Datasets:

ArXiv:
License:
dp-bench / scripts /infer_aws.py
shinseung428's picture
update scripts and script README
cb40a1c
import os
import cv2
import json
import time
import boto3
import argparse
from utils import read_file_paths, validate_json_save_path, load_json_file
CATEGORY_MAP = {
"LAYOUT_TEXT": "paragraph",
"LAYOUT_LIST": "list",
"LAYOUT_HEADER": "header",
"LAYOUT_FOOTER": "footer",
"LAYOUT_PAGE_NUMBER": "paragraph",
"LAYOUT_FIGURE": "figure",
"LAYOUT_TABLE": "table",
"LAYOUT_TITLE": "heading1",
"LAYOUT_SECTION_HEADER": "heading1",
"TABLE": "table"
}
class AWSInference:
def __init__(
self,
save_path,
input_formats=[".pdf", ".jpg", ".jpeg", ".png", ".bmp", ".tiff", ".heic"]
):
"""Initialize the AWSInference class
Args:
save_path (str): the json path to save the results
input_formats (list, optional): the supported file formats.
"""
AWS_ACCESS_KEY_ID = os.getenv("AWS_ACCESS_KEY_ID") or ""
AWS_SECRET_ACCESS_KEY = os.getenv("AWS_SECRET_ACCESS_KEY") or ""
AWS_REGION = os.getenv("AWS_REGION") or ""
AWS_S3_BUCKET_NAME = os.getenv("AWS_S3_BUCKET_NAME") or ""
if not all([AWS_ACCESS_KEY_ID, AWS_SECRET_ACCESS_KEY, AWS_REGION, AWS_S3_BUCKET_NAME]):
raise ValueError("Please set the environment variables for AWS")
self.client = boto3.client(
"textract",
region_name=AWS_REGION,
aws_access_key_id=AWS_ACCESS_KEY_ID,
aws_secret_access_key=AWS_SECRET_ACCESS_KEY
)
self.s3 = boto3.resource("s3")
self.s3_bucket_name = AWS_S3_BUCKET_NAME
validate_json_save_path(save_path)
self.save_path = save_path
self.processed_data = load_json_file(save_path)
self.formats = input_formats
def post_process(self, data):
def get_text(result, blocks_map):
text = ""
if "Relationships" in result:
for relationship in result["Relationships"]:
if relationship["Type"] == "CHILD":
for child_id in relationship["Ids"]:
word = blocks_map[child_id]
if word["BlockType"] == "WORD":
text += " " + word["Text"]
return text[1:]
processed_dict = {}
for input_key in data.keys():
output_data = data[input_key]
processed_dict[input_key] = {
"elements": []
}
all_elems = {}
for page_data in output_data:
for elem in page_data["Blocks"]:
_id = elem["Id"]
all_elems[_id] = elem
for page_data in output_data:
for idx, elem in enumerate(page_data["Blocks"]):
if elem["BlockType"] == "LAYOUT_LIST":
continue
if "LAYOUT" in elem["BlockType"] and elem["BlockType"] != "LAYOUT_TABLE":
bbox = elem["Geometry"]["BoundingBox"]
x = bbox["Left"]
y = bbox["Top"]
w = bbox["Width"]
h = bbox["Height"]
coord = [
[x, y],
[x + w, y],
[x + w, y + h],
[x, y + h]
]
xy_coord = [{"x": x, "y": y} for x, y in coord]
category = CATEGORY_MAP.get(elem["BlockType"], "paragraph")
transcription = ""
if elem["BlockType"] != "LAYOUT_FIGURE":
for item in all_elems[elem["Id"]]["Relationships"]:
for id_ in item["Ids"]:
if all_elems[id_]["BlockType"] == "LINE":
word = all_elems[id_]["Text"]
transcription += word + "\n"
data_dict = {
"coordinates": xy_coord,
"category": category,
"id": idx,
"content": {
"text": transcription,
"html": "",
"markdown": ""
}
}
processed_dict[input_key]["elements"].append(data_dict)
elif elem["BlockType"] == "TABLE":
bbox = elem["Geometry"]["BoundingBox"]
x = bbox["Left"]
y = bbox["Top"]
w = bbox["Width"]
h = bbox["Height"]
coord = [
[x, y],
[x + w, y],
[x + w, y + h],
[x, y + h]
]
xy_coord = [{"x": x, "y": y} for x, y in coord]
category = CATEGORY_MAP.get(elem["BlockType"], "paragraph")
table_cells = {}
for relationship in elem["Relationships"]:
if relationship["Type"] == "CHILD":
for cell_id in relationship["Ids"]:
cell_block = next((block for block in page_data["Blocks"] if block["Id"] == cell_id), None)
if cell_block is not None and cell_block["BlockType"] == "CELL":
row_index = cell_block["RowIndex"] - 1
column_index = cell_block["ColumnIndex"] - 1
row_span = cell_block["RowSpan"]
column_span = cell_block["ColumnSpan"]
table_cells[(row_index, column_index)] = {
"block": cell_block,
"span": (row_span, column_span),
"text": get_text(cell_block, all_elems),
}
max_row_index = max(cell[0] for cell in table_cells.keys())
max_column_index = max(cell[1] for cell in table_cells.keys())
for relationship in elem["Relationships"]:
if relationship["Type"] == "MERGED_CELL":
for cell_id in relationship["Ids"]:
cell_block = next((block for block in page_data["Blocks"] if block["Id"] == cell_id), None)
if cell_block is not None and cell_block["BlockType"] == "MERGED_CELL":
row_index = cell_block["RowIndex"] - 1
column_index = cell_block["ColumnIndex"] - 1
row_span = cell_block["RowSpan"]
column_span = cell_block["ColumnSpan"]
for i in range(row_span):
