Datasets:
Tasks:
Text Classification
Modalities:
Text
Languages:
English
Size:
10K - 100K
Tags:
information retrieval
License:
# coding=utf-8 | |
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License.Wikipedia | |
# Lint as: python3 | |
"""Product Search Triples dataset.""" | |
import json | |
import datasets | |
_CITATION = """ | |
""" | |
_DESCRIPTION = "dataset load script training triples for TREC Product Search Track" | |
_DATASET_URLS = { | |
'train': "https://huggingface.co/datasets/trec-product-search/Product-Search-Triples-v0.1/resolve/main/train.jsonl.gz", | |
'dev': "https://huggingface.co/datasets/trec-product-search/Product-Search-Triples-v0.1/resolve/main/dev.jsonl.gz", | |
'test' : "https://huggingface.co/datasets/trec-product-search/Product-Search-Triples-v0.1/resolve/main/test.jsonl.gz", | |
} | |
class ProductSearch(datasets.GeneratorBasedBuilder): | |
VERSION = datasets.Version("0.0.1") | |
BUILDER_CONFIGS = [ | |
datasets.BuilderConfig(version=VERSION, | |
description="TREC Product Search train/dev/test datasets"), | |
] | |
def _info(self): | |
features = datasets.Features({ | |
'query_id': datasets.Value('string'), | |
'query': datasets.Value('string'), | |
'positive_passages': [ | |
{'docid': datasets.Value('string'), 'title': datasets.Value('string'), 'text': datasets.Value('string')} | |
], | |
'negative_passages': [ | |
{'docid': datasets.Value('string'), 'title': datasets.Value('string'), 'text': datasets.Value('string')} | |
], | |
}) | |
return datasets.DatasetInfo( | |
# This is the description that will appear on the datasets page. | |
description=_DESCRIPTION, | |
# This defines the different columns of the dataset and their types | |
features=features, # Here we define them above because they are different between the two configurations | |
supervised_keys=None, | |
# Homepage of the dataset for documentation | |
homepage="", | |
# License for the dataset if available | |
license="", | |
# Citation for the dataset | |
citation=_CITATION, | |
) | |
def _split_generators(self, dl_manager): | |
if self.config.data_files: | |
downloaded_files = self.config.data_files | |
else: | |
downloaded_files = dl_manager.download_and_extract(_DATASET_URLS) | |
splits = [ | |
datasets.SplitGenerator( | |
name=split, | |
gen_kwargs={ | |
"files": [downloaded_files[split]] if isinstance(downloaded_files[split], str) else downloaded_files[split], | |
}, | |
) for split in downloaded_files | |
] | |
return splits | |
def _generate_examples(self, files): | |
"""Yields examples.""" | |
for filepath in files: | |
with open(filepath, encoding="utf-8") as f: | |
for line in f: | |
data = json.loads(line) | |
if data.get('negative_passages') is None: | |
data['negative_passages'] = [] | |
if data.get('positive_passages') is None: | |
data['positive_passages'] = [] | |
yield data['query_id'], data |