File size: 4,397 Bytes
be7b043
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
234a0ea
be7b043
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
# Copyright 2023 Together Computer
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# Lint as: python3
"""RedPajama: An Open-Source, Clean-Room 1.2 Trillion Token Dataset."""


import json

import datasets


logger = datasets.logging.get_logger(__name__)


_DESCRIPTION = """\
RedPajama is a clean-room, fully open-source implementation of the LLaMa dataset.
"""

_URL_LISTS = {
    "arxiv": "urls/arxiv.txt",
    "book": "urls/book.txt",
    "c4": "urls/c4.txt",
    "common_crawl": "urls/common_crawl.txt",
    "github": "urls/github.txt",
    "stackexchange": "urls/stackexchange.txt",
    "wikipedia": "urls/wikipedia.txt",
}


class RedPajama1TConfig(datasets.BuilderConfig):
    """BuilderConfig for RedPajama sample."""

    def __init__(self, *args, subsets, **kwargs):
        """BuilderConfig for RedPajama.
        Args:
          **kwargs: keyword arguments forwarded to super.
        """
        super(RedPajama1TConfig, self).__init__(**kwargs)

        self.subsets = subsets


class RedPajama1T(datasets.GeneratorBasedBuilder):
    """RedPajama: Reproducing the LLaMA training dataset of over 1.2 trillion tokens. Version 1.0.0."""

    BUILDER_CONFIGS = [
        RedPajama1TConfig(
            subsets = list(_URL_LISTS.keys()),
            name="plain_text",
            version=datasets.Version("1.0.0", ""),
            description="Plain text",
        ),
    ]

    def _info(self):
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features(
                {
                    "text": datasets.Value("string"),
                    "meta": datasets.Value("string"),
                    "red_pajama_subset": datasets.Value("string"),
                }
            ),
            supervised_keys=None,
        )

    def _split_generators(self, dl_manager):
        url_lists = dl_manager.download_and_extract({
            subset: _URL_LISTS[subset] for subset in self.config.subsets
        })

        urls = {}

        for subset, url_list in url_lists.items():
            with open(url_list, encoding="utf-8") as f:
                urls[subset] = [line.strip() for line in f][:1]

        downloaded_files = dl_manager.download(urls)

        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs = {
                    "files": {
                        subset: downloaded_files[subset]
                        for subset in self.config.subsets
                    }
                }
            )
        ]

    def _generate_examples(self, files):
        """This function returns the examples in the raw (text) form."""
        key = 0
        for subset in files:
            if subset == "common_crawl":
                import zstandard as zstd

                for path in files[subset]:
                    with zstd.open(open(path, "rb"), "rt", encoding="utf-8") as f:
                        for i, row in enumerate(f):
                            data = json.loads(row)
                            text = data["text"]
                            del data["text"]
                            yield key, {
                                "text": text,
                                "meta": json.dumps(data),
                                "red_pajama_subset": subset,
                            }
                            key += 1
            else:
                for path in files[subset]:
                    with open(path, encoding="utf-8") as f:
                        for i, row in enumerate(f):
                            data = json.loads(row)
                            yield key, {
                                "text": data["text"],
                                "meta": data["meta"],
                                "red_pajama_subset": subset,
                            }
                            key += 1