Datasets:
File size: 14,123 Bytes
cb715ae 02c400d cb715ae fbbd8c2 cb715ae 02c400d 2cae54f cb715ae fbbd8c2 cb715ae 02c400d cb715ae f2c5483 02c400d cb715ae e1fc14b 02c400d e1fc14b cb715ae fbbd8c2 cb715ae fbbd8c2 cb715ae 02c400d cb715ae fbbd8c2 02c400d fbbd8c2 24ca8bc fbbd8c2 02c400d fbbd8c2 24ca8bc 02c400d fbbd8c2 cb715ae fbbd8c2 02c400d fbbd8c2 cb715ae 357d568 f2c5483 fde171d f2c5483 357d568 f2c5483 02c400d 357d568 f2c5483 02c400d 357d568 2cae54f f2c5483 02c400d 2cae54f 357d568 f2c5483 fbbd8c2 2cae54f 02c400d 357d568 02c400d f2c5483 02c400d f2c5483 02c400d cb715ae f2c5483 02c400d f2c5483 2cae54f f2c5483 02c400d f2c5483 fbbd8c2 f2c5483 2cae54f cb715ae f2c5483 fbbd8c2 2cae54f 02c400d cb715ae 357d568 02c400d 357d568 fbbd8c2 02c400d fbbd8c2 cb715ae f2c5483 fbbd8c2 f2c5483 2cae54f 02c400d fbbd8c2 f2c5483 2c7ef16 02c400d 2c7ef16 02c400d 2c7ef16 f2c5483 02c400d f2c5483 02c400d f2c5483 02c400d f2c5483 2c7ef16 02c400d 2c7ef16 02c400d 2c7ef16 02c400d 2c7ef16 fbbd8c2 2cae54f fbbd8c2 2cae54f fbbd8c2 2cae54f fbbd8c2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 |
# Copyright 2023 Together Computer
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Lint as: python3
"""RedPajama V2: Quality annotated Web Text Documents."""
import gzip
import json
import traceback
from typing import List
import datasets
import pyarrow.parquet as pq
logger = datasets.logging.get_logger(__name__)
_DESCRIPTION = """\
RedPajama V2: an Open Dataset for Training Large Language Models
"""
_URL_BASE = "https://data.together.xyz/redpajama-data-v2/v1.0.0"
_LANGUAGES = ("en", "de", "fr", "es", "it")
_MISSING_FILES_PATTERN = "urls/missing-{component}.txt"
_NUM_SHARDS = 5000
_SUBSAMPLE_FILE_COUNTS = {"sample-10B": 1, "sample-100B": 10, "sample-1T": 100}
_CC_SNAPSHOT_IDS = (
"2014-15",
"2014-23",
"2014-35",
"2014-41",
"2014-42",
"2014-49",
"2014-52",
"2015-14",
"2015-22",
"2015-27",
"2015-32",
"2015-35",
"2015-40",
"2015-48",
"2016-07",
"2016-18",
"2016-22",
"2016-26",
"2016-30",
"2016-36",
"2016-40",
"2016-44",
"2016-50",
"2017-04",
"2017-09",
"2017-17",
"2017-22",
"2017-26",
"2017-30",
"2017-34",
"2017-39",
"2017-43",
"2017-47",
"2017-51",
"2018-05",
"2018-09",
"2018-13",
"2018-17",
"2018-22",
"2018-26",
"2018-30",
"2018-34",
"2018-39",
"2018-43",
"2018-47",
"2018-51",
"2019-04",
"2019-09",
"2019-13",
"2019-18",
"2019-22",
"2019-26",
"2019-30",
"2019-35",
"2019-39",
"2019-43",
"2019-47",
"2019-51",
"2020-05",
"2020-10",
"2020-16",
"2020-24",
"2020-29",
"2020-34",
"2020-40",
"2020-45",
"2020-50",
"2021-04",
"2021-10",
"2021-17",
"2021-21",
"2021-25",
"2021-31",
"2021-39",
"2021-43",
"2021-49",
"2022-05",
"2022-21",
"2022-27",
"2022-33",
"2022-40",
"2022-49",
"2023-06",
"2023-14",
)
class RedPajamaDataV2Config(datasets.BuilderConfig):
"""BuilderConfig for RedPajama."""
def __init__(self, *args, **kwargs):
"""BuilderConfig for RedPajama.
