omarsol commited on
Commit
7bb4617
1 Parent(s): 07259ed

75943fcbffa88cf3125f7fb5729293e826dcfb63ac7cf15097d5124a31d2cf67

Browse files
Files changed (50) hide show
  1. langchain_md_files/integrations/providers/outline.mdx +22 -0
  2. langchain_md_files/integrations/providers/pandas.mdx +29 -0
  3. langchain_md_files/integrations/providers/perplexity.mdx +25 -0
  4. langchain_md_files/integrations/providers/petals.mdx +17 -0
  5. langchain_md_files/integrations/providers/pg_embedding.mdx +22 -0
  6. langchain_md_files/integrations/providers/pgvector.mdx +29 -0
  7. langchain_md_files/integrations/providers/pinecone.mdx +51 -0
  8. langchain_md_files/integrations/providers/pipelineai.mdx +19 -0
  9. langchain_md_files/integrations/providers/predictionguard.mdx +102 -0
  10. langchain_md_files/integrations/providers/promptlayer.mdx +49 -0
  11. langchain_md_files/integrations/providers/psychic.mdx +34 -0
  12. langchain_md_files/integrations/providers/pygmalionai.mdx +21 -0
  13. langchain_md_files/integrations/providers/qdrant.mdx +27 -0
  14. langchain_md_files/integrations/providers/rank_bm25.mdx +25 -0
  15. langchain_md_files/integrations/providers/reddit.mdx +22 -0
  16. langchain_md_files/integrations/providers/redis.mdx +138 -0
  17. langchain_md_files/integrations/providers/remembrall.mdx +15 -0
  18. langchain_md_files/integrations/providers/replicate.mdx +46 -0
  19. langchain_md_files/integrations/providers/roam.mdx +17 -0
  20. langchain_md_files/integrations/providers/robocorp.mdx +37 -0
  21. langchain_md_files/integrations/providers/rockset.mdx +33 -0
  22. langchain_md_files/integrations/providers/runhouse.mdx +29 -0
  23. langchain_md_files/integrations/providers/rwkv.mdx +65 -0
  24. langchain_md_files/integrations/providers/salute_devices.mdx +37 -0
  25. langchain_md_files/integrations/providers/sap.mdx +25 -0
  26. langchain_md_files/integrations/providers/searchapi.mdx +80 -0
  27. langchain_md_files/integrations/providers/searx.mdx +90 -0
  28. langchain_md_files/integrations/providers/semadb.mdx +19 -0
  29. langchain_md_files/integrations/providers/serpapi.mdx +31 -0
  30. langchain_md_files/integrations/providers/singlestoredb.mdx +28 -0
  31. langchain_md_files/integrations/providers/sklearn.mdx +35 -0
  32. langchain_md_files/integrations/providers/slack.mdx +32 -0
  33. langchain_md_files/integrations/providers/snowflake.mdx +32 -0
  34. langchain_md_files/integrations/providers/spacy.mdx +28 -0
  35. langchain_md_files/integrations/providers/sparkllm.mdx +14 -0
  36. langchain_md_files/integrations/providers/spreedly.mdx +15 -0
  37. langchain_md_files/integrations/providers/sqlite.mdx +31 -0
  38. langchain_md_files/integrations/providers/stackexchange.mdx +36 -0
  39. langchain_md_files/integrations/providers/starrocks.mdx +21 -0
  40. langchain_md_files/integrations/providers/stochasticai.mdx +17 -0
  41. langchain_md_files/integrations/providers/streamlit.mdx +30 -0
  42. langchain_md_files/integrations/providers/stripe.mdx +16 -0
  43. langchain_md_files/integrations/providers/supabase.mdx +26 -0
  44. langchain_md_files/integrations/providers/symblai_nebula.mdx +17 -0
  45. langchain_md_files/integrations/providers/tair.mdx +23 -0
  46. langchain_md_files/integrations/providers/telegram.mdx +25 -0
  47. langchain_md_files/integrations/providers/tencent.mdx +95 -0
  48. langchain_md_files/integrations/providers/tensorflow_datasets.mdx +31 -0
  49. langchain_md_files/integrations/providers/tidb.mdx +38 -0
  50. langchain_md_files/integrations/providers/tigergraph.mdx +25 -0
langchain_md_files/integrations/providers/outline.mdx ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Outline
2
+
3
+ > [Outline](https://www.getoutline.com/) is an open-source collaborative knowledge base platform designed for team information sharing.
4
+
5
+ ## Setup
6
+
7
+ You first need to [create an api key](https://www.getoutline.com/developers#section/Authentication) for your Outline instance. Then you need to set the following environment variables:
8
+
9
+ ```python
10
+ import os
11
+
12
+ os.environ["OUTLINE_API_KEY"] = "xxx"
13
+ os.environ["OUTLINE_INSTANCE_URL"] = "https://app.getoutline.com"
14
+ ```
15
+
16
+ ## Retriever
17
+
18
+ See a [usage example](/docs/integrations/retrievers/outline).
19
+
20
+ ```python
21
+ from langchain.retrievers import OutlineRetriever
22
+ ```
langchain_md_files/integrations/providers/pandas.mdx ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Pandas
2
+
3
+ >[pandas](https://pandas.pydata.org) is a fast, powerful, flexible and easy to use open source data analysis and manipulation tool,
4
+ built on top of the `Python` programming language.
5
+
6
+ ## Installation and Setup
7
+
8
+ Install the `pandas` package using `pip`:
9
+
10
+ ```bash
11
+ pip install pandas
12
+ ```
13
+
14
+
15
+ ## Document loader
16
+
17
+ See a [usage example](/docs/integrations/document_loaders/pandas_dataframe).
18
+
19
+ ```python
20
+ from langchain_community.document_loaders import DataFrameLoader
21
+ ```
22
+
23
+ ## Toolkit
24
+
25
+ See a [usage example](/docs/integrations/tools/pandas).
26
+
27
+ ```python
28
+ from langchain_experimental.agents.agent_toolkits import create_pandas_dataframe_agent
29
+ ```
langchain_md_files/integrations/providers/perplexity.mdx ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Perplexity
2
+
3
+ >[Perplexity](https://www.perplexity.ai/pro) is the most powerful way to search
4
+ > the internet with unlimited Pro Search, upgraded AI models, unlimited file upload,
5
+ > image generation, and API credits.
6
+ >
7
+ > You can check a [list of available models](https://docs.perplexity.ai/docs/model-cards).
8
+
9
+ ## Installation and Setup
10
+
11
+ Install a Python package:
12
+
13
+ ```bash
14
+ pip install openai
15
+ ````
16
+
17
+ Get your API key from [here](https://docs.perplexity.ai/docs/getting-started).
18
+
19
+ ## Chat models
20
+
21
+ See a [usage example](/docs/integrations/chat/perplexity).
22
+
23
+ ```python
24
+ from langchain_community.chat_models import ChatPerplexity
25
+ ```
langchain_md_files/integrations/providers/petals.mdx ADDED
@@ -0,0 +1,17 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Petals
2
+
3
+ This page covers how to use the Petals ecosystem within LangChain.
4
+ It is broken into two parts: installation and setup, and then references to specific Petals wrappers.
5
+
6
+ ## Installation and Setup
7
+ - Install with `pip install petals`
8
+ - Get a Hugging Face api key and set it as an environment variable (`HUGGINGFACE_API_KEY`)
9
+
10
+ ## Wrappers
11
+
12
+ ### LLM
13
+
14
+ There exists an Petals LLM wrapper, which you can access with
15
+ ```python
16
+ from langchain_community.llms import Petals
17
+ ```
langchain_md_files/integrations/providers/pg_embedding.mdx ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Postgres Embedding
2
+
3
+ > [pg_embedding](https://github.com/neondatabase/pg_embedding) is an open-source package for
4
+ > vector similarity search using `Postgres` and the `Hierarchical Navigable Small Worlds`
5
+ > algorithm for approximate nearest neighbor search.
6
+
7
+ ## Installation and Setup
8
+
9
+ We need to install several python packages.
10
+
11
+ ```bash
12
+ pip install psycopg2-binary
13
+ ```
14
+
15
+ ## Vector Store
16
+
17
+ See a [usage example](/docs/integrations/vectorstores/pgembedding).
18
+
19
+ ```python
20
+ from langchain_community.vectorstores import PGEmbedding
21
+ ```
22
+
langchain_md_files/integrations/providers/pgvector.mdx ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # PGVector
2
+
3
+ This page covers how to use the Postgres [PGVector](https://github.com/pgvector/pgvector) ecosystem within LangChain
4
+ It is broken into two parts: installation and setup, and then references to specific PGVector wrappers.
5
+
6
+ ## Installation
7
+ - Install the Python package with `pip install pgvector`
8
+
9
+
10
+ ## Setup
11
+ 1. The first step is to create a database with the `pgvector` extension installed.
12
+
13
+ Follow the steps at [PGVector Installation Steps](https://github.com/pgvector/pgvector#installation) to install the database and the extension. The docker image is the easiest way to get started.
14
+
15
+ ## Wrappers
16
+
17
+ ### VectorStore
18
+
19
+ There exists a wrapper around Postgres vector databases, allowing you to use it as a vectorstore,
20
+ whether for semantic search or example selection.
21
+
22
+ To import this vectorstore:
23
+ ```python
24
+ from langchain_community.vectorstores.pgvector import PGVector
25
+ ```
26
+
27
+ ### Usage
28
+
29
+ For a more detailed walkthrough of the PGVector Wrapper, see [this notebook](/docs/integrations/vectorstores/pgvector)
langchain_md_files/integrations/providers/pinecone.mdx ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ keywords: [pinecone]
3
+ ---
4
+
5
+ # Pinecone
6
+
7
+ >[Pinecone](https://docs.pinecone.io/docs/overview) is a vector database with broad functionality.
