File size: 7,677 Bytes
be7b043
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7cfef3d
4e62b3b
be7b043
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4e62b3b
be7b043
4e62b3b
be7b043
 
 
 
 
 
 
 
 
 
 
 
 
 
234a0ea
be7b043
 
 
4e62b3b
be7b043
 
4e62b3b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
be7b043
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4e62b3b
 
 
 
 
 
 
 
 
 
 
 
 
 
be7b043
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7cfef3d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
be7b043
 
 
 
7cfef3d
 
 
 
 
 
 
 
dc62863
7cfef3d
 
 
 
 
dc62863
7cfef3d
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
# Copyright 2023 Together Computer
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# Lint as: python3
"""RedPajama: An Open-Source, Clean-Room 1.2 Trillion Token Dataset."""


import json

import datasets
import traceback
import os

logger = datasets.logging.get_logger(__name__)


_DESCRIPTION = """\
RedPajama is a clean-room, fully open-source implementation of the LLaMa dataset.
"""

_URL_LISTS = {
    "arxiv": "urls/arxiv.txt",
    "book": "urls/book.txt",
    "c4": "urls/c4.txt",
    "common_crawl": "urls/common_crawl.txt",
    "github": "urls/github.txt",
    "stackexchange": "urls/stackexchange.txt",
    "wikipedia": "urls/wikipedia.txt",
}
_URL_BASE = 'https://data.together.xyz/redpajama-data-1T/v1.0.0'

_DATA_DIR = os.environ.get('RED_PAJAMA_DATA_DIR', None)

class RedPajama1TConfig(datasets.BuilderConfig):
    """BuilderConfig for RedPajama sample."""

    def __init__(self, *args, subsets, **kwargs):
        """BuilderConfig for RedPajama.
        Args:
          **kwargs: keyword arguments forwarded to super.
        """
        super(RedPajama1TConfig, self).__init__(**kwargs)
        self.subsets = subsets


class RedPajama1T(datasets.GeneratorBasedBuilder):
    """RedPajama: Reproducing the LLaMA training dataset of over 1.2 trillion tokens. Version 1.0.0."""

    BUILDER_CONFIGS = [
        RedPajama1TConfig(
            name = 'default',
            subsets = list(_URL_LISTS.keys()),
            version=datasets.Version("1.0.0", ""),
            description="RedPajama1T",
        ),

        RedPajama1TConfig(
            name = 'arxiv',
            subsets = 'arxiv',
            version=datasets.Version("1.0.0", ""),
            description="RedPajama1T arxiv subset",
        ),

        RedPajama1TConfig(
            name = 'book',
            subsets = 'book',
            version=datasets.Version("1.0.0", ""),
            description="RedPajama1T book subset",
        ),

        RedPajama1TConfig(
            name = 'c4',
            subsets = 'c4',
            version=datasets.Version("1.0.0", ""),
            description="RedPajama1T c4 subset",
        ),

        RedPajama1TConfig(
            name = 'common_crawl',
            subsets = 'common_crawl',
            version=datasets.Version("1.0.0", ""),
            description="RedPajama1T common crawl subset",
        ),

        RedPajama1TConfig(
            name = 'github',
            subsets = 'github',
            version=datasets.Version("1.0.0", ""),
            description="RedPajama1T github subset",
        ),

        RedPajama1TConfig(
            name = 'stackexchange',
            subsets = 'stackexchange',
            version=datasets.Version("1.0.0", ""),
            description="RedPajama1T stackexchange subset",
        ),

        RedPajama1TConfig(
            name = 'wikipedia',
            subsets = 'wikipedia',
            version=datasets.Version("1.0.0", ""),
            description="RedPajama1T wikipedia subset",
        ),
    ]

    def _info(self):
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features(
                {
                    "text": datasets.Value("string"),
                    "meta": datasets.Value("string"),
                    "red_pajama_subset": datasets.Value("string"),
                }
            ),
            supervised_keys=None,
        )

    def _split_generators(self, dl_manager):
        url_lists = dl_manager.download_and_extract({
            subset: _URL_LISTS[subset] for subset in self.config.subsets
        })

        urls = {}

        for subset, url_list in url_lists.items():
            with open(url_list, encoding="utf-8") as f:
                urls[subset] = [line.strip() for line in f]

        if _DATA_DIR is not None:
            print(f'Reading data from {_DATA_DIR}')
            url_prefix_slashes = len(_URL_BASE.split('/'))
            downloaded_files = {
                subset: [
                    os.path.join(_DATA_DIR, *url.split('/')[url_prefix_slashes:])
                    for url in url_list
                ]
                for subset, url_list in urls.items()
            }
        else:
            downloaded_files = dl_manager.download(urls)

        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs = {
                    "files": {
                        subset: downloaded_files[subset]
                        for subset in self.config.subsets
                    }
                }
            )
        ]

    def _generate_examples(self, files):
        """This function returns the examples in the raw (text) form."""
        key = 0
        for subset in files:
            if subset == "common_crawl":
                import zstandard as zstd

                for path in files[subset]:
                    with zstd.open(open(path, "rb"), "rt", encoding="utf-8") as f:
                        for i, row in enumerate(f):
                            try:
                                data = json.loads(row)
                                text = data["text"]
                                del data["text"]
                                yield key, {
                                    "text": text,
                                    "meta": json.dumps(data),
                                    "red_pajama_subset": subset,
                                }
                                key += 1
                            except Exception as e:
                                print(f'Subset: {subset}')
                                print(f'Path: {path}')
                                print(f'Row: {row}')
                                traceback.print_exc()

                                raise e
            else:
                for path in files[subset]:
                    with open(path, encoding="utf-8") as f:
                        for i, row in enumerate(f):
                            try:
                                data = json.loads(row)
                                if "meta" not in data:
                                    text = data["text"]
                                    del data["text"]
                                    yield key, {
                                        "text": text,
                                        "meta": json.dumps(data),
                                        "red_pajama_subset": subset,
                                    }
                                else:
                                    yield key, {
                                        "text": data["text"],
                                        "meta": data["meta"],
                                        "red_pajama_subset": subset,
                                    }
                                key += 1
                            except Exception as e:
                                print(f'Subset: {subset}')
                                print(f'Path: {path}')
                                print(f'Row: {row}')
                                traceback.print_exc()

                                raise e