Args:
**kwargs: keyword arguments forwarded to super.
"""
super(RedPajamaDataV2Config, self).__init__(**kwargs)
self.partition: str = kwargs.pop("partition", "all")
self.snapshots: List[str] = kwargs.pop("snapshots", _CC_SNAPSHOT_IDS)
self.languages: List[str] = kwargs.pop("languages", _LANGUAGES)
class RedPajamaV2(datasets.GeneratorBasedBuilder):
"""RedPajama V2: Quality annotated Web Text Documents."""
BUILDER_CONFIGS = [
RedPajamaDataV2Config(
name="sample",
version=datasets.Version("1.0.0", ""),
description=f"RedPajamaV2 Sample",
),
RedPajamaDataV2Config(
name="sample-10B",
version=datasets.Version("1.0.0", ""),
description=f"RedPajamaV2 Sample with 10B tokens",
),
RedPajamaDataV2Config(
name="sample-100B",
version=datasets.Version("1.0.0", ""),
description=f"RedPajamaV2 Sample with 100B tokens",
),
RedPajamaDataV2Config(
name="sample-1T",
version=datasets.Version("1.0.0", ""),
description=f"RedPajamaV2 Sample with 1T tokens",
),
RedPajamaDataV2Config(
name="default",
version=datasets.Version("1.0.0", ""),
description=f"RedPajamaV2",
),
]
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"raw_content": datasets.Value("string"),
"doc_id": datasets.Value("string"),
"meta": datasets.Value("string"),
"quality_signals": datasets.Value("string"),
}
),
supervised_keys=None,
)
def _split_generators_sample(self, dl_manager):
# fetch list of base tags
sample_base_tags_fp = dl_manager.download_and_extract(
"sample/sample_listings.txt"
)
with open(sample_base_tags_fp, "r") as fd:
sample_base_tags = [line.strip() for line in fd]
# fetch documents
logger.info(f"Downloading {len(sample_base_tags)} documents files.")
documents_files = dl_manager.download(
{
base_tag: f"sample/documents/{base_tag}.json.gz"
for base_tag in sample_base_tags
}
)
# fetch quality signals
logger.info(f"Downloading {len(sample_base_tags)} quality signals files.")
quality_signals_files = dl_manager.download(
{
base_tag: f"sample/quality_signals/{base_tag}.signals.json.gz"
for base_tag in sample_base_tags
}
)
# fetch ids of duplicates
logger.info(f"Downloading {len(sample_base_tags)} duplicates ids files.")
duplicates_ids_files = dl_manager.download(
{
base_tag: f"sample/duplicates/{base_tag}.duplicates.parquet"
for base_tag in sample_base_tags
}
)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"base_tags": sample_base_tags,
"documents_files": documents_files,
"quality_signals_files": quality_signals_files,
"duplicates_ids_files": duplicates_ids_files,
},
)
]
def _split_generators_full(self, dl_manager):
snapshots = getattr(self.config, "snapshots", _CC_SNAPSHOT_IDS)
languages = getattr(self.config, "languages", _LANGUAGES)
partition = getattr(self.config, "partition", "all")
if self.config.name in ("sample-10B", "sample-100B", "sample-1T"):
partition = "head_middle"
languages = _LANGUAGES
snapshots = _CC_SNAPSHOT_IDS
num_shards = _SUBSAMPLE_FILE_COUNTS[self.config.name]
else:
num_shards = _NUM_SHARDS
if partition == "all":
partitions = ["head", "middle", "tail"]
elif partition == "head_middle":
partitions = ["head", "middle"]
elif partition == "tail":
partitions = [partition]
else:
raise ValueError(f"invalid partition: {partition}")
# fetch list of missing files (e.g., missing duplicates or corrupted documents and
# quality signal files)
missing_files_paths = dl_manager.download_and_extract(
{
component: _MISSING_FILES_PATTERN.format(component=component)
for component in ("documents", "signals", "duplicates")
}
)
missing_files = {}
for component, missing_file in missing_files_paths.items():
with open(missing_file, "r", encoding="utf-8") as f:
missing_files[component] = set(line.strip() for line in f)
# build list of urls to fetch
documents_urls = {}
quality_signals_urls = {}
duplicates_ids_urls = {}
base_tags = []
for lang in languages:
for snapshot in snapshots:
for part in partitions:
for n in range(num_shards):
base_tag = f"{snapshot}/{n:04d}/{lang}_{part}"
base_tags.append(base_tag)
# documents
url = f"{_URL_BASE}/documents/{base_tag}.json.gz"
if url not in missing_files["documents"]:
documents_urls[base_tag] = url
# quality signals
url = f"{_URL_BASE}/quality_signals/{base_tag}.signals.json.gz"
if url not in missing_files["signals"]:
quality_signals_urls[base_tag] = url
# duplicates
url = f"{_URL_BASE}/duplicates/{base_tag}.duplicates.parquet"
if url not in missing_files["duplicates"]:
duplicates_ids_urls[base_tag] = url
# download documents files
logger.info(f"Downloading {len(documents_urls)} documents files.")
