--- language: - de - en - es - fr - it - nl - pl - pt - ru multilinguality: - multilingual size_categories: - 10K<100k task_categories: - token-classification task_ids: - named-entity-recognition pretty_name: WikiNeural --- # Dataset Card for "tner/wikineural" ## Dataset Description - **Repository:** [T-NER](https://github.com/asahi417/tner) - **Paper:** [https://aclanthology.org/2021.findings-emnlp.215/](https://aclanthology.org/2021.findings-emnlp.215/) - **Dataset:** WikiNeural - **Domain:** Wikipedia - **Number of Entity:** 16 ### Dataset Summary WikiAnn NER dataset formatted in a part of [TNER](https://github.com/asahi417/tner) project. - Entity Types: `PER`, `LOC`, `ORG`, `ANIM`, `BIO`, `CEL`, `DIS`, `EVE`, `FOOD`, `INST`, `MEDIA`, `PLANT`, `MYTH`, `TIME`, `VEHI`, `MISC` ## Dataset Structure ### Data Instances An example of `train` looks as follows. ``` { 'tokens': ['I', 'hate', 'the', 'words', 'chunder', ',', 'vomit', 'and', 'puke', '.', 'BUUH', '.'], 'tags': [6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6] } ``` ### Label ID The label2id dictionary can be found at [here](https://huggingface.co/datasets/tner/wikineural/raw/main/dataset/label.json). ```python { "O": 0, "B-PER": 1, "I-PER": 2, "B-LOC": 3, "I-LOC": 4, "B-ORG": 5, "I-ORG": 6, "B-ANIM": 7, "I-ANIM": 8, "B-BIO": 9, "I-BIO": 10, "B-CEL": 11, "I-CEL": 12, "B-DIS": 13, "I-DIS": 14, "B-EVE": 15, "I-EVE": 16, "B-FOOD": 17, "I-FOOD": 18, "B-INST": 19, "I-INST": 20, "B-MEDIA": 21, "I-MEDIA": 22, "B-PLANT": 23, "I-PLANT": 24, "B-MYTH": 25, "I-MYTH": 26, "B-TIME": 27, "I-TIME": 28, "B-VEHI": 29, "I-VEHI": 30, "B-MISC": 31, "I-MISC": 32 } ``` ### Data Splits ### Citation Information ``` @inproceedings{tedeschi-etal-2021-wikineural-combined, title = "{W}iki{NE}u{R}al: {C}ombined Neural and Knowledge-based Silver Data Creation for Multilingual {NER}", author = "Tedeschi, Simone and Maiorca, Valentino and Campolungo, Niccol{\`o} and Cecconi, Francesco and Navigli, Roberto", booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2021", month = nov, year = "2021", address = "Punta Cana, Dominican Republic", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.findings-emnlp.215", doi = "10.18653/v1/2021.findings-emnlp.215", pages = "2521--2533", abstract = "Multilingual Named Entity Recognition (NER) is a key intermediate task which is needed in many areas of NLP. In this paper, we address the well-known issue of data scarcity in NER, especially relevant when moving to a multilingual scenario, and go beyond current approaches to the creation of multilingual silver data for the task. We exploit the texts of Wikipedia and introduce a new methodology based on the effective combination of knowledge-based approaches and neural models, together with a novel domain adaptation technique, to produce high-quality training corpora for NER. We evaluate our datasets extensively on standard benchmarks for NER, yielding substantial improvements up to 6 span-based F1-score points over previous state-of-the-art systems for data creation.", } ```