File size: 5,939 Bytes
63e18ad
36e80ed
 
 
 
 
 
 
3f9f0f1
36e80ed
 
5f2524f
36e80ed
 
 
 
 
 
5f2524f
 
 
36e80ed
 
 
 
 
63e18ad
36e80ed
 
 
0b00c95
 
 
 
 
 
36e80ed
 
 
 
 
159aa1a
36e80ed
8eab19a
0b00c95
159aa1a
 
 
 
 
8eab19a
0b00c95
3c788f4
159aa1a
0b00c95
36e80ed
 
 
 
 
 
 
 
 
 
 
 
0b00c95
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5f2524f
0b00c95
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5f2524f
36e80ed
 
 
0b00c95
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
36e80ed
 
 
0b00c95
 
 
 
 
36e80ed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0b00c95
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
---
annotations_creators:
- found
language:
- en
language_creators:
- found
license:
- cc-by-4.0
multilinguality:
- monolingual
pretty_name: ScientificLaySummarisation
size_categories:
- 10K<n<100K
- 1K<n<10K
source_datasets:
- original
tags:
- abstractive-summarization
- scientific-papers
- lay-summarization
- PLOS
- eLife
task_categories:
- summarization
task_ids: []
---

# Dataset Card for "scientific_lay_summarisation"

- **Repository:** https://github.com/TGoldsack1/Corpora_for_Lay_Summarisation
- **Paper:** [Making Science Simple: Corpora for the Lay Summarisation of Scientific Literature](https://arxiv.org/abs/2210.09932)
- **Size of downloaded dataset files:** 850.44 MB
- **Size of the generated dataset:** 1.32 GB
- **Total amount of disk used:** 2.17 GB

### Dataset Summary

This repository contains the PLOS and eLife datasets, introduced in the EMNLP 2022 paper "[Making Science Simple: Corpora for the Lay Summarisation of Scientific Literature
](https://arxiv.org/abs/2210.09932)" . 

Each dataset contains full biomedical research articles paired with expert-written lay summaries (i.e., non-technical summaries). PLOS articles are derived from various journals published by [the Public Library of Science (PLOS)](https://plos.org/), whereas eLife articles are derived from the [eLife](https://elifesciences.org/) journal. More details/analyses on the content of each dataset are provided in the paper.

Both "elife" and "plos" have 6 features:

    - "article": the body of the document (including the abstract), sections separated by "/n".
    - "section_headings": the title of each section, separated by "/n". 
    - "keywords": keywords describing the topic of the article, separated by "/n".
    - "title": the title of the article.
    - "year": the year the article was published.
    - "summary": the lay summary of the document.
  
  
**Note:** The format of both datasets differs from that used in the original repository (given above) in order to make them compatible with the `run_summarization.py` script of Transformers. Specifically, sentence tokenization is removed via " ".join(text), and the abstract and article sections, previously lists of sentences, are combined into a single `string` feature ("article") with each section separated by "\n". For the sentence-tokenized version of the dataset, please use the original git repository.
    
### Supported Tasks and Leaderboards

Papers with code - [PLOS](https://paperswithcode.com/sota/lay-summarization-on-plos) and [eLife](https://paperswithcode.com/sota/lay-summarization-on-elife).

### Languages

English

## Dataset Structure

### Data Instances

#### plos

- **Size of downloaded dataset files:** 425.22 MB
- **Size of the generated dataset:** 1.05 GB
- **Total amount of disk used:** 1.47 GB

An example of 'train' looks as follows.
```
This example was too long and was cropped:
{
    "summary": "In the kidney , structures known as nephrons are responsible for collecting metabolic waste . Nephrons are composed of a ...",
    "article": "Kidney function depends on the nephron , which comprises a 'blood filter , a tubule that is subdivided into functionally ...",
    "section_headings": "Abstract\nIntroduction\nResults\nDiscussion\nMaterials and Methods'",
    "keywords": "developmental biology\ndanio (zebrafish)\nvertebrates\nteleost fishes\nnephrology",
    "title": "The cdx Genes and Retinoic Acid Control the Positioning and Segmentation of the Zebrafish Pronephros",
    "year": "2007"
}
```


#### elife

- **Size of downloaded dataset files:** 425.22 MB
- **Size of the generated dataset:** 275.99 MB
- **Total amount of disk used:** 1.47 MB

An example of 'train' looks as follows.
```
This example was too long and was cropped:
{
    "summary": "In the USA , more deaths happen in the winter than the summer . But when deaths occur varies greatly by sex , age , cause of ...",
    "article": "In temperate climates , winter deaths exceed summer ones . However , there is limited information on the timing and the ...",
    "section_headings": "Abstract\nIntroduction\nResults\nDiscussion\nMaterials and methods",
    "keywords": "epidemiology and global health",
    "title": "National and regional seasonal dynamics of all-cause and cause-specific mortality in the USA from 1980 to 2016",
    "year": "2018"
}
```

### Data Fields

The data fields are the same among all splits.

#### plos

- `article`: a `string` feature.
- `section_headings`: a `string` feature.
- `keywords`: a `string` feature.
- `title` : a `string` feature.
- `year` : a `string` feature.
- `summary`: a `string` feature.


#### elife

- `article`: a `string` feature.
- `section_headings`: a `string` feature.
- `keywords`: a `string` feature.
- `title` : a `string` feature.
- `year` : a `string` feature.
- `summary`: a `string` feature.

### Data Splits

| name |train |validation|test|
|------|-----:|---------:|---:|
|plos  | 24773|      1376|1376|
|elife |  4346|       241| 241|


## Dataset Creation

### Curation Rationale

[More Information Needed]

### Source Data

#### Initial Data Collection and Normalization

[More Information Needed]

#### Who are the source language producers?

[More Information Needed]

### Annotations

#### Annotation process

[More Information Needed]

#### Who are the annotators?

[More Information Needed]

### Personal and Sensitive Information

[More Information Needed]

## Considerations for Using the Data

### Social Impact of Dataset

[More Information Needed]

### Discussion of Biases

[More Information Needed]

### Other Known Limitations

[More Information Needed]

## Additional Information

### Dataset Curators

[More Information Needed]

### Licensing Information

[More Information Needed]

### Citation Information

```
"Making Science Simple: Corpora for the Lay Summarisation of Scientific Literature"
Tomas Goldsack, Zhihao Zhang, Chenghua Lin, Carolina Scarton
EMNLP 2022
```