Datasets:
Update README.md
Browse files
README.md
CHANGED
@@ -1,171 +1,14 @@
|
|
1 |
---
|
2 |
language:
|
3 |
-
- ace
|
4 |
-
- bg
|
5 |
-
- da
|
6 |
-
- fur
|
7 |
-
- ilo
|
8 |
-
- lij
|
9 |
-
- mzn
|
10 |
-
- qu
|
11 |
-
- su
|
12 |
-
- vi
|
13 |
-
- af
|
14 |
-
- bh
|
15 |
- de
|
16 |
-
- fy
|
17 |
-
- io
|
18 |
-
- lmo
|
19 |
-
- nap
|
20 |
-
- rm
|
21 |
-
- sv
|
22 |
-
- vls
|
23 |
-
- als
|
24 |
-
- bn
|
25 |
-
- diq
|
26 |
-
- ga
|
27 |
-
- is
|
28 |
-
- ln
|
29 |
-
- nds
|
30 |
-
- ro
|
31 |
-
- sw
|
32 |
-
- vo
|
33 |
-
- am
|
34 |
-
- bo
|
35 |
-
- dv
|
36 |
-
- gan
|
37 |
-
- it
|
38 |
-
- lt
|
39 |
-
- ne
|
40 |
-
- ru
|
41 |
-
- szl
|
42 |
-
- wa
|
43 |
-
- an
|
44 |
-
- br
|
45 |
-
- el
|
46 |
-
- gd
|
47 |
-
- ja
|
48 |
-
- lv
|
49 |
-
- nl
|
50 |
-
- rw
|
51 |
-
- ta
|
52 |
-
- war
|
53 |
-
- ang
|
54 |
-
- bs
|
55 |
-
- eml
|
56 |
-
- gl
|
57 |
-
- jbo
|
58 |
-
- nn
|
59 |
-
- sa
|
60 |
-
- te
|
61 |
-
- wuu
|
62 |
-
- ar
|
63 |
-
- ca
|
64 |
- en
|
65 |
-
- gn
|
66 |
-
- jv
|
67 |
-
- mg
|
68 |
-
- no
|
69 |
-
- sah
|
70 |
-
- tg
|
71 |
-
- xmf
|
72 |
-
- arc
|
73 |
-
- eo
|
74 |
-
- gu
|
75 |
-
- ka
|
76 |
-
- mhr
|
77 |
-
- nov
|
78 |
-
- scn
|
79 |
-
- th
|
80 |
-
- yi
|
81 |
-
- arz
|
82 |
-
- cdo
|
83 |
- es
|
84 |
-
- hak
|
85 |
-
- kk
|
86 |
-
- mi
|
87 |
-
- oc
|
88 |
-
- sco
|
89 |
-
- tk
|
90 |
-
- yo
|
91 |
-
- as
|
92 |
-
- ce
|
93 |
-
- et
|
94 |
-
- he
|
95 |
-
- km
|
96 |
-
- min
|
97 |
-
- or
|
98 |
-
- sd
|
99 |
-
- tl
|
100 |
-
- zea
|
101 |
-
- ast
|
102 |
-
- ceb
|
103 |
-
- eu
|
104 |
-
- hi
|
105 |
-
- kn
|
106 |
-
- mk
|
107 |
-
- os
|
108 |
-
- sh
|
109 |
-
- tr
|
110 |
-
- ay
|
111 |
-
- ckb
|
112 |
-
- ext
|
113 |
-
- hr
|
114 |
-
- ko
|
115 |
-
- ml
|
116 |
-
- pa
|
117 |
-
- si
|
118 |
-
- tt
|
119 |
-
- az
|
120 |
-
- co
|
121 |
-
- fa
|
122 |
-
- hsb
|
123 |
-
- ksh
|
124 |
-
- mn
|
125 |
-
- pdc
|
126 |
-
- ug
|
127 |
-
- ba
|
128 |
-
- crh
|
129 |
-
- fi
|
130 |
-
- hu
|
131 |
-
- ku
|
132 |
-
- mr
|
133 |
-
- pl
|
134 |
-
- sk
|
135 |
-
- uk
|
136 |
-
- zh
|
137 |
-
- bar
|
138 |
-
- cs
|
139 |
-
- hy
|
140 |
-
- ky
|
141 |
-
- ms
|
142 |
-
- pms
|
143 |
-
- sl
|
144 |
-
- ur
|
145 |
-
- csb
|
146 |
-
- fo
|
147 |
-
- ia
|
148 |
-
- la
|
149 |
-
- mt
|
150 |
-
- pnb
|
151 |
-
- so
|
152 |
-
- uz
|
153 |
-
- cv
|
154 |
- fr
|
155 |
-
-
|
156 |
-
-
|
157 |
-
-
|
158 |
-
- ps
|
159 |
-
- sq
|
160 |
-
- vec
|
161 |
-
- be
|
162 |
-
- cy
|
163 |
-
- frr
|
164 |
-
- ig
|
165 |
-
- li
|
166 |
-
- my
|
167 |
- pt
|
168 |
-
-
|
169 |
multilinguality:
|
170 |
- multilingual
|
171 |
size_categories:
|
@@ -174,18 +17,18 @@ task_categories:
|
|
174 |
- token-classification
|
175 |
task_ids:
|
176 |
- named-entity-recognition
|
177 |
-
pretty_name:
|
178 |
---
|
179 |
|
180 |
-
# Dataset Card for "tner/
|
181 |
|
182 |
## Dataset Description
|
183 |
|
184 |
- **Repository:** [T-NER](https://github.com/asahi417/tner)
|
185 |
-
- **Paper:** [https://aclanthology.org/
|
186 |
-
- **Dataset:**
|
187 |
- **Domain:** Wikipedia
|
188 |
-
- **Number of Entity:**
|
189 |
|
190 |
|
191 |
### Dataset Summary
|
@@ -205,7 +48,7 @@ An example of `train` looks as follows.
