asahi417 commited on
Commit
c4355bf
1 Parent(s): bb5992e

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +26 -186
README.md CHANGED
@@ -1,171 +1,14 @@
1
  ---
2
  language:
3
- - ace
4
- - bg
5
- - da
6
- - fur
7
- - ilo
8
- - lij
9
- - mzn
10
- - qu
11
- - su
12
- - vi
13
- - af
14
- - bh
15
  - de
16
- - fy
17
- - io
18
- - lmo
19
- - nap
20
- - rm
21
- - sv
22
- - vls
23
- - als
24
- - bn
25
- - diq
26
- - ga
27
- - is
28
- - ln
29
- - nds
30
- - ro
31
- - sw
32
- - vo
33
- - am
34
- - bo
35
- - dv
36
- - gan
37
- - it
38
- - lt
39
- - ne
40
- - ru
41
- - szl
42
- - wa
43
- - an
44
- - br
45
- - el
46
- - gd
47
- - ja
48
- - lv
49
- - nl
50
- - rw
51
- - ta
52
- - war
53
- - ang
54
- - bs
55
- - eml
56
- - gl
57
- - jbo
58
- - nn
59
- - sa
60
- - te
61
- - wuu
62
- - ar
63
- - ca
64
  - en
65
- - gn
66
- - jv
67
- - mg
68
- - no
69
- - sah
70
- - tg
71
- - xmf
72
- - arc
73
- - eo
74
- - gu
75
- - ka
76
- - mhr
77
- - nov
78
- - scn
79
- - th
80
- - yi
81
- - arz
82
- - cdo
83
  - es
84
- - hak
85
- - kk
86
- - mi
87
- - oc
88
- - sco
89
- - tk
90
- - yo
91
- - as
92
- - ce
93
- - et
94
- - he
95
- - km
96
- - min
97
- - or
98
- - sd
99
- - tl
100
- - zea
101
- - ast
102
- - ceb
103
- - eu
104
- - hi
105
- - kn
106
- - mk
107
- - os
108
- - sh
109
- - tr
110
- - ay
111
- - ckb
112
- - ext
113
- - hr
114
- - ko
115
- - ml
116
- - pa
117
- - si
118
- - tt
119
- - az
120
- - co
121
- - fa
122
- - hsb
123
- - ksh
124
- - mn
125
- - pdc
126
- - ug
127
- - ba
128
- - crh
129
- - fi
130
- - hu
131
- - ku
132
- - mr
133
- - pl
134
- - sk
135
- - uk
136
- - zh
137
- - bar
138
- - cs
139
- - hy
140
- - ky
141
- - ms
142
- - pms
143
- - sl
144
- - ur
145
- - csb
146
- - fo
147
- - ia
148
- - la
149
- - mt
150
- - pnb
151
- - so
152
- - uz
153
- - cv
154
  - fr
155
- - id
156
- - lb
157
- - mwl
158
- - ps
159
- - sq
160
- - vec
161
- - be
162
- - cy
163
- - frr
164
- - ig
165
- - li
166
- - my
167
  - pt
168
- - sr
169
  multilinguality:
170
  - multilingual
171
  size_categories:
@@ -174,18 +17,18 @@ task_categories:
174
  - token-classification
175
  task_ids:
176
  - named-entity-recognition
177
- pretty_name: WikiAnn
178
  ---
179
 
180
- # Dataset Card for "tner/wikiann"
181
 
182
  ## Dataset Description
183
 
184
  - **Repository:** [T-NER](https://github.com/asahi417/tner)
185
- - **Paper:** [https://aclanthology.org/P17-1178/](https://aclanthology.org/P17-1178/)
186
- - **Dataset:** WikiAnn
187
  - **Domain:** Wikipedia
188
- - **Number of Entity:** 3
189
 
190
 
191
  ### Dataset Summary
@@ -205,7 +48,7 @@ An example of `train` looks as follows.
205
  ```
206
 
207
  ### Label ID
208
- The label2id dictionary can be found at [here](https://huggingface.co/datasets/tner/btc/raw/main/dataset/label.json).
209
  ```python
210
  {
211
  "B-LOC": 0,
@@ -220,29 +63,26 @@ The label2id dictionary can be found at [here](https://huggingface.co/datasets/t
220
 
221
  ### Data Splits
222
 
223
- | name |train|validation|test|
224
- |---------|----:|---------:|---:|
225
- |btc | 6338| 1001|2000|
226
 
