8587eb23468e178ad
|
3 |
+
size 19299780
|
multinerd.py
DELETED
@@ -1,84 +0,0 @@
|
|
1 |
-
""" NER dataset compiled by T-NER library https://github.com/asahi417/tner/tree/master/tner """
|
2 |
-
import json
|
3 |
-
from itertools import chain
|
4 |
-
import datasets
|
5 |
-
|
6 |
-
logger = datasets.logging.get_logger(__name__)
|
7 |
-
_DESCRIPTION = """[MultiNERD](https://aclanthology.org/2022.findings-naacl.60/)"""
|
8 |
-
_NAME = "multinerd"
|
9 |
-
_VERSION = "1.0.0"
|
10 |
-
_CITATION = """
|
11 |
-
@inproceedings{tedeschi-navigli-2022-multinerd,
|
12 |
-
title = "{M}ulti{NERD}: A Multilingual, Multi-Genre and Fine-Grained Dataset for Named Entity Recognition (and Disambiguation)",
|
13 |
-
author = "Tedeschi, Simone and
|
14 |
-
Navigli, Roberto",
|
15 |
-
booktitle = "Findings of the Association for Computational Linguistics: NAACL 2022",
|
16 |
-
month = jul,
|
17 |
-
year = "2022",
|
18 |
-
address = "Seattle, United States",
|
19 |
-
publisher = "Association for Computational Linguistics",
|
20 |
-
url = "https://aclanthology.org/2022.findings-naacl.60",
|
21 |
-
doi = "10.18653/v1/2022.findings-naacl.60",
|
22 |
-
pages = "801--812",
|
23 |
-
abstract = "Named Entity Recognition (NER) is the task of identifying named entities in texts and classifying them through specific semantic categories, a process which is crucial for a wide range of NLP applications. Current datasets for NER focus mainly on coarse-grained entity types, tend to consider a single textual genre and to cover a narrow set of languages, thus limiting the general applicability of NER systems.In this work, we design a new methodology for automatically producing NER annotations, and address the aforementioned limitations by introducing a novel dataset that covers 10 languages, 15 NER categories and 2 textual genres.We also introduce a manually-annotated test set, and extensively evaluate the quality of our novel dataset on both this new test set and standard benchmarks for NER.In addition, in our dataset, we include: i) disambiguation information to enable the development of multilingual entity linking systems, and ii) image URLs to encourage the creation of multimodal systems.We release our dataset at https://github.com/Babelscape/multinerd.",
|
24 |
-
}
|
25 |
-
"""
|
26 |
-
|
27 |
-
_HOME_PAGE = "https://github.com/asahi417/tner"
|
28 |
-
_URL = f'https://huggingface.co/datasets/tner/{_NAME}/resolve/main/dataset'
|
29 |
-
_LANGUAGE = ['de', 'en', 'es', 'fr', 'it', 'nl', 'pl', 'pt', 'ru']
|
30 |
-
_URLS = {
|
31 |
-
l: {
|
32 |
-
str(datasets.Split.TEST): [f'{_URL}/{l}.jsonl'],
|
33 |
-
} for l in _LANGUAGE
|
34 |
-
}
|
35 |
-
|
36 |
-
|
37 |
-
class MultiNERDConfig(datasets.BuilderConfig):
|
38 |
-
"""BuilderConfig"""
|
39 |
-
|
40 |
-
def __init__(self, **kwargs):
|
41 |
-
"""BuilderConfig.
|
42 |
-
|
43 |
-
Args:
|
44 |
-
**kwargs: keyword arguments forwarded to super.
|
45 |
-
"""
|
46 |
-
super(MultiNERDConfig, self).__init__(**kwargs)
|
47 |
-
|
48 |
-
|
49 |
-
class MultiNERD(datasets.GeneratorBasedBuilder):
|
50 |
-
"""Dataset."""
|
51 |
-
|
52 |
-
BUILDER_CONFIGS = [
|
53 |
-
MultiNERDConfig(name=l, version=datasets.Version(_VERSION), description=f"{_DESCRIPTION} (language: {l})") for l in _LANGUAGE
|
54 |
-
]
|
55 |
-
|
56 |
-
def _split_generators(self, dl_manager):
|
57 |
-
downloaded_file = dl_manager.download_and_extract(_URLS[self.config.name])
|
58 |
-
return [datasets.SplitGenerator(name=i, gen_kwargs={"filepaths": downloaded_file[str(i)]})
|
59 |
-
for i in [datasets.Split.TEST]]
|
60 |
-
|
61 |
-
def _generate_examples(self, filepaths):
|
62 |
-
_key = 0
|
63 |
-
for filepath in filepaths:
|
64 |
-
logger.info(f"generating examples from = {filepath}")
|
65 |
-
with open(filepath, encoding="utf-8") as f:
|
66 |
-
_list = [i for i in f.read().split('\n') if len(i) > 0]
|
67 |
-
for i in _list:
|
68 |
-
data = json.loads(i)
|
69 |
-
yield _key, data
|
70 |
-
_key += 1
|
71 |
-
|
72 |
-
def _info(self):
|
73 |
-
return datasets.DatasetInfo(
|
74 |
-
description=_DESCRIPTION,
|
75 |
-
features=datasets.Features(
|
76 |
-
{
|
77 |
-
"tokens": datasets.Sequence(datasets.Value("string")),
|
78 |
-
"tags": datasets.Sequence(datasets.Value("int32")),
|
79 |
-
}
|
80 |
-
),
|
81 |
-
supervised_keys=None,
|
82 |
-
homepage=_HOME_PAGE,
|
83 |
-
citation=_CITATION,
|
84 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
nl/multinerd-test.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a5e7a4934351133e0f2fc08f0343a0f740d7ed3b38bc0111f74d382516661d9c
|
3 |
+
size 12864577
|
pl/multinerd-test.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4725832eaf92fd9a1f93261afc51c4964ef7fd92a526de1f60a1e683d4e60184
|
3 |
+
size 16777030
|
pt/multinerd-test.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1ea1f2891475c34c1607ee736de555c689c598bace9ae6e3a76e0f0f73f035a6
|
3 |
+
size 16279885
|
ru/multinerd-test.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e1a24a48a914b5bcb40657a15d50db011089e47e5ff69b99f042d9ac14a48353
|
3 |
+
size 9225203
|