8
+
9
+
10
+ ## Installation and Setup
11
+
12
+ Install the Python SDK:
13
+
14
+ ```bash
15
+ pip install langchain-pinecone
16
+ ```
17
+
18
+
19
+ ## Vector store
20
+
21
+ There exists a wrapper around Pinecone indexes, allowing you to use it as a vectorstore,
22
+ whether for semantic search or example selection.
23
+
24
+ ```python
25
+ from langchain_pinecone import PineconeVectorStore
26
+ ```
27
+
28
+ For a more detailed walkthrough of the Pinecone vectorstore, see [this notebook](/docs/integrations/vectorstores/pinecone)
29
+
30
+ ## Retrievers
31
+
32
+ ### Pinecone Hybrid Search
33
+
34
+ ```bash
35
+ pip install pinecone-client pinecone-text
36
+ ```
37
+
38
+ ```python
39
+ from langchain_community.retrievers import (
40
+ PineconeHybridSearchRetriever,
41
+ )
42
+ ```
43
+
44
+ For more detailed information, see [this notebook](/docs/integrations/retrievers/pinecone_hybrid_search).
45
+
46
+
47
+ ### Self Query retriever
48
+
49
+ Pinecone vector store can be used as a retriever for self-querying.
50
+
51
+ For more detailed information, see [this notebook](/docs/integrations/retrievers/self_query/pinecone).
langchain_md_files/integrations/providers/pipelineai.mdx ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # PipelineAI
2
+
3
+ This page covers how to use the PipelineAI ecosystem within LangChain.
4
+ It is broken into two parts: installation and setup, and then references to specific PipelineAI wrappers.
5
+
6
+ ## Installation and Setup
7
+
8
+ - Install with `pip install pipeline-ai`
9
+ - Get a Pipeline Cloud api key and set it as an environment variable (`PIPELINE_API_KEY`)
10
+
11
+ ## Wrappers
12
+
13
+ ### LLM
14
+
15
+ There exists a PipelineAI LLM wrapper, which you can access with
16
+
17
+ ```python
18
+ from langchain_community.llms import PipelineAI
19
+ ```
langchain_md_files/integrations/providers/predictionguard.mdx ADDED
@@ -0,0 +1,102 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Prediction Guard
2
+
3
+ This page covers how to use the Prediction Guard ecosystem within LangChain.
4
+ It is broken into two parts: installation and setup, and then references to specific Prediction Guard wrappers.
5
+
6
+ ## Installation and Setup
7
+ - Install the Python SDK with `pip install predictionguard`
8
+ - Get a Prediction Guard access token (as described [here](https://docs.predictionguard.com/)) and set it as an environment variable (`PREDICTIONGUARD_TOKEN`)
9
+
10
+ ## LLM Wrapper
11
+
12
+ There exists a Prediction Guard LLM wrapper, which you can access with
13
+ ```python
14
+ from langchain_community.llms import PredictionGuard
15
+ ```
16
+
17
+ You can provide the name of the Prediction Guard model as an argument when initializing the LLM:
18
+ ```python
19
+ pgllm = PredictionGuard(model="MPT-7B-Instruct")
20
+ ```
21
+
22
+ You can also provide your access token directly as an argument:
23
+ ```python
24
+ pgllm = PredictionGuard(model="MPT-7B-Instruct", token="<your access token>")
25
+ ```
26
+
27
+ Finally, you can provide an "output" argument that is used to structure/ control the output of the LLM:
28
+ ```python
29
+ pgllm = PredictionGuard(model="MPT-7B-Instruct", output={"type": "boolean"})
30
+ ```
31
+
32
+ ## Example usage
33
+
34
+ Basic usage of the controlled or guarded LLM wrapper:
35
+ ```python
36
+ import os
37
+
38
+ import predictionguard as pg
39
+ from langchain_community.llms import PredictionGuard
40
+ from langchain_core.prompts import PromptTemplate
41
+ from langchain.chains import LLMChain
42
+
43
+ # Your Prediction Guard API key. Get one at predictionguard.com
44
+ os.environ["PREDICTIONGUARD_TOKEN"] = "<your Prediction Guard access token>"
45
+
46
+ # Define a prompt template
47
+ template = """Respond to the following query based on the context.
48
+
49
+ Context: EVERY comment, DM + email suggestion has led us to this EXCITING announcement! 🎉 We have officially added TWO new candle subscription box options! 📦
50
+ Exclusive Candle Box - $80
51
+ Monthly Candle Box - $45 (NEW!)
52
+ Scent of The Month Box - $28 (NEW!)
53
+ Head to stories to get ALL the deets on each box! 👆 BONUS: Save 50% on your first box with code 50OFF! 🎉
54
+
55
+ Query: {query}
56
+
57
+ Result: """
58
+ prompt = PromptTemplate.from_template(template)
59
+
60
+ # With "guarding" or controlling the output of the LLM. See the
61
+ # Prediction Guard docs (https://docs.predictionguard.com) to learn how to
62
+ # control the output with integer, float, boolean, JSON, and other types and
63
+ # structures.
64
+ pgllm = PredictionGuard(model="MPT-7B-Instruct",
65
+ output={
66
+ "type": "categorical",
67
+ "categories": [
68
+ "product announcement",
69
+ "apology",
70
+ "relational"
71
+ ]
72
+ })
73
+ pgllm(prompt.format(query="What kind of post is this?"))
74
+ ```
75
+
76
+ Basic LLM Chaining with the Prediction Guard wrapper:
77
+ ```python
78
+ import os
79
+
80
+ from langchain_core.prompts import PromptTemplate
81
+ from langchain.chains import LLMChain
82
+ from langchain_community.llms import PredictionGuard
83
+
84
+ # Optional, add your OpenAI API Key. This is optional, as Prediction Guard allows
85
+ # you to access all the latest open access models (see https://docs.predictionguard.com)
86
+ os.environ["OPENAI_API_KEY"] = "<your OpenAI api key>"
87
+
88
+ # Your Prediction Guard API key. Get one at predictionguard.com
89
+ os.environ["PREDICTIONGUARD_TOKEN"] = "<your Prediction Guard access token>"
90
+
91
+ pgllm = PredictionGuard(model="OpenAI-gpt-3.5-turbo-instruct")
92
+
93
+ template = """Question: {question}
94
+
95
+ Answer: Let's think step by step."""
96
+ prompt = PromptTemplate.from_template(template)
97
+ llm_chain = LLMChain(prompt=prompt, llm=pgllm, verbose=True)
98
+
99
+ question = "What NFL team won the Super Bowl in the year Justin Beiber was born?"
100
+
101
+ llm_chain.predict(question=question)
102
+ ```
langchain_md_files/integrations/providers/promptlayer.mdx ADDED
@@ -0,0 +1,49 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # PromptLayer
2
+
3
+ >[PromptLayer](https://docs.promptlayer.com/introduction) is a platform for prompt engineering.
4
+ > It also helps with the LLM observability to visualize requests, version prompts, and track usage.
5
+ >
6
+ >While `PromptLayer` does have LLMs that integrate directly with LangChain (e.g.
7
+ > [`PromptLayerOpenAI`](https://docs.promptlayer.com/languages/langchain)),
8
+ > using a callback is the recommended way to integrate `PromptLayer` with LangChain.
9
+
10
+ ## Installation and Setup
11
+
12
+ To work with `PromptLayer`, we have to:
13
+ - Create a `PromptLayer` account
14
+ - Create an api token and set it as an environment variable (`PROMPTLAYER_API_KEY`)
15
+
16
+ Install a Python package:
17
+
18
+ ```bash
19
+ pip install promptlayer
20
+ ```
21
+
22
+
23
+ ## Callback
24
+
25
+ See a [usage example](/docs/integrations/callbacks/promptlayer).
26
+
27
+ ```python
28
+ import promptlayer # Don't forget this import!
29
+ from langchain.callbacks import PromptLayerCallbackHandler
30
+ ```
31
+
32
+
33
+ ## LLM
34
+
35
+ See a [usage example](/docs/integrations/llms/promptlayer_openai).
36
+
37
+ ```python
38
+ from langchain_community.llms import PromptLayerOpenAI
39
+ ```
40
+
41
+
42
+ ## Chat Models
43
+
44
+ See a [usage example](/docs/integrations/chat/promptlayer_chatopenai).
45
+
46
+ ```python
47
+ from langchain_community.chat_models import PromptLayerChatOpenAI
48
+ ```
49
+
langchain_md_files/integrations/providers/psychic.mdx ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ sidebar_class_name: hidden
3
+ ---
4
+
5
+ # Psychic
6
+
7
+ :::warning
8
+ This provider is no longer maintained, and may not work. Use with caution.
9
+ :::
10
+
11
+ >[Psychic](https://www.psychic.dev/) is a platform for integrating with SaaS tools like `Notion`, `Zendesk`,
12
+ > `Confluence`, and `Google Drive` via OAuth and syncing documents from these applications to your SQL or vector
13
+ > database. You can think of it like Plaid for unstructured data.
14
+
15
+ ## Installation and Setup
16
+
17
+ ```bash
18
+ pip install psychicapi
19
+ ```
20
+
21
+ Psychic is easy to set up - you import the `react` library and configure it with your `Sidekick API` key, which you get
22
+ from the [Psychic dashboard](https://dashboard.psychic.dev/). When you connect the applications, you
23
+ view these connections from the dashboard and retrieve data using the server-side libraries.
24
+
25
+ 1. Create an account in the [dashboard](https://dashboard.psychic.dev/).