documents_files = dl_manager.download(documents_urls)
# download quality signals files
logger.info(f"Downloading {len(quality_signals_urls)} quality signals files.")
quality_signals_files = dl_manager.download(quality_signals_urls)
# download duplicates ids files
logger.info(f"Downloading {len(duplicates_ids_urls)} duplicates ids files.")
duplicates_ids_files = dl_manager.download(duplicates_ids_urls)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"base_tags": base_tags,
"documents_files": documents_files,
"quality_signals_files": quality_signals_files,
"duplicates_ids_files": duplicates_ids_files,
},
)
]
def _split_generators(self, dl_manager):
if self.config.name == "sample":
return self._split_generators_sample(dl_manager)
return self._split_generators_full(dl_manager)
def _generate_examples(
self, base_tags, documents_files, quality_signals_files, duplicates_ids_files
):
key = 0
for base_tag in base_tags:
doc_file = documents_files.get(base_tag)
qs_file = quality_signals_files.get(base_tag)
dupe_file = duplicates_ids_files.get(base_tag)
if doc_file is None:
continue
for sample in self.__get_generator(base_tag, doc_file, qs_file, dupe_file):
yield key, sample
key += 1
def __get_generator(self, base_tag, doc_file, qs_file, dupe_file):
if "_tail" in base_tag:
yield from self._handle_tail(base_tag, doc_file, qs_file, dupe_file)
else:
yield from self._handle_head_middle(base_tag, doc_file, qs_file, dupe_file)
def _handle_tail(self, base_tag, doc_file, qs_file, dupe_file):
try:
with gzip.open(doc_file, "rt", encoding="utf-8") as df:
for row, doc in enumerate(df):
doc_id = f"{base_tag}.json.gz/{row}"
try:
yield self.handle_record("tail", doc_id, doc, None, None)
except Exception as e:
logger.warning(f"failed handling row {row} in {doc_file}")
traceback.print_exc()
continue
except gzip.BadGzipFile as e:
# skip broken gzip files
print(f"BadGzipFile: {doc_file, qs_file}")
traceback.print_exc()
return
def _handle_head_middle(self, base_tag, doc_file, qs_file, dupe_file):
if qs_file is None:
yield from self._handle_tail(base_tag, doc_file, None, None)
return
# load duplicates
try:
with open(dupe_file, "rb") as df:
duplicates = set(
pq.read_table(df, columns=["doc_id"], use_pandas_metadata=False)[
"doc_id"
].to_pylist()
)
except Exception as e:
logger.warning(f"no duplicate ids found for {base_tag}")
duplicates = set()
try:
with gzip.open(doc_file, "rt", encoding="utf-8") as df:
with gzip.open(qs_file, "rt", encoding="utf-8") as qf:
for row, (doc, qs) in enumerate(zip(df, qf)):
doc_id = f"{base_tag}.json.gz/{row}"
try:
yield self.handle_record(
part="head_middle",
doc_id=doc_id,
doc=doc,
qs=qs,
is_duplicate=doc_id in duplicates,
)
except Exception as e:
logger.warning(
f"failed handling row {row} in {doc_file} ({qs_file})"
)
traceback.print_exc()
continue
except gzip.BadGzipFile as e:
# skip broken gzip files
print(f"BadGzipFile: {doc_file, qs_file}")
traceback.print_exc()
return
@staticmethod
def handle_record(part, doc_id, doc, qs, is_duplicate=None):
doc = json.loads(doc)
qs = json.loads(qs) if qs is not None else {}
meta = {
"url": doc["url"],
"partition": part,
"language": doc["language"],
"source_domain": doc["source_domain"],
"date_download": doc["date_download"],
"digest": doc["digest"],
}
quality_signals = qs.get("quality_signals", {})
quality_signals["is_duplicate"] = is_duplicate
return {
"raw_content": doc["raw_content"],
"doc_id": doc_id,
"meta": json.dumps(meta),
"quality_signals": json.dumps(quality_signals),
}
|