""" NER dataset compiled by T-NER library https://github.com/asahi417/tner/tree/master/tner """ import json from itertools import chain import datasets logger = datasets.logging.get_logger(__name__) _DESCRIPTION = """[Tweebank NER](https://arxiv.org/abs/2201.07281)""" _NAME = "tweebank_ner" _VERSION = "1.0.0" _CITATION = """ @article{DBLP:journals/corr/abs-2201-07281, author = {Hang Jiang and Yining Hua and Doug Beeferman and Deb Roy}, title = {Annotating the Tweebank Corpus on Named Entity Recognition and Building {NLP} Models for Social Media Analysis}, journal = {CoRR}, volume = {abs/2201.07281}, year = {2022}, url = {https://arxiv.org/abs/2201.07281}, eprinttype = {arXiv}, eprint = {2201.07281}, timestamp = {Fri, 21 Jan 2022 13:57:15 +0100}, biburl = {https://dblp.org/rec/journals/corr/abs-2201-07281.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } """ _HOME_PAGE = "https://github.com/asahi417/tner" _URL = f'https://huggingface.co/datasets/tner/{_NAME}/raw/main/dataset' _URLS = { str(datasets.Split.TEST): [f'{_URL}/test.json'], str(datasets.Split.TRAIN): [f'{_URL}/train.json'], str(datasets.Split.VALIDATION): [f'{_URL}/valid.json'], } class TweebankNERConfig(datasets.BuilderConfig): """BuilderConfig""" def __init__(self, **kwargs): """BuilderConfig. Args: **kwargs: keyword arguments forwarded to super. """ super(TweebankNERConfig, self).__init__(**kwargs) class TweebankNER(datasets.GeneratorBasedBuilder): """Dataset.""" BUILDER_CONFIGS = [ TweebankNERConfig(name=_NAME, version=datasets.Version(_VERSION), description=_DESCRIPTION), ] def _split_generators(self, dl_manager): downloaded_file = dl_manager.download_and_extract(_URLS) return [datasets.SplitGenerator(name=i, gen_kwargs={"filepaths": downloaded_file[str(i)]}) for i in [datasets.Split.TRAIN, datasets.Split.VALIDATION, datasets.Split.TEST]] def _generate_examples(self, filepaths): _key = 0 for filepath in filepaths: logger.info(f"generating examples from = {filepath}") with open(filepath, encoding="utf-8") as f: _list = [i for i in f.read().split('\n') if len(i) > 0] for i in _list: data = json.loads(i) yield _key, data _key += 1 def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features( { "tokens": datasets.Sequence(datasets.Value("string")), "tags": datasets.Sequence(datasets.Value("int32")), } ), supervised_keys=None, homepage=_HOME_PAGE, citation=_CITATION, )