26
+ 2. Use the [react library](https://docs.psychic.dev/sidekick-link) to add the Psychic link modal to your frontend react app. You will use this to connect the SaaS apps.
27
+ 3. Once you have created a connection, you can use the `PsychicLoader` by following the [example notebook](/docs/integrations/document_loaders/psychic)
28
+
29
+
30
+ ## Advantages vs Other Document Loaders
31
+
32
+ 1. **Universal API:** Instead of building OAuth flows and learning the APIs for every SaaS app, you integrate Psychic once and leverage our universal API to retrieve data.
33
+ 2. **Data Syncs:** Data in your customers' SaaS apps can get stale fast. With Psychic you can configure webhooks to keep your documents up to date on a daily or realtime basis.
34
+ 3. **Simplified OAuth:** Psychic handles OAuth end-to-end so that you don't have to spend time creating OAuth clients for each integration, keeping access tokens fresh, and handling OAuth redirect logic.
langchain_md_files/integrations/providers/pygmalionai.mdx ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # PygmalionAI
2
+
3
+ >[PygmalionAI](https://pygmalion.chat/) is a company supporting the
4
+ > open-source models by serving the inference endpoint
5
+ > for the [Aphrodite Engine](https://github.com/PygmalionAI/aphrodite-engine).
6
+
7
+
8
+ ## Installation and Setup
9
+
10
+
11
+ ```bash
12
+ pip install aphrodite-engine
13
+ ```
14
+
15
+ ## LLMs
16
+
17
+ See a [usage example](/docs/integrations/llms/aphrodite).
18
+
19
+ ```python
20
+ from langchain_community.llms import Aphrodite
21
+ ```
langchain_md_files/integrations/providers/qdrant.mdx ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Qdrant
2
+
3
+ >[Qdrant](https://qdrant.tech/documentation/) (read: quadrant) is a vector similarity search engine.
4
+ > It provides a production-ready service with a convenient API to store, search, and manage
5
+ > points - vectors with an additional payload. `Qdrant` is tailored to extended filtering support.
6
+
7
+
8
+ ## Installation and Setup
9
+
10
+ Install the Python partner package:
11
+
12
+ ```bash
13
+ pip install langchain-qdrant
14
+ ```
15
+
16
+
17
+ ## Vector Store
18
+
19
+ There exists a wrapper around `Qdrant` indexes, allowing you to use it as a vectorstore,
20
+ whether for semantic search or example selection.
21
+
22
+ To import this vectorstore:
23
+ ```python
24
+ from langchain_qdrant import QdrantVectorStore
25
+ ```
26
+
27
+ For a more detailed walkthrough of the Qdrant wrapper, see [this notebook](/docs/integrations/vectorstores/qdrant)
langchain_md_files/integrations/providers/rank_bm25.mdx ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # rank_bm25
2
+
3
+ [rank_bm25](https://github.com/dorianbrown/rank_bm25) is an open-source collection of algorithms
4
+ designed to query documents and return the most relevant ones, commonly used for creating
5
+ search engines.
6
+
7
+ See its [project page](https://github.com/dorianbrown/rank_bm25) for available algorithms.
8
+
9
+
10
+ ## Installation and Setup
11
+
12
+ First, you need to install `rank_bm25` python package.
13
+
14
+ ```bash
15
+ pip install rank_bm25
16
+ ```
17
+
18
+
19
+ ## Retriever
20
+
21
+ See a [usage example](/docs/integrations/retrievers/bm25).
22
+
23
+ ```python
24
+ from langchain_community.retrievers import BM25Retriever
25
+ ```
langchain_md_files/integrations/providers/reddit.mdx ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Reddit
2
+
3
+ >[Reddit](https://www.reddit.com) is an American social news aggregation, content rating, and discussion website.
4
+
5
+ ## Installation and Setup
6
+
7
+ First, you need to install a python package.
8
+
9
+ ```bash
10
+ pip install praw
11
+ ```
12
+
13
+ Make a [Reddit Application](https://www.reddit.com/prefs/apps/) and initialize the loader with your Reddit API credentials.
14
+
15
+ ## Document Loader
16
+
17
+ See a [usage example](/docs/integrations/document_loaders/reddit).
18
+
19
+
20
+ ```python
21
+ from langchain_community.document_loaders import RedditPostsLoader
22
+ ```
langchain_md_files/integrations/providers/redis.mdx ADDED
@@ -0,0 +1,138 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Redis
2
+
3
+ >[Redis (Remote Dictionary Server)](https://en.wikipedia.org/wiki/Redis) is an open-source in-memory storage,
4
+ > used as a distributed, in-memory key–value database, cache and message broker, with optional durability.
5
+ > Because it holds all data in memory and because of its design, `Redis` offers low-latency reads and writes,
6
+ > making it particularly suitable for use cases that require a cache. Redis is the most popular NoSQL database,
7
+ > and one of the most popular databases overall.
8
+
9
+ This page covers how to use the [Redis](https://redis.com) ecosystem within LangChain.
10
+ It is broken into two parts: installation and setup, and then references to specific Redis wrappers.
11
+
12
+ ## Installation and Setup
13
+
14
+ Install the Python SDK:
15
+
16
+ ```bash
17
+ pip install redis
18
+ ```
19
+
20
+ To run Redis locally, you can use Docker:
21
+
22
+ ```bash
23
+ docker run --name langchain-redis -d -p 6379:6379 redis redis-server --save 60 1 --loglevel warning
24
+ ```
25
+
26
+ To stop the container:
27
+
28
+ ```bash
29
+ docker stop langchain-redis
30
+ ```
31
+
32
+ And to start it again:
33
+
34
+ ```bash
35
+ docker start langchain-redis
36
+ ```
37
+
38
+ ### Connections
39
+
40
+ We need a redis url connection string to connect to the database support either a stand alone Redis server
41
+ or a High-Availability setup with Replication and Redis Sentinels.
42
+
43
+ #### Redis Standalone connection url
44
+ For standalone `Redis` server, the official redis connection url formats can be used as describe in the python redis modules
45
+ "from_url()" method [Redis.from_url](https://redis-py.readthedocs.io/en/stable/connections.html#redis.Redis.from_url)
46
+
47
+ Example: `redis_url = "redis://:secret-pass@localhost:6379/0"`
48
+
49
+ #### Redis Sentinel connection url
50
+
51
+ For [Redis sentinel setups](https://redis.io/docs/management/sentinel/) the connection scheme is "redis+sentinel".
52
+ This is an unofficial extensions to the official IANA registered protocol schemes as long as there is no connection url
53
+ for Sentinels available.
54
+
55
+ Example: `redis_url = "redis+sentinel://:secret-pass@sentinel-host:26379/mymaster/0"`
56
+
57
+ The format is `redis+sentinel://[[username]:[password]]@[host-or-ip]:[port]/[service-name]/[db-number]`
58
+ with the default values of "service-name = mymaster" and "db-number = 0" if not set explicit.
59
+ The service-name is the redis server monitoring group name as configured within the Sentinel.
60
+
61
+ The current url format limits the connection string to one sentinel host only (no list can be given) and
62
+ booth Redis server and sentinel must have the same password set (if used).
63
+
64
+ #### Redis Cluster connection url
65
+
66
+ Redis cluster is not supported right now for all methods requiring a "redis_url" parameter.
67
+ The only way to use a Redis Cluster is with LangChain classes accepting a preconfigured Redis client like `RedisCache`
68
+ (example below).
69
+
70
+ ## Cache
71
+
72
+ The Cache wrapper allows for [Redis](https://redis.io) to be used as a remote, low-latency, in-memory cache for LLM prompts and responses.
73
+
74
+ ### Standard Cache
75
+ The standard cache is the Redis bread & butter of use case in production for both [open-source](https://redis.io) and [enterprise](https://redis.com) users globally.
76
+
77
+ ```python
78
+ from langchain.cache import RedisCache
79
+ ```
80
+
81
+ To use this cache with your LLMs:
82
+ ```python
83
+ from langchain.globals import set_llm_cache
84
+ import redis
85
+
86
+ redis_client = redis.Redis.from_url(...)
87
+ set_llm_cache(RedisCache(redis_client))
88
+ ```
89
+
90
+ ### Semantic Cache
91
+ Semantic caching allows users to retrieve cached prompts based on semantic similarity between the user input and previously cached results. Under the hood it blends Redis as both a cache and a vectorstore.
92
+
93
+ ```python
94
+ from langchain.cache import RedisSemanticCache
95
+ ```
96
+
97
+ To use this cache with your LLMs:
98
+ ```python
99
+ from langchain.globals import set_llm_cache
100
+ import redis
101
+
102
+ # use any embedding provider...
103
+ from tests.integration_tests.vectorstores.fake_embeddings import FakeEmbeddings
104
+
105
+ redis_url = "redis://localhost:6379"
106
+
107
+ set_llm_cache(RedisSemanticCache(
108
+ embedding=FakeEmbeddings(),
109
+ redis_url=redis_url
110
+ ))
111
+ ```
112
+
113
+ ## VectorStore
114
+
115
+ The vectorstore wrapper turns Redis into a low-latency [vector database](https://redis.com/solutions/use-cases/vector-database/) for semantic search or LLM content retrieval.
116
+
117
+ ```python
118
+ from langchain_community.vectorstores import Redis
119
+ ```
120
+
121
+ For a more detailed walkthrough of the Redis vectorstore wrapper, see [this notebook](/docs/integrations/vectorstores/redis).
122
+
123
+ ## Retriever
124
+
125
+ The Redis vector store retriever wrapper generalizes the vectorstore class to perform
126
+ low-latency document retrieval. To create the retriever, simply
127
+ call `.as_retriever()` on the base vectorstore class.
