omarsol commited on
Commit
e31b5f3
1 Parent(s): 8b2e311

bc04ebab4e9e1bebf1a546b67cd47946e70d8cbf854357318d1c8e20e62270ee

Browse files
Files changed (50) hide show
  1. chroma-db-langchain/191fd919-436d-4c2c-b784-ba68a1bb79b9/data_level0.bin +3 -0
  2. chroma-db-langchain/191fd919-436d-4c2c-b784-ba68a1bb79b9/header.bin +3 -0
  3. chroma-db-langchain/191fd919-436d-4c2c-b784-ba68a1bb79b9/index_metadata.pickle +3 -0
  4. chroma-db-langchain/191fd919-436d-4c2c-b784-ba68a1bb79b9/length.bin +3 -0
  5. chroma-db-langchain/191fd919-436d-4c2c-b784-ba68a1bb79b9/link_lists.bin +3 -0
  6. chroma-db-langchain/chroma.sqlite3 +2 -2
  7. chroma-db-langchain/document_dict_langchain.pkl +2 -2
  8. chroma-db-llama_index/chroma.sqlite3 +2 -2
  9. chroma-db-llama_index/document_dict_llama_index.pkl +2 -2
  10. chroma-db-llama_index/e3589186-06b2-4509-91f3-2f04395c8967/data_level0.bin +3 -0
  11. chroma-db-llama_index/e3589186-06b2-4509-91f3-2f04395c8967/header.bin +3 -0
  12. chroma-db-llama_index/e3589186-06b2-4509-91f3-2f04395c8967/index_metadata.pickle +3 -0
  13. chroma-db-llama_index/e3589186-06b2-4509-91f3-2f04395c8967/length.bin +3 -0
  14. chroma-db-llama_index/e3589186-06b2-4509-91f3-2f04395c8967/link_lists.bin +3 -0
  15. chroma-db-openai_cookbooks/83713cbb-2048-4fd9-8c69-6c57c3dd9e9a/data_level0.bin +3 -0
  16. chroma-db-openai_cookbooks/83713cbb-2048-4fd9-8c69-6c57c3dd9e9a/header.bin +3 -0
  17. chroma-db-openai_cookbooks/83713cbb-2048-4fd9-8c69-6c57c3dd9e9a/index_metadata.pickle +3 -0
  18. chroma-db-openai_cookbooks/83713cbb-2048-4fd9-8c69-6c57c3dd9e9a/length.bin +3 -0
  19. chroma-db-openai_cookbooks/83713cbb-2048-4fd9-8c69-6c57c3dd9e9a/link_lists.bin +3 -0
  20. chroma-db-openai_cookbooks/chroma.sqlite3 +2 -2
  21. chroma-db-openai_cookbooks/document_dict_openai_cookbooks.pkl +2 -2
  22. chroma-db-peft/c252c979-f4d3-484c-8a24-f045681cfc3d/data_level0.bin +3 -0
  23. chroma-db-peft/c252c979-f4d3-484c-8a24-f045681cfc3d/header.bin +3 -0
  24. chroma-db-peft/c252c979-f4d3-484c-8a24-f045681cfc3d/length.bin +3 -0
  25. chroma-db-peft/c252c979-f4d3-484c-8a24-f045681cfc3d/link_lists.bin +0 -0
  26. chroma-db-peft/chroma.sqlite3 +2 -2
  27. chroma-db-peft/document_dict_peft.pkl +2 -2
  28. chroma-db-transformers/ae4313a8-a344-4a78-9635-059445504a74/data_level0.bin +3 -0
  29. chroma-db-transformers/ae4313a8-a344-4a78-9635-059445504a74/header.bin +3 -0
  30. chroma-db-transformers/ae4313a8-a344-4a78-9635-059445504a74/index_metadata.pickle +3 -0
  31. chroma-db-transformers/ae4313a8-a344-4a78-9635-059445504a74/length.bin +3 -0
  32. chroma-db-transformers/ae4313a8-a344-4a78-9635-059445504a74/link_lists.bin +3 -0
  33. chroma-db-transformers/chroma.sqlite3 +2 -2
  34. chroma-db-transformers/document_dict_transformers.pkl +2 -2
  35. chroma-db-trl/4a557a8f-56f8-4209-85f5-5723a2b2dc4a/data_level0.bin +3 -0
  36. chroma-db-trl/4a557a8f-56f8-4209-85f5-5723a2b2dc4a/header.bin +3 -0
  37. chroma-db-trl/4a557a8f-56f8-4209-85f5-5723a2b2dc4a/length.bin +3 -0
  38. chroma-db-trl/4a557a8f-56f8-4209-85f5-5723a2b2dc4a/link_lists.bin +0 -0
  39. chroma-db-trl/chroma.sqlite3 +2 -2
  40. chroma-db-trl/document_dict_trl.pkl +2 -2
  41. langchain_md_files/_templates/integration.mdx +60 -0
  42. langchain_md_files/additional_resources/arxiv_references.mdx +863 -0
  43. langchain_md_files/additional_resources/dependents.mdx +554 -0
  44. langchain_md_files/additional_resources/tutorials.mdx +51 -0
  45. langchain_md_files/additional_resources/youtube.mdx +63 -0
  46. langchain_md_files/changes/changelog/core.mdx +10 -0
  47. langchain_md_files/changes/changelog/langchain.mdx +93 -0
  48. langchain_md_files/concepts.mdx +0 -0
  49. langchain_md_files/contributing/code/guidelines.mdx +35 -0
  50. langchain_md_files/contributing/code/index.mdx +6 -0
chroma-db-langchain/191fd919-436d-4c2c-b784-ba68a1bb79b9/data_level0.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2421147aa5c23ec9529cef6949c4fc0418bcb13b4863e39493298f8950c41ba5
3
+ size 74568000
chroma-db-langchain/191fd919-436d-4c2c-b784-ba68a1bb79b9/header.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:40519952e8bea509bb9519eebece9a9362e9e991fdad2e3226d0967f6c2442ec
3
+ size 100
chroma-db-langchain/191fd919-436d-4c2c-b784-ba68a1bb79b9/index_metadata.pickle ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a165ac942e6e706ef8893709883c5b76a02667d4352a39cedc99617be7cfb835
3
+ size 346117
chroma-db-langchain/191fd919-436d-4c2c-b784-ba68a1bb79b9/length.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ddcd641da818ad91c965694eac10a44785d16a8668a438b66c8424cc778baef7
3
+ size 24000
chroma-db-langchain/191fd919-436d-4c2c-b784-ba68a1bb79b9/link_lists.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9a7c30248d8a59a105fedb1798a5642cca01d772ddf4b06688c85979ed2b9248
3
+ size 52152
chroma-db-langchain/chroma.sqlite3 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:1fb702f4ed770cf0f0630d4d9c999de16409e95f0708cc6d4bc41f9b6758e0c0
3
- size 223997952
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:24ae5c40f8e6c3af71641afb1a2471995bbbe4db718cd5b35df813db056657bd
3
+ size 227315712
chroma-db-langchain/document_dict_langchain.pkl CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:9288ead475c396868d4046b709ba6b4704b469dc10d571d61e2ac4a651dc8360
3
- size 9495017
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8c24b5de6a028f9823036b20962891c7287b01f804d62ce15dd508494bc89eb8
3
+ size 9762214
chroma-db-llama_index/chroma.sqlite3 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:2f9f841426404c5901ac2f13ffc1c7224cb2783cf4e0276ffbc5783f1426cb29
3
- size 205246464
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c5e49109f87feb4a809ebdf8959a980422db67b0e0225b51ee0c23f2c9af3fcd
3
+ size 235962368
chroma-db-llama_index/document_dict_llama_index.pkl CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:5153123cbc6d2e83c1d6b60d23dd5afee00bd9a4967143b9e8f30f1792c5e932
3
- size 8954720
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5e59ccd849ee0500a175687c77597b5970170bc8d1afb26f82bb058df71150f2
3
+ size 9655771
chroma-db-llama_index/e3589186-06b2-4509-91f3-2f04395c8967/data_level0.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9567febc769436955f0e69825fe8275d4745cd0cf0cc44caf8affea796cd014e
3
+ size 86996000
chroma-db-llama_index/e3589186-06b2-4509-91f3-2f04395c8967/header.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fd7cfb541957dd514cb4cfdc247ec2c5d46c93bde9dd5f31ae24fdb456b9754b
3
+ size 100
chroma-db-llama_index/e3589186-06b2-4509-91f3-2f04395c8967/index_metadata.pickle ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e98c3bbc30cae40677bf9d215340b169e9cdd61e1bb5bd5e71f7d9816330d757
3
+ size 404132
chroma-db-llama_index/e3589186-06b2-4509-91f3-2f04395c8967/length.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:eb8ddaa31f2796e89d98136036eaf4ced37ac942d9705ad6aba6e49276a3570d
3
+ size 28000
chroma-db-llama_index/e3589186-06b2-4509-91f3-2f04395c8967/link_lists.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8e6f7bb6981a5c9f962684dfb4eddc41c4ebcc7d51f4348e2ed76920e7d0d698
3
+ size 61184
chroma-db-openai_cookbooks/83713cbb-2048-4fd9-8c69-6c57c3dd9e9a/data_level0.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:30530f5b774ce644134ff656ea0ad2a0cbe63f6eddc3226926c8a730d933746e
3
+ size 24856000
chroma-db-openai_cookbooks/83713cbb-2048-4fd9-8c69-6c57c3dd9e9a/header.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5adccd0a9e9b2c539168b73e6cc6ce867211ec92bdfbe077126f0620285ad69d
3
+ size 100
chroma-db-openai_cookbooks/83713cbb-2048-4fd9-8c69-6c57c3dd9e9a/index_metadata.pickle ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dcf2eabc3d876731469c40687897ca8c219e088189c29c4d1ef8ca2216e7b8be
3
+ size 114057
chroma-db-openai_cookbooks/83713cbb-2048-4fd9-8c69-6c57c3dd9e9a/length.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d96a38e2a9ec1ca0e380b13a8bb9e2e29723e5b71e00e342fd4497a92e328a45
3
+ size 8000
chroma-db-openai_cookbooks/83713cbb-2048-4fd9-8c69-6c57c3dd9e9a/link_lists.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4cd0071af97255b9180f3809b7f8d098eebed62956f5abcb6a5d115431dcee74
3
+ size 17316
chroma-db-openai_cookbooks/chroma.sqlite3 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:f306cdfca7f7d2899118eb12fb1fc1b7393ebf80f70e358340fe9d6ea87e33e0
3
- size 83746816
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6b4648eaa8091fc2b033b5ac983b0f66c133aaece317ee4f6958322ad48ca3f3
3
+ size 88666112
chroma-db-openai_cookbooks/document_dict_openai_cookbooks.pkl CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:f3c410a0972b9c2dfa286ad03449d8024704fbcb0b313f126ae10dd1d7b94f21
3
- size 3490619
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d1b61dcd793c1f5995a2182c9dbbe84759d42c1d0babb4e47f99bb4363293605
3
+ size 3741933
chroma-db-peft/c252c979-f4d3-484c-8a24-f045681cfc3d/data_level0.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5b8d4b3825a7c7a773e22fa3eeef0e7d15a695f5c4183aeff5beb07741a68679
3
+ size 12428000
chroma-db-peft/c252c979-f4d3-484c-8a24-f045681cfc3d/header.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e8a3ec48846fc6fdfaef19f5ed2508f0bf3da4a3c93b0f6b3dd21f0a22ec1026
3
+ size 100
chroma-db-peft/c252c979-f4d3-484c-8a24-f045681cfc3d/length.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b573464ecbf09c406291e7c466209f06d69e272fd1b89f9fe800a34bdb91c226
3
+ size 4000
chroma-db-peft/c252c979-f4d3-484c-8a24-f045681cfc3d/link_lists.bin ADDED
File without changes
chroma-db-peft/chroma.sqlite3 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:136ffa7189b3063d76c59ef7a76e4fc31617876be83ccf853a6512438f0f50b2
3
- size 5292032
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b36f58ccee36a79e20176c908eda56d403115cc39f16671c5be3886f5f136b13
3
+ size 5406720
chroma-db-peft/document_dict_peft.pkl CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:61a7b7572c03ac55bd3bf7f409e99de3c16ba3a2ac4c66ccea02443f5f0c0793
3
- size 261248
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:389c05ff699fcd247c93b2678791f9c9f7eec2901d887730e034dffb1c7038e8
3
+ size 270073
chroma-db-transformers/ae4313a8-a344-4a78-9635-059445504a74/data_level0.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4905080b3461da13555985ff85c5660019a389e56c813bd3af94b74b674c9350
3
+ size 12428000
chroma-db-transformers/ae4313a8-a344-4a78-9635-059445504a74/header.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:32b85e1f983554ee44ccfad97691e6a34167e44a21b142340c0d8d4b7e7b5615
3
+ size 100
chroma-db-transformers/ae4313a8-a344-4a78-9635-059445504a74/index_metadata.pickle ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ceef146ebe3c4f4cdf6847d3af12419fec68b99abf2ef6b60fd0daae667fb6a7
3
+ size 56042
chroma-db-transformers/ae4313a8-a344-4a78-9635-059445504a74/length.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e0de8d2fac125632afe04d41917c53cea67281576d82a011ae7a778ef3cb2684
3
+ size 4000
chroma-db-transformers/ae4313a8-a344-4a78-9635-059445504a74/link_lists.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5098cab52fc6f8df69adbe312a05d2df77efae77f3d769069da621c6b570a4d1
3
+ size 8148
chroma-db-transformers/chroma.sqlite3 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:53ece68c3b8a7c87f4b630e542127601194dcc4d97ac9d2a236938b575e33ae6
3
- size 63442944
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:25c626cb3a2cd7286126cadb2e1148d1a05c363c34bb8e6b1694427564b7dddc
3
+ size 65089536
chroma-db-transformers/document_dict_transformers.pkl CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:0eb21c73e0cf7ef0970b615c66df67dae4e973befea9fdd22721dd69b0939231
3
- size 3166114
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:136c1342439595a6dfefb2fee5c32139fffeb22cd5351f67b600803580b60aae
3
+ size 3255021
chroma-db-trl/4a557a8f-56f8-4209-85f5-5723a2b2dc4a/data_level0.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5b8d4b3825a7c7a773e22fa3eeef0e7d15a695f5c4183aeff5beb07741a68679
3
+ size 12428000
chroma-db-trl/4a557a8f-56f8-4209-85f5-5723a2b2dc4a/header.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e8a3ec48846fc6fdfaef19f5ed2508f0bf3da4a3c93b0f6b3dd21f0a22ec1026
3
+ size 100
chroma-db-trl/4a557a8f-56f8-4209-85f5-5723a2b2dc4a/length.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:736e57c24fa009f96a9bd8ead552b4d3aa91ef5141de93d215f87dc0633a2f16
3
+ size 4000
chroma-db-trl/4a557a8f-56f8-4209-85f5-5723a2b2dc4a/link_lists.bin ADDED
File without changes
chroma-db-trl/chroma.sqlite3 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:066e040cdf71203d2d2f90a870854e9fd16418d5dc1229fccf52d2887cec1c5c
3
- size 5292032
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f2f674cf5d0dff76e533a5e00159c74db7f503e9d03196269990f98989d1fe99
3
+ size 5853184
chroma-db-trl/document_dict_trl.pkl CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:ea2cf47511ef464f04c458d950cae2ac158a10cca40a338bacb9e38351223375
3
- size 264000
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d222b0677fed7d87f203b75dc8e8c607206ab246d3161bfabe1bd712ce8f09a6
3
+ size 283631
langchain_md_files/_templates/integration.mdx ADDED
@@ -0,0 +1,60 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [comment: Please, a reference example here "docs/integrations/arxiv.md"]::
2
+ [comment: Use this template to create a new .md file in "docs/integrations/"]::
3
+
4
+ # Title_REPLACE_ME
5
+
6
+ [comment: Only one Tile/H1 is allowed!]::
7
+
8
+ >
9
+ [comment: Description: After reading this description, a reader should decide if this integration is good enough to try/follow reading OR]::
10
+ [comment: go to read the next integration doc. ]::
11
+ [comment: Description should include a link to the source for follow reading.]::
12
+
13
+ ## Installation and Setup
14
+
15
+ [comment: Installation and Setup: All necessary additional package installations and setups for Tokens, etc]::
16
+
17
+ ```bash
18
+ pip install package_name_REPLACE_ME
19
+ ```
20
+
21
+ [comment: OR this text:]::
22
+
23
+ There isn't any special setup for it.
24
+
25
+ [comment: The next H2/## sections with names of the integration modules, like "LLM", "Text Embedding Models", etc]::
26
+ [comment: see "Modules" in the "index.html" page]::
27
+ [comment: Each H2 section should include a link to an example(s) and a Python code with the import of the integration class]::
28
+ [comment: Below are several example sections. Remove all unnecessary sections. Add all necessary sections not provided here.]::
29
+
30
+ ## LLM
31
+
32
+ See a [usage example](/docs/integrations/llms/INCLUDE_REAL_NAME).
33
+
34
+ ```python
35
+ from langchain_community.llms import integration_class_REPLACE_ME
36
+ ```
37
+
38
+ ## Text Embedding Models
39
+
40
+ See a [usage example](/docs/integrations/text_embedding/INCLUDE_REAL_NAME).
41
+
42
+ ```python
43
+ from langchain_community.embeddings import integration_class_REPLACE_ME
44
+ ```
45
+
46
+ ## Chat models
47
+
48
+ See a [usage example](/docs/integrations/chat/INCLUDE_REAL_NAME).
49
+
50
+ ```python
51
+ from langchain_community.chat_models import integration_class_REPLACE_ME
52
+ ```
53
+
54
+ ## Document Loader
55
+
56
+ See a [usage example](/docs/integrations/document_loaders/INCLUDE_REAL_NAME).
57
+
58
+ ```python
59
+ from langchain_community.document_loaders import integration_class_REPLACE_ME
60
+ ```
langchain_md_files/additional_resources/arxiv_references.mdx ADDED
@@ -0,0 +1,863 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # arXiv
2
+
3
+ LangChain implements the latest research in the field of Natural Language Processing.
4
+ This page contains `arXiv` papers referenced in the LangChain Documentation, API Reference,
5
+ Templates, and Cookbooks.
6
+
7
+ From the opposite direction, scientists use `LangChain` in research and reference it in the research papers.