for j in range(column_span):
del table_cells[(row_index + i, column_index + j)]
text = ""
for child_ids in cell_block["Relationships"][0]["Ids"]:
child_cell_block = next((block for block in page_data["Blocks"] if block["Id"] == child_ids), None)
text += " " + get_text(child_cell_block, all_elems)
table_cells[(row_index, column_index)] = {
"block": cell_block,
"span": (row_span, column_span),
"text": text[1:],
}
html_table = "<table>"
for row_index in range(max_row_index + 1):
html_table += "<tr>"
for column_index in range(max_column_index + 1):
cell_data = table_cells.get((row_index, column_index))
if cell_data:
cell_block = cell_data["block"]
row_span, column_span = cell_data["span"]
cell_text = cell_data["text"]
html_table += f"<td rowspan='{row_span}' colspan='{column_span}''>{cell_text}</td>"
html_table += "</tr>"
html_table += "</table>"
data_dict = {
"coordinates": xy_coord,
"category": category,
"id": idx,
"content": {
"text": "",
"html": html_table,
"markdown": ""
}
}
processed_dict[input_key]["elements"].append(data_dict)
for key in self.processed_data:
processed_dict[key] = self.processed_data[key]
return processed_dict
def start_job(self, object_name):
filename_with_ext = os.path.basename(object_name)
print(f"uploading {filename_with_ext} to s3")
self.s3.Bucket(self.s3_bucket_name).upload_file(object_name, filename_with_ext)
response = None
response = self.client.start_document_analysis(
DocumentLocation={
"S3Object": {
"Bucket": self.s3_bucket_name,
"Name": filename_with_ext
}
},
FeatureTypes = ["LAYOUT", "TABLES"]
)
return response["JobId"]
def is_job_complete(self, job_id):
time.sleep(1)
response = self.client.get_document_analysis(JobId=job_id)
status = response["JobStatus"]
print("Job status: {}".format(status))
while(status == "IN_PROGRESS"):
time.sleep(1)
response = self.client.get_document_analysis(JobId=job_id)
status = response["JobStatus"]
print("Job status: {}".format(status))
return status
def get_job_results(self, job_id):
pages = []
time.sleep(1)
response = self.client.get_document_analysis(JobId=job_id)
pages.append(response)
print("Resultset page received: {}".format(len(pages)))
next_token = None
if "NextToken" in response:
next_token = response["NextToken"]
while next_token:
time.sleep(1)
response = self.client.\
get_document_analysis(JobId=job_id, NextToken=next_token)
pages.append(response)
print("Resultset page received: {}".format(len(pages)))
next_token = None
if "NextToken" in response:
next_token = response["NextToken"]
return pages
def infer(self, file_path):
"""Infer the layout of the documents in the given file path
Args:
file_path (str): the path to the file or directory containing the documents to process
"""
paths = read_file_paths(file_path, supported_formats=self.formats)
error_files = []
result_dict = {}
for idx, filepath in enumerate(paths):
print("({}/{}) {}".format(idx+1, len(paths), filepath))
filename = filepath.name
if filename in self.processed_data.keys():
print(f"'{filename}' is already in the loaded dictionary. Skipping this sample")
continue
try:
if os.path.splitext(filepath)[-1] == ".pdf":
job_id = self.start_job(filepath)
print("Started job with id: {}".format(job_id))
if self.is_job_complete(job_id):
result = self.get_job_results(job_id)
else:
with open(filepath, "rb") as file:
img_test = file.read()
bytes_test = bytearray(img_test)
result = self.client.analyze_document(
Document={"Bytes": bytes_test},
FeatureTypes = ["LAYOUT", "TABLES"]
)
except Exception as e:
print(e)
print("Error processing document..")
error_files.append(filepath)
continue
result_dict[filename] = result
result_dict = self.post_process(result_dict)
with open(self.save_path, "w", encoding="utf-8") as f:
json.dump(result_dict, f, ensure_ascii=False, indent=4)
for error_file in error_files:
print(f"Error processing file: {error_file}")
print("Finished processing all documents")
print("Results saved to: {}".format(self.save_path))
print("Number of errors: {}".format(len(error_files)))
if __name__ == "__main__":
args = argparse.ArgumentParser()
args.add_argument(
"--data_path",
type=str, default="", required=True,
help="Path containing the documents to process"
)
args.add_argument(
"--save_path",
type=str, default="", required=True,
help="Path to save the results"
)
args.add_argument(
"--input_formats",
type=list, default=[
".pdf", ".jpg", ".jpeg", ".png", ".bmp", ".tiff", ".heic"
],
help="Supported input file formats"
)
args = args.parse_args()
aws_inference = AWSInference(
args.save_path,
input_formats=args.input_formats
)
aws_inference.infer(args.data_path)