128
+
129
+ ## Memory
130
+
131
+ Redis can be used to persist LLM conversations.
132
+
133
+ ### Vector Store Retriever Memory
134
+
135
+ For a more detailed walkthrough of the `VectorStoreRetrieverMemory` wrapper, see [this notebook](https://python.langchain.com/v0.2/api_reference/langchain/memory/langchain.memory.vectorstore.VectorStoreRetrieverMemory.html).
136
+
137
+ ### Chat Message History Memory
138
+ For a detailed example of Redis to cache conversation message history, see [this notebook](/docs/integrations/memory/redis_chat_message_history).
langchain_md_files/integrations/providers/remembrall.mdx ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Remembrall
2
+
3
+ >[Remembrall](https://remembrall.dev/) is a platform that gives a language model
4
+ > long-term memory, retrieval augmented generation, and complete observability.
5
+
6
+ ## Installation and Setup
7
+
8
+ To get started, [sign in with Github on the Remembrall platform](https://remembrall.dev/login)
9
+ and copy your [API key from the settings page](https://remembrall.dev/dashboard/settings).
10
+
11
+
12
+ ## Memory
13
+
14
+ See a [usage example](/docs/integrations/memory/remembrall).
15
+
langchain_md_files/integrations/providers/replicate.mdx ADDED
@@ -0,0 +1,46 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Replicate
2
+ This page covers how to run models on Replicate within LangChain.
3
+
4
+ ## Installation and Setup
5
+ - Create a [Replicate](https://replicate.com) account. Get your API key and set it as an environment variable (`REPLICATE_API_TOKEN`)
6
+ - Install the [Replicate python client](https://github.com/replicate/replicate-python) with `pip install replicate`
7
+
8
+ ## Calling a model
9
+
10
+ Find a model on the [Replicate explore page](https://replicate.com/explore), and then paste in the model name and version in this format: `owner-name/model-name:version`
11
+
12
+ For example, for this [dolly model](https://replicate.com/replicate/dolly-v2-12b), click on the API tab. The model name/version would be: `"replicate/dolly-v2-12b:ef0e1aefc61f8e096ebe4db6b2bacc297daf2ef6899f0f7e001ec445893500e5"`
13
+
14
+ Only the `model` param is required, but any other model parameters can also be passed in with the format `input={model_param: value, ...}`
15
+
16
+
17
+ For example, if we were running stable diffusion and wanted to change the image dimensions:
18
+
19
+ ```
20
+ Replicate(model="stability-ai/stable-diffusion:db21e45d3f7023abc2a46ee38a23973f6dce16bb082a930b0c49861f96d1e5bf", input={'image_dimensions': '512x512'})
21
+ ```
22
+
23
+ *Note that only the first output of a model will be returned.*
24
+ From here, we can initialize our model:
25
+
26
+ ```python
27
+ llm = Replicate(model="replicate/dolly-v2-12b:ef0e1aefc61f8e096ebe4db6b2bacc297daf2ef6899f0f7e001ec445893500e5")
28
+ ```
29
+
30
+ And run it:
31
+
32
+ ```python
33
+ prompt = """
34
+ Answer the following yes/no question by reasoning step by step.
35
+ Can a dog drive a car?
36
+ """
37
+ llm(prompt)
38
+ ```
39
+
40
+ We can call any Replicate model (not just LLMs) using this syntax. For example, we can call [Stable Diffusion](https://replicate.com/stability-ai/stable-diffusion):
41
+
42
+ ```python
43
+ text2image = Replicate(model="stability-ai/stable-diffusion:db21e45d3f7023abc2a46ee38a23973f6dce16bb082a930b0c49861f96d1e5bf", input={'image_dimensions':'512x512'})
44
+
45
+ image_output = text2image("A cat riding a motorcycle by Picasso")
46
+ ```
langchain_md_files/integrations/providers/roam.mdx ADDED
@@ -0,0 +1,17 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Roam
2
+
3
+ >[ROAM](https://roamresearch.com/) is a note-taking tool for networked thought, designed to create a personal knowledge base.
4
+
5
+ ## Installation and Setup
6
+
7
+ There isn't any special setup for it.
8
+
9
+
10
+
11
+ ## Document Loader
12
+
13
+ See a [usage example](/docs/integrations/document_loaders/roam).
14
+
15
+ ```python
16
+ from langchain_community.document_loaders import RoamLoader
17
+ ```
langchain_md_files/integrations/providers/robocorp.mdx ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Robocorp
2
+
3
+ >[Robocorp](https://robocorp.com/) helps build and operate Python workers that run seamlessly anywhere at any scale
4
+
5
+
6
+ ## Installation and Setup
7
+
8
+ You need to install `langchain-robocorp` python package:
9
+
10
+ ```bash
11
+ pip install langchain-robocorp
12
+ ```
13
+
14
+ You will need a running instance of `Action Server` to communicate with from your agent application.
15
+ See the [Robocorp Quickstart](https://github.com/robocorp/robocorp#quickstart) on how to setup Action Server and create your Actions.
16
+
17
+ You can bootstrap a new project using Action Server `new` command.
18
+
19
+ ```bash
20
+ action-server new
21
+ cd ./your-project-name
22
+ action-server start
23
+ ```
24
+
25
+ ## Tool
26
+
27
+ ```python
28
+ from langchain_robocorp.toolkits import ActionServerRequestTool
29
+ ```
30
+
31
+ ## Toolkit
32
+
33
+ See a [usage example](/docs/integrations/tools/robocorp).
34
+
35
+ ```python
36
+ from langchain_robocorp import ActionServerToolkit
37
+ ```
langchain_md_files/integrations/providers/rockset.mdx ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Rockset
2
+
3
+ >[Rockset](https://rockset.com/product/) is a real-time analytics database service for serving low latency, high concurrency analytical queries at scale. It builds a Converged Index™ on structured and semi-structured data with an efficient store for vector embeddings. Its support for running SQL on schemaless data makes it a perfect choice for running vector search with metadata filters.
4
+
5
+ ## Installation and Setup
6
+
7
+ Make sure you have Rockset account and go to the web console to get the API key. Details can be found on [the website](https://rockset.com/docs/rest-api/).
8
+
9
+ ```bash
10
+ pip install rockset
11
+ ```
12
+
13
+ ## Vector Store
14
+
15
+ See a [usage example](/docs/integrations/vectorstores/rockset).
16
+
17
+ ```python
18
+ from langchain_community.vectorstores import Rockset
19
+ ```
20
+
21
+ ## Document Loader
22
+
23
+ See a [usage example](/docs/integrations/document_loaders/rockset).
24
+ ```python
25
+ from langchain_community.document_loaders import RocksetLoader
26
+ ```
27
+
28
+ ## Chat Message History
29
+
30
+ See a [usage example](/docs/integrations/memory/rockset_chat_message_history).
31
+ ```python
32
+ from langchain_community.chat_message_histories import RocksetChatMessageHistory
33
+ ```
langchain_md_files/integrations/providers/runhouse.mdx ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Runhouse
2
+
3
+ This page covers how to use the [Runhouse](https://github.com/run-house/runhouse) ecosystem within LangChain.
4
+ It is broken into three parts: installation and setup, LLMs, and Embeddings.
5
+
6
+ ## Installation and Setup
7
+ - Install the Python SDK with `pip install runhouse`
8
+ - If you'd like to use on-demand cluster, check your cloud credentials with `sky check`
9
+
10
+ ## Self-hosted LLMs
11
+ For a basic self-hosted LLM, you can use the `SelfHostedHuggingFaceLLM` class. For more
12
+ custom LLMs, you can use the `SelfHostedPipeline` parent class.
13
+
14
+ ```python
15
+ from langchain_community.llms import SelfHostedPipeline, SelfHostedHuggingFaceLLM
16
+ ```
17
+
18
+ For a more detailed walkthrough of the Self-hosted LLMs, see [this notebook](/docs/integrations/llms/runhouse)
19
+
20
+ ## Self-hosted Embeddings
21
+ There are several ways to use self-hosted embeddings with LangChain via Runhouse.
22
+
23
+ For a basic self-hosted embedding from a Hugging Face Transformers model, you can use
24
+ the `SelfHostedEmbedding` class.
25
+ ```python
26
+ from langchain_community.llms import SelfHostedPipeline, SelfHostedHuggingFaceLLM
27
+ ```
28
+
29
+ For a more detailed walkthrough of the Self-hosted Embeddings, see [this notebook](/docs/integrations/text_embedding/self-hosted)
langchain_md_files/integrations/providers/rwkv.mdx ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # RWKV-4
2
+
3
+ This page covers how to use the `RWKV-4` wrapper within LangChain.
4
+ It is broken into two parts: installation and setup, and then usage with an example.
5
+
6
+ ## Installation and Setup
7
+ - Install the Python package with `pip install rwkv`
8
+ - Install the tokenizer Python package with `pip install tokenizer`
9
+ - Download a [RWKV model](https://huggingface.co/BlinkDL/rwkv-4-raven/tree/main) and place it in your desired directory
10
+ - Download the [tokens file](https://raw.githubusercontent.com/BlinkDL/ChatRWKV/main/20B_tokenizer.json)
11
+
12
+ ## Usage
13
+
14
+ ### RWKV
15
+
16
+ To use the RWKV wrapper, you need to provide the path to the pre-trained model file and the tokenizer's configuration.
17
+ ```python
18
+ from langchain_community.llms import RWKV
19
+
20
+ # Test the model
21
+
22
+ ```python
23
+
24
+ def generate_prompt(instruction, input=None):
25
+ if input:
26
+ return f"""Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.