8
+ Here you find papers that reference:
9
+ - [LangChain](https://arxiv.org/search/?query=langchain&searchtype=all&source=header)
10
+ - [LangGraph](https://arxiv.org/search/?query=langgraph&searchtype=all&source=header)
11
+ - [LangSmith](https://arxiv.org/search/?query=langsmith&searchtype=all&source=header)
12
+
13
+ ## Summary
14
+
15
+ | arXiv id / Title | Authors | Published date 🔻 | LangChain Documentation|
16
+ |------------------|---------|-------------------|------------------------|
17
+ | `2402.03620v1` [Self-Discover: Large Language Models Self-Compose Reasoning Structures](http://arxiv.org/abs/2402.03620v1) | Pei Zhou, Jay Pujara, Xiang Ren, et al. | 2024-02-06 | `Cookbook:` [self-discover](https://github.com/langchain-ai/langchain/blob/master/cookbook/self-discover.ipynb)
18
+ | `2401.18059v1` [RAPTOR: Recursive Abstractive Processing for Tree-Organized Retrieval](http://arxiv.org/abs/2401.18059v1) | Parth Sarthi, Salman Abdullah, Aditi Tuli, et al. | 2024-01-31 | `Cookbook:` [RAPTOR](https://github.com/langchain-ai/langchain/blob/master/cookbook/RAPTOR.ipynb)
19
+ | `2401.15884v2` [Corrective Retrieval Augmented Generation](http://arxiv.org/abs/2401.15884v2) | Shi-Qi Yan, Jia-Chen Gu, Yun Zhu, et al. | 2024-01-29 | `Cookbook:` [langgraph_crag](https://github.com/langchain-ai/langchain/blob/master/cookbook/langgraph_crag.ipynb)
20
+ | `2401.04088v1` [Mixtral of Experts](http://arxiv.org/abs/2401.04088v1) | Albert Q. Jiang, Alexandre Sablayrolles, Antoine Roux, et al. | 2024-01-08 | `Cookbook:` [together_ai](https://github.com/langchain-ai/langchain/blob/master/cookbook/together_ai.ipynb)
21
+ | `2312.06648v2` [Dense X Retrieval: What Retrieval Granularity Should We Use?](http://arxiv.org/abs/2312.06648v2) | Tong Chen, Hongwei Wang, Sihao Chen, et al. | 2023-12-11 | `Template:` [propositional-retrieval](https://python.langchain.com/docs/templates/propositional-retrieval)
22
+ | `2311.09210v1` [Chain-of-Note: Enhancing Robustness in Retrieval-Augmented Language Models](http://arxiv.org/abs/2311.09210v1) | Wenhao Yu, Hongming Zhang, Xiaoman Pan, et al. | 2023-11-15 | `Template:` [chain-of-note-wiki](https://python.langchain.com/docs/templates/chain-of-note-wiki)
23
+ | `2310.11511v1` [Self-RAG: Learning to Retrieve, Generate, and Critique through Self-Reflection](http://arxiv.org/abs/2310.11511v1) | Akari Asai, Zeqiu Wu, Yizhong Wang, et al. | 2023-10-17 | `Cookbook:` [langgraph_self_rag](https://github.com/langchain-ai/langchain/blob/master/cookbook/langgraph_self_rag.ipynb)
24
+ | `2310.06117v2` [Take a Step Back: Evoking Reasoning via Abstraction in Large Language Models](http://arxiv.org/abs/2310.06117v2) | Huaixiu Steven Zheng, Swaroop Mishra, Xinyun Chen, et al. | 2023-10-09 | `Template:` [stepback-qa-prompting](https://python.langchain.com/docs/templates/stepback-qa-prompting), `Cookbook:` [stepback-qa](https://github.com/langchain-ai/langchain/blob/master/cookbook/stepback-qa.ipynb)
25
+ | `2307.09288v2` [Llama 2: Open Foundation and Fine-Tuned Chat Models](http://arxiv.org/abs/2307.09288v2) | Hugo Touvron, Louis Martin, Kevin Stone, et al. | 2023-07-18 | `Cookbook:` [Semi_Structured_RAG](https://github.com/langchain-ai/langchain/blob/master/cookbook/Semi_Structured_RAG.ipynb)
26
+ | `2305.14283v3` [Query Rewriting for Retrieval-Augmented Large Language Models](http://arxiv.org/abs/2305.14283v3) | Xinbei Ma, Yeyun Gong, Pengcheng He, et al. | 2023-05-23 | `Template:` [rewrite-retrieve-read](https://python.langchain.com/docs/templates/rewrite-retrieve-read), `Cookbook:` [rewrite](https://github.com/langchain-ai/langchain/blob/master/cookbook/rewrite.ipynb)
27
+ | `2305.08291v1` [Large Language Model Guided Tree-of-Thought](http://arxiv.org/abs/2305.08291v1) | Jieyi Long | 2023-05-15 | `API:` [langchain_experimental.tot](https://python.langchain.com/v0.2/api_reference/experimental/index.html#module-langchain_experimental.tot), `Cookbook:` [tree_of_thought](https://github.com/langchain-ai/langchain/blob/master/cookbook/tree_of_thought.ipynb)
28
+ | `2305.04091v3` [Plan-and-Solve Prompting: Improving Zero-Shot Chain-of-Thought Reasoning by Large Language Models](http://arxiv.org/abs/2305.04091v3) | Lei Wang, Wanyu Xu, Yihuai Lan, et al. | 2023-05-06 | `Cookbook:` [plan_and_execute_agent](https://github.com/langchain-ai/langchain/blob/master/cookbook/plan_and_execute_agent.ipynb)
29
+ | `2305.02156v1` [Zero-Shot Listwise Document Reranking with a Large Language Model](http://arxiv.org/abs/2305.02156v1) | Xueguang Ma, Xinyu Zhang, Ronak Pradeep, et al. | 2023-05-03 | `API:` [langchain...LLMListwiseRerank](https://python.langchain.com/v0.2/api_reference/langchain/retrievers/langchain.retrievers.document_compressors.listwise_rerank.LLMListwiseRerank.html#langchain.retrievers.document_compressors.listwise_rerank.LLMListwiseRerank)
30
+ | `2304.08485v2` [Visual Instruction Tuning](http://arxiv.org/abs/2304.08485v2) | Haotian Liu, Chunyuan Li, Qingyang Wu, et al. | 2023-04-17 | `Cookbook:` [Semi_structured_and_multi_modal_RAG](https://github.com/langchain-ai/langchain/blob/master/cookbook/Semi_structured_and_multi_modal_RAG.ipynb), [Semi_structured_multi_modal_RAG_LLaMA2](https://github.com/langchain-ai/langchain/blob/master/cookbook/Semi_structured_multi_modal_RAG_LLaMA2.ipynb)
31
+ | `2304.03442v2` [Generative Agents: Interactive Simulacra of Human Behavior](http://arxiv.org/abs/2304.03442v2) | Joon Sung Park, Joseph C. O'Brien, Carrie J. Cai, et al. | 2023-04-07 | `Cookbook:` [multiagent_bidding](https://github.com/langchain-ai/langchain/blob/master/cookbook/multiagent_bidding.ipynb), [generative_agents_interactive_simulacra_of_human_behavior](https://github.com/langchain-ai/langchain/blob/master/cookbook/generative_agents_interactive_simulacra_of_human_behavior.ipynb)
32
+ | `2303.17760v2` [CAMEL: Communicative Agents for "Mind" Exploration of Large Language Model Society](http://arxiv.org/abs/2303.17760v2) | Guohao Li, Hasan Abed Al Kader Hammoud, Hani Itani, et al. | 2023-03-31 | `Cookbook:` [camel_role_playing](https://github.com/langchain-ai/langchain/blob/master/cookbook/camel_role_playing.ipynb)
33
+ | `2303.17580v4` [HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face](http://arxiv.org/abs/2303.17580v4) | Yongliang Shen, Kaitao Song, Xu Tan, et al. | 2023-03-30 | `API:` [langchain_experimental.autonomous_agents](https://python.langchain.com/v0.2/api_reference/experimental/index.html#module-langchain_experimental.autonomous_agents), `Cookbook:` [hugginggpt](https://github.com/langchain-ai/langchain/blob/master/cookbook/hugginggpt.ipynb)
34
+ | `2301.10226v4` [A Watermark for Large Language Models](http://arxiv.org/abs/2301.10226v4) | John Kirchenbauer, Jonas Geiping, Yuxin Wen, et al. | 2023-01-24 | `API:` [langchain_community...OCIModelDeploymentTGI](https://python.langchain.com/v0.2/api_reference/community/llms/langchain_community.llms.oci_data_science_model_deployment_endpoint.OCIModelDeploymentTGI.html#langchain_community.llms.oci_data_science_model_deployment_endpoint.OCIModelDeploymentTGI), [langchain_huggingface...HuggingFaceEndpoint](https://python.langchain.com/v0.2/api_reference/huggingface/llms/langchain_huggingface.llms.huggingface_endpoint.HuggingFaceEndpoint.html#langchain_huggingface.llms.huggingface_endpoint.HuggingFaceEndpoint), [langchain_community...HuggingFaceEndpoint](https://python.langchain.com/v0.2/api_reference/langchain_community/llms/langchain_community.llms.huggingface_endpoint.HuggingFaceEndpoint.html#langchain_community.llms.huggingface_endpoint.HuggingFaceEndpoint), [langchain_community...HuggingFaceTextGenInference](https://python.langchain.com/v0.2/api_reference/community/llms/langchain_community.llms.huggingface_text_gen_inference.HuggingFaceTextGenInference.html#langchain_community.llms.huggingface_text_gen_inference.HuggingFaceTextGenInference)
35
+ | `2212.10496v1` [Precise Zero-Shot Dense Retrieval without Relevance Labels](http://arxiv.org/abs/2212.10496v1) | Luyu Gao, Xueguang Ma, Jimmy Lin, et al. | 2022-12-20 | `API:` [langchain...HypotheticalDocumentEmbedder](https://python.langchain.com/v0.2/api_reference/langchain/chains/langchain.chains.hyde.base.HypotheticalDocumentEmbedder.html#langchain.chains.hyde.base.HypotheticalDocumentEmbedder), `Template:` [hyde](https://python.langchain.com/docs/templates/hyde), `Cookbook:` [hypothetical_document_embeddings](https://github.com/langchain-ai/langchain/blob/master/cookbook/hypothetical_document_embeddings.ipynb)
36
+ | `2212.07425v3` [Robust and Explainable Identification of Logical Fallacies in Natural Language Arguments](http://arxiv.org/abs/2212.07425v3) | Zhivar Sourati, Vishnu Priya Prasanna Venkatesh, Darshan Deshpande, et al. | 2022-12-12 | `API:` [langchain_experimental.fallacy_removal](https://python.langchain.com/v0.2/api_reference//arxiv/experimental_api_reference.html#module-langchain_experimental.fallacy_removal)
37
+ | `2211.13892v2` [Complementary Explanations for Effective In-Context Learning](http://arxiv.org/abs/2211.13892v2) | Xi Ye, Srinivasan Iyer, Asli Celikyilmaz, et al. | 2022-11-25 | `API:` [langchain_core...MaxMarginalRelevanceExampleSelector](https://python.langchain.com/v0.2/api_reference/core/example_selectors/langchain_core.example_selectors.semantic_similarity.MaxMarginalRelevanceExampleSelector.html#langchain_core.example_selectors.semantic_similarity.MaxMarginalRelevanceExampleSelector)
38
+ | `2211.10435v2` [PAL: Program-aided Language Models](http://arxiv.org/abs/2211.10435v2) | Luyu Gao, Aman Madaan, Shuyan Zhou, et al. | 2022-11-18 | `API:` [langchain_experimental.pal_chain](https://python.langchain.com/v0.2/api_reference//python/experimental_api_reference.html#module-langchain_experimental.pal_chain), [langchain_experimental...PALChain](https://python.langchain.com/v0.2/api_reference/experimental/pal_chain/langchain_experimental.pal_chain.base.PALChain.html#langchain_experimental.pal_chain.base.PALChain), `Cookbook:` [program_aided_language_model](https://github.com/langchain-ai/langchain/blob/master/cookbook/program_aided_language_model.ipynb)
39
+ | `2210.03629v3` [ReAct: Synergizing Reasoning and Acting in Language Models](http://arxiv.org/abs/2210.03629v3) | Shunyu Yao, Jeffrey Zhao, Dian Yu, et al. | 2022-10-06 | `Docs:` [docs/integrations/providers/cohere](https://python.langchain.com/docs/integrations/providers/cohere), [docs/integrations/tools/ionic_shopping](https://python.langchain.com/docs/integrations/tools/ionic_shopping), `API:` [langchain...TrajectoryEvalChain](https://python.langchain.com/v0.2/api_reference/langchain/evaluation/langchain.evaluation.agents.trajectory_eval_chain.TrajectoryEvalChain.html#langchain.evaluation.agents.trajectory_eval_chain.TrajectoryEvalChain), [langchain...create_react_agent](https://python.langchain.com/v0.2/api_reference/langchain/agents/langchain.agents.react.agent.create_react_agent.html#langchain.agents.react.agent.create_react_agent)
40
+ | `2209.10785v2` [Deep Lake: a Lakehouse for Deep Learning](http://arxiv.org/abs/2209.10785v2) | Sasun Hambardzumyan, Abhinav Tuli, Levon Ghukasyan, et al. | 2022-09-22 | `Docs:` [docs/integrations/providers/activeloop_deeplake](https://python.langchain.com/docs/integrations/providers/activeloop_deeplake)
41
+ | `2205.13147v4` [Matryoshka Representation Learning](http://arxiv.org/abs/2205.13147v4) | Aditya Kusupati, Gantavya Bhatt, Aniket Rege, et al. | 2022-05-26 | `Docs:` [docs/integrations/providers/snowflake](https://python.langchain.com/docs/integrations/providers/snowflake)
42
+ | `2205.12654v1` [Bitext Mining Using Distilled Sentence Representations for Low-Resource Languages](http://arxiv.org/abs/2205.12654v1) | Kevin Heffernan, Onur Çelebi, Holger Schwenk | 2022-05-25 | `API:` [langchain_community...LaserEmbeddings](https://python.langchain.com/v0.2/api_reference/community/embeddings/langchain_community.embeddings.laser.LaserEmbeddings.html#langchain_community.embeddings.laser.LaserEmbeddings)
43
+ | `2204.00498v1` [Evaluating the Text-to-SQL Capabilities of Large Language Models](http://arxiv.org/abs/2204.00498v1) | Nitarshan Rajkumar, Raymond Li, Dzmitry Bahdanau | 2022-03-15 | `API:` [langchain_community...SQLDatabase](https://python.langchain.com/v0.2/api_reference/community/utilities/langchain_community.utilities.sql_database.SQLDatabase.html#langchain_community.utilities.sql_database.SQLDatabase), [langchain_community...SparkSQL](https://python.langchain.com/v0.2/api_reference/community/utilities/langchain_community.utilities.spark_sql.SparkSQL.html#langchain_community.utilities.spark_sql.SparkSQL)
44
+ | `2202.00666v5` [Locally Typical Sampling](http://arxiv.org/abs/2202.00666v5) | Clara Meister, Tiago Pimentel, Gian Wiher, et al. | 2022-02-01 | `API:` [langchain_huggingface...HuggingFaceEndpoint](https://python.langchain.com/v0.2/api_reference/huggingface/llms/langchain_huggingface.llms.huggingface_endpoint.HuggingFaceEndpoint.html#langchain_huggingface.llms.huggingface_endpoint.HuggingFaceEndpoint), [langchain_community...HuggingFaceEndpoint](https://python.langchain.com/v0.2/api_reference/community/llms/langchain_community.llms.huggingface_endpoint.HuggingFaceEndpoint.html#langchain_community.llms.huggingface_endpoint.HuggingFaceEndpoint), [langchain_community...HuggingFaceTextGenInference](https://python.langchain.com/v0.2/api_reference/community/llms/langchain_community.llms.huggingface_text_gen_inference.HuggingFaceTextGenInference.html#langchain_community.llms.huggingface_text_gen_inference.HuggingFaceTextGenInference)
45
+ | `2103.00020v1` [Learning Transferable Visual Models From Natural Language Supervision](http://arxiv.org/abs/2103.00020v1) | Alec Radford, Jong Wook Kim, Chris Hallacy, et al. | 2021-02-26 | `API:` [langchain_experimental.open_clip](https://python.langchain.com/v0.2/api_reference//arxiv/experimental_api_reference.html#module-langchain_experimental.open_clip)
46
+ | `1909.05858v2` [CTRL: A Conditional Transformer Language Model for Controllable Generation](http://arxiv.org/abs/1909.05858v2) | Nitish Shirish Keskar, Bryan McCann, Lav R. Varshney, et al. | 2019-09-11 | `API:` [langchain_huggingface...HuggingFaceEndpoint](https://python.langchain.com/v0.2/api_reference/huggingface/llms/langchain_huggingface.llms.huggingface_endpoint.HuggingFaceEndpoint.html#langchain_huggingface.llms.huggingface_endpoint.HuggingFaceEndpoint), [langchain_community...HuggingFaceEndpoint](https://python.langchain.com/v0.2/api_reference/community/llms/langchain_community.llms.huggingface_endpoint.HuggingFaceEndpoint.html#langchain_community.llms.huggingface_endpoint.HuggingFaceEndpoint), [langchain_community...HuggingFaceTextGenInference](https://python.langchain.com/v0.2/api_reference/community/llms/langchain_community.llms.huggingface_text_gen_inference.HuggingFaceTextGenInference.html#langchain_community.llms.huggingface_text_gen_inference.HuggingFaceTextGenInference)
47
+
48
+ ## Self-Discover: Large Language Models Self-Compose Reasoning Structures
49
+
50
+ - **arXiv id:** [2402.03620v1](http://arxiv.org/abs/2402.03620v1) **Published Date:** 2024-02-06
51
+ - **Title:** Self-Discover: Large Language Models Self-Compose Reasoning Structures
52
+ - **Authors:** Pei Zhou, Jay Pujara, Xiang Ren, et al.
53
+ - **LangChain:**
54
+
55
+ - **Cookbook:** [self-discover](https://github.com/langchain-ai/langchain/blob/master/cookbook/self-discover.ipynb)
56
+
57
+ **Abstract:** We introduce SELF-DISCOVER, a general framework for LLMs to self-discover the
58
+ task-intrinsic reasoning structures to tackle complex reasoning problems that
59
+ are challenging for typical prompting methods. Core to the framework is a
60
+ self-discovery process where LLMs select multiple atomic reasoning modules such
61
+ as critical thinking and step-by-step thinking, and compose them into an
62
+ explicit reasoning structure for LLMs to follow during decoding. SELF-DISCOVER
63
+ substantially improves GPT-4 and PaLM 2's performance on challenging reasoning
64
+ benchmarks such as BigBench-Hard, grounded agent reasoning, and MATH, by as
65
+ much as 32% compared to Chain of Thought (CoT). Furthermore, SELF-DISCOVER
66
+ outperforms inference-intensive methods such as CoT-Self-Consistency by more
67
+ than 20%, while requiring 10-40x fewer inference compute. Finally, we show that
68
+ the self-discovered reasoning structures are universally applicable across
69
+ model families: from PaLM 2-L to GPT-4, and from GPT-4 to Llama2, and share
70
+ commonalities with human reasoning patterns.
71
+
72
+ ## RAPTOR: Recursive Abstractive Processing for Tree-Organized Retrieval
73
+
74
+ - **arXiv id:** [2401.18059v1](http://arxiv.org/abs/2401.18059v1) **Published Date:** 2024-01-31
75
+ - **Title:** RAPTOR: Recursive Abstractive Processing for Tree-Organized Retrieval
76
+ - **Authors:** Parth Sarthi, Salman Abdullah, Aditi Tuli, et al.
77
+ - **LangChain:**
78
+
79
+ - **Cookbook:** [RAPTOR](https://github.com/langchain-ai/langchain/blob/master/cookbook/RAPTOR.ipynb)
80
+
81
+ **Abstract:** Retrieval-augmented language models can better adapt to changes in world
82
+ state and incorporate long-tail knowledge. However, most existing methods
83
+ retrieve only short contiguous chunks from a retrieval corpus, limiting
84
+ holistic understanding of the overall document context. We introduce the novel
85
+ approach of recursively embedding, clustering, and summarizing chunks of text,
86
+ constructing a tree with differing levels of summarization from the bottom up.
87
+ At inference time, our RAPTOR model retrieves from this tree, integrating
88
+ information across lengthy documents at different levels of abstraction.
89
+ Controlled experiments show that retrieval with recursive summaries offers
90
+ significant improvements over traditional retrieval-augmented LMs on several
91
+ tasks. On question-answering tasks that involve complex, multi-step reasoning,
92
+ we show state-of-the-art results; for example, by coupling RAPTOR retrieval
93
+ with the use of GPT-4, we can improve the best performance on the QuALITY
94
+ benchmark by 20% in absolute accuracy.
95
+
96
+ ## Corrective Retrieval Augmented Generation
97
+
98
+ - **arXiv id:** [2401.15884v2](http://arxiv.org/abs/2401.15884v2) **Published Date:** 2024-01-29
99
+ - **Title:** Corrective Retrieval Augmented Generation
100
+ - **Authors:** Shi-Qi Yan, Jia-Chen Gu, Yun Zhu, et al.
101
+ - **LangChain:**
102
+
103
+ - **Cookbook:** [langgraph_crag](https://github.com/langchain-ai/langchain/blob/master/cookbook/langgraph_crag.ipynb)
104
+
105
+ **Abstract:** Large language models (LLMs) inevitably exhibit hallucinations since the
106
+ accuracy of generated texts cannot be secured solely by the parametric
107
+ knowledge they encapsulate. Although retrieval-augmented generation (RAG) is a
108
+ practicable complement to LLMs, it relies heavily on the relevance of retrieved
109
+ documents, raising concerns about how the model behaves if retrieval goes
110
+ wrong. To this end, we propose the Corrective Retrieval Augmented Generation
111
+ (CRAG) to improve the robustness of generation. Specifically, a lightweight
112
+ retrieval evaluator is designed to assess the overall quality of retrieved
113
+ documents for a query, returning a confidence degree based on which different
114
+ knowledge retrieval actions can be triggered. Since retrieval from static and
115
+ limited corpora can only return sub-optimal documents, large-scale web searches
116
+ are utilized as an extension for augmenting the retrieval results. Besides, a
117
+ decompose-then-recompose algorithm is designed for retrieved documents to
118
+ selectively focus on key information and filter out irrelevant information in
119
+ them. CRAG is plug-and-play and can be seamlessly coupled with various
120
+ RAG-based approaches. Experiments on four datasets covering short- and
121
+ long-form generation tasks show that CRAG can significantly improve the
122
+ performance of RAG-based approaches.
123
+
124
+ ## Mixtral of Experts
125
+
126
+ - **arXiv id:** [2401.04088v1](http://arxiv.org/abs/2401.04088v1) **Published Date:** 2024-01-08
127
+ - **Title:** Mixtral of Experts
128
+ - **Authors:** Albert Q. Jiang, Alexandre Sablayrolles, Antoine Roux, et al.
129
+ - **LangChain:**
130
+
131
+ - **Cookbook:** [together_ai](https://github.com/langchain-ai/langchain/blob/master/cookbook/together_ai.ipynb)
132
+
133
+ **Abstract:** We introduce Mixtral 8x7B, a Sparse Mixture of Experts (SMoE) language model.
134
+ Mixtral has the same architecture as Mistral 7B, with the difference that each
135
+ layer is composed of 8 feedforward blocks (i.e. experts). For every token, at
136
+ each layer, a router network selects two experts to process the current state
137
+ and combine their outputs. Even though each token only sees two experts, the
138
+ selected experts can be different at each timestep. As a result, each token has
139
+ access to 47B parameters, but only uses 13B active parameters during inference.
140
+ Mixtral was trained with a context size of 32k tokens and it outperforms or
141
+ matches Llama 2 70B and GPT-3.5 across all evaluated benchmarks. In particular,
142
+ Mixtral vastly outperforms Llama 2 70B on mathematics, code generation, and
143
+ multilingual benchmarks. We also provide a model fine-tuned to follow
144
+ instructions, Mixtral 8x7B - Instruct, that surpasses GPT-3.5 Turbo,
145
+ Claude-2.1, Gemini Pro, and Llama 2 70B - chat model on human benchmarks. Both
146
+ the base and instruct models are released under the Apache 2.0 license.
147
+
148
+ ## Dense X Retrieval: What Retrieval Granularity Should We Use?
149
+
150
+ - **arXiv id:** [2312.06648v2](http://arxiv.org/abs/2312.06648v2) **Published Date:** 2023-12-11
151
+ - **Title:** Dense X Retrieval: What Retrieval Granularity Should We Use?
152
+ - **Authors:** Tong Chen, Hongwei Wang, Sihao Chen, et al.
153
+ - **LangChain:**
154
+
155
+ - **Template:** [propositional-retrieval](https://python.langchain.com/docs/templates/propositional-retrieval)
156
+
157
+ **Abstract:** Dense retrieval has become a prominent method to obtain relevant context or
158
+ world knowledge in open-domain NLP tasks. When we use a learned dense retriever
159
+ on a retrieval corpus at inference time, an often-overlooked design choice is
160
+ the retrieval unit in which the corpus is indexed, e.g. document, passage, or
161
+ sentence. We discover that the retrieval unit choice significantly impacts the
162
+ performance of both retrieval and downstream tasks. Distinct from the typical
163
+ approach of using passages or sentences, we introduce a novel retrieval unit,
164
+ proposition, for dense retrieval. Propositions are defined as atomic
165
+ expressions within text, each encapsulating a distinct factoid and presented in
166
+ a concise, self-contained natural language format. We conduct an empirical
167
+ comparison of different retrieval granularity. Our results reveal that
168
+ proposition-based retrieval significantly outperforms traditional passage or
169
+ sentence-based methods in dense retrieval. Moreover, retrieval by proposition
170
+ also enhances the performance of downstream QA tasks, since the retrieved texts
171
+ are more condensed with question-relevant information, reducing the need for
172
+ lengthy input tokens and minimizing the inclusion of extraneous, irrelevant
173
+ information.
174
+
175
+ ## Chain-of-Note: Enhancing Robustness in Retrieval-Augmented Language Models
176
+
177
+ - **arXiv id:** [2311.09210v1](http://arxiv.org/abs/2311.09210v1) **Published Date:** 2023-11-15
178
+ - **Title:** Chain-of-Note: Enhancing Robustness in Retrieval-Augmented Language Models
179
+ - **Authors:** Wenhao Yu, Hongming Zhang, Xiaoman Pan, et al.