227
  ### Citation Information
228
 
229
  ```
230
- @inproceedings{pan-etal-2017-cross,
231
- title = "Cross-lingual Name Tagging and Linking for 282 Languages",
232
- author = "Pan, Xiaoman and
233
- Zhang, Boliang and
234
- May, Jonathan and
235
- Nothman, Joel and
236
- Knight, Kevin and
237
- Ji, Heng",
238
- booktitle = "Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
239
- month = jul,
240
- year = "2017",
241
- address = "Vancouver, Canada",
242
  publisher = "Association for Computational Linguistics",
243
- url = "https://aclanthology.org/P17-1178",
244
- doi = "10.18653/v1/P17-1178",
245
- pages = "1946--1958",
246
- abstract = "The ambitious goal of this work is to develop a cross-lingual name tagging and linking framework for 282 languages that exist in Wikipedia. Given a document in any of these languages, our framework is able to identify name mentions, assign a coarse-grained or fine-grained type to each mention, and link it to an English Knowledge Base (KB) if it is linkable. We achieve this goal by performing a series of new KB mining methods: generating {``}silver-standard{''} annotations by transferring annotations from English to other languages through cross-lingual links and KB properties, refining annotations through self-training and topic selection, deriving language-specific morphology features from anchor links, and mining word translation pairs from cross-lingual links. Both name tagging and linking results for 282 languages are promising on Wikipedia data and on-Wikipedia data.",
247
  }
248
  ```
 
1
  ---
2
  language:
 
 
 
 
 
 
 
 
 
 
 
 
3
  - de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4
  - en
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5
  - es
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6
  - fr
7
+ - it
8
+ - nl
9
+ - pl
 
 
 
 
 
 
 
 
 
10
  - pt
11
+ - ru
12
  multilinguality:
13
  - multilingual
14
  size_categories:
 
17
  - token-classification
18
  task_ids:
19
  - named-entity-recognition
20
+ pretty_name: WikiNeural
21
  ---
22
 
23
+ # Dataset Card for "tner/wikineural"
24
 
25
  ## Dataset Description
26
 
27
  - **Repository:** [T-NER](https://github.com/asahi417/tner)
28
+ - **Paper:** [https://aclanthology.org/2021.findings-emnlp.215/](https://aclanthology.org/2021.findings-emnlp.215/)
29
+ - **Dataset:** WikiNeural
30
  - **Domain:** Wikipedia
31
+ - **Number of Entity:** 16
32
 
33
 
34
  ### Dataset Summary
 
48
  ```
49
 
50
  ### Label ID
51
+ The label2id dictionary can be found at [here](https://huggingface.co/datasets/tner/wikineural/raw/main/dataset/label.json).
52
  ```python
53
  {
54
  "B-LOC": 0,
 
63
 
64
  ### Data Splits
65
 
66
+
 
 
67
 
68
  ### Citation Information
69
 
70
  ```
71
+ @inproceedings{tedeschi-etal-2021-wikineural-combined,
72
+ title = "{W}iki{NE}u{R}al: {C}ombined Neural and Knowledge-based Silver Data Creation for Multilingual {NER}",
73
+ author = "Tedeschi, Simone and
74
+ Maiorca, Valentino and
75
+ Campolungo, Niccol{\`o} and
76
+ Cecconi, Francesco and
77
+ Navigli, Roberto",
78
+ booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2021",
79
+ month = nov,
80
+ year = "2021",
81
+ address = "Punta Cana, Dominican Republic",
 
82
  publisher = "Association for Computational Linguistics",
83
+ url = "https://aclanthology.org/2021.findings-emnlp.215",
84
+ doi = "10.18653/v1/2021.findings-emnlp.215",
85
+ pages = "2521--2533",
86
+ abstract = "Multilingual Named Entity Recognition (NER) is a key intermediate task which is needed in many areas of NLP. In this paper, we address the well-known issue of data scarcity in NER, especially relevant when moving to a multilingual scenario, and go beyond current approaches to the creation of multilingual silver data for the task. We exploit the texts of Wikipedia and introduce a new methodology based on the effective combination of knowledge-based approaches and neural models, together with a novel domain adaptation technique, to produce high-quality training corpora for NER. We evaluate our datasets extensively on standard benchmarks for NER, yielding substantial improvements up to 6 span-based F1-score points over previous state-of-the-art systems for data creation.",
87
  }
88
  ```