27
+
28
+ # Instruction:
29
+ {instruction}
30
+
31
+ # Input:
32
+ {input}
33
+
34
+ # Response:
35
+ """
36
+ else:
37
+ return f"""Below is an instruction that describes a task. Write a response that appropriately completes the request.
38
+
39
+ # Instruction:
40
+ {instruction}
41
+
42
+ # Response:
43
+ """
44
+
45
+
46
+ model = RWKV(model="./models/RWKV-4-Raven-3B-v7-Eng-20230404-ctx4096.pth", strategy="cpu fp32", tokens_path="./rwkv/20B_tokenizer.json")
47
+ response = model.invoke(generate_prompt("Once upon a time, "))
48
+ ```
49
+ ## Model File
50
+
51
+ You can find links to model file downloads at the [RWKV-4-Raven](https://huggingface.co/BlinkDL/rwkv-4-raven/tree/main) repository.
52
+
53
+ ### Rwkv-4 models -> recommended VRAM
54
+
55
+
56
+ ```
57
+ RWKV VRAM
58
+ Model | 8bit | bf16/fp16 | fp32
59
+ 14B | 16GB | 28GB | >50GB
60
+ 7B | 8GB | 14GB | 28GB
61
+ 3B | 2.8GB| 6GB | 12GB
62
+ 1b5 | 1.3GB| 3GB | 6GB
63
+ ```
64
+
65
+ See the [rwkv pip](https://pypi.org/project/rwkv/) page for more information about strategies, including streaming and cuda support.
langchain_md_files/integrations/providers/salute_devices.mdx ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Salute Devices
2
+
3
+ Salute Devices provides GigaChat LLM's models.
4
+
5
+ For more info how to get access to GigaChat [follow here](https://developers.sber.ru/docs/ru/gigachat/api/integration).
6
+
7
+ ## Installation and Setup
8
+
9
+ GigaChat package can be installed via pip from PyPI:
10
+
11
+ ```bash
12
+ pip install gigachat
13
+ ```
14
+
15
+ ## LLMs
16
+
17
+ See a [usage example](/docs/integrations/llms/gigachat).
18
+
19
+ ```python
20
+ from langchain_community.llms import GigaChat
21
+ ```
22
+
23
+ ## Chat models
24
+
25
+ See a [usage example](/docs/integrations/chat/gigachat).
26
+
27
+ ```python
28
+ from langchain_community.chat_models import GigaChat
29
+ ```
30
+
31
+ ## Embeddings
32
+
33
+ See a [usage example](/docs/integrations/text_embedding/gigachat).
34
+
35
+ ```python
36
+ from langchain_community.embeddings import GigaChatEmbeddings
37
+ ```
langchain_md_files/integrations/providers/sap.mdx ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # SAP
2
+
3
+ >[SAP SE(Wikipedia)](https://www.sap.com/about/company.html) is a German multinational
4
+ > software company. It develops enterprise software to manage business operation and
5
+ > customer relations. The company is the world's leading
6
+ > `enterprise resource planning (ERP)` software vendor.
7
+
8
+ ## Installation and Setup
9
+
10
+ We need to install the `hdbcli` python package.
11
+
12
+ ```bash
13
+ pip install hdbcli
14
+ ```
15
+
16
+ ## Vectorstore
17
+
18
+ >[SAP HANA Cloud Vector Engine](https://www.sap.com/events/teched/news-guide/ai.html#article8) is
19
+ > a vector store fully integrated into the `SAP HANA Cloud` database.
20
+
21
+ See a [usage example](/docs/integrations/vectorstores/sap_hanavector).
22
+
23
+ ```python
24
+ from langchain_community.vectorstores.hanavector import HanaDB
25
+ ```
langchain_md_files/integrations/providers/searchapi.mdx ADDED
@@ -0,0 +1,80 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # SearchApi
2
+
3
+ This page covers how to use the [SearchApi](https://www.searchapi.io/) Google Search API within LangChain. SearchApi is a real-time SERP API for easy SERP scraping.
4
+
5
+ ## Setup
6
+
7
+ - Go to [https://www.searchapi.io/](https://www.searchapi.io/) to sign up for a free account
8
+ - Get the api key and set it as an environment variable (`SEARCHAPI_API_KEY`)
9
+
10
+ ## Wrappers
11
+
12
+ ### Utility
13
+
14
+ There is a SearchApiAPIWrapper utility which wraps this API. To import this utility:
15
+
16
+ ```python
17
+ from langchain_community.utilities import SearchApiAPIWrapper
18
+ ```
19
+
20
+ You can use it as part of a Self Ask chain:
21
+
22
+ ```python
23
+ from langchain_community.utilities import SearchApiAPIWrapper
24
+ from langchain_openai import OpenAI
25
+ from langchain.agents import initialize_agent, Tool
26
+ from langchain.agents import AgentType
27
+
28
+ import os
29
+
30
+ os.environ["SEARCHAPI_API_KEY"] = ""
31
+ os.environ['OPENAI_API_KEY'] = ""
32
+
33
+ llm = OpenAI(temperature=0)
34
+ search = SearchApiAPIWrapper()
35
+ tools = [
36
+ Tool(
37
+ name="Intermediate Answer",
38
+ func=search.run,
39
+ description="useful for when you need to ask with search"
40
+ )
41
+ ]
42
+
43
+ self_ask_with_search = initialize_agent(tools, llm, agent=AgentType.SELF_ASK_WITH_SEARCH, verbose=True)
44
+ self_ask_with_search.run("Who lived longer: Plato, Socrates, or Aristotle?")
45
+ ```
46
+
47
+ #### Output
48
+
49
+ ```
50
+ > Entering new AgentExecutor chain...
51
+ Yes.
52
+ Follow up: How old was Plato when he died?
53
+ Intermediate answer: eighty
54
+ Follow up: How old was Socrates when he died?
55
+ Intermediate answer: | Socrates |
56
+ | -------- |
57
+ | Born | c. 470 BC Deme Alopece, Athens |
58
+ | Died | 399 BC (aged approximately 71) Athens |
59
+ | Cause of death | Execution by forced suicide by poisoning |
60
+ | Spouse(s) | Xanthippe, Myrto |
61
+
62
+ Follow up: How old was Aristotle when he died?
63
+ Intermediate answer: 62 years
64
+ So the final answer is: Plato
65
+
66
+ > Finished chain.
67
+ 'Plato'
68
+ ```
69
+
70
+ ### Tool
71
+
72
+ You can also easily load this wrapper as a Tool (to use with an Agent).
73
+ You can do this with:
74
+
75
+ ```python
76
+ from langchain.agents import load_tools
77
+ tools = load_tools(["searchapi"])
78
+ ```
79
+
80
+ For more information on tools, see [this page](/docs/how_to/tools_builtin).
langchain_md_files/integrations/providers/searx.mdx ADDED
@@ -0,0 +1,90 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # SearxNG Search API
2
+
3
+ This page covers how to use the SearxNG search API within LangChain.
4
+ It is broken into two parts: installation and setup, and then references to the specific SearxNG API wrapper.
5
+
6
+ ## Installation and Setup
7
+
8
+ While it is possible to utilize the wrapper in conjunction with [public searx
9
+ instances](https://searx.space/) these instances frequently do not permit API
10
+ access (see note on output format below) and have limitations on the frequency
11
+ of requests. It is recommended to opt for a self-hosted instance instead.
12
+
13
+ ### Self Hosted Instance:
14
+
15
+ See [this page](https://searxng.github.io/searxng/admin/installation.html) for installation instructions.
16
+
17
+ When you install SearxNG, the only active output format by default is the HTML format.
18
+ You need to activate the `json` format to use the API. This can be done by adding the following line to the `settings.yml` file:
19
+ ```yaml
20
+ search:
21
+ formats:
22
+ - html
23
+ - json
24
+ ```
25
+ You can make sure that the API is working by issuing a curl request to the API endpoint:
26
+
27
+ `curl -kLX GET --data-urlencode q='langchain' -d format=json http://localhost:8888`
28
+
29
+ This should return a JSON object with the results.
30
+
31
+
32
+ ## Wrappers
33
+
34
+ ### Utility
35
+
36
+ To use the wrapper we need to pass the host of the SearxNG instance to the wrapper with:
37
+ 1. the named parameter `searx_host` when creating the instance.
38
+ 2. exporting the environment variable `SEARXNG_HOST`.
39
+
40
+ You can use the wrapper to get results from a SearxNG instance.
41
+
42
+ ```python
43
+ from langchain_community.utilities import SearxSearchWrapper
44
+ s = SearxSearchWrapper(searx_host="http://localhost:8888")
45
+ s.run("what is a large language model?")
46
+ ```
47
+
48
+ ### Tool
49
+
50
+ You can also load this wrapper as a Tool (to use with an Agent).
51
+
52
+ You can do this with:
53
+
54
+ ```python
55
+ from langchain.agents import load_tools
56
+ tools = load_tools(["searx-search"],
57
+ searx_host="http://localhost:8888",
58
+ engines=["github"])
59
+ ```
60
+
61
+ Note that we could _optionally_ pass custom engines to use.
62
+
63
+ If you want to obtain results with metadata as *json* you can use:
64
+ ```python
65
+ tools = load_tools(["searx-search-results-json"],
66
+ searx_host="http://localhost:8888",
67
+ num_results=5)
68
+ ```
69
+
70
+ #### Quickly creating tools
71
+
72
+ This examples showcases a quick way to create multiple tools from the same
73
+ wrapper.