180
+ - **LangChain:**
181
+
182
+ - **Template:** [chain-of-note-wiki](https://python.langchain.com/docs/templates/chain-of-note-wiki)
183
+
184
+ **Abstract:** Retrieval-augmented language models (RALMs) represent a substantial
185
+ advancement in the capabilities of large language models, notably in reducing
186
+ factual hallucination by leveraging external knowledge sources. However, the
187
+ reliability of the retrieved information is not always guaranteed. The
188
+ retrieval of irrelevant data can lead to misguided responses, and potentially
189
+ causing the model to overlook its inherent knowledge, even when it possesses
190
+ adequate information to address the query. Moreover, standard RALMs often
191
+ struggle to assess whether they possess adequate knowledge, both intrinsic and
192
+ retrieved, to provide an accurate answer. In situations where knowledge is
193
+ lacking, these systems should ideally respond with "unknown" when the answer is
194
+ unattainable. In response to these challenges, we introduces Chain-of-Noting
195
+ (CoN), a novel approach aimed at improving the robustness of RALMs in facing
196
+ noisy, irrelevant documents and in handling unknown scenarios. The core idea of
197
+ CoN is to generate sequential reading notes for retrieved documents, enabling a
198
+ thorough evaluation of their relevance to the given question and integrating
199
+ this information to formulate the final answer. We employed ChatGPT to create
200
+ training data for CoN, which was subsequently trained on an LLaMa-2 7B model.
201
+ Our experiments across four open-domain QA benchmarks show that RALMs equipped
202
+ with CoN significantly outperform standard RALMs. Notably, CoN achieves an
203
+ average improvement of +7.9 in EM score given entirely noisy retrieved
204
+ documents and +10.5 in rejection rates for real-time questions that fall
205
+ outside the pre-training knowledge scope.
206
+
207
+ ## Self-RAG: Learning to Retrieve, Generate, and Critique through Self-Reflection
208
+
209
+ - **arXiv id:** [2310.11511v1](http://arxiv.org/abs/2310.11511v1) **Published Date:** 2023-10-17
210
+ - **Title:** Self-RAG: Learning to Retrieve, Generate, and Critique through Self-Reflection
211
+ - **Authors:** Akari Asai, Zeqiu Wu, Yizhong Wang, et al.
212
+ - **LangChain:**
213
+
214
+ - **Cookbook:** [langgraph_self_rag](https://github.com/langchain-ai/langchain/blob/master/cookbook/langgraph_self_rag.ipynb)
215
+
216
+ **Abstract:** Despite their remarkable capabilities, large language models (LLMs) often
217
+ produce responses containing factual inaccuracies due to their sole reliance on
218
+ the parametric knowledge they encapsulate. Retrieval-Augmented Generation
219
+ (RAG), an ad hoc approach that augments LMs with retrieval of relevant
220
+ knowledge, decreases such issues. However, indiscriminately retrieving and
221
+ incorporating a fixed number of retrieved passages, regardless of whether
222
+ retrieval is necessary, or passages are relevant, diminishes LM versatility or
223
+ can lead to unhelpful response generation. We introduce a new framework called
224
+ Self-Reflective Retrieval-Augmented Generation (Self-RAG) that enhances an LM's
225
+ quality and factuality through retrieval and self-reflection. Our framework
226
+ trains a single arbitrary LM that adaptively retrieves passages on-demand, and
227
+ generates and reflects on retrieved passages and its own generations using
228
+ special tokens, called reflection tokens. Generating reflection tokens makes
229
+ the LM controllable during the inference phase, enabling it to tailor its
230
+ behavior to diverse task requirements. Experiments show that Self-RAG (7B and
231
+ 13B parameters) significantly outperforms state-of-the-art LLMs and
232
+ retrieval-augmented models on a diverse set of tasks. Specifically, Self-RAG
233
+ outperforms ChatGPT and retrieval-augmented Llama2-chat on Open-domain QA,
234
+ reasoning and fact verification tasks, and it shows significant gains in
235
+ improving factuality and citation accuracy for long-form generations relative
236
+ to these models.
237
+
238
+ ## Take a Step Back: Evoking Reasoning via Abstraction in Large Language Models
239
+
240
+ - **arXiv id:** [2310.06117v2](http://arxiv.org/abs/2310.06117v2) **Published Date:** 2023-10-09
241
+ - **Title:** Take a Step Back: Evoking Reasoning via Abstraction in Large Language Models
242
+ - **Authors:** Huaixiu Steven Zheng, Swaroop Mishra, Xinyun Chen, et al.
243
+ - **LangChain:**
244
+
245
+ - **Template:** [stepback-qa-prompting](https://python.langchain.com/docs/templates/stepback-qa-prompting)
246
+ - **Cookbook:** [stepback-qa](https://github.com/langchain-ai/langchain/blob/master/cookbook/stepback-qa.ipynb)
247
+
248
+ **Abstract:** We present Step-Back Prompting, a simple prompting technique that enables
249
+ LLMs to do abstractions to derive high-level concepts and first principles from
250
+ instances containing specific details. Using the concepts and principles to
251
+ guide reasoning, LLMs significantly improve their abilities in following a
252
+ correct reasoning path towards the solution. We conduct experiments of
253
+ Step-Back Prompting with PaLM-2L, GPT-4 and Llama2-70B models, and observe
254
+ substantial performance gains on various challenging reasoning-intensive tasks
255
+ including STEM, Knowledge QA, and Multi-Hop Reasoning. For instance, Step-Back
256
+ Prompting improves PaLM-2L performance on MMLU (Physics and Chemistry) by 7%
257
+ and 11% respectively, TimeQA by 27%, and MuSiQue by 7%.
258
+
259
+ ## Llama 2: Open Foundation and Fine-Tuned Chat Models
260
+
261
+ - **arXiv id:** [2307.09288v2](http://arxiv.org/abs/2307.09288v2) **Published Date:** 2023-07-18
262
+ - **Title:** Llama 2: Open Foundation and Fine-Tuned Chat Models
263
+ - **Authors:** Hugo Touvron, Louis Martin, Kevin Stone, et al.
264
+ - **LangChain:**
265
+
266
+ - **Cookbook:** [Semi_Structured_RAG](https://github.com/langchain-ai/langchain/blob/master/cookbook/Semi_Structured_RAG.ipynb)
267
+
268
+ **Abstract:** In this work, we develop and release Llama 2, a collection of pretrained and
269
+ fine-tuned large language models (LLMs) ranging in scale from 7 billion to 70
270
+ billion parameters. Our fine-tuned LLMs, called Llama 2-Chat, are optimized for
271
+ dialogue use cases. Our models outperform open-source chat models on most
272
+ benchmarks we tested, and based on our human evaluations for helpfulness and
273
+ safety, may be a suitable substitute for closed-source models. We provide a
274
+ detailed description of our approach to fine-tuning and safety improvements of
275
+ Llama 2-Chat in order to enable the community to build on our work and
276
+ contribute to the responsible development of LLMs.
277
+
278
+ ## Query Rewriting for Retrieval-Augmented Large Language Models
279
+
280
+ - **arXiv id:** [2305.14283v3](http://arxiv.org/abs/2305.14283v3) **Published Date:** 2023-05-23
281
+ - **Title:** Query Rewriting for Retrieval-Augmented Large Language Models
282
+ - **Authors:** Xinbei Ma, Yeyun Gong, Pengcheng He, et al.
283
+ - **LangChain:**
284
+
285
+ - **Template:** [rewrite-retrieve-read](https://python.langchain.com/docs/templates/rewrite-retrieve-read)
286
+ - **Cookbook:** [rewrite](https://github.com/langchain-ai/langchain/blob/master/cookbook/rewrite.ipynb)
287
+
288
+ **Abstract:** Large Language Models (LLMs) play powerful, black-box readers in the
289
+ retrieve-then-read pipeline, making remarkable progress in knowledge-intensive
290
+ tasks. This work introduces a new framework, Rewrite-Retrieve-Read instead of
291
+ the previous retrieve-then-read for the retrieval-augmented LLMs from the
292
+ perspective of the query rewriting. Unlike prior studies focusing on adapting
293
+ either the retriever or the reader, our approach pays attention to the
294
+ adaptation of the search query itself, for there is inevitably a gap between
295
+ the input text and the needed knowledge in retrieval. We first prompt an LLM to
296
+ generate the query, then use a web search engine to retrieve contexts.
297
+ Furthermore, to better align the query to the frozen modules, we propose a
298
+ trainable scheme for our pipeline. A small language model is adopted as a
299
+ trainable rewriter to cater to the black-box LLM reader. The rewriter is
300
+ trained using the feedback of the LLM reader by reinforcement learning.
301
+ Evaluation is conducted on downstream tasks, open-domain QA and multiple-choice
302
+ QA. Experiments results show consistent performance improvement, indicating
303
+ that our framework is proven effective and scalable, and brings a new framework
304
+ for retrieval-augmented LLM.
305
+
306
+ ## Large Language Model Guided Tree-of-Thought
307
+
308
+ - **arXiv id:** [2305.08291v1](http://arxiv.org/abs/2305.08291v1) **Published Date:** 2023-05-15
309
+ - **Title:** Large Language Model Guided Tree-of-Thought
310
+ - **Authors:** Jieyi Long
311
+ - **LangChain:**
312
+
313
+ - **API Reference:** [langchain_experimental.tot](https://python.langchain.com/v0.2/api_reference/experimental/index.html#module-langchain_experimental.tot)
314
+ - **Cookbook:** [tree_of_thought](https://github.com/langchain-ai/langchain/blob/master/cookbook/tree_of_thought.ipynb)
315
+
316
+ **Abstract:** In this paper, we introduce the Tree-of-Thought (ToT) framework, a novel
317
+ approach aimed at improving the problem-solving capabilities of auto-regressive
318
+ large language models (LLMs). The ToT technique is inspired by the human mind's
319
+ approach for solving complex reasoning tasks through trial and error. In this
320
+ process, the human mind explores the solution space through a tree-like thought
321
+ process, allowing for backtracking when necessary. To implement ToT as a
322
+ software system, we augment an LLM with additional modules including a prompter
323
+ agent, a checker module, a memory module, and a ToT controller. In order to
324
+ solve a given problem, these modules engage in a multi-round conversation with
325
+ the LLM. The memory module records the conversation and state history of the
326
+ problem solving process, which allows the system to backtrack to the previous
327
+ steps of the thought-process and explore other directions from there. To verify
328
+ the effectiveness of the proposed technique, we implemented a ToT-based solver
329
+ for the Sudoku Puzzle. Experimental results show that the ToT framework can
330
+ significantly increase the success rate of Sudoku puzzle solving. Our
331
+ implementation of the ToT-based Sudoku solver is available on GitHub:
332
+ \url{https://github.com/jieyilong/tree-of-thought-puzzle-solver}.
333
+
334
+ ## Plan-and-Solve Prompting: Improving Zero-Shot Chain-of-Thought Reasoning by Large Language Models
335
+
336
+ - **arXiv id:** [2305.04091v3](http://arxiv.org/abs/2305.04091v3) **Published Date:** 2023-05-06
337
+ - **Title:** Plan-and-Solve Prompting: Improving Zero-Shot Chain-of-Thought Reasoning by Large Language Models
338
+ - **Authors:** Lei Wang, Wanyu Xu, Yihuai Lan, et al.
339
+ - **LangChain:**
340
+
341
+ - **Cookbook:** [plan_and_execute_agent](https://github.com/langchain-ai/langchain/blob/master/cookbook/plan_and_execute_agent.ipynb)
342
+
343
+ **Abstract:** Large language models (LLMs) have recently been shown to deliver impressive
344
+ performance in various NLP tasks. To tackle multi-step reasoning tasks,
345
+ few-shot chain-of-thought (CoT) prompting includes a few manually crafted
346
+ step-by-step reasoning demonstrations which enable LLMs to explicitly generate
347
+ reasoning steps and improve their reasoning task accuracy. To eliminate the
348
+ manual effort, Zero-shot-CoT concatenates the target problem statement with
349
+ "Let's think step by step" as an input prompt to LLMs. Despite the success of
350
+ Zero-shot-CoT, it still suffers from three pitfalls: calculation errors,
351
+ missing-step errors, and semantic misunderstanding errors. To address the
352
+ missing-step errors, we propose Plan-and-Solve (PS) Prompting. It consists of
353
+ two components: first, devising a plan to divide the entire task into smaller
354
+ subtasks, and then carrying out the subtasks according to the plan. To address
355
+ the calculation errors and improve the quality of generated reasoning steps, we
356
+ extend PS prompting with more detailed instructions and derive PS+ prompting.
357
+ We evaluate our proposed prompting strategy on ten datasets across three
358
+ reasoning problems. The experimental results over GPT-3 show that our proposed
359
+ zero-shot prompting consistently outperforms Zero-shot-CoT across all datasets
360
+ by a large margin, is comparable to or exceeds Zero-shot-Program-of-Thought
361
+ Prompting, and has comparable performance with 8-shot CoT prompting on the math
362
+ reasoning problem. The code can be found at
363
+ https://github.com/AGI-Edgerunners/Plan-and-Solve-Prompting.
364
+
365
+ ## Zero-Shot Listwise Document Reranking with a Large Language Model
366
+
367
+ - **arXiv id:** [2305.02156v1](http://arxiv.org/abs/2305.02156v1) **Published Date:** 2023-05-03
368
+ - **Title:** Zero-Shot Listwise Document Reranking with a Large Language Model
369
+ - **Authors:** Xueguang Ma, Xinyu Zhang, Ronak Pradeep, et al.
370
+ - **LangChain:**
371
+
372
+ - **API Reference:** [langchain...LLMListwiseRerank](https://python.langchain.com/v0.2/api_reference/langchain/retrievers/langchain.retrievers.document_compressors.listwise_rerank.LLMListwiseRerank.html#langchain.retrievers.document_compressors.listwise_rerank.LLMListwiseRerank)
373
+
374
+ **Abstract:** Supervised ranking methods based on bi-encoder or cross-encoder architectures
375
+ have shown success in multi-stage text ranking tasks, but they require large
376
+ amounts of relevance judgments as training data. In this work, we propose
377
+ Listwise Reranker with a Large Language Model (LRL), which achieves strong
378
+ reranking effectiveness without using any task-specific training data.
379
+ Different from the existing pointwise ranking methods, where documents are
380
+ scored independently and ranked according to the scores, LRL directly generates
381
+ a reordered list of document identifiers given the candidate documents.
382
+ Experiments on three TREC web search datasets demonstrate that LRL not only
383
+ outperforms zero-shot pointwise methods when reranking first-stage retrieval
384
+ results, but can also act as a final-stage reranker to improve the top-ranked
385
+ results of a pointwise method for improved efficiency. Additionally, we apply
386
+ our approach to subsets of MIRACL, a recent multilingual retrieval dataset,
387
+ with results showing its potential to generalize across different languages.
388
+
389
+ ## Visual Instruction Tuning
390
+
391
+ - **arXiv id:** [2304.08485v2](http://arxiv.org/abs/2304.08485v2) **Published Date:** 2023-04-17
392
+ - **Title:** Visual Instruction Tuning
393
+ - **Authors:** Haotian Liu, Chunyuan Li, Qingyang Wu, et al.
394
+ - **LangChain:**
395
+
396
+ - **Cookbook:** [Semi_structured_and_multi_modal_RAG](https://github.com/langchain-ai/langchain/blob/master/cookbook/Semi_structured_and_multi_modal_RAG.ipynb), [Semi_structured_multi_modal_RAG_LLaMA2](https://github.com/langchain-ai/langchain/blob/master/cookbook/Semi_structured_multi_modal_RAG_LLaMA2.ipynb)
397
+
398
+ **Abstract:** Instruction tuning large language models (LLMs) using machine-generated
399
+ instruction-following data has improved zero-shot capabilities on new tasks,
400
+ but the idea is less explored in the multimodal field. In this paper, we
401
+ present the first attempt to use language-only GPT-4 to generate multimodal
402
+ language-image instruction-following data. By instruction tuning on such
403
+ generated data, we introduce LLaVA: Large Language and Vision Assistant, an
404
+ end-to-end trained large multimodal model that connects a vision encoder and
405
+ LLM for general-purpose visual and language understanding.Our early experiments
406
+ show that LLaVA demonstrates impressive multimodel chat abilities, sometimes
407
+ exhibiting the behaviors of multimodal GPT-4 on unseen images/instructions, and
408
+ yields a 85.1% relative score compared with GPT-4 on a synthetic multimodal
409
+ instruction-following dataset. When fine-tuned on Science QA, the synergy of
410
+ LLaVA and GPT-4 achieves a new state-of-the-art accuracy of 92.53%. We make
411
+ GPT-4 generated visual instruction tuning data, our model and code base
412
+ publicly available.
413
+
414
+ ## Generative Agents: Interactive Simulacra of Human Behavior
415
+
416
+ - **arXiv id:** [2304.03442v2](http://arxiv.org/abs/2304.03442v2) **Published Date:** 2023-04-07
417
+ - **Title:** Generative Agents: Interactive Simulacra of Human Behavior
418
+ - **Authors:** Joon Sung Park, Joseph C. O'Brien, Carrie J. Cai, et al.
419
+ - **LangChain:**
420
+
421
+ - **Cookbook:** [multiagent_bidding](https://github.com/langchain-ai/langchain/blob/master/cookbook/multiagent_bidding.ipynb), [generative_agents_interactive_simulacra_of_human_behavior](https://github.com/langchain-ai/langchain/blob/master/cookbook/generative_agents_interactive_simulacra_of_human_behavior.ipynb)
422
+
423
+ **Abstract:** Believable proxies of human behavior can empower interactive applications
424
+ ranging from immersive environments to rehearsal spaces for interpersonal
425
+ communication to prototyping tools. In this paper, we introduce generative
426
+ agents--computational software agents that simulate believable human behavior.
427
+ Generative agents wake up, cook breakfast, and head to work; artists paint,
428
+ while authors write; they form opinions, notice each other, and initiate
429
+ conversations; they remember and reflect on days past as they plan the next
430
+ day. To enable generative agents, we describe an architecture that extends a
431
+ large language model to store a complete record of the agent's experiences
432
+ using natural language, synthesize those memories over time into higher-level
433
+ reflections, and retrieve them dynamically to plan behavior. We instantiate
434
+ generative agents to populate an interactive sandbox environment inspired by
435
+ The Sims, where end users can interact with a small town of twenty five agents
436
+ using natural language. In an evaluation, these generative agents produce
437
+ believable individual and emergent social behaviors: for example, starting with
438
+ only a single user-specified notion that one agent wants to throw a Valentine's
439
+ Day party, the agents autonomously spread invitations to the party over the
440
+ next two days, make new acquaintances, ask each other out on dates to the
441
+ party, and coordinate to show up for the party together at the right time. We
442
+ demonstrate through ablation that the components of our agent
443
+ architecture--observation, planning, and reflection--each contribute critically
444
+ to the believability of agent behavior. By fusing large language models with
445
+ computational, interactive agents, this work introduces architectural and
446
+ interaction patterns for enabling believable simulations of human behavior.
447
+
448
+ ## CAMEL: Communicative Agents for "Mind" Exploration of Large Language Model Society
449
+
450
+ - **arXiv id:** [2303.17760v2](http://arxiv.org/abs/2303.17760v2) **Published Date:** 2023-03-31
451
+ - **Title:** CAMEL: Communicative Agents for "Mind" Exploration of Large Language Model Society
452
+ - **Authors:** Guohao Li, Hasan Abed Al Kader Hammoud, Hani Itani, et al.
453
+ - **LangChain:**
454
+
455
+ - **Cookbook:** [camel_role_playing](https://github.com/langchain-ai/langchain/blob/master/cookbook/camel_role_playing.ipynb)
456
+
457
+ **Abstract:** The rapid advancement of chat-based language models has led to remarkable
458
+ progress in complex task-solving. However, their success heavily relies on
459
+ human input to guide the conversation, which can be challenging and
460
+ time-consuming. This paper explores the potential of building scalable
461
+ techniques to facilitate autonomous cooperation among communicative agents, and
462
+ provides insight into their "cognitive" processes. To address the challenges of
463
+ achieving autonomous cooperation, we propose a novel communicative agent
464
+ framework named role-playing. Our approach involves using inception prompting
465
+ to guide chat agents toward task completion while maintaining consistency with
466
+ human intentions. We showcase how role-playing can be used to generate
467
+ conversational data for studying the behaviors and capabilities of a society of
468
+ agents, providing a valuable resource for investigating conversational language
469
+ models. In particular, we conduct comprehensive studies on
470
+ instruction-following cooperation in multi-agent settings. Our contributions
471
+ include introducing a novel communicative agent framework, offering a scalable
472
+ approach for studying the cooperative behaviors and capabilities of multi-agent
473
+ systems, and open-sourcing our library to support research on communicative
474
+ agents and beyond: https://github.com/camel-ai/camel.
475
+
476
+ ## HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face
477
+
478
+ - **arXiv id:** [2303.17580v4](http://arxiv.org/abs/2303.17580v4) **Published Date:** 2023-03-30
479
+ - **Title:** HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face
480
+ - **Authors:** Yongliang Shen, Kaitao Song, Xu Tan, et al.
481
+ - **LangChain:**
482
+
483
+ - **API Reference:** [langchain_experimental.autonomous_agents](https://python.langchain.com/v0.2/api_reference/experimental/index.html#module-langchain_experimental.autonomous_agents)
484
+ - **Cookbook:** [hugginggpt](https://github.com/langchain-ai/langchain/blob/master/cookbook/hugginggpt.ipynb)
485
+
486
+ **Abstract:** Solving complicated AI tasks with different domains and modalities is a key
487
+ step toward artificial general intelligence. While there are numerous AI models
488
+ available for various domains and modalities, they cannot handle complicated AI
489
+ tasks autonomously. Considering large language models (LLMs) have exhibited
490
+ exceptional abilities in language understanding, generation, interaction, and
491
+ reasoning, we advocate that LLMs could act as a controller to manage existing
492
+ AI models to solve complicated AI tasks, with language serving as a generic
493
+ interface to empower this. Based on this philosophy, we present HuggingGPT, an
494
+ LLM-powered agent that leverages LLMs (e.g., ChatGPT) to connect various AI
495
+ models in machine learning communities (e.g., Hugging Face) to solve AI tasks.
496
+ Specifically, we use ChatGPT to conduct task planning when receiving a user
497
+ request, select models according to their function descriptions available in
498
+ Hugging Face, execute each subtask with the selected AI model, and summarize
499
+ the response according to the execution results. By leveraging the strong
500
+ language capability of ChatGPT and abundant AI models in Hugging Face,
501
+ HuggingGPT can tackle a wide range of sophisticated AI tasks spanning different
502
+ modalities and domains and achieve impressive results in language, vision,
503
+ speech, and other challenging tasks, which paves a new way towards the
504
+ realization of artificial general intelligence.
