""" NER dataset compiled by T-NER library https://github.com/asahi417/tner/tree/master/tner """ import json from itertools import chain import datasets logger = datasets.logging.get_logger(__name__) _DESCRIPTION = """[wikineural](https://aclanthology.org/2021.findings-emnlp.215/)""" _NAME = "wikineural" _VERSION = "1.0.0" _CITATION = """ @inproceedings{tedeschi-etal-2021-wikineural-combined, title = "{W}iki{NE}u{R}al: {C}ombined Neural and Knowledge-based Silver Data Creation for Multilingual {NER}", author = "Tedeschi, Simone and Maiorca, Valentino and Campolungo, Niccol{\`o} and Cecconi, Francesco and Navigli, Roberto", booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2021", month = nov, year = "2021", address = "Punta Cana, Dominican Republic", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.findings-emnlp.215", doi = "10.18653/v1/2021.findings-emnlp.215", pages = "2521--2533", abstract = "Multilingual Named Entity Recognition (NER) is a key intermediate task which is needed in many areas of NLP. In this paper, we address the well-known issue of data scarcity in NER, especially relevant when moving to a multilingual scenario, and go beyond current approaches to the creation of multilingual silver data for the task. We exploit the texts of Wikipedia and introduce a new methodology based on the effective combination of knowledge-based approaches and neural models, together with a novel domain adaptation technique, to produce high-quality training corpora for NER. We evaluate our datasets extensively on standard benchmarks for NER, yielding substantial improvements up to 6 span-based F1-score points over previous state-of-the-art systems for data creation.", } """ _HOME_PAGE = "https://github.com/asahi417/tner" _URL = f'https://huggingface.co/datasets/tner/{_NAME}/resolve/main/dataset' _LANGUAGE = ['de', 'en', 'es', 'fr', 'it', 'nl', 'pl', 'pt', 'ru'] _URLS = { l: { str(datasets.Split.TEST): [f'{_URL}/{l}/test.jsonl'], str(datasets.Split.TRAIN): [f'{_URL}/{l}/train.jsonl'], str(datasets.Split.VALIDATION): [f'{_URL}/{l}/dev.jsonl'] } for l in _LANGUAGE } class WikiNeuralConfig(datasets.BuilderConfig): """BuilderConfig""" def __init__(self, **kwargs): """BuilderConfig. Args: **kwargs: keyword arguments forwarded to super. """ super(WikiNeuralConfig, self).__init__(**kwargs) class WikiNeural(datasets.GeneratorBasedBuilder): """Dataset.""" BUILDER_CONFIGS = [ WikiNeuralConfig(name=l, version=datasets.Version(_VERSION), description=f"{_DESCRIPTION} (language: {l})") for l in _LANGUAGE ] def _split_generators(self, dl_manager): downloaded_file = dl_manager.download_and_extract(_URLS[self.config.name]) return [datasets.SplitGenerator(name=i, gen_kwargs={"filepaths": downloaded_file[str(i)]}) for i in [datasets.Split.TRAIN, datasets.Split.VALIDATION, datasets.Split.TEST]] def _generate_examples(self, filepaths): _key = 0 for filepath in filepaths: logger.info(f"generating examples from = {filepath}") with open(filepath, encoding="utf-8") as f: _list = [i for i in f.read().split('\n') if len(i) > 0] for i in _list: data = json.loads(i) yield _key, data _key += 1 def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features( { "tokens": datasets.Sequence(datasets.Value("string")), "tags": datasets.Sequence(datasets.Value("int32")), } ), supervised_keys=None, homepage=_HOME_PAGE, citation=_CITATION, )