74
+
75
+ ```python
76
+ from langchain_community.tools.searx_search.tool import SearxSearchResults
77
+
78
+ wrapper = SearxSearchWrapper(searx_host="**")
79
+ github_tool = SearxSearchResults(name="Github", wrapper=wrapper,
80
+ kwargs = {
81
+ "engines": ["github"],
82
+ })
83
+
84
+ arxiv_tool = SearxSearchResults(name="Arxiv", wrapper=wrapper,
85
+ kwargs = {
86
+ "engines": ["arxiv"]
87
+ })
88
+ ```
89
+
90
+ For more information on tools, see [this page](/docs/how_to/tools_builtin).
langchain_md_files/integrations/providers/semadb.mdx ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # SemaDB
2
+
3
+ >[SemaDB](https://semafind.com/) is a no fuss vector similarity search engine. It provides a low-cost cloud hosted version to help you build AI applications with ease.
4
+
5
+ With SemaDB Cloud, our hosted version, no fuss means no pod size calculations, no schema definitions, no partition settings, no parameter tuning, no search algorithm tuning, no complex installation, no complex API. It is integrated with [RapidAPI](https://rapidapi.com/semafind-semadb/api/semadb) providing transparent billing, automatic sharding and an interactive API playground.
6
+
7
+ ## Installation
8
+
9
+ None required, get started directly with SemaDB Cloud at [RapidAPI](https://rapidapi.com/semafind-semadb/api/semadb).
10
+
11
+ ## Vector Store
12
+
13
+ There is a basic wrapper around `SemaDB` collections allowing you to use it as a vectorstore.
14
+
15
+ ```python
16
+ from langchain_community.vectorstores import SemaDB
17
+ ```
18
+
19
+ You can follow a tutorial on how to use the wrapper in [this notebook](/docs/integrations/vectorstores/semadb).
langchain_md_files/integrations/providers/serpapi.mdx ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # SerpAPI
2
+
3
+ This page covers how to use the SerpAPI search APIs within LangChain.
4
+ It is broken into two parts: installation and setup, and then references to the specific SerpAPI wrapper.
5
+
6
+ ## Installation and Setup
7
+ - Install requirements with `pip install google-search-results`
8
+ - Get a SerpAPI api key and either set it as an environment variable (`SERPAPI_API_KEY`)
9
+
10
+ ## Wrappers
11
+
12
+ ### Utility
13
+
14
+ There exists a SerpAPI utility which wraps this API. To import this utility:
15
+
16
+ ```python
17
+ from langchain_community.utilities import SerpAPIWrapper
18
+ ```
19
+
20
+ For a more detailed walkthrough of this wrapper, see [this notebook](/docs/integrations/tools/serpapi).
21
+
22
+ ### Tool
23
+
24
+ You can also easily load this wrapper as a Tool (to use with an Agent).
25
+ You can do this with:
26
+ ```python
27
+ from langchain.agents import load_tools
28
+ tools = load_tools(["serpapi"])
29
+ ```
30
+
31
+ For more information on this, see [this page](/docs/how_to/tools_builtin)
langchain_md_files/integrations/providers/singlestoredb.mdx ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # SingleStoreDB
2
+
3
+ >[SingleStoreDB](https://singlestore.com/) is a high-performance distributed SQL database that supports deployment both in the [cloud](https://www.singlestore.com/cloud/) and on-premises. It provides vector storage, and vector functions including [dot_product](https://docs.singlestore.com/managed-service/en/reference/sql-reference/vector-functions/dot_product.html) and [euclidean_distance](https://docs.singlestore.com/managed-service/en/reference/sql-reference/vector-functions/euclidean_distance.html), thereby supporting AI applications that require text similarity matching.
4
+
5
+ ## Installation and Setup
6
+
7
+ There are several ways to establish a [connection](https://singlestoredb-python.labs.singlestore.com/generated/singlestoredb.connect.html) to the database. You can either set up environment variables or pass named parameters to the `SingleStoreDB constructor`.
8
+ Alternatively, you may provide these parameters to the `from_documents` and `from_texts` methods.
9
+
10
+ ```bash
11
+ pip install singlestoredb
12
+ ```
13
+
14
+ ## Vector Store
15
+
16
+ See a [usage example](/docs/integrations/vectorstores/singlestoredb).
17
+
18
+ ```python
19
+ from langchain_community.vectorstores import SingleStoreDB
20
+ ```
21
+
22
+ ## Memory
23
+
24
+ See a [usage example](/docs/integrations/memory/singlestoredb_chat_message_history).
25
+
26
+ ```python
27
+ from langchain.memory import SingleStoreDBChatMessageHistory
28
+ ```
langchain_md_files/integrations/providers/sklearn.mdx ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # scikit-learn
2
+
3
+ >[scikit-learn](https://scikit-learn.org/stable/) is an open-source collection of machine learning algorithms,
4
+ > including some implementations of the [k nearest neighbors](https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.NearestNeighbors.html). `SKLearnVectorStore` wraps this implementation and adds the possibility to persist the vector store in json, bson (binary json) or Apache Parquet format.
5
+
6
+ ## Installation and Setup
7
+
8
+ - Install the Python package with `pip install scikit-learn`
9
+
10
+
11
+ ## Vector Store
12
+
13
+ `SKLearnVectorStore` provides a simple wrapper around the nearest neighbor implementation in the
14
+ scikit-learn package, allowing you to use it as a vectorstore.
15
+
16
+ To import this vectorstore:
17
+
18
+ ```python
19
+ from langchain_community.vectorstores import SKLearnVectorStore
20
+ ```
21
+
22
+ For a more detailed walkthrough of the SKLearnVectorStore wrapper, see [this notebook](/docs/integrations/vectorstores/sklearn).
23
+
24
+
25
+ ## Retriever
26
+
27
+ `Support vector machines (SVMs)` are the supervised learning
28
+ methods used for classification, regression and outliers detection.
29
+
30
+ See a [usage example](/docs/integrations/retrievers/svm).
31
+
32
+ ```python
33
+ from langchain_community.retrievers import SVMRetriever
34
+ ```
35
+
langchain_md_files/integrations/providers/slack.mdx ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Slack
2
+
3
+ >[Slack](https://slack.com/) is an instant messaging program.
4
+
5
+ ## Installation and Setup
6
+
7
+ There isn't any special setup for it.
8
+
9
+
10
+ ## Document loader
11
+
12
+ See a [usage example](/docs/integrations/document_loaders/slack).
13
+
14
+ ```python
15
+ from langchain_community.document_loaders import SlackDirectoryLoader
16
+ ```
17
+
18
+ ## Toolkit
19
+
20
+ See a [usage example](/docs/integrations/tools/slack).
21
+
22
+ ```python
23
+ from langchain_community.agent_toolkits import SlackToolkit
24
+ ```
25
+
26
+ ## Chat loader
27
+
28
+ See a [usage example](/docs/integrations/chat_loaders/slack).
29
+
30
+ ```python
31
+ from langchain_community.chat_loaders.slack import SlackChatLoader
32
+ ```
langchain_md_files/integrations/providers/snowflake.mdx ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Snowflake
2
+
3
+ > [Snowflake](https://www.snowflake.com/) is a cloud-based data-warehousing platform
4
+ > that allows you to store and query large amounts of data.
5
+
6
+ This page covers how to use the `Snowflake` ecosystem within `LangChain`.
7
+
8
+ ## Embedding models
9
+
10
+ Snowflake offers their open-weight `arctic` line of embedding models for free
11
+ on [Hugging Face](https://huggingface.co/Snowflake/snowflake-arctic-embed-m-v1.5). The most recent model, snowflake-arctic-embed-m-v1.5 feature [matryoshka embedding](https://arxiv.org/abs/2205.13147) which allows for effective vector truncation.
12
+ You can use these models via the
13
+ [HuggingFaceEmbeddings](/docs/integrations/text_embedding/huggingfacehub) connector:
14
+
15
+ ```shell
16
+ pip install langchain-community sentence-transformers
17
+ ```
18
+
19
+ ```python
20
+ from langchain_huggingface import HuggingFaceEmbeddings
21
+
22
+ model = HuggingFaceEmbeddings(model_name="snowflake/arctic-embed-m-v1.5")
23
+ ```
24
+
25
+ ## Document loader
26
+
27
+ You can use the [`SnowflakeLoader`](/docs/integrations/document_loaders/snowflake)
28
+ to load data from Snowflake:
29
+
30
+ ```python
31
+ from langchain_community.document_loaders import SnowflakeLoader
32
+ ```
langchain_md_files/integrations/providers/spacy.mdx ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # spaCy
2
+
3
+ >[spaCy](https://spacy.io/) is an open-source software library for advanced natural language processing, written in the programming languages Python and Cython.
4
+
5
+ ## Installation and Setup
6
+
7
+
8
+ ```bash
9
+ pip install spacy
10
+ ```
11
+
12
+
13
+
14
+ ## Text Splitter
15
+
16
+ See a [usage example](/docs/how_to/split_by_token/#spacy).
17
+
18
+ ```python
19
+ from langchain_text_splitters import SpacyTextSplitter
20
+ ```
21
+
22
+ ## Text Embedding Models
23
+
24
+ See a [usage example](/docs/integrations/text_embedding/spacy_embedding)
25
+
26
+ ```python
27
+ from langchain_community.embeddings.spacy_embeddings import SpacyEmbeddings
28
+ ```
langchain_md_files/integrations/providers/sparkllm.mdx ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # SparkLLM
2
+
3
+ >[SparkLLM](https://xinghuo.xfyun.cn/spark) is a large-scale cognitive model independently developed by iFLYTEK.
4
+ It has cross-domain knowledge and language understanding ability by learning a large amount of texts, codes and images.
5
+ It can understand and perform tasks based on natural dialogue.