505
+
506
+ ## A Watermark for Large Language Models
507
+
508
+ - **arXiv id:** [2301.10226v4](http://arxiv.org/abs/2301.10226v4) **Published Date:** 2023-01-24
509
+ - **Title:** A Watermark for Large Language Models
510
+ - **Authors:** John Kirchenbauer, Jonas Geiping, Yuxin Wen, et al.
511
+ - **LangChain:**
512
+
513
+ - **API Reference:** [langchain_community...OCIModelDeploymentTGI](https://python.langchain.com/v0.2/api_reference/community/llms/langchain_community.llms.oci_data_science_model_deployment_endpoint.OCIModelDeploymentTGI.html#langchain_community.llms.oci_data_science_model_deployment_endpoint.OCIModelDeploymentTGI), [langchain_huggingface...HuggingFaceEndpoint](https://python.langchain.com/v0.2/api_reference/huggingface/llms/langchain_huggingface.llms.huggingface_endpoint.HuggingFaceEndpoint.html#langchain_huggingface.llms.huggingface_endpoint.HuggingFaceEndpoint), [langchain_community...HuggingFaceEndpoint](https://python.langchain.com/v0.2/api_reference/langchain_community/llms/langchain_community.llms.huggingface_endpoint.HuggingFaceEndpoint.html#langchain_community.llms.huggingface_endpoint.HuggingFaceEndpoint), [langchain_community...HuggingFaceTextGenInference](https://python.langchain.com/v0.2/api_reference/community/llms/langchain_community.llms.huggingface_text_gen_inference.HuggingFaceTextGenInference.html#langchain_community.llms.huggingface_text_gen_inference.HuggingFaceTextGenInference)
514
+
515
+ **Abstract:** Potential harms of large language models can be mitigated by watermarking
516
+ model output, i.e., embedding signals into generated text that are invisible to
517
+ humans but algorithmically detectable from a short span of tokens. We propose a
518
+ watermarking framework for proprietary language models. The watermark can be
519
+ embedded with negligible impact on text quality, and can be detected using an
520
+ efficient open-source algorithm without access to the language model API or
521
+ parameters. The watermark works by selecting a randomized set of "green" tokens
522
+ before a word is generated, and then softly promoting use of green tokens
523
+ during sampling. We propose a statistical test for detecting the watermark with
524
+ interpretable p-values, and derive an information-theoretic framework for
525
+ analyzing the sensitivity of the watermark. We test the watermark using a
526
+ multi-billion parameter model from the Open Pretrained Transformer (OPT)
527
+ family, and discuss robustness and security.
528
+
529
+ ## Precise Zero-Shot Dense Retrieval without Relevance Labels
530
+
531
+ - **arXiv id:** [2212.10496v1](http://arxiv.org/abs/2212.10496v1) **Published Date:** 2022-12-20
532
+ - **Title:** Precise Zero-Shot Dense Retrieval without Relevance Labels
533
+ - **Authors:** Luyu Gao, Xueguang Ma, Jimmy Lin, et al.
534
+ - **LangChain:**
535
+
536
+ - **API Reference:** [langchain...HypotheticalDocumentEmbedder](https://python.langchain.com/v0.2/api_reference/langchain/chains/langchain.chains.hyde.base.HypotheticalDocumentEmbedder.html#langchain.chains.hyde.base.HypotheticalDocumentEmbedder)
537
+ - **Template:** [hyde](https://python.langchain.com/docs/templates/hyde)
538
+ - **Cookbook:** [hypothetical_document_embeddings](https://github.com/langchain-ai/langchain/blob/master/cookbook/hypothetical_document_embeddings.ipynb)
539
+
540
+ **Abstract:** While dense retrieval has been shown effective and efficient across tasks and
541
+ languages, it remains difficult to create effective fully zero-shot dense
542
+ retrieval systems when no relevance label is available. In this paper, we
543
+ recognize the difficulty of zero-shot learning and encoding relevance. Instead,
544
+ we propose to pivot through Hypothetical Document Embeddings~(HyDE). Given a
545
+ query, HyDE first zero-shot instructs an instruction-following language model
546
+ (e.g. InstructGPT) to generate a hypothetical document. The document captures
547
+ relevance patterns but is unreal and may contain false details. Then, an
548
+ unsupervised contrastively learned encoder~(e.g. Contriever) encodes the
549
+ document into an embedding vector. This vector identifies a neighborhood in the
550
+ corpus embedding space, where similar real documents are retrieved based on
551
+ vector similarity. This second step ground the generated document to the actual
552
+ corpus, with the encoder's dense bottleneck filtering out the incorrect
553
+ details. Our experiments show that HyDE significantly outperforms the
554
+ state-of-the-art unsupervised dense retriever Contriever and shows strong
555
+ performance comparable to fine-tuned retrievers, across various tasks (e.g. web
556
+ search, QA, fact verification) and languages~(e.g. sw, ko, ja).
557
+
558
+ ## Robust and Explainable Identification of Logical Fallacies in Natural Language Arguments
559
+
560
+ - **arXiv id:** [2212.07425v3](http://arxiv.org/abs/2212.07425v3) **Published Date:** 2022-12-12
561
+ - **Title:** Robust and Explainable Identification of Logical Fallacies in Natural Language Arguments
562
+ - **Authors:** Zhivar Sourati, Vishnu Priya Prasanna Venkatesh, Darshan Deshpande, et al.
563
+ - **LangChain:**
564
+
565
+ - **API Reference:** [langchain_experimental.fallacy_removal](https://python.langchain.com/v0.2/api_reference/experimental/index.html#module-langchain_experimental.fallacy_removal)
566
+
567
+ **Abstract:** The spread of misinformation, propaganda, and flawed argumentation has been
568
+ amplified in the Internet era. Given the volume of data and the subtlety of
569
+ identifying violations of argumentation norms, supporting information analytics
570
+ tasks, like content moderation, with trustworthy methods that can identify
571
+ logical fallacies is essential. In this paper, we formalize prior theoretical
572
+ work on logical fallacies into a comprehensive three-stage evaluation framework
573
+ of detection, coarse-grained, and fine-grained classification. We adapt
574
+ existing evaluation datasets for each stage of the evaluation. We employ three
575
+ families of robust and explainable methods based on prototype reasoning,
576
+ instance-based reasoning, and knowledge injection. The methods combine language
577
+ models with background knowledge and explainable mechanisms. Moreover, we
578
+ address data sparsity with strategies for data augmentation and curriculum
579
+ learning. Our three-stage framework natively consolidates prior datasets and
580
+ methods from existing tasks, like propaganda detection, serving as an
581
+ overarching evaluation testbed. We extensively evaluate these methods on our
582
+ datasets, focusing on their robustness and explainability. Our results provide
583
+ insight into the strengths and weaknesses of the methods on different
584
+ components and fallacy classes, indicating that fallacy identification is a
585
+ challenging task that may require specialized forms of reasoning to capture
586
+ various classes. We share our open-source code and data on GitHub to support
587
+ further work on logical fallacy identification.
588
+
589
+ ## Complementary Explanations for Effective In-Context Learning
590
+
591
+ - **arXiv id:** [2211.13892v2](http://arxiv.org/abs/2211.13892v2) **Published Date:** 2022-11-25
592
+ - **Title:** Complementary Explanations for Effective In-Context Learning
593
+ - **Authors:** Xi Ye, Srinivasan Iyer, Asli Celikyilmaz, et al.
594
+ - **LangChain:**
595
+
596
+ - **API Reference:** [langchain_core...MaxMarginalRelevanceExampleSelector](https://python.langchain.com/v0.2/api_reference/core/example_selectors/langchain_core.example_selectors.semantic_similarity.MaxMarginalRelevanceExampleSelector.html#langchain_core.example_selectors.semantic_similarity.MaxMarginalRelevanceExampleSelector)
597
+
598
+ **Abstract:** Large language models (LLMs) have exhibited remarkable capabilities in
599
+ learning from explanations in prompts, but there has been limited understanding
600
+ of exactly how these explanations function or why they are effective. This work
601
+ aims to better understand the mechanisms by which explanations are used for
602
+ in-context learning. We first study the impact of two different factors on the
603
+ performance of prompts with explanations: the computation trace (the way the
604
+ solution is decomposed) and the natural language used to express the prompt. By
605
+ perturbing explanations on three controlled tasks, we show that both factors
606
+ contribute to the effectiveness of explanations. We further study how to form
607
+ maximally effective sets of explanations for solving a given test query. We
608
+ find that LLMs can benefit from the complementarity of the explanation set:
609
+ diverse reasoning skills shown by different exemplars can lead to better
610
+ performance. Therefore, we propose a maximal marginal relevance-based exemplar
611
+ selection approach for constructing exemplar sets that are both relevant as
612
+ well as complementary, which successfully improves the in-context learning
613
+ performance across three real-world tasks on multiple LLMs.
614
+
615
+ ## PAL: Program-aided Language Models
616
+
617
+ - **arXiv id:** [2211.10435v2](http://arxiv.org/abs/2211.10435v2) **Published Date:** 2022-11-18
618
+ - **Title:** PAL: Program-aided Language Models
619
+ - **Authors:** Luyu Gao, Aman Madaan, Shuyan Zhou, et al.
620
+ - **LangChain:**
621
+
622
+ - **API Reference:** [langchain_experimental.pal_chain](https://python.langchain.com/v0.2/api_reference//python/experimental_api_reference.html#module-langchain_experimental.pal_chain), [langchain_experimental...PALChain](https://python.langchain.com/v0.2/api_reference/experimental/pal_chain/langchain_experimental.pal_chain.base.PALChain.html#langchain_experimental.pal_chain.base.PALChain)
623
+ - **Cookbook:** [program_aided_language_model](https://github.com/langchain-ai/langchain/blob/master/cookbook/program_aided_language_model.ipynb)
624
+
625
+ **Abstract:** Large language models (LLMs) have recently demonstrated an impressive ability
626
+ to perform arithmetic and symbolic reasoning tasks, when provided with a few
627
+ examples at test time ("few-shot prompting"). Much of this success can be
628
+ attributed to prompting methods such as "chain-of-thought'', which employ LLMs
629
+ for both understanding the problem description by decomposing it into steps, as
630
+ well as solving each step of the problem. While LLMs seem to be adept at this
631
+ sort of step-by-step decomposition, LLMs often make logical and arithmetic
632
+ mistakes in the solution part, even when the problem is decomposed correctly.
633
+ In this paper, we present Program-Aided Language models (PAL): a novel approach
634
+ that uses the LLM to read natural language problems and generate programs as
635
+ the intermediate reasoning steps, but offloads the solution step to a runtime
636
+ such as a Python interpreter. With PAL, decomposing the natural language
637
+ problem into runnable steps remains the only learning task for the LLM, while
638
+ solving is delegated to the interpreter. We demonstrate this synergy between a
639
+ neural LLM and a symbolic interpreter across 13 mathematical, symbolic, and
640
+ algorithmic reasoning tasks from BIG-Bench Hard and other benchmarks. In all
641
+ these natural language reasoning tasks, generating code using an LLM and
642
+ reasoning using a Python interpreter leads to more accurate results than much
643
+ larger models. For example, PAL using Codex achieves state-of-the-art few-shot
644
+ accuracy on the GSM8K benchmark of math word problems, surpassing PaLM-540B
645
+ which uses chain-of-thought by absolute 15% top-1. Our code and data are
646
+ publicly available at http://reasonwithpal.com/ .
647
+
648
+ ## ReAct: Synergizing Reasoning and Acting in Language Models
649
+
650
+ - **arXiv id:** [2210.03629v3](http://arxiv.org/abs/2210.03629v3) **Published Date:** 2022-10-06
651
+ - **Title:** ReAct: Synergizing Reasoning and Acting in Language Models
652
+ - **Authors:** Shunyu Yao, Jeffrey Zhao, Dian Yu, et al.
653
+ - **LangChain:**
654
+
655
+ - **Documentation:** [docs/integrations/providers/cohere](https://python.langchain.com/docs/integrations/providers/cohere), [docs/integrations/tools/ionic_shopping](https://python.langchain.com/docs/integrations/tools/ionic_shopping)
656
+ - **API Reference:** [langchain...TrajectoryEvalChain](https://python.langchain.com/v0.2/api_reference/langchain/evaluation/langchain.evaluation.agents.trajectory_eval_chain.TrajectoryEvalChain.html#langchain.evaluation.agents.trajectory_eval_chain.TrajectoryEvalChain), [langchain...create_react_agent](https://python.langchain.com/v0.2/api_reference/langchain/agents/langchain.agents.react.agent.create_react_agent.html#langchain.agents.react.agent.create_react_agent)
657
+
658
+ **Abstract:** While large language models (LLMs) have demonstrated impressive capabilities
659
+ across tasks in language understanding and interactive decision making, their
660
+ abilities for reasoning (e.g. chain-of-thought prompting) and acting (e.g.
661
+ action plan generation) have primarily been studied as separate topics. In this
662
+ paper, we explore the use of LLMs to generate both reasoning traces and
663
+ task-specific actions in an interleaved manner, allowing for greater synergy
664
+ between the two: reasoning traces help the model induce, track, and update
665
+ action plans as well as handle exceptions, while actions allow it to interface
666
+ with external sources, such as knowledge bases or environments, to gather
667
+ additional information. We apply our approach, named ReAct, to a diverse set of
668
+ language and decision making tasks and demonstrate its effectiveness over
669
+ state-of-the-art baselines, as well as improved human interpretability and
670
+ trustworthiness over methods without reasoning or acting components.
671
+ Concretely, on question answering (HotpotQA) and fact verification (Fever),
672
+ ReAct overcomes issues of hallucination and error propagation prevalent in
673
+ chain-of-thought reasoning by interacting with a simple Wikipedia API, and
674
+ generates human-like task-solving trajectories that are more interpretable than
675
+ baselines without reasoning traces. On two interactive decision making
676
+ benchmarks (ALFWorld and WebShop), ReAct outperforms imitation and
677
+ reinforcement learning methods by an absolute success rate of 34% and 10%
678
+ respectively, while being prompted with only one or two in-context examples.
679
+ Project site with code: https://react-lm.github.io
680
+
681
+ ## Deep Lake: a Lakehouse for Deep Learning
682
+
683
+ - **arXiv id:** [2209.10785v2](http://arxiv.org/abs/2209.10785v2) **Published Date:** 2022-09-22
684
+ - **Title:** Deep Lake: a Lakehouse for Deep Learning
685
+ - **Authors:** Sasun Hambardzumyan, Abhinav Tuli, Levon Ghukasyan, et al.
686
+ - **LangChain:**
687
+
688
+ - **Documentation:** [docs/integrations/providers/activeloop_deeplake](https://python.langchain.com/docs/integrations/providers/activeloop_deeplake)
689
+
690
+ **Abstract:** Traditional data lakes provide critical data infrastructure for analytical
691
+ workloads by enabling time travel, running SQL queries, ingesting data with
692
+ ACID transactions, and visualizing petabyte-scale datasets on cloud storage.
693
+ They allow organizations to break down data silos, unlock data-driven
694
+ decision-making, improve operational efficiency, and reduce costs. However, as
695
+ deep learning usage increases, traditional data lakes are not well-designed for
696
+ applications such as natural language processing (NLP), audio processing,
697
+ computer vision, and applications involving non-tabular datasets. This paper
698
+ presents Deep Lake, an open-source lakehouse for deep learning applications
699
+ developed at Activeloop. Deep Lake maintains the benefits of a vanilla data
700
+ lake with one key difference: it stores complex data, such as images, videos,
701
+ annotations, as well as tabular data, in the form of tensors and rapidly
702
+ streams the data over the network to (a) Tensor Query Language, (b) in-browser
703
+ visualization engine, or (c) deep learning frameworks without sacrificing GPU
704
+ utilization. Datasets stored in Deep Lake can be accessed from PyTorch,
705
+ TensorFlow, JAX, and integrate with numerous MLOps tools.
706
+
707
+ ## Matryoshka Representation Learning
708
+
709
+ - **arXiv id:** [2205.13147v4](http://arxiv.org/abs/2205.13147v4) **Published Date:** 2022-05-26
710
+ - **Title:** Matryoshka Representation Learning
711
+ - **Authors:** Aditya Kusupati, Gantavya Bhatt, Aniket Rege, et al.
712
+ - **LangChain:**
713
+
714
+ - **Documentation:** [docs/integrations/providers/snowflake](https://python.langchain.com/docs/integrations/providers/snowflake)
715
+
716
+ **Abstract:** Learned representations are a central component in modern ML systems, serving
717
+ a multitude of downstream tasks. When training such representations, it is
718
+ often the case that computational and statistical constraints for each
719
+ downstream task are unknown. In this context rigid, fixed capacity
720
+ representations can be either over or under-accommodating to the task at hand.
721
+ This leads us to ask: can we design a flexible representation that can adapt to
722
+ multiple downstream tasks with varying computational resources? Our main
723
+ contribution is Matryoshka Representation Learning (MRL) which encodes
724
+ information at different granularities and allows a single embedding to adapt
725
+ to the computational constraints of downstream tasks. MRL minimally modifies
726
+ existing representation learning pipelines and imposes no additional cost
727
+ during inference and deployment. MRL learns coarse-to-fine representations that
728
+ are at least as accurate and rich as independently trained low-dimensional
729
+ representations. The flexibility within the learned Matryoshka Representations
730
+ offer: (a) up to 14x smaller embedding size for ImageNet-1K classification at
731
+ the same level of accuracy; (b) up to 14x real-world speed-ups for large-scale
732
+ retrieval on ImageNet-1K and 4K; and (c) up to 2% accuracy improvements for
733
+ long-tail few-shot classification, all while being as robust as the original
734
+ representations. Finally, we show that MRL extends seamlessly to web-scale
735
+ datasets (ImageNet, JFT) across various modalities -- vision (ViT, ResNet),
736
+ vision + language (ALIGN) and language (BERT). MRL code and pretrained models
737
+ are open-sourced at https://github.com/RAIVNLab/MRL.
738
+
739
+ ## Bitext Mining Using Distilled Sentence Representations for Low-Resource Languages
740
+
741
+ - **arXiv id:** [2205.12654v1](http://arxiv.org/abs/2205.12654v1) **Published Date:** 2022-05-25
742
+ - **Title:** Bitext Mining Using Distilled Sentence Representations for Low-Resource Languages
743
+ - **Authors:** Kevin Heffernan, Onur Çelebi, Holger Schwenk
744
+ - **LangChain:**
745
+
746
+ - **API Reference:** [langchain_community...LaserEmbeddings](https://python.langchain.com/v0.2/api_reference/community/embeddings/langchain_community.embeddings.laser.LaserEmbeddings.html#langchain_community.embeddings.laser.LaserEmbeddings)
747
+
748
+ **Abstract:** Scaling multilingual representation learning beyond the hundred most frequent
749
+ languages is challenging, in particular to cover the long tail of low-resource
750
+ languages. A promising approach has been to train one-for-all multilingual
751
+ models capable of cross-lingual transfer, but these models often suffer from
752
+ insufficient capacity and interference between unrelated languages. Instead, we
753
+ move away from this approach and focus on training multiple language (family)
754
+ specific representations, but most prominently enable all languages to still be
755
+ encoded in the same representational space. To achieve this, we focus on
756
+ teacher-student training, allowing all encoders to be mutually compatible for
757
+ bitext mining, and enabling fast learning of new languages. We introduce a new
758
+ teacher-student training scheme which combines supervised and self-supervised
759
+ training, allowing encoders to take advantage of monolingual training data,
760
+ which is valuable in the low-resource setting.
761
+ Our approach significantly outperforms the original LASER encoder. We study
762
+ very low-resource languages and handle 50 African languages, many of which are
763
+ not covered by any other model. For these languages, we train sentence
764
+ encoders, mine bitexts, and validate the bitexts by training NMT systems.
765
+
766
+ ## Evaluating the Text-to-SQL Capabilities of Large Language Models
767
+
768
+ - **arXiv id:** [2204.00498v1](http://arxiv.org/abs/2204.00498v1) **Published Date:** 2022-03-15
769
+ - **Title:** Evaluating the Text-to-SQL Capabilities of Large Language Models
770
+ - **Authors:** Nitarshan Rajkumar, Raymond Li, Dzmitry Bahdanau
771
+ - **LangChain:**
772
+
773
+ - **API Reference:** [langchain_community...SQLDatabase](https://python.langchain.com/v0.2/api_reference/community/utilities/langchain_community.utilities.sql_database.SQLDatabase.html#langchain_community.utilities.sql_database.SQLDatabase), [langchain_community...SparkSQL](https://python.langchain.com/v0.2/api_reference/community/utilities/langchain_community.utilities.spark_sql.SparkSQL.html#langchain_community.utilities.spark_sql.SparkSQL)
774
+
775
+ **Abstract:** We perform an empirical evaluation of Text-to-SQL capabilities of the Codex
776
+ language model. We find that, without any finetuning, Codex is a strong
777
+ baseline on the Spider benchmark; we also analyze the failure modes of Codex in
778
+ this setting. Furthermore, we demonstrate on the GeoQuery and Scholar
779
+ benchmarks that a small number of in-domain examples provided in the prompt
780
+ enables Codex to perform better than state-of-the-art models finetuned on such
781
+ few-shot examples.
782
+
783
+ ## Locally Typical Sampling
784
+
785
+ - **arXiv id:** [2202.00666v5](http://arxiv.org/abs/2202.00666v5) **Published Date:** 2022-02-01
786
+ - **Title:** Locally Typical Sampling
787
+ - **Authors:** Clara Meister, Tiago Pimentel, Gian Wiher, et al.