|
|
205 |
```
|
206 |
|
207 |
### Label ID
|
208 |
-
The label2id dictionary can be found at [here](https://huggingface.co/datasets/tner/
|
209 |
```python
|
210 |
{
|
211 |
"B-LOC": 0,
|
@@ -220,29 +63,26 @@ The label2id dictionary can be found at [here](https://huggingface.co/datasets/t
|
|
220 |
|
221 |
### Data Splits
|
222 |
|
223 |
-
|
224 |
-
|---------|----:|---------:|---:|
|
225 |
-
|btc | 6338| 1001|2000|
|
226 |
|
227 |
### Citation Information
|
228 |
|
229 |
```
|
230 |
-
@inproceedings{
|
231 |
-
title = "
|
232 |
-
author = "
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
address = "Vancouver, Canada",
|
242 |
publisher = "Association for Computational Linguistics",
|
243 |
-
url = "https://aclanthology.org/
|
244 |
-
doi = "10.18653/v1/
|
245 |
-
pages = "
|
246 |
-
abstract = "
|
247 |
}
|
248 |
```
|
|
|
1 |
---
|
2 |
language:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
- de
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
- en
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
- es
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
- fr
|
7 |
+
- it
|
8 |
+
- nl
|
9 |
+
- pl
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
- pt
|
11 |
+
- ru
|
12 |
multilinguality:
|
13 |
- multilingual
|
14 |
size_categories:
|
|
|
17 |
- token-classification
|
18 |
task_ids:
|
19 |
- named-entity-recognition
|
20 |
+
pretty_name: WikiNeural
|
21 |
---
|
22 |
|
23 |
+
# Dataset Card for "tner/wikineural"
|
24 |
|
25 |
## Dataset Description
|
26 |
|
27 |
- **Repository:** [T-NER](https://github.com/asahi417/tner)
|
28 |
+
- **Paper:** [https://aclanthology.org/2021.findings-emnlp.215/](https://aclanthology.org/2021.findings-emnlp.215/)
|
29 |
+
- **Dataset:** WikiNeural
|
30 |
- **Domain:** Wikipedia
|
31 |
+
- **Number of Entity:** 16
|
32 |
|
33 |
|
34 |
### Dataset Summary
|
|
|
48 |
```
|
49 |
|
50 |
### Label ID
|
51 |
+
The label2id dictionary can be found at [here](https://huggingface.co/datasets/tner/wikineural/raw/main/dataset/label.json).
|
52 |
```python
|
53 |
{
|
54 |
"B-LOC": 0,
|
|
|
63 |
|
64 |
### Data Splits
|
65 |
|
66 |
+
|
|
|
|
|
67 |
|
68 |
### Citation Information
|
69 |
|
70 |
```
|
71 |
+
@inproceedings{tedeschi-etal-2021-wikineural-combined,
|
72 |
+
title = "{W}iki{NE}u{R}al: {C}ombined Neural and Knowledge-based Silver Data Creation for Multilingual {NER}",
|
73 |
+
author = "Tedeschi, Simone and
|
74 |
+
Maiorca, Valentino and
|
75 |
+
Campolungo, Niccol{\`o} and
|
76 |
+
Cecconi, Francesco and
|
77 |
+
Navigli, Roberto",
|
78 |
+
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2021",
|
79 |
+
month = nov,
|
80 |
+
year = "2021",
|
81 |
+
address = "Punta Cana, Dominican Republic",
|
|
|
82 |
publisher = "Association for Computational Linguistics",
|
83 |
+
url = "https://aclanthology.org/2021.findings-emnlp.215",
|
84 |
+
doi = "10.18653/v1/2021.findings-emnlp.215",
|
85 |
+
pages = "2521--2533",
|
86 |
+
abstract = "Multilingual Named Entity Recognition (NER) is a key intermediate task which is needed in many areas of NLP. In this paper, we address the well-known issue of data scarcity in NER, especially relevant when moving to a multilingual scenario, and go beyond current approaches to the creation of multilingual silver data for the task. We exploit the texts of Wikipedia and introduce a new methodology based on the effective combination of knowledge-based approaches and neural models, together with a novel domain adaptation technique, to produce high-quality training corpora for NER. We evaluate our datasets extensively on standard benchmarks for NER, yielding substantial improvements up to 6 span-based F1-score points over previous state-of-the-art systems for data creation.",
|
87 |
}
|
88 |
```
|