File size: 6,318 Bytes
1b3decc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
36369bf
 
 
 
 
 
 
 
1b3decc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
36369bf
1b3decc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
36369bf
1b3decc
 
 
 
 
 
 
 
 
 
 
 
 
8eab19a
1b3decc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8eab19a
 
1b3decc
 
 
 
36369bf
1b3decc
36369bf
 
1b3decc
 
36369bf
 
8eab19a
36369bf
1b3decc
 
8eab19a
1b3decc
36369bf
1b3decc
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
# coding=utf-8
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# Lint as: python3
"""Scientific Lay Summarization Datasets."""


import json
import os

import datasets


_CITATION = """
@misc{Goldsack_2022,
  doi = {10.48550/ARXIV.2210.09932},
  url = {https://arxiv.org/abs/2210.09932},
  author = {Goldsack, Tomas and Zhang, Zhihao and Lin, Chenghua and Scarton, Carolina},
  title = {Making Science Simple: Corpora for the Lay Summarisation of Scientific Literature},
  publisher = {arXiv},
  year = {2022},
  copyright = {arXiv.org perpetual, non-exclusive license}
}
"""

_DESCRIPTION = """
This repository contains the PLOS and eLife datasets, introduced in the EMNLP 2022 paper "[Making Science Simple: Corpora for the Lay Summarisation of Scientific Literature
](https://arxiv.org/abs/2210.09932)". 
Each dataset contains full biomedical research articles paired with expert-written lay summaries (i.e., non-technical summaries). PLOS articles are derived from various journals published by [the Public Library of Science (PLOS)](https://plos.org/), whereas eLife articles are derived from the [eLife](https://elifesciences.org/) journal. More details/anlaysis on the content of each dataset are provided in the paper.

Both "elife" and "plos" have 6 features:
    - "article": the body of the document (including the abstract), sections seperated by "/n".
    - "section_headings": the title of each section, seperated by "/n". 
    - "keywords": keywords describing the topic of the article, seperated by "/n".
    - "title" : the title of the article.
    - "year" : the year the article was published.
    - "summary": the lay summary of the document.
"""

_DOCUMENT = "article"
_SUMMARY = "summary"

_URLS = {
    "plos": "https://drive.google.com/u/1/uc?id=1lZ6PCAtXvmGjRZyp3vQQCEgO_yerH62Q&export=download&confirm=t&uuid=03eb0ca9-2333-4681-ac85-68f0a0e6b5c8",
    "elife": "https://drive.google.com/u/1/uc?id=1WKW8BAqluOlXrpy1B9mV3j3CtAK3JdnE&export=download&confirm=t&uuid=bbaafa1a-a0be-434f-935f-723033623119",
}


class ScientificLaySummarisationConfig(datasets.BuilderConfig):
    """BuilderConfig for Scientific Papers."""

    def __init__(self, filename=None, **kwargs):
        """BuilderConfig for ScientificPapers
        Args:
          filename: filename of different configs for the dataset.
          **kwargs: keyword arguments forwarded to super.
        """
        super(ScientificLaySummarisationConfig, self).__init__(version=datasets.Version("1.0.0"), **kwargs)
        self.filename = filename


class ScientificLaySummarisation(datasets.GeneratorBasedBuilder):
    """Scientific Papers."""

    BUILDER_CONFIGS = [
        ScientificLaySummarisationConfig(name="plos", description="Documents and lay summaries from PLOS journals."),
        ScientificLaySummarisationConfig(name="elife", description="Documents and lay summaries from the eLife journal."),
    ]

    def _info(self):
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features(
                {
                    _DOCUMENT: datasets.Value("string"),
                    _SUMMARY: datasets.Value("string"),
                    "section_headings": datasets.Value("string"),
                    "keywords": datasets.Value("string"),
                    "year": datasets.Value("string"),
                    "title": datasets.Value("string"),
                }
            ),
            supervised_keys=None,
            homepage="https://github.com/TGoldsack1/Corpora_for_Lay_Summarisation",
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        """Returns SplitGenerators."""
        dl_paths = dl_manager.download_and_extract(_URLS)
        path = dl_paths[self.config.name]
        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={"path": os.path.join(path, "train.json")},
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                gen_kwargs={"path": os.path.join(path, "val.json")},
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                gen_kwargs={"path": os.path.join(path, "test.json")},
            ),
        ]

    def _generate_examples(self, path=None):
        """Yields examples."""
        with open(path, encoding="utf-8") as f:
            f = json.loads(f.read())
            for d in f:
                # Possible keys are:
                # "id": str,                      # unique identifier
                # "year": int,                    # year of publication
                # "title": str,                   # title
                # "sections": List[List[str]],    # main text, divided in to sections/sentences
                # "headings" List[str],           # headings of each section
                # "abstract": List[str],          # abstract, in sentences
                # "summary": List[str],           # lay summary, in sentences
                # "keywords": List[str]           # keywords/topic of article

                sections = [" ".join(s).strip() for s in d["sections"]]
                abstract = " ".join(d['abstract']).strip()
                full_doc = [abstract] + sections
                summary = " ".join(d["summary"]).strip()

                yield d["id"], {
                    _DOCUMENT: "\n".join(full_doc),
                    _SUMMARY: summary,
                    "section_headings": "\n".join(["Abstract"] + d["headings"]),
                    "keywords": "\n".join(d["keywords"]),
                    "year": d["year"],
                    "title": d["title"]
                }