788
+ - **LangChain:**
789
+
790
+ - **API Reference:** [langchain_huggingface...HuggingFaceEndpoint](https://python.langchain.com/v0.2/api_reference/huggingface/llms/langchain_huggingface.llms.huggingface_endpoint.HuggingFaceEndpoint.html#langchain_huggingface.llms.huggingface_endpoint.HuggingFaceEndpoint), [langchain_community...HuggingFaceEndpoint](https://python.langchain.com/v0.2/api_reference/community/llms/langchain_community.llms.huggingface_endpoint.HuggingFaceEndpoint.html#langchain_community.llms.huggingface_endpoint.HuggingFaceEndpoint), [langchain_community...HuggingFaceTextGenInference](https://python.langchain.com/v0.2/api_reference/community/llms/langchain_community.llms.huggingface_text_gen_inference.HuggingFaceTextGenInference.html#langchain_community.llms.huggingface_text_gen_inference.HuggingFaceTextGenInference)
791
+
792
+ **Abstract:** Today's probabilistic language generators fall short when it comes to
793
+ producing coherent and fluent text despite the fact that the underlying models
794
+ perform well under standard metrics, e.g., perplexity. This discrepancy has
795
+ puzzled the language generation community for the last few years. In this work,
796
+ we posit that the abstraction of natural language generation as a discrete
797
+ stochastic process--which allows for an information-theoretic analysis--can
798
+ provide new insights into the behavior of probabilistic language generators,
799
+ e.g., why high-probability texts can be dull or repetitive. Humans use language
800
+ as a means of communicating information, aiming to do so in a simultaneously
801
+ efficient and error-minimizing manner; in fact, psycholinguistics research
802
+ suggests humans choose each word in a string with this subconscious goal in
803
+ mind. We formally define the set of strings that meet this criterion: those for
804
+ which each word has an information content close to the expected information
805
+ content, i.e., the conditional entropy of our model. We then propose a simple
806
+ and efficient procedure for enforcing this criterion when generating from
807
+ probabilistic models, which we call locally typical sampling. Automatic and
808
+ human evaluations show that, in comparison to nucleus and top-k sampling,
809
+ locally typical sampling offers competitive performance (in both abstractive
810
+ summarization and story generation) in terms of quality while consistently
811
+ reducing degenerate repetitions.
812
+
813
+ ## Learning Transferable Visual Models From Natural Language Supervision
814
+
815
+ - **arXiv id:** [2103.00020v1](http://arxiv.org/abs/2103.00020v1) **Published Date:** 2021-02-26
816
+ - **Title:** Learning Transferable Visual Models From Natural Language Supervision
817
+ - **Authors:** Alec Radford, Jong Wook Kim, Chris Hallacy, et al.
818
+ - **LangChain:**
819
+
820
+ - **API Reference:** [langchain_experimental.open_clip](https://python.langchain.com/v0.2/api_reference/experimental/index.html#module-langchain_experimental.open_clip)
821
+
822
+ **Abstract:** State-of-the-art computer vision systems are trained to predict a fixed set
823
+ of predetermined object categories. This restricted form of supervision limits
824
+ their generality and usability since additional labeled data is needed to
825
+ specify any other visual concept. Learning directly from raw text about images
826
+ is a promising alternative which leverages a much broader source of
827
+ supervision. We demonstrate that the simple pre-training task of predicting
828
+ which caption goes with which image is an efficient and scalable way to learn
829
+ SOTA image representations from scratch on a dataset of 400 million (image,
830
+ text) pairs collected from the internet. After pre-training, natural language
831
+ is used to reference learned visual concepts (or describe new ones) enabling
832
+ zero-shot transfer of the model to downstream tasks. We study the performance
833
+ of this approach by benchmarking on over 30 different existing computer vision
834
+ datasets, spanning tasks such as OCR, action recognition in videos,
835
+ geo-localization, and many types of fine-grained object classification. The
836
+ model transfers non-trivially to most tasks and is often competitive with a
837
+ fully supervised baseline without the need for any dataset specific training.
838
+ For instance, we match the accuracy of the original ResNet-50 on ImageNet
839
+ zero-shot without needing to use any of the 1.28 million training examples it
840
+ was trained on. We release our code and pre-trained model weights at
841
+ https://github.com/OpenAI/CLIP.
842
+
843
+ ## CTRL: A Conditional Transformer Language Model for Controllable Generation
844
+
845
+ - **arXiv id:** [1909.05858v2](http://arxiv.org/abs/1909.05858v2) **Published Date:** 2019-09-11
846
+ - **Title:** CTRL: A Conditional Transformer Language Model for Controllable Generation
847
+ - **Authors:** Nitish Shirish Keskar, Bryan McCann, Lav R. Varshney, et al.
848
+ - **LangChain:**
849
+
850
+ - **API Reference:** [langchain_huggingface...HuggingFaceEndpoint](https://python.langchain.com/v0.2/api_reference/huggingface/llms/langchain_huggingface.llms.huggingface_endpoint.HuggingFaceEndpoint.html#langchain_huggingface.llms.huggingface_endpoint.HuggingFaceEndpoint), [langchain_community...HuggingFaceEndpoint](https://python.langchain.com/v0.2/api_reference/langchain_community/llms/langchain_community.llms.huggingface_endpoint.HuggingFaceEndpoint.html#langchain_community.llms.huggingface_endpoint.HuggingFaceEndpoint), [langchain_community...HuggingFaceTextGenInference](https://python.langchain.com/v0.2/api_reference/community/llms/langchain_community.llms.huggingface_text_gen_inference.HuggingFaceTextGenInference.html#langchain_community.llms.huggingface_text_gen_inference.HuggingFaceTextGenInference)
851
+
852
+ **Abstract:** Large-scale language models show promising text generation capabilities, but
853
+ users cannot easily control particular aspects of the generated text. We
854
+ release CTRL, a 1.63 billion-parameter conditional transformer language model,
855
+ trained to condition on control codes that govern style, content, and
856
+ task-specific behavior. Control codes were derived from structure that
857
+ naturally co-occurs with raw text, preserving the advantages of unsupervised
858
+ learning while providing more explicit control over text generation. These
859
+ codes also allow CTRL to predict which parts of the training data are most
860
+ likely given a sequence. This provides a potential method for analyzing large
861
+ amounts of data via model-based source attribution. We have released multiple
862
+ full-sized, pretrained versions of CTRL at https://github.com/salesforce/ctrl.
863
+
langchain_md_files/additional_resources/dependents.mdx ADDED
@@ -0,0 +1,554 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Dependents
2
+
3
+ Dependents stats for `langchain-ai/langchain`
4
+
5
+ [![](https://img.shields.io/static/v1?label=Used%20by&message=41717&color=informational&logo=slickpic)](https://github.com/langchain-ai/langchain/network/dependents)
6
+ [![](https://img.shields.io/static/v1?label=Used%20by%20(public)&message=538&color=informational&logo=slickpic)](https://github.com/langchain-ai/langchain/network/dependents)
7
+ [![](https://img.shields.io/static/v1?label=Used%20by%20(private)&message=41179&color=informational&logo=slickpic)](https://github.com/langchain-ai/langchain/network/dependents)
8
+
9
+
10
+ [update: `2023-12-08`; only dependent repositories with Stars > 100]
11
+
12
+
13
+ | Repository | Stars |
14
+ | :-------- | -----: |
15
+ |[AntonOsika/gpt-engineer](https://github.com/AntonOsika/gpt-engineer) | 46514 |
16
+ |[imartinez/privateGPT](https://github.com/imartinez/privateGPT) | 44439 |
17
+ |[LAION-AI/Open-Assistant](https://github.com/LAION-AI/Open-Assistant) | 35906 |
18
+ |[hpcaitech/ColossalAI](https://github.com/hpcaitech/ColossalAI) | 35528 |
19
+ |[moymix/TaskMatrix](https://github.com/moymix/TaskMatrix) | 34342 |
20
+ |[geekan/MetaGPT](https://github.com/geekan/MetaGPT) | 31126 |
21
+ |[streamlit/streamlit](https://github.com/streamlit/streamlit) | 28911 |
22
+ |[reworkd/AgentGPT](https://github.com/reworkd/AgentGPT) | 27833 |
23
+ |[StanGirard/quivr](https://github.com/StanGirard/quivr) | 26032 |
24
+ |[OpenBB-finance/OpenBBTerminal](https://github.com/OpenBB-finance/OpenBBTerminal) | 24946 |
25
+ |[run-llama/llama_index](https://github.com/run-llama/llama_index) | 24859 |
26
+ |[jmorganca/ollama](https://github.com/jmorganca/ollama) | 20849 |
27
+ |[openai/chatgpt-retrieval-plugin](https://github.com/openai/chatgpt-retrieval-plugin) | 20249 |
28
+ |[chatchat-space/Langchain-Chatchat](https://github.com/chatchat-space/Langchain-Chatchat) | 19305 |
29
+ |[mindsdb/mindsdb](https://github.com/mindsdb/mindsdb) | 19172 |
30
+ |[PromtEngineer/localGPT](https://github.com/PromtEngineer/localGPT) | 17528 |
31
+ |[cube-js/cube](https://github.com/cube-js/cube) | 16575 |
32
+ |[mlflow/mlflow](https://github.com/mlflow/mlflow) | 16000 |
33
+ |[mudler/LocalAI](https://github.com/mudler/LocalAI) | 14067 |
34
+ |[logspace-ai/langflow](https://github.com/logspace-ai/langflow) | 13679 |
35
+ |[GaiZhenbiao/ChuanhuChatGPT](https://github.com/GaiZhenbiao/ChuanhuChatGPT) | 13648 |
36
+ |[arc53/DocsGPT](https://github.com/arc53/DocsGPT) | 13423 |
37
+ |[openai/evals](https://github.com/openai/evals) | 12649 |
38
+ |[airbytehq/airbyte](https://github.com/airbytehq/airbyte) | 12460 |
39
+ |[langgenius/dify](https://github.com/langgenius/dify) | 11859 |
40
+ |[databrickslabs/dolly](https://github.com/databrickslabs/dolly) | 10672 |
41
+ |[AIGC-Audio/AudioGPT](https://github.com/AIGC-Audio/AudioGPT) | 9437 |
42
+ |[langchain-ai/langchainjs](https://github.com/langchain-ai/langchainjs) | 9227 |
43
+ |[gventuri/pandas-ai](https://github.com/gventuri/pandas-ai) | 9203 |
44
+ |[aws/amazon-sagemaker-examples](https://github.com/aws/amazon-sagemaker-examples) | 9079 |
45
+ |[h2oai/h2ogpt](https://github.com/h2oai/h2ogpt) | 8945 |
46
+ |[PipedreamHQ/pipedream](https://github.com/PipedreamHQ/pipedream) | 7550 |
47
+ |[bentoml/OpenLLM](https://github.com/bentoml/OpenLLM) | 6957 |
48
+ |[THUDM/ChatGLM3](https://github.com/THUDM/ChatGLM3) | 6801 |
49
+ |[microsoft/promptflow](https://github.com/microsoft/promptflow) | 6776 |
50
+ |[cpacker/MemGPT](https://github.com/cpacker/MemGPT) | 6642 |
51
+ |[joshpxyne/gpt-migrate](https://github.com/joshpxyne/gpt-migrate) | 6482 |
52
+ |[zauberzeug/nicegui](https://github.com/zauberzeug/nicegui) | 6037 |
53
+ |[embedchain/embedchain](https://github.com/embedchain/embedchain) | 6023 |
54
+ |[mage-ai/mage-ai](https://github.com/mage-ai/mage-ai) | 6019 |
55
+ |[assafelovic/gpt-researcher](https://github.com/assafelovic/gpt-researcher) | 5936 |
56
+ |[sweepai/sweep](https://github.com/sweepai/sweep) | 5855 |
57
+ |[wenda-LLM/wenda](https://github.com/wenda-LLM/wenda) | 5766 |
58
+ |[zilliztech/GPTCache](https://github.com/zilliztech/GPTCache) | 5710 |
59
+ |[pdm-project/pdm](https://github.com/pdm-project/pdm) | 5665 |
60
+ |[GreyDGL/PentestGPT](https://github.com/GreyDGL/PentestGPT) | 5568 |
61
+ |[gkamradt/langchain-tutorials](https://github.com/gkamradt/langchain-tutorials) | 5507 |
62
+ |[Shaunwei/RealChar](https://github.com/Shaunwei/RealChar) | 5501 |
63
+ |[facebookresearch/llama-recipes](https://github.com/facebookresearch/llama-recipes) | 5477 |
64
+ |[serge-chat/serge](https://github.com/serge-chat/serge) | 5221 |
65
+ |[run-llama/rags](https://github.com/run-llama/rags) | 4916 |
66
+ |[openchatai/OpenChat](https://github.com/openchatai/OpenChat) | 4870 |
67
+ |[danswer-ai/danswer](https://github.com/danswer-ai/danswer) | 4774 |
68
+ |[langchain-ai/opengpts](https://github.com/langchain-ai/opengpts) | 4709 |
69
+ |[postgresml/postgresml](https://github.com/postgresml/postgresml) | 4639 |
70
+ |[MineDojo/Voyager](https://github.com/MineDojo/Voyager) | 4582 |
71
+ |[intel-analytics/BigDL](https://github.com/intel-analytics/BigDL) | 4581 |
72
+ |[yihong0618/xiaogpt](https://github.com/yihong0618/xiaogpt) | 4359 |
73
+ |[RayVentura/ShortGPT](https://github.com/RayVentura/ShortGPT) | 4357 |
74
+ |[Azure-Samples/azure-search-openai-demo](https://github.com/Azure-Samples/azure-search-openai-demo) | 4317 |
75
+ |[madawei2699/myGPTReader](https://github.com/madawei2699/myGPTReader) | 4289 |
76
+ |[apache/nifi](https://github.com/apache/nifi) | 4098 |
77
+ |[langchain-ai/chat-langchain](https://github.com/langchain-ai/chat-langchain) | 4091 |
78
+ |[aiwaves-cn/agents](https://github.com/aiwaves-cn/agents) | 4073 |
79
+ |[krishnaik06/The-Grand-Complete-Data-Science-Materials](https://github.com/krishnaik06/The-Grand-Complete-Data-Science-Materials) | 4065 |
80
+ |[khoj-ai/khoj](https://github.com/khoj-ai/khoj) | 4016 |
81
+ |[Azure/azure-sdk-for-python](https://github.com/Azure/azure-sdk-for-python) | 3941 |
82
+ |[PrefectHQ/marvin](https://github.com/PrefectHQ/marvin) | 3915 |
83
+ |[OpenBMB/ToolBench](https://github.com/OpenBMB/ToolBench) | 3799 |
84
+ |[marqo-ai/marqo](https://github.com/marqo-ai/marqo) | 3771 |
85
+ |[kyegomez/tree-of-thoughts](https://github.com/kyegomez/tree-of-thoughts) | 3688 |
86
+ |[Unstructured-IO/unstructured](https://github.com/Unstructured-IO/unstructured) | 3543 |
87
+ |[llm-workflow-engine/llm-workflow-engine](https://github.com/llm-workflow-engine/llm-workflow-engine) | 3515 |
88
+ |[shroominic/codeinterpreter-api](https://github.com/shroominic/codeinterpreter-api) | 3425 |
89
+ |[openchatai/OpenCopilot](https://github.com/openchatai/OpenCopilot) | 3418 |
90
+ |[josStorer/RWKV-Runner](https://github.com/josStorer/RWKV-Runner) | 3297 |
91
+ |[whitead/paper-qa](https://github.com/whitead/paper-qa) | 3280 |
92
+ |[homanp/superagent](https://github.com/homanp/superagent) | 3258 |
93
+ |[ParisNeo/lollms-webui](https://github.com/ParisNeo/lollms-webui) | 3199 |
94
+ |[OpenBMB/AgentVerse](https://github.com/OpenBMB/AgentVerse) | 3099 |
95
+ |[project-baize/baize-chatbot](https://github.com/project-baize/baize-chatbot) | 3090 |
96
+ |[OpenGVLab/InternGPT](https://github.com/OpenGVLab/InternGPT) | 2989 |
97
+ |[xlang-ai/OpenAgents](https://github.com/xlang-ai/OpenAgents) | 2825 |
98
+ |[dataelement/bisheng](https://github.com/dataelement/bisheng) | 2797 |
99
+ |[Mintplex-Labs/anything-llm](https://github.com/Mintplex-Labs/anything-llm) | 2784 |
100
+ |[OpenBMB/BMTools](https://github.com/OpenBMB/BMTools) | 2734 |
101
+ |[run-llama/llama-hub](https://github.com/run-llama/llama-hub) | 2721 |
102
+ |[SamurAIGPT/EmbedAI](https://github.com/SamurAIGPT/EmbedAI) | 2647 |
103
+ |[NVIDIA/NeMo-Guardrails](https://github.com/NVIDIA/NeMo-Guardrails) | 2637 |
104
+ |[X-D-Lab/LangChain-ChatGLM-Webui](https://github.com/X-D-Lab/LangChain-ChatGLM-Webui) | 2532 |
105
+ |[GerevAI/gerev](https://github.com/GerevAI/gerev) | 2517 |
106
+ |[keephq/keep](https://github.com/keephq/keep) | 2448 |
107
+ |[yanqiangmiffy/Chinese-LangChain](https://github.com/yanqiangmiffy/Chinese-LangChain) | 2397 |
108
+ |[OpenGVLab/Ask-Anything](https://github.com/OpenGVLab/Ask-Anything) | 2324 |
109
+ |[IntelligenzaArtificiale/Free-Auto-GPT](https://github.com/IntelligenzaArtificiale/Free-Auto-GPT) | 2241 |
110
+ |[YiVal/YiVal](https://github.com/YiVal/YiVal) | 2232 |
111
+ |[jupyterlab/jupyter-ai](https://github.com/jupyterlab/jupyter-ai) | 2189 |
112
+ |[Farama-Foundation/PettingZoo](https://github.com/Farama-Foundation/PettingZoo) | 2136 |
113
+ |[microsoft/TaskWeaver](https://github.com/microsoft/TaskWeaver) | 2126 |
114
+ |[hwchase17/notion-qa](https://github.com/hwchase17/notion-qa) | 2083 |
115
+ |[FlagOpen/FlagEmbedding](https://github.com/FlagOpen/FlagEmbedding) | 2053 |
116
+ |[paulpierre/RasaGPT](https://github.com/paulpierre/RasaGPT) | 1999 |
117
+ |[hegelai/prompttools](https://github.com/hegelai/prompttools) | 1984 |
118
+ |[mckinsey/vizro](https://github.com/mckinsey/vizro) | 1951 |
119
+ |[vocodedev/vocode-python](https://github.com/vocodedev/vocode-python) | 1868 |
120
+ |[dot-agent/openAMS](https://github.com/dot-agent/openAMS) | 1796 |
121
+ |[explodinggradients/ragas](https://github.com/explodinggradients/ragas) | 1766 |
122
+ |[AI-Citizen/SolidGPT](https://github.com/AI-Citizen/SolidGPT) | 1761 |
123
+ |[Kav-K/GPTDiscord](https://github.com/Kav-K/GPTDiscord) | 1696 |
124
+ |[run-llama/sec-insights](https://github.com/run-llama/sec-insights) | 1654 |
125
+ |[avinashkranjan/Amazing-Python-Scripts](https://github.com/avinashkranjan/Amazing-Python-Scripts) | 1635 |
126
+ |[microsoft/WhatTheHack](https://github.com/microsoft/WhatTheHack) | 1629 |
127
+ |[noahshinn/reflexion](https://github.com/noahshinn/reflexion) | 1625 |
128
+ |[psychic-api/psychic](https://github.com/psychic-api/psychic) | 1618 |
129
+ |[Forethought-Technologies/AutoChain](https://github.com/Forethought-Technologies/AutoChain) | 1611 |
130
+ |[pinterest/querybook](https://github.com/pinterest/querybook) | 1586 |
131
+ |[refuel-ai/autolabel](https://github.com/refuel-ai/autolabel) | 1553 |
132
+ |[jina-ai/langchain-serve](https://github.com/jina-ai/langchain-serve) | 1537 |
133
+ |[jina-ai/dev-gpt](https://github.com/jina-ai/dev-gpt) | 1522 |
134
+ |[agiresearch/OpenAGI](https://github.com/agiresearch/OpenAGI) | 1493 |
135
+ |[ttengwang/Caption-Anything](https://github.com/ttengwang/Caption-Anything) | 1484 |
136
+ |[greshake/llm-security](https://github.com/greshake/llm-security) | 1483 |
137
+ |[promptfoo/promptfoo](https://github.com/promptfoo/promptfoo) | 1480 |
138
+ |[milvus-io/bootcamp](https://github.com/milvus-io/bootcamp) | 1477 |
139
+ |[richardyc/Chrome-GPT](https://github.com/richardyc/Chrome-GPT) | 1475 |
140
+ |[melih-unsal/DemoGPT](https://github.com/melih-unsal/DemoGPT) | 1428 |
141
+ |[YORG-AI/Open-Assistant](https://github.com/YORG-AI/Open-Assistant) | 1419 |
142
+ |[101dotxyz/GPTeam](https://github.com/101dotxyz/GPTeam) | 1416 |
143
+ |[jina-ai/thinkgpt](https://github.com/jina-ai/thinkgpt) | 1408 |
144
+ |[mmz-001/knowledge_gpt](https://github.com/mmz-001/knowledge_gpt) | 1398 |
