Datasets:
File size: 6,318 Bytes
1b3decc 36369bf 1b3decc 36369bf 1b3decc 36369bf 1b3decc 8eab19a 1b3decc 8eab19a 1b3decc 36369bf 1b3decc 36369bf 1b3decc 36369bf 8eab19a 36369bf 1b3decc 8eab19a 1b3decc 36369bf 1b3decc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 |
# coding=utf-8
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Lint as: python3
"""Scientific Lay Summarization Datasets."""
import json
import os
import datasets
_CITATION = """
@misc{Goldsack_2022,
doi = {10.48550/ARXIV.2210.09932},
url = {https://arxiv.org/abs/2210.09932},
author = {Goldsack, Tomas and Zhang, Zhihao and Lin, Chenghua and Scarton, Carolina},
title = {Making Science Simple: Corpora for the Lay Summarisation of Scientific Literature},
publisher = {arXiv},
year = {2022},
copyright = {arXiv.org perpetual, non-exclusive license}
}
"""
_DESCRIPTION = """
This repository contains the PLOS and eLife datasets, introduced in the EMNLP 2022 paper "[Making Science Simple: Corpora for the Lay Summarisation of Scientific Literature
](https://arxiv.org/abs/2210.09932)".
Each dataset contains full biomedical research articles paired with expert-written lay summaries (i.e., non-technical summaries). PLOS articles are derived from various journals published by [the Public Library of Science (PLOS)](https://plos.org/), whereas eLife articles are derived from the [eLife](https://elifesciences.org/) journal. More details/anlaysis on the content of each dataset are provided in the paper.
Both "elife" and "plos" have 6 features:
- "article": the body of the document (including the abstract), sections seperated by "/n".
- "section_headings": the title of each section, seperated by "/n".
- "keywords": keywords describing the topic of the article, seperated by "/n".
- "title" : the title of the article.
- "year" : the year the article was published.
- "summary": the lay summary of the document.
"""
_DOCUMENT = "article"
_SUMMARY = "summary"
_URLS = {
"plos": "https://drive.google.com/u/1/uc?id=1lZ6PCAtXvmGjRZyp3vQQCEgO_yerH62Q&export=download&confirm=t&uuid=03eb0ca9-2333-4681-ac85-68f0a0e6b5c8",
"elife": "https://drive.google.com/u/1/uc?id=1WKW8BAqluOlXrpy1B9mV3j3CtAK3JdnE&export=download&confirm=t&uuid=bbaafa1a-a0be-434f-935f-723033623119",
}
class ScientificLaySummarisationConfig(datasets.BuilderConfig):
"""BuilderConfig for Scientific Papers."""
def __init__(self, filename=None, **kwargs):
"""BuilderConfig for ScientificPapers
Args:
filename: filename of different configs for the dataset.
**kwargs: keyword arguments forwarded to super.
"""
super(ScientificLaySummarisationConfig, self).__init__(version=datasets.Version("1.0.0"), **kwargs)
self.filename = filename
class ScientificLaySummarisation(datasets.GeneratorBasedBuilder):
"""Scientific Papers."""
BUILDER_CONFIGS = [
ScientificLaySummarisationConfig(name="plos", description="Documents and lay summaries from PLOS journals."),
ScientificLaySummarisationConfig(name="elife", description="Documents and lay summaries from the eLife journal."),
]
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
_DOCUMENT: datasets.Value("string"),
_SUMMARY: datasets.Value("string"),
"section_headings": datasets.Value("string"),
"keywords": datasets.Value("string"),
"year": datasets.Value("string"),
"title": datasets.Value("string"),
}
),
supervised_keys=None,
homepage="https://github.com/TGoldsack1/Corpora_for_Lay_Summarisation",
citation=_CITATION,
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
dl_paths = dl_manager.download_and_extract(_URLS)
path = dl_paths[self.config.name]
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={"path": os.path.join(path, "train.json")},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={"path": os.path.join(path, "val.json")},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={"path": os.path.join(path, "test.json")},
),
]
def _generate_examples(self, path=None):
"""Yields examples."""
with open(path, encoding="utf-8") as f:
f = json.loads(f.read())
for d in f:
# Possible keys are:
# "id": str, # unique identifier
# "year": int, # year of publication
# "title": str, # title
# "sections": List[List[str]], # main text, divided in to sections/sentences
# "headings" List[str], # headings of each section
# "abstract": List[str], # abstract, in sentences
# "summary": List[str], # lay summary, in sentences
# "keywords": List[str] # keywords/topic of article
sections = [" ".join(s).strip() for s in d["sections"]]
abstract = " ".join(d['abstract']).strip()
full_doc = [abstract] + sections
summary = " ".join(d["summary"]).strip()
yield d["id"], {
_DOCUMENT: "\n".join(full_doc),
_SUMMARY: summary,
"section_headings": "\n".join(["Abstract"] + d["headings"]),
"keywords": "\n".join(d["keywords"]),
"year": d["year"],
"title": d["title"]
}
|