6
+
7
+ ## SparkLLM LLM Model
8
+ An example is available at [example](/docs/integrations/llms/sparkllm).
9
+
10
+ ## SparkLLM Chat Model
11
+ An example is available at [example](/docs/integrations/chat/sparkllm).
12
+
13
+ ## SparkLLM Text Embedding Model
14
+ An example is available at [example](/docs/integrations/text_embedding/sparkllm)
langchain_md_files/integrations/providers/spreedly.mdx ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Spreedly
2
+
3
+ >[Spreedly](https://docs.spreedly.com/) is a service that allows you to securely store credit cards and use them to transact against any number of payment gateways and third party APIs. It does this by simultaneously providing a card tokenization/vault service as well as a gateway and receiver integration service. Payment methods tokenized by Spreedly are stored at `Spreedly`, allowing you to independently store a card and then pass that card to different end points based on your business requirements.
4
+
5
+ ## Installation and Setup
6
+
7
+ See [setup instructions](/docs/integrations/document_loaders/spreedly).
8
+
9
+ ## Document Loader
10
+
11
+ See a [usage example](/docs/integrations/document_loaders/spreedly).
12
+
13
+ ```python
14
+ from langchain_community.document_loaders import SpreedlyLoader
15
+ ```
langchain_md_files/integrations/providers/sqlite.mdx ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # SQLite
2
+
3
+ >[SQLite](https://en.wikipedia.org/wiki/SQLite) is a database engine written in the
4
+ > C programming language. It is not a standalone app; rather, it is a library that
5
+ > software developers embed in their apps. As such, it belongs to the family of
6
+ > embedded databases. It is the most widely deployed database engine, as it is
7
+ > used by several of the top web browsers, operating systems, mobile phones, and other embedded systems.
8
+
9
+ ## Installation and Setup
10
+
11
+ We need to install the `SQLAlchemy` python package.
12
+
13
+ ```bash
14
+ pip install SQLAlchemy
15
+ ```
16
+
17
+ ## Vector Store
18
+
19
+ See a [usage example](/docs/integrations/vectorstores/sqlitevss).
20
+
21
+ ```python
22
+ from langchain_community.vectorstores import SQLiteVSS
23
+ ```
24
+
25
+ ## Memory
26
+
27
+ See a [usage example](/docs/integrations/memory/sqlite).
28
+
29
+ ```python
30
+ from langchain_community.chat_message_histories import SQLChatMessageHistory
31
+ ```
langchain_md_files/integrations/providers/stackexchange.mdx ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Stack Exchange
2
+
3
+ >[Stack Exchange](https://en.wikipedia.org/wiki/Stack_Exchange) is a network of
4
+ question-and-answer (Q&A) websites on topics in diverse fields, each site covering
5
+ a specific topic, where questions, answers, and users are subject to a reputation award process.
6
+
7
+ This page covers how to use the `Stack Exchange API` within LangChain.
8
+
9
+ ## Installation and Setup
10
+ - Install requirements with
11
+ ```bash
12
+ pip install stackapi
13
+ ```
14
+
15
+ ## Wrappers
16
+
17
+ ### Utility
18
+
19
+ There exists a StackExchangeAPIWrapper utility which wraps this API. To import this utility:
20
+
21
+ ```python
22
+ from langchain_community.utilities import StackExchangeAPIWrapper
23
+ ```
24
+
25
+ For a more detailed walkthrough of this wrapper, see [this notebook](/docs/integrations/tools/stackexchange).
26
+
27
+ ### Tool
28
+
29
+ You can also easily load this wrapper as a Tool (to use with an Agent).
30
+ You can do this with:
31
+ ```python
32
+ from langchain.agents import load_tools
33
+ tools = load_tools(["stackexchange"])
34
+ ```
35
+
36
+ For more information on tools, see [this page](/docs/how_to/tools_builtin).
langchain_md_files/integrations/providers/starrocks.mdx ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # StarRocks
2
+
3
+ >[StarRocks](https://www.starrocks.io/) is a High-Performance Analytical Database.
4
+ `StarRocks` is a next-gen sub-second MPP database for full analytics scenarios, including multi-dimensional analytics, real-time analytics and ad-hoc query.
5
+
6
+ >Usually `StarRocks` is categorized into OLAP, and it has showed excellent performance in [ClickBench — a Benchmark For Analytical DBMS](https://benchmark.clickhouse.com/). Since it has a super-fast vectorized execution engine, it could also be used as a fast vectordb.
7
+
8
+ ## Installation and Setup
9
+
10
+
11
+ ```bash
12
+ pip install pymysql
13
+ ```
14
+
15
+ ## Vector Store
16
+
17
+ See a [usage example](/docs/integrations/vectorstores/starrocks).
18
+
19
+ ```python
20
+ from langchain_community.vectorstores import StarRocks
21
+ ```
langchain_md_files/integrations/providers/stochasticai.mdx ADDED
@@ -0,0 +1,17 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # StochasticAI
2
+
3
+ This page covers how to use the StochasticAI ecosystem within LangChain.
4
+ It is broken into two parts: installation and setup, and then references to specific StochasticAI wrappers.
5
+
6
+ ## Installation and Setup
7
+ - Install with `pip install stochasticx`
8
+ - Get an StochasticAI api key and set it as an environment variable (`STOCHASTICAI_API_KEY`)
9
+
10
+ ## Wrappers
11
+
12
+ ### LLM
13
+
14
+ There exists an StochasticAI LLM wrapper, which you can access with
15
+ ```python
16
+ from langchain_community.llms import StochasticAI
17
+ ```
langchain_md_files/integrations/providers/streamlit.mdx ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Streamlit
2
+
3
+ >[Streamlit](https://streamlit.io/) is a faster way to build and share data apps.
4
+ >`Streamlit` turns data scripts into shareable web apps in minutes. All in pure Python. No front‑end experience required.
5
+ >See more examples at [streamlit.io/generative-ai](https://streamlit.io/generative-ai).
6
+
7
+ ## Installation and Setup
8
+
9
+ We need to install the `streamlit` Python package:
10
+
11
+ ```bash
12
+ pip install streamlit
13
+ ```
14
+
15
+
16
+ ## Memory
17
+
18
+ See a [usage example](/docs/integrations/memory/streamlit_chat_message_history).
19
+
20
+ ```python
21
+ from langchain_community.chat_message_histories import StreamlitChatMessageHistory
22
+ ```
23
+
24
+ ## Callbacks
25
+
26
+ See a [usage example](/docs/integrations/callbacks/streamlit).
27
+
28
+ ```python
29
+ from langchain_community.callbacks import StreamlitCallbackHandler
30
+ ```
langchain_md_files/integrations/providers/stripe.mdx ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Stripe
2
+
3
+ >[Stripe](https://stripe.com/en-ca) is an Irish-American financial services and software as a service (SaaS) company. It offers payment-processing software and application programming interfaces for e-commerce websites and mobile applications.
4
+
5
+
6
+ ## Installation and Setup
7
+
8
+ See [setup instructions](/docs/integrations/document_loaders/stripe).
9
+
10
+ ## Document Loader
11
+
12
+ See a [usage example](/docs/integrations/document_loaders/stripe).
13
+
14
+ ```python
15
+ from langchain_community.document_loaders import StripeLoader
16
+ ```
langchain_md_files/integrations/providers/supabase.mdx ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Supabase (Postgres)
2
+
3
+ >[Supabase](https://supabase.com/docs) is an open-source `Firebase` alternative.
4
+ > `Supabase` is built on top of `PostgreSQL`, which offers strong `SQL`
5
+ > querying capabilities and enables a simple interface with already-existing tools and frameworks.
6
+
7
+ >[PostgreSQL](https://en.wikipedia.org/wiki/PostgreSQL) also known as `Postgres`,
8
+ > is a free and open-source relational database management system (RDBMS)
9
+ > emphasizing extensibility and `SQL` compliance.
10
+
11
+ ## Installation and Setup
12
+
13
+ We need to install `supabase` python package.
14
+
15
+ ```bash
16
+ pip install supabase
17
+ ```
18
+
19
+ ## Vector Store
20
+
21
+ See a [usage example](/docs/integrations/vectorstores/supabase).
22
+
23
+ ```python
24
+ from langchain_community.vectorstores import SupabaseVectorStore
25
+ ```
26
+
langchain_md_files/integrations/providers/symblai_nebula.mdx ADDED
@@ -0,0 +1,17 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Nebula
2
+
3
+ This page covers how to use [Nebula](https://symbl.ai/nebula), [Symbl.ai](https://symbl.ai/)'s LLM, ecosystem within LangChain.
4
+ It is broken into two parts: installation and setup, and then references to specific Nebula wrappers.
5
+
6
+ ## Installation and Setup
7
+
8
+ - Get an [Nebula API Key](https://info.symbl.ai/Nebula_Private_Beta.html) and set as environment variable `NEBULA_API_KEY`
9
+ - Please see the [Nebula documentation](https://docs.symbl.ai/docs/nebula-llm) for more details.
10
+
11
+ ### LLM
12
+
13
+ There exists an Nebula LLM wrapper, which you can access with
14
+ ```python
15
+ from langchain_community.llms import Nebula
16
+ llm = Nebula()
17
+ ```
langchain_md_files/integrations/providers/tair.mdx ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Tair
2
+
3
+ >[Alibaba Cloud Tair](https://www.alibabacloud.com/help/en/tair/latest/what-is-tair) is a cloud native in-memory database service
4
+ > developed by `Alibaba Cloud`. It provides rich data models and enterprise-grade capabilities to
5
+ > support your real-time online scenarios while maintaining full compatibility with open-source `Redis`.