145
+ |[intel/intel-extension-for-transformers](https://github.com/intel/intel-extension-for-transformers) | 1387 |
146
+ |[Azure/azureml-examples](https://github.com/Azure/azureml-examples) | 1385 |
147
+ |[lunasec-io/lunasec](https://github.com/lunasec-io/lunasec) | 1367 |
148
+ |[eyurtsev/kor](https://github.com/eyurtsev/kor) | 1355 |
149
+ |[xusenlinzy/api-for-open-llm](https://github.com/xusenlinzy/api-for-open-llm) | 1325 |
150
+ |[griptape-ai/griptape](https://github.com/griptape-ai/griptape) | 1323 |
151
+ |[SuperDuperDB/superduperdb](https://github.com/SuperDuperDB/superduperdb) | 1290 |
152
+ |[cofactoryai/textbase](https://github.com/cofactoryai/textbase) | 1284 |
153
+ |[psychic-api/rag-stack](https://github.com/psychic-api/rag-stack) | 1260 |
154
+ |[filip-michalsky/SalesGPT](https://github.com/filip-michalsky/SalesGPT) | 1250 |
155
+ |[nod-ai/SHARK](https://github.com/nod-ai/SHARK) | 1237 |
156
+ |[pluralsh/plural](https://github.com/pluralsh/plural) | 1234 |
157
+ |[cheshire-cat-ai/core](https://github.com/cheshire-cat-ai/core) | 1194 |
158
+ |[LC1332/Chat-Haruhi-Suzumiya](https://github.com/LC1332/Chat-Haruhi-Suzumiya) | 1184 |
159
+ |[poe-platform/server-bot-quick-start](https://github.com/poe-platform/server-bot-quick-start) | 1182 |
160
+ |[microsoft/X-Decoder](https://github.com/microsoft/X-Decoder) | 1180 |
161
+ |[juncongmoo/chatllama](https://github.com/juncongmoo/chatllama) | 1171 |
162
+ |[visual-openllm/visual-openllm](https://github.com/visual-openllm/visual-openllm) | 1156 |
163
+ |[alejandro-ao/ask-multiple-pdfs](https://github.com/alejandro-ao/ask-multiple-pdfs) | 1153 |
164
+ |[ThousandBirdsInc/chidori](https://github.com/ThousandBirdsInc/chidori) | 1152 |
165
+ |[irgolic/AutoPR](https://github.com/irgolic/AutoPR) | 1137 |
166
+ |[SamurAIGPT/Camel-AutoGPT](https://github.com/SamurAIGPT/Camel-AutoGPT) | 1083 |
167
+ |[ray-project/llm-applications](https://github.com/ray-project/llm-applications) | 1080 |
168
+ |[run-llama/llama-lab](https://github.com/run-llama/llama-lab) | 1072 |
169
+ |[jiran214/GPT-vup](https://github.com/jiran214/GPT-vup) | 1041 |
170
+ |[MetaGLM/FinGLM](https://github.com/MetaGLM/FinGLM) | 1035 |
171
+ |[peterw/Chat-with-Github-Repo](https://github.com/peterw/Chat-with-Github-Repo) | 1020 |
172
+ |[Anil-matcha/ChatPDF](https://github.com/Anil-matcha/ChatPDF) | 991 |
173
+ |[langchain-ai/langserve](https://github.com/langchain-ai/langserve) | 983 |
174
+ |[THUDM/AgentTuning](https://github.com/THUDM/AgentTuning) | 976 |
175
+ |[rlancemartin/auto-evaluator](https://github.com/rlancemartin/auto-evaluator) | 975 |
176
+ |[codeacme17/examor](https://github.com/codeacme17/examor) | 964 |
177
+ |[all-in-aigc/gpts-works](https://github.com/all-in-aigc/gpts-works) | 946 |
178
+ |[Ikaros-521/AI-Vtuber](https://github.com/Ikaros-521/AI-Vtuber) | 946 |
179
+ |[microsoft/Llama-2-Onnx](https://github.com/microsoft/Llama-2-Onnx) | 898 |
180
+ |[cirediatpl/FigmaChain](https://github.com/cirediatpl/FigmaChain) | 895 |
181
+ |[ricklamers/shell-ai](https://github.com/ricklamers/shell-ai) | 893 |
182
+ |[modelscope/modelscope-agent](https://github.com/modelscope/modelscope-agent) | 893 |
183
+ |[seanpixel/Teenage-AGI](https://github.com/seanpixel/Teenage-AGI) | 886 |
184
+ |[ajndkr/lanarky](https://github.com/ajndkr/lanarky) | 880 |
185
+ |[kennethleungty/Llama-2-Open-Source-LLM-CPU-Inference](https://github.com/kennethleungty/Llama-2-Open-Source-LLM-CPU-Inference) | 872 |
186
+ |[corca-ai/EVAL](https://github.com/corca-ai/EVAL) | 846 |
187
+ |[hwchase17/chat-your-data](https://github.com/hwchase17/chat-your-data) | 841 |
188
+ |[kreneskyp/ix](https://github.com/kreneskyp/ix) | 821 |
189
+ |[Link-AGI/AutoAgents](https://github.com/Link-AGI/AutoAgents) | 820 |
190
+ |[truera/trulens](https://github.com/truera/trulens) | 794 |
191
+ |[Dataherald/dataherald](https://github.com/Dataherald/dataherald) | 788 |
192
+ |[sunlabuiuc/PyHealth](https://github.com/sunlabuiuc/PyHealth) | 783 |
193
+ |[jondurbin/airoboros](https://github.com/jondurbin/airoboros) | 783 |
194
+ |[pyspark-ai/pyspark-ai](https://github.com/pyspark-ai/pyspark-ai) | 782 |
195
+ |[confident-ai/deepeval](https://github.com/confident-ai/deepeval) | 780 |
196
+ |[billxbf/ReWOO](https://github.com/billxbf/ReWOO) | 777 |
197
+ |[langchain-ai/streamlit-agent](https://github.com/langchain-ai/streamlit-agent) | 776 |
198
+ |[akshata29/entaoai](https://github.com/akshata29/entaoai) | 771 |
199
+ |[LambdaLabsML/examples](https://github.com/LambdaLabsML/examples) | 770 |
200
+ |[getmetal/motorhead](https://github.com/getmetal/motorhead) | 768 |
201
+ |[Dicklesworthstone/swiss_army_llama](https://github.com/Dicklesworthstone/swiss_army_llama) | 757 |
202
+ |[ruoccofabrizio/azure-open-ai-embeddings-qna](https://github.com/ruoccofabrizio/azure-open-ai-embeddings-qna) | 757 |
203
+ |[msoedov/langcorn](https://github.com/msoedov/langcorn) | 754 |
204
+ |[e-johnstonn/BriefGPT](https://github.com/e-johnstonn/BriefGPT) | 753 |
205
+ |[microsoft/sample-app-aoai-chatGPT](https://github.com/microsoft/sample-app-aoai-chatGPT) | 749 |
206
+ |[explosion/spacy-llm](https://github.com/explosion/spacy-llm) | 731 |
207
+ |[MiuLab/Taiwan-LLM](https://github.com/MiuLab/Taiwan-LLM) | 716 |
208
+ |[whyiyhw/chatgpt-wechat](https://github.com/whyiyhw/chatgpt-wechat) | 702 |
209
+ |[Azure-Samples/openai](https://github.com/Azure-Samples/openai) | 692 |
210
+ |[iusztinpaul/hands-on-llms](https://github.com/iusztinpaul/hands-on-llms) | 687 |
211
+ |[safevideo/autollm](https://github.com/safevideo/autollm) | 682 |
212
+ |[OpenGenerativeAI/GenossGPT](https://github.com/OpenGenerativeAI/GenossGPT) | 669 |
213
+ |[NoDataFound/hackGPT](https://github.com/NoDataFound/hackGPT) | 663 |
214
+ |[AILab-CVC/GPT4Tools](https://github.com/AILab-CVC/GPT4Tools) | 662 |
215
+ |[langchain-ai/auto-evaluator](https://github.com/langchain-ai/auto-evaluator) | 657 |
216
+ |[yvann-ba/Robby-chatbot](https://github.com/yvann-ba/Robby-chatbot) | 639 |
217
+ |[alexanderatallah/window.ai](https://github.com/alexanderatallah/window.ai) | 635 |
218
+ |[amosjyng/langchain-visualizer](https://github.com/amosjyng/langchain-visualizer) | 630 |
219
+ |[microsoft/PodcastCopilot](https://github.com/microsoft/PodcastCopilot) | 621 |
220
+ |[aws-samples/aws-genai-llm-chatbot](https://github.com/aws-samples/aws-genai-llm-chatbot) | 616 |
221
+ |[NeumTry/NeumAI](https://github.com/NeumTry/NeumAI) | 605 |
222
+ |[namuan/dr-doc-search](https://github.com/namuan/dr-doc-search) | 599 |
223
+ |[plastic-labs/tutor-gpt](https://github.com/plastic-labs/tutor-gpt) | 595 |
224
+ |[marimo-team/marimo](https://github.com/marimo-team/marimo) | 591 |
225
+ |[yakami129/VirtualWife](https://github.com/yakami129/VirtualWife) | 586 |
226
+ |[xuwenhao/geektime-ai-course](https://github.com/xuwenhao/geektime-ai-course) | 584 |
227
+ |[jonra1993/fastapi-alembic-sqlmodel-async](https://github.com/jonra1993/fastapi-alembic-sqlmodel-async) | 573 |
228
+ |[dgarnitz/vectorflow](https://github.com/dgarnitz/vectorflow) | 568 |
229
+ |[yeagerai/yeagerai-agent](https://github.com/yeagerai/yeagerai-agent) | 564 |
230
+ |[daveebbelaar/langchain-experiments](https://github.com/daveebbelaar/langchain-experiments) | 563 |
231
+ |[traceloop/openllmetry](https://github.com/traceloop/openllmetry) | 559 |
232
+ |[Agenta-AI/agenta](https://github.com/Agenta-AI/agenta) | 546 |
233
+ |[michaelthwan/searchGPT](https://github.com/michaelthwan/searchGPT) | 545 |
234
+ |[jina-ai/agentchain](https://github.com/jina-ai/agentchain) | 544 |
235
+ |[mckaywrigley/repo-chat](https://github.com/mckaywrigley/repo-chat) | 533 |
236
+ |[marella/chatdocs](https://github.com/marella/chatdocs) | 532 |
237
+ |[opentensor/bittensor](https://github.com/opentensor/bittensor) | 532 |
238
+ |[DjangoPeng/openai-quickstart](https://github.com/DjangoPeng/openai-quickstart) | 527 |
239
+ |[freddyaboulton/gradio-tools](https://github.com/freddyaboulton/gradio-tools) | 517 |
240
+ |[sidhq/Multi-GPT](https://github.com/sidhq/Multi-GPT) | 515 |
241
+ |[alejandro-ao/langchain-ask-pdf](https://github.com/alejandro-ao/langchain-ask-pdf) | 514 |
242
+ |[sajjadium/ctf-archives](https://github.com/sajjadium/ctf-archives) | 507 |
243
+ |[continuum-llms/chatgpt-memory](https://github.com/continuum-llms/chatgpt-memory) | 502 |
244
+ |[steamship-core/steamship-langchain](https://github.com/steamship-core/steamship-langchain) | 494 |
245
+ |[mpaepper/content-chatbot](https://github.com/mpaepper/content-chatbot) | 493 |
246
+ |[langchain-ai/langchain-aiplugin](https://github.com/langchain-ai/langchain-aiplugin) | 492 |
247
+ |[logan-markewich/llama_index_starter_pack](https://github.com/logan-markewich/llama_index_starter_pack) | 483 |
248
+ |[datawhalechina/llm-universe](https://github.com/datawhalechina/llm-universe) | 475 |
249
+ |[leondz/garak](https://github.com/leondz/garak) | 464 |
250
+ |[RedisVentures/ArXivChatGuru](https://github.com/RedisVentures/ArXivChatGuru) | 461 |
251
+ |[Anil-matcha/Chatbase](https://github.com/Anil-matcha/Chatbase) | 455 |
252
+ |[Aiyu-awa/luna-ai](https://github.com/Aiyu-awa/luna-ai) | 450 |
253
+ |[DataDog/dd-trace-py](https://github.com/DataDog/dd-trace-py) | 450 |
254
+ |[Azure-Samples/miyagi](https://github.com/Azure-Samples/miyagi) | 449 |
255
+ |[poe-platform/poe-protocol](https://github.com/poe-platform/poe-protocol) | 447 |
256
+ |[onlyphantom/llm-python](https://github.com/onlyphantom/llm-python) | 446 |
257
+ |[junruxiong/IncarnaMind](https://github.com/junruxiong/IncarnaMind) | 441 |
258
+ |[CarperAI/OpenELM](https://github.com/CarperAI/OpenELM) | 441 |
259
+ |[daodao97/chatdoc](https://github.com/daodao97/chatdoc) | 437 |
260
+ |[showlab/VLog](https://github.com/showlab/VLog) | 436 |
261
+ |[wandb/weave](https://github.com/wandb/weave) | 420 |
262
+ |[QwenLM/Qwen-Agent](https://github.com/QwenLM/Qwen-Agent) | 419 |
263
+ |[huchenxucs/ChatDB](https://github.com/huchenxucs/ChatDB) | 416 |
264
+ |[jerlendds/osintbuddy](https://github.com/jerlendds/osintbuddy) | 411 |
265
+ |[monarch-initiative/ontogpt](https://github.com/monarch-initiative/ontogpt) | 408 |
266
+ |[mallorbc/Finetune_LLMs](https://github.com/mallorbc/Finetune_LLMs) | 406 |
267
+ |[JayZeeDesign/researcher-gpt](https://github.com/JayZeeDesign/researcher-gpt) | 405 |
268
+ |[rsaryev/talk-codebase](https://github.com/rsaryev/talk-codebase) | 401 |
269
+ |[langchain-ai/langsmith-cookbook](https://github.com/langchain-ai/langsmith-cookbook) | 398 |
270
+ |[mtenenholtz/chat-twitter](https://github.com/mtenenholtz/chat-twitter) | 398 |
271
+ |[morpheuslord/GPT_Vuln-analyzer](https://github.com/morpheuslord/GPT_Vuln-analyzer) | 391 |
272
+ |[MagnivOrg/prompt-layer-library](https://github.com/MagnivOrg/prompt-layer-library) | 387 |
273
+ |[JohnSnowLabs/langtest](https://github.com/JohnSnowLabs/langtest) | 384 |
274
+ |[mrwadams/attackgen](https://github.com/mrwadams/attackgen) | 381 |
275
+ |[codefuse-ai/Test-Agent](https://github.com/codefuse-ai/Test-Agent) | 380 |
276
+ |[personoids/personoids-lite](https://github.com/personoids/personoids-lite) | 379 |
277
+ |[mosaicml/examples](https://github.com/mosaicml/examples) | 378 |
278
+ |[steamship-packages/langchain-production-starter](https://github.com/steamship-packages/langchain-production-starter) | 370 |
279
+ |[FlagAI-Open/Aquila2](https://github.com/FlagAI-Open/Aquila2) | 365 |
280
+ |[Mintplex-Labs/vector-admin](https://github.com/Mintplex-Labs/vector-admin) | 365 |
281
+ |[NimbleBoxAI/ChainFury](https://github.com/NimbleBoxAI/ChainFury) | 357 |
282
+ |[BlackHC/llm-strategy](https://github.com/BlackHC/llm-strategy) | 354 |
283
+ |[lilacai/lilac](https://github.com/lilacai/lilac) | 352 |
284
+ |[preset-io/promptimize](https://github.com/preset-io/promptimize) | 351 |
285
+ |[yuanjie-ai/ChatLLM](https://github.com/yuanjie-ai/ChatLLM) | 347 |
286
+ |[andylokandy/gpt-4-search](https://github.com/andylokandy/gpt-4-search) | 346 |
287
+ |[zhoudaquan/ChatAnything](https://github.com/zhoudaquan/ChatAnything) | 343 |
288
+ |[rgomezcasas/dotfiles](https://github.com/rgomezcasas/dotfiles) | 343 |
289
+ |[tigerlab-ai/tiger](https://github.com/tigerlab-ai/tiger) | 342 |
290
+ |[HumanSignal/label-studio-ml-backend](https://github.com/HumanSignal/label-studio-ml-backend) | 334 |
291
+ |[nasa-petal/bidara](https://github.com/nasa-petal/bidara) | 334 |
292
+ |[momegas/megabots](https://github.com/momegas/megabots) | 334 |
293
+ |[Cheems-Seminar/grounded-segment-any-parts](https://github.com/Cheems-Seminar/grounded-segment-any-parts) | 330 |
294
+ |[CambioML/pykoi](https://github.com/CambioML/pykoi) | 326 |
295
+ |[Nuggt-dev/Nuggt](https://github.com/Nuggt-dev/Nuggt) | 326 |
296
+ |[wandb/edu](https://github.com/wandb/edu) | 326 |
297
+ |[Haste171/langchain-chatbot](https://github.com/Haste171/langchain-chatbot) | 324 |
298
+ |[sugarforever/LangChain-Tutorials](https://github.com/sugarforever/LangChain-Tutorials) | 322 |
299
+ |[liangwq/Chatglm_lora_multi-gpu](https://github.com/liangwq/Chatglm_lora_multi-gpu) | 321 |
300
+ |[ur-whitelab/chemcrow-public](https://github.com/ur-whitelab/chemcrow-public) | 320 |
301
+ |[itamargol/openai](https://github.com/itamargol/openai) | 318 |
302
+ |[gia-guar/JARVIS-ChatGPT](https://github.com/gia-guar/JARVIS-ChatGPT) | 304 |
303
+ |[SpecterOps/Nemesis](https://github.com/SpecterOps/Nemesis) | 302 |
304
+ |[facebookresearch/personal-timeline](https://github.com/facebookresearch/personal-timeline) | 302 |
305
+ |[hnawaz007/pythondataanalysis](https://github.com/hnawaz007/pythondataanalysis) | 301 |
306
+ |[Chainlit/cookbook](https://github.com/Chainlit/cookbook) | 300 |
307
+ |[airobotlab/KoChatGPT](https://github.com/airobotlab/KoChatGPT) | 300 |
308
+ |[GPT-Fathom/GPT-Fathom](https://github.com/GPT-Fathom/GPT-Fathom) | 299 |
309
+ |[kaarthik108/snowChat](https://github.com/kaarthik108/snowChat) | 299 |
310
+ |[kyegomez/swarms](https://github.com/kyegomez/swarms) | 296 |
311
+ |[LangStream/langstream](https://github.com/LangStream/langstream) | 295 |
312
+ |[genia-dev/GeniA](https://github.com/genia-dev/GeniA) | 294 |
313
+ |[shamspias/customizable-gpt-chatbot](https://github.com/shamspias/customizable-gpt-chatbot) | 291 |
314
+ |[TsinghuaDatabaseGroup/DB-GPT](https://github.com/TsinghuaDatabaseGroup/DB-GPT) | 290 |
315
+ |[conceptofmind/toolformer](https://github.com/conceptofmind/toolformer) | 283 |
316
+ |[sullivan-sean/chat-langchainjs](https://github.com/sullivan-sean/chat-langchainjs) | 283 |
317
+ |[AutoPackAI/beebot](https://github.com/AutoPackAI/beebot) | 282 |
318
+ |[pablomarin/GPT-Azure-Search-Engine](https://github.com/pablomarin/GPT-Azure-Search-Engine) | 282 |
319
+ |[gkamradt/LLMTest_NeedleInAHaystack](https://github.com/gkamradt/LLMTest_NeedleInAHaystack) | 280 |
320
+ |[gustavz/DataChad](https://github.com/gustavz/DataChad) | 280 |
321
+ |[Safiullah-Rahu/CSV-AI](https://github.com/Safiullah-Rahu/CSV-AI) | 278 |
322
+ |[hwchase17/chroma-langchain](https://github.com/hwchase17/chroma-langchain) | 275 |
323
+ |[AkshitIreddy/Interactive-LLM-Powered-NPCs](https://github.com/AkshitIreddy/Interactive-LLM-Powered-NPCs) | 268 |
324
+ |[ennucore/clippinator](https://github.com/ennucore/clippinator) | 267 |
325
+ |[artitw/text2text](https://github.com/artitw/text2text) | 264 |
326
+ |[anarchy-ai/LLM-VM](https://github.com/anarchy-ai/LLM-VM) | 263 |
327
+ |[wpydcr/LLM-Kit](https://github.com/wpydcr/LLM-Kit) | 262 |
328
+ |[streamlit/llm-examples](https://github.com/streamlit/llm-examples) | 262 |
329
+ |[paolorechia/learn-langchain](https://github.com/paolorechia/learn-langchain) | 262 |
330
+ |[yym68686/ChatGPT-Telegram-Bot](https://github.com/yym68686/ChatGPT-Telegram-Bot) | 261 |
331
+ |[PradipNichite/Youtube-Tutorials](https://github.com/PradipNichite/Youtube-Tutorials) | 259 |
332
+ |[radi-cho/datasetGPT](https://github.com/radi-cho/datasetGPT) | 259 |
333
+ |[ur-whitelab/exmol](https://github.com/ur-whitelab/exmol) | 259 |
334
+ |[ml6team/fondant](https://github.com/ml6team/fondant) | 254 |
335
+ |[bborn/howdoi.ai](https://github.com/bborn/howdoi.ai) | 254 |
336
+ |[rahulnyk/knowledge_graph](https://github.com/rahulnyk/knowledge_graph) | 253 |
337
+ |[recalign/RecAlign](https://github.com/recalign/RecAlign) | 248 |
338
+ |[hwchase17/langchain-streamlit-template](https://github.com/hwchase17/langchain-streamlit-template) | 248 |
339
+ |[fetchai/uAgents](https://github.com/fetchai/uAgents) | 247 |
340
+ |[arthur-ai/bench](https://github.com/arthur-ai/bench) | 247 |
341
+ |[miaoshouai/miaoshouai-assistant](https://github.com/miaoshouai/miaoshouai-assistant) | 246 |
342
+ |[RoboCoachTechnologies/GPT-Synthesizer](https://github.com/RoboCoachTechnologies/GPT-Synthesizer) | 244 |
343
+ |[langchain-ai/web-explorer](https://github.com/langchain-ai/web-explorer) | 242 |
344
+ |[kaleido-lab/dolphin](https://github.com/kaleido-lab/dolphin) | 242 |
345
+ |[PJLab-ADG/DriveLikeAHuman](https://github.com/PJLab-ADG/DriveLikeAHuman) | 241 |
346
+ |[stepanogil/autonomous-hr-chatbot](https://github.com/stepanogil/autonomous-hr-chatbot) | 238 |
347
+ |[WongSaang/chatgpt-ui-server](https://github.com/WongSaang/chatgpt-ui-server) | 236 |
348
+ |[nexus-stc/stc](https://github.com/nexus-stc/stc) | 235 |
349
+ |[yeagerai/genworlds](https://github.com/yeagerai/genworlds) | 235 |
350
+ |[Gentopia-AI/Gentopia](https://github.com/Gentopia-AI/Gentopia) | 235 |
351
+ |[alphasecio/langchain-examples](https://github.com/alphasecio/langchain-examples) | 235 |
352
+ |[grumpyp/aixplora](https://github.com/grumpyp/aixplora) | 232 |
353
+ |[shaman-ai/agent-actors](https://github.com/shaman-ai/agent-actors) | 232 |
354
+ |[darrenburns/elia](https://github.com/darrenburns/elia) | 231 |
355
+ |[orgexyz/BlockAGI](https://github.com/orgexyz/BlockAGI) | 231 |
356
+ |[handrew/browserpilot](https://github.com/handrew/browserpilot) | 226 |
357
+ |[su77ungr/CASALIOY](https://github.com/su77ungr/CASALIOY) | 225 |
358
+ |[nicknochnack/LangchainDocuments](https://github.com/nicknochnack/LangchainDocuments) | 225 |
359
