Datasets:

ArXiv:
Maurice Weber commited on
Commit
2c09767
1 Parent(s): bd77c17

update README.md

Browse files
Files changed (1) hide show
  1. README.md +35 -11
README.md CHANGED
@@ -21,6 +21,11 @@ used to create a dataset with 20B deduplicated documents.
21
  Check out our [blog post](https://together.ai/blog/redpajama-data-v2) for more details on the build process, dataset
22
  structure and schema.
23
 
 
 
 
 
 
24
  To familiarize yourself with the dataset, you can load the sample dataset using:
25
 
26
  ```python
@@ -29,10 +34,13 @@ from datasets import load_dataset
29
  ds = load_dataset("togethercomputer/RedPajama-Data-V2", name="sample")
30
  ```
31
 
32
- To download a the dataset for a specific combination of `{partition} x {snapshot_id} x {language}` (e.g., English and
33
- German data from the `head_middle` partition of the 2023-06 and the 2022-49 dumps), you can run the following command
34
- which downloads the raw (i.e., not deduplicated) part of the dataset.
35
- _Note that this will download the entire dumps and requires ~1TB disk space per dump_.
 
 
 
36
 
37
  ```python
38
  from datasets import load_dataset
@@ -44,10 +52,29 @@ ds = load_dataset("togethercomputer/RedPajama-Data-V2",
44
  languages=["en", "de"])
45
  ```
46
 
47
- Alternatively, you can also directly download the files using the following instructions, using English data from the
48
- `2023-06` snapshot and the `head_middle` partition as an example. The full set of CC snapshots included in the dataset
49
- is given in `_CC_SNAPSHOT_IDS`, and the available partitions are `tail` and `head_middle`. The available language tags
50
- are `en`, `de`, `fr`, `es`, `it`.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
51
 
52
  To download the plain text data, available for both the `head_middle` and `tail` partitions, you can run
53
 
@@ -106,9 +133,6 @@ for comp in "${COMPS[@]}"; do
106
  done
107
  ```
108
 
109
- A full set of scripts to recreate the dataset, including the quality signals, can be
110
- found [here](https://github.com/togethercomputer/RedPajama-Data).
111
-
112
  ### Applying Filtering Rules
113
 
114
  You can use the quality signals to filter the raw RedPajama-V2 dataset for a given set of rules. For example, consider
 
21
  Check out our [blog post](https://together.ai/blog/redpajama-data-v2) for more details on the build process, dataset
22
  structure and schema.
23
 
24
+ A full set of scripts to recreate the dataset, including the quality signals, can be
25
+ found [here](https://github.com/togethercomputer/RedPajama-Data).
26
+
27
+ #### Downloading the raw Dataset with Quality Annotations
28
+
29
  To familiarize yourself with the dataset, you can load the sample dataset using:
30
 
31
  ```python
 
34
  ds = load_dataset("togethercomputer/RedPajama-Data-V2", name="sample")
35
  ```
36
 
37
+ To download a the dataset for a specific combination of `{partition} x {snapshot_id} x {language}`, you can use the
38
+ following command which downloads the raw (i.e., *not* deduplicated) part of the dataset and the corresponding quality
39
+ signals. In the example below, we use English and German data from the `head_middle` partition of the 2023-06 and the
40
+ 2022-49 snapshots. The full set of available snapshots is specified in `_CC_SNAPSHOT_IDS`. The available partitions
41
+ are `tail` and `head_middle`. The available language tags are `en`, `de`, `fr`, `es`, `it`.
42
+ _Note that this will download the entire snapshots specified in the `snapshots` argument and requires ~1TB of disk space
43
+ per snapshot_.
44
 
45
  ```python
46
  from datasets import load_dataset
 
52
  languages=["en", "de"])
53
  ```
54
 
55
+ #### Downloading the dataset via wget
56
+
57
+ If you prefer to download the full dataset via wget, you can download the following lists of urls and use them to
58
+ download the dataset:
59
+
60
+ ```bash
61
+ # get list of urls pointing to the text documents
62
+ wget "https://data.together.xyz/redpajama-data-v2/v1.0.0/urls/document-urls.txt" -O "document-urls.txt"
63
+
64
+ # get list of urls pointing to the quality signals
65
+ wget "https://data.together.xyz/redpajama-data-v2/v1.0.0/urls/quality_signals-urls.txt" -O "quality_signals-urls.txt"
66
+
67
+ # get list of urls pointing to the ids of duplicate documents
68
+ wget "https://data.together.xyz/redpajama-data-v2/v1.0.0/urls/duplicates-urls.txt" -O "duplicates-urls.txt"
69
+
70
+ # get list of urls pointing to the minhash signatures
71
+ wget "https://data.together.xyz/redpajama-data-v2/v1.0.0/urls/minhash-urls.txt" -O "minhash-urls.txt"
72
+ ```
73
+
74
+ You can also directly download subsets of the dataset using the following instructions. Here we use English
75
+ data from the `2023-06` snapshot and the `head_middle` partition as an example. The full set of CC snapshots included in
76
+ the dataset is given in `_CC_SNAPSHOT_IDS`. The available partitions are `tail` and `head_middle`. The available
77
+ language tags are `en`, `de`, `fr`, `es`, `it`.
78
 
79
  To download the plain text data, available for both the `head_middle` and `tail` partitions, you can run
80
 
 
133
  done
134
  ```
135
 
 
 
 
136
  ### Applying Filtering Rules
137
 
138
  You can use the quality signals to filter the raw RedPajama-V2 dataset for a given set of rules. For example, consider