6
+ > `Tair` also introduces persistent memory-optimized instances that are based on
7
+ > new non-volatile memory (NVM) storage medium.
8
+
9
+ ## Installation and Setup
10
+
11
+ Install Tair Python SDK:
12
+
13
+ ```bash
14
+ pip install tair
15
+ ```
16
+
17
+ ## Vector Store
18
+
19
+ ```python
20
+ from langchain_community.vectorstores import Tair
21
+ ```
22
+
23
+ See a [usage example](/docs/integrations/vectorstores/tair).
langchain_md_files/integrations/providers/telegram.mdx ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Telegram
2
+
3
+ >[Telegram Messenger](https://web.telegram.org/a/) is a globally accessible freemium, cross-platform, encrypted, cloud-based and centralized instant messaging service. The application also provides optional end-to-end encrypted chats and video calling, VoIP, file sharing and several other features.
4
+
5
+
6
+ ## Installation and Setup
7
+
8
+ See [setup instructions](/docs/integrations/document_loaders/telegram).
9
+
10
+ ## Document Loader
11
+
12
+ See a [usage example](/docs/integrations/document_loaders/telegram).
13
+
14
+ ```python
15
+ from langchain_community.document_loaders import TelegramChatFileLoader
16
+ from langchain_community.document_loaders import TelegramChatApiLoader
17
+ ```
18
+
19
+ ## Chat loader
20
+
21
+ See a [usage example](/docs/integrations/chat_loaders/telegram).
22
+
23
+ ```python
24
+ from langchain_community.chat_loaders.telegram import TelegramChatLoader
25
+ ```
langchain_md_files/integrations/providers/tencent.mdx ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Tencent
2
+
3
+ >[Tencent Holdings Ltd. (Wikipedia)](https://en.wikipedia.org/wiki/Tencent) (Chinese: 腾讯; pinyin: Téngxùn)
4
+ > is a Chinese multinational technology conglomerate and holding company headquartered
5
+ > in Shenzhen. `Tencent` is one of the highest grossing multimedia companies in the
6
+ > world based on revenue. It is also the world's largest company in the video game industry
7
+ > based on its equity investments.
8
+
9
+
10
+ ## Chat model
11
+
12
+ >[Tencent's hybrid model API](https://cloud.tencent.com/document/product/1729) (`Hunyuan API`)
13
+ > implements dialogue communication, content generation,
14
+ > analysis and understanding, and can be widely used in various scenarios such as intelligent
15
+ > customer service, intelligent marketing, role playing, advertising, copyrighting, product description,
16
+ > script creation, resume generation, article writing, code generation, data analysis, and content
17
+ > analysis.
18
+
19
+
20
+ For more information, see [this notebook](/docs/integrations/chat/tencent_hunyuan)
21
+
22
+ ```python
23
+ from langchain_community.chat_models import ChatHunyuan
24
+ ```
25
+
26
+
27
+ ## Document Loaders
28
+
29
+ ### Tencent COS
30
+
31
+ >[Tencent Cloud Object Storage (COS)](https://www.tencentcloud.com/products/cos) is a distributed
32
+ > storage service that enables you to store any amount of data from anywhere via HTTP/HTTPS protocols.
33
+ > `COS` has no restrictions on data structure or format. It also has no bucket size limit and
34
+ > partition management, making it suitable for virtually any use case, such as data delivery,
35
+ > data processing, and data lakes. COS provides a web-based console, multi-language SDKs and APIs,
36
+ > command line tool, and graphical tools. It works well with Amazon S3 APIs, allowing you to quickly
37
+ > access community tools and plugins.
38
+
39
+ Install the Python SDK:
40
+
41
+ ```bash
42
+ pip install cos-python-sdk-v5
43
+ ```
44
+
45
+ #### Tencent COS Directory
46
+
47
+ For more information, see [this notebook](/docs/integrations/document_loaders/tencent_cos_directory)
48
+
49
+ ```python
50
+ from langchain_community.document_loaders import TencentCOSDirectoryLoader
51
+ from qcloud_cos import CosConfig
52
+ ```
53
+
54
+ #### Tencent COS File
55
+
56
+ For more information, see [this notebook](/docs/integrations/document_loaders/tencent_cos_file)
57
+
58
+ ```python
59
+ from langchain_community.document_loaders import TencentCOSFileLoader
60
+ from qcloud_cos import CosConfig
61
+ ```
62
+
63
+ ## Vector Store
64
+
65
+ ### Tencent VectorDB
66
+
67
+ >[Tencent Cloud VectorDB](https://www.tencentcloud.com/products/vdb) is a fully managed,
68
+ > self-developed enterprise-level distributed database service
69
+ >dedicated to storing, retrieving, and analyzing multidimensional vector data. The database supports a variety of index
70
+ >types and similarity calculation methods, and a single index supports 1 billion vectors, millions of QPS, and
71
+ >millisecond query latency. `Tencent Cloud Vector Database` can not only provide an external knowledge base for large
72
+ >models and improve the accuracy of large models' answers, but also be widely used in AI fields such as
73
+ >recommendation systems, NLP services, computer vision, and intelligent customer service.
74
+
75
+ Install the Python SDK:
76
+
77
+ ```bash
78
+ pip install tcvectordb
79
+ ```
80
+
81
+ For more information, see [this notebook](/docs/integrations/vectorstores/tencentvectordb)
82
+
83
+ ```python
84
+ from langchain_community.vectorstores import TencentVectorDB
85
+ ```
86
+
87
+ ## Chat loader
88
+
89
+ ### WeChat
90
+
91
+ >[WeChat](https://www.wechat.com/) or `Weixin` in Chinese is a Chinese
92
+ > instant messaging, social media, and mobile payment app developed by `Tencent`.
93
+
94
+ See a [usage example](/docs/integrations/chat_loaders/wechat).
95
+
langchain_md_files/integrations/providers/tensorflow_datasets.mdx ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # TensorFlow Datasets
2
+
3
+ >[TensorFlow Datasets](https://www.tensorflow.org/datasets) is a collection of datasets ready to use,
4
+ > with TensorFlow or other Python ML frameworks, such as Jax. All datasets are exposed
5
+ > as [tf.data.Datasets](https://www.tensorflow.org/api_docs/python/tf/data/Dataset),
6
+ > enabling easy-to-use and high-performance input pipelines. To get started see
7
+ > the [guide](https://www.tensorflow.org/datasets/overview) and
8
+ > the [list of datasets](https://www.tensorflow.org/datasets/catalog/overview#all_datasets).
9
+
10
+
11
+
12
+ ## Installation and Setup
13
+
14
+ You need to install `tensorflow` and `tensorflow-datasets` python packages.
15
+
16
+ ```bash
17
+ pip install tensorflow
18
+ ```
19
+
20
+ ```bash
21
+ pip install tensorflow-dataset
22
+ ```
23
+
24
+
25
+ ## Document Loader
26
+
27
+ See a [usage example](/docs/integrations/document_loaders/tensorflow_datasets).
28
+
29
+ ```python
30
+ from langchain_community.document_loaders import TensorflowDatasetLoader
31
+ ```
langchain_md_files/integrations/providers/tidb.mdx ADDED
@@ -0,0 +1,38 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # TiDB
2
+
3
+ > [TiDB Cloud](https://www.pingcap.com/tidb-serverless), is a comprehensive Database-as-a-Service (DBaaS) solution,
4
+ > that provides dedicated and serverless options. `TiDB Serverless` is now integrating
5
+ > a built-in vector search into the MySQL landscape. With this enhancement, you can seamlessly
6
+ > develop AI applications using `TiDB Serverless` without the need for a new database or additional
7
+ > technical stacks. Create a free TiDB Serverless cluster and start using the vector search feature at https://pingcap.com/ai.
8
+
9
+
10
+ ## Installation and Setup
11
+
12
+ You have to get the connection details for the TiDB database.
13
+ Visit the [TiDB Cloud](https://tidbcloud.com/) to get the connection details.
14
+
15
+ ```bash
16
+ ## Document loader
17
+
18
+ ```python
19
+ from langchain_community.document_loaders import TiDBLoader
20
+ ```
21
+
22
+ Please refer the details [here](/docs/integrations/document_loaders/tidb).
23
+
24
+ ## Vector store
25
+
26
+ ```python
27
+ from langchain_community.vectorstores import TiDBVectorStore
28
+ ```
29
+ Please refer the details [here](/docs/integrations/vectorstores/tidb_vector).
30
+
31
+
32
+ ## Memory
33
+
34
+ ```python
35
+ from langchain_community.chat_message_histories import TiDBChatMessageHistory
36
+ ```
37
+
38
+ Please refer the details [here](/docs/integrations/memory/tidb_chat_message_history).
langchain_md_files/integrations/providers/tigergraph.mdx ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # TigerGraph
2
+
3
+ >[TigerGraph](https://www.tigergraph.com/tigergraph-db/) is a natively distributed and high-performance graph database.
4
+ > The storage of data in a graph format of vertices and edges leads to rich relationships,
5
+ > ideal for grouding LLM responses.
6
+
7
+ ## Installation and Setup
8
+
9
+ Follow instructions [how to connect to the `TigerGraph` database](https://docs.tigergraph.com/pytigergraph/current/getting-started/connection).
10
+
11
+ Install the Python SDK:
12
+
13
+ ```bash
14
+ pip install pyTigerGraph
15
+ ```
16
+
17
+ ## Graph store
18
+
19
+ ### TigerGraph
20
+
21
+ See a [usage example](/docs/integrations/graphs/tigergraph).
22
+
23
+ ```python
24
+ from langchain_community.graphs import TigerGraph
25
+ ```