+ |[dbpunk-labs/octogen](https://github.com/dbpunk-labs/octogen) | 224 |
360
+ |[langchain-ai/weblangchain](https://github.com/langchain-ai/weblangchain) | 222 |
361
+ |[CL-lau/SQL-GPT](https://github.com/CL-lau/SQL-GPT) | 222 |
362
+ |[alvarosevilla95/autolang](https://github.com/alvarosevilla95/autolang) | 221 |
363
+ |[showlab/UniVTG](https://github.com/showlab/UniVTG) | 220 |
364
+ |[edreisMD/plugnplai](https://github.com/edreisMD/plugnplai) | 219 |
365
+ |[hardbyte/qabot](https://github.com/hardbyte/qabot) | 216 |
366
+ |[microsoft/azure-openai-in-a-day-workshop](https://github.com/microsoft/azure-openai-in-a-day-workshop) | 215 |
367
+ |[Azure-Samples/chat-with-your-data-solution-accelerator](https://github.com/Azure-Samples/chat-with-your-data-solution-accelerator) | 214 |
368
+ |[amadad/agentcy](https://github.com/amadad/agentcy) | 213 |
369
+ |[snexus/llm-search](https://github.com/snexus/llm-search) | 212 |
370
+ |[afaqueumer/DocQA](https://github.com/afaqueumer/DocQA) | 206 |
371
+ |[plchld/InsightFlow](https://github.com/plchld/InsightFlow) | 205 |
372
+ |[yasyf/compress-gpt](https://github.com/yasyf/compress-gpt) | 205 |
373
+ |[benthecoder/ClassGPT](https://github.com/benthecoder/ClassGPT) | 205 |
374
+ |[voxel51/voxelgpt](https://github.com/voxel51/voxelgpt) | 204 |
375
+ |[jbrukh/gpt-jargon](https://github.com/jbrukh/gpt-jargon) | 204 |
376
+ |[emarco177/ice_breaker](https://github.com/emarco177/ice_breaker) | 204 |
377
+ |[tencentmusic/supersonic](https://github.com/tencentmusic/supersonic) | 202 |
378
+ |[Azure-Samples/azure-search-power-skills](https://github.com/Azure-Samples/azure-search-power-skills) | 202 |
379
+ |[blob42/Instrukt](https://github.com/blob42/Instrukt) | 201 |
380
+ |[langchain-ai/langsmith-sdk](https://github.com/langchain-ai/langsmith-sdk) | 200 |
381
+ |[SamPink/dev-gpt](https://github.com/SamPink/dev-gpt) | 200 |
382
+ |[ju-bezdek/langchain-decorators](https://github.com/ju-bezdek/langchain-decorators) | 198 |
383
+ |[KMnO4-zx/huanhuan-chat](https://github.com/KMnO4-zx/huanhuan-chat) | 196 |
384
+ |[Azure-Samples/jp-azureopenai-samples](https://github.com/Azure-Samples/jp-azureopenai-samples) | 192 |
385
+ |[hongbo-miao/hongbomiao.com](https://github.com/hongbo-miao/hongbomiao.com) | 190 |
386
+ |[CakeCrusher/openplugin](https://github.com/CakeCrusher/openplugin) | 190 |
387
+ |[PaddlePaddle/ERNIE-Bot-SDK](https://github.com/PaddlePaddle/ERNIE-Bot-SDK) | 189 |
388
+ |[retr0reg/Ret2GPT](https://github.com/retr0reg/Ret2GPT) | 189 |
389
+ |[AmineDiro/cria](https://github.com/AmineDiro/cria) | 187 |
390
+ |[lancedb/vectordb-recipes](https://github.com/lancedb/vectordb-recipes) | 186 |
391
+ |[vaibkumr/prompt-optimizer](https://github.com/vaibkumr/prompt-optimizer) | 185 |
392
+ |[aws-ia/ecs-blueprints](https://github.com/aws-ia/ecs-blueprints) | 184 |
393
+ |[ethanyanjiali/minChatGPT](https://github.com/ethanyanjiali/minChatGPT) | 183 |
394
+ |[MuhammadMoinFaisal/LargeLanguageModelsProjects](https://github.com/MuhammadMoinFaisal/LargeLanguageModelsProjects) | 182 |
395
+ |[shauryr/S2QA](https://github.com/shauryr/S2QA) | 181 |
396
+ |[summarizepaper/summarizepaper](https://github.com/summarizepaper/summarizepaper) | 180 |
397
+ |[NomaDamas/RAGchain](https://github.com/NomaDamas/RAGchain) | 179 |
398
+ |[pnkvalavala/repochat](https://github.com/pnkvalavala/repochat) | 179 |
399
+ |[ibiscp/LLM-IMDB](https://github.com/ibiscp/LLM-IMDB) | 177 |
400
+ |[fengyuli-dev/multimedia-gpt](https://github.com/fengyuli-dev/multimedia-gpt) | 177 |
401
+ |[langchain-ai/text-split-explorer](https://github.com/langchain-ai/text-split-explorer) | 175 |
402
+ |[iMagist486/ElasticSearch-Langchain-Chatglm2](https://github.com/iMagist486/ElasticSearch-Langchain-Chatglm2) | 175 |
403
+ |[limaoyi1/Auto-PPT](https://github.com/limaoyi1/Auto-PPT) | 175 |
404
+ |[Open-Swarm-Net/GPT-Swarm](https://github.com/Open-Swarm-Net/GPT-Swarm) | 175 |
405
+ |[morpheuslord/HackBot](https://github.com/morpheuslord/HackBot) | 174 |
406
+ |[v7labs/benchllm](https://github.com/v7labs/benchllm) | 174 |
407
+ |[Coding-Crashkurse/Langchain-Full-Course](https://github.com/Coding-Crashkurse/Langchain-Full-Course) | 174 |
408
+ |[dongyh20/Octopus](https://github.com/dongyh20/Octopus) | 173 |
409
+ |[kimtth/azure-openai-llm-vector-langchain](https://github.com/kimtth/azure-openai-llm-vector-langchain) | 173 |
410
+ |[mayooear/private-chatbot-mpt30b-langchain](https://github.com/mayooear/private-chatbot-mpt30b-langchain) | 173 |
411
+ |[zilliztech/akcio](https://github.com/zilliztech/akcio) | 172 |
412
+ |[jmpaz/promptlib](https://github.com/jmpaz/promptlib) | 172 |
413
+ |[ccurme/yolopandas](https://github.com/ccurme/yolopandas) | 172 |
414
+ |[joaomdmoura/CrewAI](https://github.com/joaomdmoura/CrewAI) | 170 |
415
+ |[katanaml/llm-mistral-invoice-cpu](https://github.com/katanaml/llm-mistral-invoice-cpu) | 170 |
416
+ |[chakkaradeep/pyCodeAGI](https://github.com/chakkaradeep/pyCodeAGI) | 170 |
417
+ |[mudler/LocalAGI](https://github.com/mudler/LocalAGI) | 167 |
418
+ |[dssjon/biblos](https://github.com/dssjon/biblos) | 165 |
419
+ |[kjappelbaum/gptchem](https://github.com/kjappelbaum/gptchem) | 165 |
420
+ |[xxw1995/chatglm3-finetune](https://github.com/xxw1995/chatglm3-finetune) | 164 |
421
+ |[ArjanCodes/examples](https://github.com/ArjanCodes/examples) | 163 |
422
+ |[AIAnytime/Llama2-Medical-Chatbot](https://github.com/AIAnytime/Llama2-Medical-Chatbot) | 163 |
423
+ |[RCGAI/SimplyRetrieve](https://github.com/RCGAI/SimplyRetrieve) | 162 |
424
+ |[langchain-ai/langchain-teacher](https://github.com/langchain-ai/langchain-teacher) | 162 |
425
+ |[menloparklab/falcon-langchain](https://github.com/menloparklab/falcon-langchain) | 162 |
426
+ |[flurb18/AgentOoba](https://github.com/flurb18/AgentOoba) | 162 |
427
+ |[homanp/vercel-langchain](https://github.com/homanp/vercel-langchain) | 161 |
428
+ |[jiran214/langup-ai](https://github.com/jiran214/langup-ai) | 160 |
429
+ |[JorisdeJong123/7-Days-of-LangChain](https://github.com/JorisdeJong123/7-Days-of-LangChain) | 160 |
430
+ |[GoogleCloudPlatform/data-analytics-golden-demo](https://github.com/GoogleCloudPlatform/data-analytics-golden-demo) | 159 |
431
+ |[positive666/Prompt-Can-Anything](https://github.com/positive666/Prompt-Can-Anything) | 159 |
432
+ |[luisroque/large_laguage_models](https://github.com/luisroque/large_laguage_models) | 159 |
433
+ |[mlops-for-all/mlops-for-all.github.io](https://github.com/mlops-for-all/mlops-for-all.github.io) | 158 |
434
+ |[wandb/wandbot](https://github.com/wandb/wandbot) | 158 |
435
+ |[elastic/elasticsearch-labs](https://github.com/elastic/elasticsearch-labs) | 157 |
436
+ |[shroominic/funcchain](https://github.com/shroominic/funcchain) | 157 |
437
+ |[deeppavlov/dream](https://github.com/deeppavlov/dream) | 156 |
438
+ |[mluogh/eastworld](https://github.com/mluogh/eastworld) | 154 |
439
+ |[georgesung/llm_qlora](https://github.com/georgesung/llm_qlora) | 154 |
440
+ |[RUC-GSAI/YuLan-Rec](https://github.com/RUC-GSAI/YuLan-Rec) | 153 |
441
+ |[KylinC/ChatFinance](https://github.com/KylinC/ChatFinance) | 152 |
442
+ |[Dicklesworthstone/llama2_aided_tesseract](https://github.com/Dicklesworthstone/llama2_aided_tesseract) | 152 |
443
+ |[c0sogi/LLMChat](https://github.com/c0sogi/LLMChat) | 152 |
444
+ |[eunomia-bpf/GPTtrace](https://github.com/eunomia-bpf/GPTtrace) | 152 |
445
+ |[ErikBjare/gptme](https://github.com/ErikBjare/gptme) | 152 |
446
+ |[Klingefjord/chatgpt-telegram](https://github.com/Klingefjord/chatgpt-telegram) | 152 |
447
+ |[RoboCoachTechnologies/ROScribe](https://github.com/RoboCoachTechnologies/ROScribe) | 151 |
448
+ |[Aggregate-Intellect/sherpa](https://github.com/Aggregate-Intellect/sherpa) | 151 |
449
+ |[3Alan/DocsMind](https://github.com/3Alan/DocsMind) | 151 |
450
+ |[tangqiaoyu/ToolAlpaca](https://github.com/tangqiaoyu/ToolAlpaca) | 150 |
451
+ |[kulltc/chatgpt-sql](https://github.com/kulltc/chatgpt-sql) | 150 |
452
+ |[mallahyari/drqa](https://github.com/mallahyari/drqa) | 150 |
453
+ |[MedalCollector/Orator](https://github.com/MedalCollector/Orator) | 149 |
454
+ |[Teahouse-Studios/akari-bot](https://github.com/Teahouse-Studios/akari-bot) | 149 |
455
+ |[realminchoi/babyagi-ui](https://github.com/realminchoi/babyagi-ui) | 148 |
456
+ |[ssheng/BentoChain](https://github.com/ssheng/BentoChain) | 148 |
457
+ |[solana-labs/chatgpt-plugin](https://github.com/solana-labs/chatgpt-plugin) | 147 |
458
+ |[aurelio-labs/arxiv-bot](https://github.com/aurelio-labs/arxiv-bot) | 147 |
459
+ |[Jaseci-Labs/jaseci](https://github.com/Jaseci-Labs/jaseci) | 146 |
460
+ |[menloparklab/langchain-cohere-qdrant-doc-retrieval](https://github.com/menloparklab/langchain-cohere-qdrant-doc-retrieval) | 146 |
461
+ |[trancethehuman/entities-extraction-web-scraper](https://github.com/trancethehuman/entities-extraction-web-scraper) | 144 |
462
+ |[peterw/StoryStorm](https://github.com/peterw/StoryStorm) | 144 |
463
+ |[grumpyp/chroma-langchain-tutorial](https://github.com/grumpyp/chroma-langchain-tutorial) | 144 |
464
+ |[gh18l/CrawlGPT](https://github.com/gh18l/CrawlGPT) | 142 |
465
+ |[langchain-ai/langchain-aws-template](https://github.com/langchain-ai/langchain-aws-template) | 142 |
466
+ |[yasyf/summ](https://github.com/yasyf/summ) | 141 |
467
+ |[petehunt/langchain-github-bot](https://github.com/petehunt/langchain-github-bot) | 141 |
468
+ |[hirokidaichi/wanna](https://github.com/hirokidaichi/wanna) | 140 |
469
+ |[jina-ai/fastapi-serve](https://github.com/jina-ai/fastapi-serve) | 139 |
470
+ |[zenml-io/zenml-projects](https://github.com/zenml-io/zenml-projects) | 139 |
471
+ |[jlonge4/local_llama](https://github.com/jlonge4/local_llama) | 139 |
472
+ |[smyja/blackmaria](https://github.com/smyja/blackmaria) | 138 |
473
+ |[ChuloAI/BrainChulo](https://github.com/ChuloAI/BrainChulo) | 137 |
474
+ |[log1stics/voice-generator-webui](https://github.com/log1stics/voice-generator-webui) | 137 |
475
+ |[davila7/file-gpt](https://github.com/davila7/file-gpt) | 137 |
476
+ |[dcaribou/transfermarkt-datasets](https://github.com/dcaribou/transfermarkt-datasets) | 136 |
477
+ |[ciare-robotics/world-creator](https://github.com/ciare-robotics/world-creator) | 135 |
478
+ |[Undertone0809/promptulate](https://github.com/Undertone0809/promptulate) | 134 |
479
+ |[fixie-ai/fixie-examples](https://github.com/fixie-ai/fixie-examples) | 134 |
480
+ |[run-llama/ai-engineer-workshop](https://github.com/run-llama/ai-engineer-workshop) | 133 |
481
+ |[definitive-io/code-indexer-loop](https://github.com/definitive-io/code-indexer-loop) | 131 |
482
+ |[mortium91/langchain-assistant](https://github.com/mortium91/langchain-assistant) | 131 |
483
+ |[baidubce/bce-qianfan-sdk](https://github.com/baidubce/bce-qianfan-sdk) | 130 |
484
+ |[Ngonie-x/langchain_csv](https://github.com/Ngonie-x/langchain_csv) | 130 |
485
+ |[IvanIsCoding/ResuLLMe](https://github.com/IvanIsCoding/ResuLLMe) | 130 |
486
+ |[AnchoringAI/anchoring-ai](https://github.com/AnchoringAI/anchoring-ai) | 129 |
487
+ |[Azure/business-process-automation](https://github.com/Azure/business-process-automation) | 128 |
488
+ |[athina-ai/athina-sdk](https://github.com/athina-ai/athina-sdk) | 126 |
489
+ |[thunlp/ChatEval](https://github.com/thunlp/ChatEval) | 126 |
490
+ |[prof-frink-lab/slangchain](https://github.com/prof-frink-lab/slangchain) | 126 |
491
+ |[vietanhdev/pautobot](https://github.com/vietanhdev/pautobot) | 125 |
492
+ |[awslabs/generative-ai-cdk-constructs](https://github.com/awslabs/generative-ai-cdk-constructs) | 124 |
493
+ |[sdaaron/QueryGPT](https://github.com/sdaaron/QueryGPT) | 124 |
494
+ |[rabbitmetrics/langchain-13-min](https://github.com/rabbitmetrics/langchain-13-min) | 124 |
495
+ |[AutoLLM/AutoAgents](https://github.com/AutoLLM/AutoAgents) | 122 |
496
+ |[nicknochnack/Nopenai](https://github.com/nicknochnack/Nopenai) | 122 |
497
+ |[wombyz/HormoziGPT](https://github.com/wombyz/HormoziGPT) | 122 |
498
+ |[dotvignesh/PDFChat](https://github.com/dotvignesh/PDFChat) | 122 |
499
+ |[topoteretes/PromethAI-Backend](https://github.com/topoteretes/PromethAI-Backend) | 121 |
500
+ |[nftblackmagic/flask-langchain](https://github.com/nftblackmagic/flask-langchain) | 121 |
501
+ |[vishwasg217/finsight](https://github.com/vishwasg217/finsight) | 120 |
502
+ |[snap-stanford/MLAgentBench](https://github.com/snap-stanford/MLAgentBench) | 120 |
503
+ |[Azure/app-service-linux-docs](https://github.com/Azure/app-service-linux-docs) | 120 |
504
+ |[nyanp/chat2plot](https://github.com/nyanp/chat2plot) | 120 |
505
+ |[ant4g0nist/polar](https://github.com/ant4g0nist/polar) | 119 |
506
+ |[aws-samples/cdk-eks-blueprints-patterns](https://github.com/aws-samples/cdk-eks-blueprints-patterns) | 119 |
507
+ |[aws-samples/amazon-kendra-langchain-extensions](https://github.com/aws-samples/amazon-kendra-langchain-extensions) | 119 |
508
+ |[Xueheng-Li/SynologyChatbotGPT](https://github.com/Xueheng-Li/SynologyChatbotGPT) | 119 |
509
+ |[CodeAlchemyAI/ViLT-GPT](https://github.com/CodeAlchemyAI/ViLT-GPT) | 117 |
510
+ |[Lin-jun-xiang/docGPT-langchain](https://github.com/Lin-jun-xiang/docGPT-langchain) | 117 |
511
+ |[ademakdogan/ChatSQL](https://github.com/ademakdogan/ChatSQL) | 116 |
512
+ |[aniketmaurya/llm-inference](https://github.com/aniketmaurya/llm-inference) | 115 |
513
+ |[xuwenhao/mactalk-ai-course](https://github.com/xuwenhao/mactalk-ai-course) | 115 |
514
+ |[cmooredev/RepoReader](https://github.com/cmooredev/RepoReader) | 115 |
515
+ |[abi/autocommit](https://github.com/abi/autocommit) | 115 |
516
+ |[MIDORIBIN/langchain-gpt4free](https://github.com/MIDORIBIN/langchain-gpt4free) | 114 |
517
+ |[finaldie/auto-news](https://github.com/finaldie/auto-news) | 114 |
518
+ |[Anil-matcha/Youtube-to-chatbot](https://github.com/Anil-matcha/Youtube-to-chatbot) | 114 |
519
+ |[avrabyt/MemoryBot](https://github.com/avrabyt/MemoryBot) | 114 |
520
+ |[Capsize-Games/airunner](https://github.com/Capsize-Games/airunner) | 113 |
521
+ |[atisharma/llama_farm](https://github.com/atisharma/llama_farm) | 113 |
522
+ |[mbchang/data-driven-characters](https://github.com/mbchang/data-driven-characters) | 112 |
523
+ |[fiddler-labs/fiddler-auditor](https://github.com/fiddler-labs/fiddler-auditor) | 112 |
524
+ |[dirkjbreeuwer/gpt-automated-web-scraper](https://github.com/dirkjbreeuwer/gpt-automated-web-scraper) | 111 |
525
+ |[Appointat/Chat-with-Document-s-using-ChatGPT-API-and-Text-Embedding](https://github.com/Appointat/Chat-with-Document-s-using-ChatGPT-API-and-Text-Embedding) | 111 |
526
+ |[hwchase17/langchain-gradio-template](https://github.com/hwchase17/langchain-gradio-template) | 111 |
527
+ |[artas728/spelltest](https://github.com/artas728/spelltest) | 110 |
528
+ |[NVIDIA/GenerativeAIExamples](https://github.com/NVIDIA/GenerativeAIExamples) | 109 |
529
+ |[Azure/aistudio-copilot-sample](https://github.com/Azure/aistudio-copilot-sample) | 108 |
530
+ |[codefuse-ai/codefuse-chatbot](https://github.com/codefuse-ai/codefuse-chatbot) | 108 |
531
+ |[apirrone/Memento](https://github.com/apirrone/Memento) | 108 |
532
+ |[e-johnstonn/GPT-Doc-Summarizer](https://github.com/e-johnstonn/GPT-Doc-Summarizer) | 108 |
533
+ |[salesforce/BOLAA](https://github.com/salesforce/BOLAA) | 107 |
534
+ |[Erol444/gpt4-openai-api](https://github.com/Erol444/gpt4-openai-api) | 106 |
535
+ |[linjungz/chat-with-your-doc](https://github.com/linjungz/chat-with-your-doc) | 106 |
536
+ |[crosleythomas/MirrorGPT](https://github.com/crosleythomas/MirrorGPT) | 106 |
537
+ |[panaverse/learn-generative-ai](https://github.com/panaverse/learn-generative-ai) | 105 |
538
+ |[Azure/azure-sdk-tools](https://github.com/Azure/azure-sdk-tools) | 105 |
539
+ |[malywut/gpt_examples](https://github.com/malywut/gpt_examples) | 105 |
540
+ |[ritun16/chain-of-verification](https://github.com/ritun16/chain-of-verification) | 104 |
541
+ |[langchain-ai/langchain-benchmarks](https://github.com/langchain-ai/langchain-benchmarks) | 104 |
542
+ |[lightninglabs/LangChainBitcoin](https://github.com/lightninglabs/LangChainBitcoin) | 104 |
543
+ |[flepied/second-brain-agent](https://github.com/flepied/second-brain-agent) | 103 |
544
+ |[llmapp/openai.mini](https://github.com/llmapp/openai.mini) | 102 |
545
+ |[gimlet-ai/tddGPT](https://github.com/gimlet-ai/tddGPT) | 102 |
546
+ |[jlonge4/gpt_chatwithPDF](https://github.com/jlonge4/gpt_chatwithPDF) | 102 |
547
+ |[agentification/RAFA_code](https://github.com/agentification/RAFA_code) | 101 |
548
+ |[pacman100/DHS-LLM-Workshop](https://github.com/pacman100/DHS-LLM-Workshop) | 101 |
549
+ |[aws-samples/private-llm-qa-bot](https://github.com/aws-samples/private-llm-qa-bot) | 101 |
550
+
551
+
552
+ _Generated by [github-dependents-info](https://github.com/nvuillam/github-dependents-info)_
553
+
554
+ `github-dependents-info --repo "langchain-ai/langchain" --markdownfile dependents.md --minstars 100 --sort stars`
langchain_md_files/additional_resources/tutorials.mdx ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # 3rd Party Tutorials
2
+
3
+ ## Tutorials
4
+
5
+ ### [LangChain v 0.1 by LangChain.ai](https://www.youtube.com/playlist?list=PLfaIDFEXuae0gBSJ9T0w7cu7iJZbH3T31)
6
+ ### [Build with Langchain - Advanced by LangChain.ai](https://www.youtube.com/playlist?list=PLfaIDFEXuae06tclDATrMYY0idsTdLg9v)
7
+ ### [LangGraph by LangChain.ai](https://www.youtube.com/playlist?list=PLfaIDFEXuae16n2TWUkKq5PgJ0w6Pkwtg)
8
+ ### [by Greg Kamradt](https://www.youtube.com/playlist?list=PLqZXAkvF1bPNQER9mLmDbntNfSpzdDIU5)
9
+ ### [by Sam Witteveen](https://www.youtube.com/playlist?list=PL8motc6AQftk1Bs42EW45kwYbyJ4jOdiZ)
10
+ ### [by James Briggs](https://www.youtube.com/playlist?list=PLIUOU7oqGTLieV9uTIFMm6_4PXg-hlN6F)
11
+ ### [by Prompt Engineering](https://www.youtube.com/playlist?list=PLVEEucA9MYhOu89CX8H3MBZqayTbcCTMr)
12
+ ### [by Mayo Oshin](https://www.youtube.com/@chatwithdata/search?query=langchain)
13
+ ### [by 1 little Coder](https://www.youtube.com/playlist?list=PLpdmBGJ6ELUK-v0MK-t4wZmVEbxM5xk6L)
14
+ ### [by BobLin (Chinese language)](https://www.youtube.com/playlist?list=PLbd7ntv6PxC3QMFQvtWfk55p-Op_syO1C)
15
+
16
+ ## Courses
17
+
18
+ ### Featured courses on Deeplearning.AI
19
+
20
+ - [LangChain for LLM Application Development](https://www.deeplearning.ai/short-courses/langchain-for-llm-application-development/)
21
+ - [LangChain Chat with Your Data](https://www.deeplearning.ai/short-courses/langchain-chat-with-your-data/)
22
+ - [Functions, Tools and Agents with LangChain](https://www.deeplearning.ai/short-courses/functions-tools-agents-langchain/)
23
+ - [Build LLM Apps with LangChain.js](https://www.deeplearning.ai/short-courses/build-llm-apps-with-langchain-js/)
24
+
25
+ ### Online courses
26
+
27
+ - [Udemy](https://www.udemy.com/courses/search/?q=langchain)
28
+ - [DataCamp](https://www.datacamp.com/courses/developing-llm-applications-with-langchain)
29
+ - [Pluralsight](https://www.pluralsight.com/search?q=langchain)
30
+ - [Coursera](https://www.coursera.org/search?query=langchain)
31
+ - [Maven](https://maven.com/courses?query=langchain)
32
+ - [Udacity](https://www.udacity.com/catalog/all/any-price/any-school/any-skill/any-difficulty/any-duration/any-type/relevance/page-1?searchValue=langchain)
33
+ - [LinkedIn Learning](https://www.linkedin.com/search/results/learning/?keywords=langchain)
34
+ - [edX](https://www.edx.org/search?q=langchain)
35
+ - [freeCodeCamp](https://www.youtube.com/@freecodecamp/search?query=langchain)
36
+
37
+ ## Short Tutorials
38
+
39
+ - [by Nicholas Renotte](https://youtu.be/MlK6SIjcjE8)
40
+ - [by Patrick Loeber](https://youtu.be/LbT1yp6quS8)
41
+ - [by Rabbitmetrics](https://youtu.be/aywZrzNaKjs)
42
+ - [by Ivan Reznikov](https://medium.com/@ivanreznikov/langchain-101-course-updated-668f7b41d6cb)
43
+
44
+ ## Books and Handbooks
45
+
46
+ - [Generative AI with LangChain](https://www.amazon.com/Generative-AI-LangChain-language-ChatGPT/dp/1835083463/ref=sr_1_1?crid=1GMOMH0G7GLR&keywords=generative+ai+with+langchain&qid=1703247181&sprefix=%2Caps%2C298&sr=8-1) by [Ben Auffrath](https://www.amazon.com/stores/Ben-Auffarth/author/B08JQKSZ7D?ref=ap_rdr&store_ref=ap_rdr&isDramIntegrated=true&shoppingPortalEnabled=true), ©️ 2023 Packt Publishing
47
+ - [LangChain AI Handbook](https://www.pinecone.io/learn/langchain/) By **James Briggs** and **Francisco Ingham**
48
+ - [LangChain Cheatsheet](https://pub.towardsai.net/langchain-cheatsheet-all-secrets-on-a-single-page-8be26b721cde) by **Ivan Reznikov**
49
+ - [Dive into Langchain (Chinese language)](https://langchain.boblin.app/)
50
+
51
+ ---------------------
langchain_md_files/additional_resources/youtube.mdx ADDED
@@ -0,0 +1,63 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # YouTube videos
2
+
3
+ [Updated 2024-05-16]
4
+
5
+ ### [Official LangChain YouTube channel](https://www.youtube.com/@LangChain)
6
+
7
+ ### [Tutorials on YouTube](/docs/additional_resources/tutorials/#tutorials)
8
+
9
+ ## Videos (sorted by views)
10
+
11
+ Only videos with 40K+ views:
12
+
13
+ - [Using `ChatGPT` with YOUR OWN Data. This is magical. (LangChain `OpenAI API`)](https://youtu.be/9AXP7tCI9PI)
14
+ - [Chat with Multiple `PDFs` | LangChain App Tutorial in Python (Free LLMs and Embeddings)](https://youtu.be/dXxQ0LR-3Hg?si=pjXKhsHRzn10vOqX)
15
+ - [`Hugging Face` + Langchain in 5 mins | Access 200k+ FREE AI models for your AI apps](https://youtu.be/_j7JEDWuqLE?si=psimQscN3qo2dOa9)
16
+ - [LangChain Crash Course For Beginners | LangChain Tutorial](https://youtu.be/nAmC7SoVLd8?si=qJdvyG5-rnjqfdj1)
17
+ - [Vector Embeddings Tutorial – Code Your Own AI Assistant with GPT-4 API + LangChain + NLP](https://youtu.be/yfHHvmaMkcA?si=UBP3yw50cLm3a2nj)
18
+ - [Development with Large Language Models Tutorial – `OpenAI`, Langchain, Agents, `Chroma`](https://youtu.be/xZDB1naRUlk?si=v8J1q6oFHRyTkf7Y)
19
+ - [Langchain: `PDF` Chat App (GUI) | ChatGPT for Your PDF FILES | Step-by-Step Tutorial](https://youtu.be/RIWbalZ7sTo?si=LbKsCcuyv0BtnrTY)
20
+ - [Vector Search `RAG` Tutorial – Combine Your Data with LLMs with Advanced Search](https://youtu.be/JEBDfGqrAUA?si=pD7oxpfwWeJCxfBt)
21
+ - [LangChain Crash Course for Beginners](https://youtu.be/lG7Uxts9SXs?si=Yte4S5afN7KNCw0F)
22
+ - [Learn `RAG` From Scratch – Python AI Tutorial from a LangChain Engineer](https://youtu.be/sVcwVQRHIc8?si=_LN4g0vOgSdtlB3S)
23
+ - [`Llama 2` in LangChain — FIRST Open Source Conversational Agent!](https://youtu.be/6iHVJyX2e50?si=rtq1maPrzWKHbwVV)
24
+ - [LangChain Tutorial for Beginners | Generative AI Series](https://youtu.be/cQUUkZnyoD0?si=KYz-bvcocdqGh9f_)
25
+ - [Chatbots with `RAG`: LangChain Full Walkthrough](https://youtu.be/LhnCsygAvzY?si=yS7T98VLfcWdkDek)
26
+ - [LangChain Explained In 15 Minutes - A MUST Learn For Python Programmers](https://youtu.be/mrjq3lFz23s?si=wkQGcSKUJjuiiEPf)
27
+ - [LLM Project | End to End LLM Project Using Langchain, `OpenAI` in Finance Domain](https://youtu.be/MoqgmWV1fm8?si=oVl-5kJVgd3a07Y_)
28
+ - [What is LangChain?](https://youtu.be/1bUy-1hGZpI?si=NZ0D51VM5y-DhjGe)
29
+ - [`RAG` + Langchain Python Project: Easy AI/Chat For Your Doc](https://youtu.be/tcqEUSNCn8I?si=RLcWPBVLIErRqdmU)
30
+ - [Getting Started With LangChain In 20 Minutes- Build Celebrity Search Application](https://youtu.be/_FpT1cwcSLg?si=X9qVazlXYucN_JBP)
31
+ - [LangChain GEN AI Tutorial – 6 End-to-End Projects using OpenAI, Google `Gemini Pro`, `LLAMA2`](https://youtu.be/x0AnCE9SE4A?si=_92gJYm7kb-V2bi0)
32
+ - [Complete Langchain GEN AI Crash Course With 6 End To End LLM Projects With OPENAI, `LLAMA2`, `Gemini Pro`](https://youtu.be/aWKrL4z5H6w?si=NVLi7Yiq0ccE7xXE)
33
+ - [AI Leader Reveals The Future of AI AGENTS (LangChain CEO)](https://youtu.be/9ZhbA0FHZYc?si=1r4P6kRvKVvEhRgE)
34
+ - [Learn How To Query Pdf using Langchain Open AI in 5 min](https://youtu.be/5Ghv-F1wF_0?si=ZZRjrWfeiFOVrcvu)
35
+ - [Reliable, fully local RAG agents with `LLaMA3`](https://youtu.be/-ROS6gfYIts?si=75CXA8W_BbnkIxcV)
36
+ - [Learn `LangChain.js` - Build LLM apps with JavaScript and `OpenAI`](https://youtu.be/HSZ_uaif57o?si=Icj-RAhwMT-vHaYA)
37
+ - [LLM Project | End to End LLM Project Using LangChain, Google Palm In Ed-Tech Industry](https://youtu.be/AjQPRomyd-k?si=eC3NT6kn02Lhpz-_)
38
+ - [Chatbot Answering from Your Own Knowledge Base: Langchain, `ChatGPT`, `Pinecone`, and `Streamlit`: | Code](https://youtu.be/nAKhxQ3hcMA?si=9Zd_Nd_jiYhtml5w)
39
+ - [LangChain is AMAZING | Quick Python Tutorial](https://youtu.be/I4mFqyqFkxg?si=aJ66qh558OfNAczD)
40
+ - [`GirlfriendGPT` - AI girlfriend with LangChain](https://youtu.be/LiN3D1QZGQw?si=kZR-lnJwixeVrjmh)
41
+ - [Using NEW `MPT-7B` in `Hugging Face` and LangChain](https://youtu.be/DXpk9K7DgMo?si=99JDpV_ueimwJhMi)
42
+ - [LangChain - COMPLETE TUTORIAL - Basics to advanced concept!](https://youtu.be/a89vqgK-Qcs?si=0aVO2EOqsw7GE5e3)
43
+ - [LangChain Agents: Simply Explained!](https://youtu.be/Xi9Ui-9qcPw?si=DCuG7nGx8dxcfhkx)
44
+ - [Chat With Multiple `PDF` Documents With Langchain And Google `Gemini Pro`](https://youtu.be/uus5eLz6smA?si=YUwvHtaZsGeIl0WD)
45
+ - [LLM Project | End to end LLM project Using Langchain, `Google Palm` in Retail Industry](https://youtu.be/4wtrl4hnPT8?si=_eOKPpdLfWu5UXMQ)
46
+ - [Tutorial | Chat with any Website using Python and Langchain](https://youtu.be/bupx08ZgSFg?si=KRrjYZFnuLsstGwW)
47
+ - [Prompt Engineering And LLM's With LangChain In One Shot-Generative AI](https://youtu.be/t2bSApmPzU4?si=87vPQQtYEWTyu2Kx)
48
+ - [Build a Custom Chatbot with `OpenAI`: `GPT-Index` & LangChain | Step-by-Step Tutorial](https://youtu.be/FIDv6nc4CgU?si=gR1u3DUG9lvzBIKK)
49
+ - [Search Your `PDF` App using Langchain, `ChromaDB`, and Open Source LLM: No OpenAI API (Runs on CPU)](https://youtu.be/rIV1EseKwU4?si=UxZEoXSiPai8fXgl)
50
+ - [Building a `RAG` application from scratch using Python, LangChain, and the `OpenAI API`](https://youtu.be/BrsocJb-fAo?si=hvkh9iTGzJ-LnsX-)
51
+ - [Function Calling via `ChatGPT API` - First Look With LangChain](https://youtu.be/0-zlUy7VUjg?si=Vc6LFseckEc6qvuk)
52
+ - [Private GPT, free deployment! Langchain-Chachat helps you easily play with major mainstream AI models! | Zero Degree Commentary](https://youtu.be/3LLUyaHP-3I?si=AZumEeFXsvqaLl0f)
53
+ - [Create a ChatGPT clone using `Streamlit` and LangChain](https://youtu.be/IaTiyQ2oYUQ?si=WbgsYmqPDnMidSUK)
54
+ - [What's next for AI agents ft. LangChain's Harrison Chase](https://youtu.be/pBBe1pk8hf4?si=H4vdBF9nmkNZxiHt)
55
+ - [`LangFlow`: Build Chatbots without Writing Code - LangChain](https://youtu.be/KJ-ux3hre4s?si=TJuDu4bAlva1myNL)
56
+ - [Building a LangChain Custom Medical Agent with Memory](https://youtu.be/6UFtRwWnHws?si=wymYad26VgigRkHy)
57
+ - [`Ollama` meets LangChain](https://youtu.be/k_1pOF1mj8k?si=RlBiCrmaR3s7SnMK)
58
+ - [End To End LLM Langchain Project using `Pinecone` Vector Database](https://youtu.be/erUfLIi9OFM?si=aHpuHXdIEmAfS4eF)
59
+ - [`LLaMA2` with LangChain - Basics | LangChain TUTORIAL](https://youtu.be/cIRzwSXB4Rc?si=FUs0OLVJpzKhut0h)
60
+ - [Understanding `ReACT` with LangChain](https://youtu.be/Eug2clsLtFs?si=imgj534ggxlypS0d)
61
+
62
+ ---------------------
63
+ [Updated 2024-05-16]
langchain_md_files/changes/changelog/core.mdx ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ # langchain-core
2
+
3
+ ## 0.1.x
4
+
5
+ #### Deprecated
6
+
7
+ - `BaseChatModel` methods `__call__`, `call_as_llm`, `predict`, `predict_messages`. Will be removed in 0.2.0. Use `BaseChatModel.invoke` instead.
8
+ - `BaseChatModel` methods `apredict`, `apredict_messages`. Will be removed in 0.2.0. Use `BaseChatModel.ainvoke` instead.
9
+ - `BaseLLM` methods `__call__, `predict`, `predict_messages`. Will be removed in 0.2.0. Use `BaseLLM.invoke` instead.
10
+ - `BaseLLM` methods `apredict`, `apredict_messages`. Will be removed in 0.2.0. Use `BaseLLM.ainvoke` instead.
langchain_md_files/changes/changelog/langchain.mdx ADDED
@@ -0,0 +1,93 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # langchain
2
+
3
+ ## 0.2.0
4
+
5
+ ### Deleted
6
+
7
+ As of release 0.2.0, `langchain` is required to be integration-agnostic. This means that code in `langchain` should not by default instantiate any specific chat models, llms, embedding models, vectorstores etc; instead, the user will be required to specify those explicitly.
8
+
9
+ The following functions and classes require an explicit LLM to be passed as an argument:
10
+
11
+ - `langchain.agents.agent_toolkits.vectorstore.toolkit.VectorStoreToolkit`
12
+ - `langchain.agents.agent_toolkits.vectorstore.toolkit.VectorStoreRouterToolkit`
13
+ - `langchain.chains.openai_functions.get_openapi_chain`
14
+ - `langchain.chains.router.MultiRetrievalQAChain.from_retrievers`
15
+ - `langchain.indexes.VectorStoreIndexWrapper.query`
16
+ - `langchain.indexes.VectorStoreIndexWrapper.query_with_sources`
17
+ - `langchain.indexes.VectorStoreIndexWrapper.aquery_with_sources`
18
+ - `langchain.chains.flare.FlareChain`
19
+
20
+ The following classes now require passing an explicit Embedding model as an argument:
21
+
22
+ - `langchain.indexes.VectostoreIndexCreator`
23
+
24
+ The following code has been removed:
25
+
26
+ - `langchain.natbot.NatBotChain.from_default` removed in favor of the `from_llm` class method.
27
+
28
+ ### Deprecated
29
+
30
+ We have two main types of deprecations:
31
+
32
+ 1. Code that was moved from `langchain` into another package (e.g, `langchain-community`)
33
+
34
+ If you try to import it from `langchain`, the import will keep on working, but will raise a deprecation warning. The warning will provide a replacement import statement.
35
+
36
+ ```python
37
+ python -c "from langchain.document_loaders.markdown import UnstructuredMarkdownLoader"
38
+
39
+ ```
40
+
41
+ ```python
42
+ LangChainDeprecationWarning: Importing UnstructuredMarkdownLoader from langchain.document_loaders is deprecated. Please replace deprecated imports:
43
+
44
+ >> from langchain.document_loaders import UnstructuredMarkdownLoader
45
+
46
+ with new imports of:
47
+
48
+ >> from langchain_community.document_loaders import UnstructuredMarkdownLoader
49
+ ```
50
+
51
+ We will continue supporting the imports in `langchain` until release 0.4 as long as the relevant package where the code lives is installed. (e.g., as long as `langchain_community` is installed.)
52
+
53
+ However, we advise for users to not rely on these imports and instead migrate to the new imports. To help with this process, we’re releasing a migration script via the LangChain CLI. See further instructions in migration guide.
54
+
55
+ 1. Code that has better alternatives available and will eventually be removed, so there’s only a single way to do things. (e.g., `predict_messages` method in ChatModels has been deprecated in favor of `invoke`).
56
+
57
+ Many of these were marked for removal in 0.2. We have bumped the removal to 0.3.
58
+
59
+
60
+ ## 0.1.0 (Jan 5, 2024)
61
+
62
+ ### Deleted
63
+
64
+ No deletions.
65
+
66
+ ### Deprecated
67
+
68
+ Deprecated classes and methods will be removed in 0.2.0
69
+
70
+ | Deprecated | Alternative | Reason |
71
+ |---------------------------------|-----------------------------------|------------------------------------------------|
72
+ | ChatVectorDBChain | ConversationalRetrievalChain | More general to all retrievers |
73
+ | create_ernie_fn_chain | create_ernie_fn_runnable | Use LCEL under the hood |
74
+ | created_structured_output_chain | create_structured_output_runnable | Use LCEL under the hood |
75
+ | NatBotChain | | Not used |
76
+ | create_openai_fn_chain | create_openai_fn_runnable | Use LCEL under the hood |
77
+ | create_structured_output_chain | create_structured_output_runnable | Use LCEL under the hood |
78
+ | load_query_constructor_chain | load_query_constructor_runnable | Use LCEL under the hood |
79
+ | VectorDBQA | RetrievalQA | More general to all retrievers |
80
+ | Sequential Chain | LCEL | Obviated by LCEL |
81
+ | SimpleSequentialChain | LCEL | Obviated by LCEL |
82
+ | TransformChain | LCEL/RunnableLambda | Obviated by LCEL |
83
+ | create_tagging_chain | create_structured_output_runnable | Use LCEL under the hood |
84
+ | ChatAgent | create_react_agent | Use LCEL builder over a class |
85
+ | ConversationalAgent | create_react_agent | Use LCEL builder over a class |
86
+ | ConversationalChatAgent | create_json_chat_agent | Use LCEL builder over a class |
87
+ | initialize_agent | Individual create agent methods | Individual create agent methods are more clear |
88
+ | ZeroShotAgent | create_react_agent | Use LCEL builder over a class |
89
+ | OpenAIFunctionsAgent | create_openai_functions_agent | Use LCEL builder over a class |
90
+ | OpenAIMultiFunctionsAgent | create_openai_tools_agent | Use LCEL builder over a class |
91
+ | SelfAskWithSearchAgent | create_self_ask_with_search | Use LCEL builder over a class |
92
+ | StructuredChatAgent | create_structured_chat_agent | Use LCEL builder over a class |
93
+ | XMLAgent | create_xml_agent | Use LCEL builder over a class |
langchain_md_files/concepts.mdx ADDED
The diff for this file is too large to render. See raw diff
 
langchain_md_files/contributing/code/guidelines.mdx ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # General guidelines
2
+
3
+ Here are some things to keep in mind for all types of contributions:
4
+
5
+ - Follow the ["fork and pull request"](https://docs.github.com/en/get-started/exploring-projects-on-github/contributing-to-a-project) workflow.
6
+ - Fill out the checked-in pull request template when opening pull requests. Note related issues and tag relevant maintainers.
7
+ - Ensure your PR passes formatting, linting, and testing checks before requesting a review.
8
+ - If you would like comments or feedback on your current progress, please open an issue or discussion and tag a maintainer.
9
+ - See the sections on [Testing](/docs/contributing/code/setup#testing) and [Formatting and Linting](/docs/contributing/code/setup#formatting-and-linting) for how to run these checks locally.
10
+ - Backwards compatibility is key. Your changes must not be breaking, except in case of critical bug and security fixes.
11
+ - Look for duplicate PRs or issues that have already been opened before opening a new one.
12
+ - Keep scope as isolated as possible. As a general rule, your changes should not affect more than one package at a time.
13
+
14
+ ## Bugfixes
15
+
16
+ We encourage and appreciate bugfixes. We ask that you:
17
+
18
+ - Explain the bug in enough detail for maintainers to be able to reproduce it.
19
+ - If an accompanying issue exists, link to it. Prefix with `Fixes` so that the issue will close automatically when the PR is merged.
20
+ - Avoid breaking changes if possible.
21
+ - Include unit tests that fail without the bugfix.
22
+
23
+ If you come across a bug and don't know how to fix it, we ask that you open an issue for it describing in detail the environment in which you encountered the bug.
24
+
25
+ ## New features
26
+
27
+ We aim to keep the bar high for new features. We generally don't accept new core abstractions, changes to infra, changes to dependencies,
28
+ or new agents/chains from outside contributors without an existing GitHub discussion or issue that demonstrates an acute need for them.
29
+
30
+ - New features must come with docs, unit tests, and (if appropriate) integration tests.
31
+ - New integrations must come with docs, unit tests, and (if appropriate) integration tests.
32
+ - See [this page](/docs/contributing/integrations) for more details on contributing new integrations.
33
+ - New functionality should not inherit from or use deprecated methods or classes.
34
+ - We will reject features that are likely to lead to security vulnerabilities or reports.
35
+ - Do not add any hard dependencies. Integrations may add optional dependencies.
langchain_md_files/contributing/code/index.mdx ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ # Contribute Code
2
+
3
+ If you would like to add a new feature or update an existing one, please read the resources below before getting started:
4
+
5
+ - [General guidelines](/docs/contributing/code/guidelines/)
6
+ - [Setup](/docs/contributing/code/setup/)