File size: 6,428 Bytes
19740aa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 |
import os
import ssl
import sys
print('[System ARGV] ' + str(sys.argv))
root = os.path.dirname(os.path.abspath(__file__))
sys.path.append(root)
os.chdir(root)
os.environ["PYTORCH_ENABLE_MPS_FALLBACK"] = "1"
os.environ["PYTORCH_MPS_HIGH_WATERMARK_RATIO"] = "0.0"
if "GRADIO_SERVER_PORT" not in os.environ:
os.environ["GRADIO_SERVER_PORT"] = "7865"
ssl._create_default_https_context = ssl._create_unverified_context
import platform
import fooocus_version
from build_launcher import build_launcher
from modules.launch_util import is_installed, run, python, run_pip, requirements_met, delete_folder_content
from modules.model_loader import load_file_from_url
REINSTALL_ALL = False
TRY_INSTALL_XFORMERS = False
def prepare_environment():
torch_index_url = os.environ.get('TORCH_INDEX_URL', "https://download.pytorch.org/whl/cu121")
torch_command = os.environ.get('TORCH_COMMAND',
f"pip install torch==2.1.0 torchvision==0.16.0 --extra-index-url {torch_index_url}")
requirements_file = os.environ.get('REQS_FILE', "requirements_versions.txt")
print(f"Python {sys.version}")
print(f"Fooocus version: {fooocus_version.version}")
if REINSTALL_ALL or not is_installed("torch") or not is_installed("torchvision"):
run(f'"{python}" -m {torch_command}', "Installing torch and torchvision", "Couldn't install torch", live=True)
if TRY_INSTALL_XFORMERS:
if REINSTALL_ALL or not is_installed("xformers"):
xformers_package = os.environ.get('XFORMERS_PACKAGE', 'xformers==0.0.23')
if platform.system() == "Windows":
if platform.python_version().startswith("3.10"):
run_pip(f"install -U -I --no-deps {xformers_package}", "xformers", live=True)
else:
print("Installation of xformers is not supported in this version of Python.")
print(
"You can also check this and build manually: https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Xformers#building-xformers-on-windows-by-duckness")
if not is_installed("xformers"):
exit(0)
elif platform.system() == "Linux":
run_pip(f"install -U -I --no-deps {xformers_package}", "xformers")
if REINSTALL_ALL or not requirements_met(requirements_file):
run_pip(f"install -r \"{requirements_file}\"", "requirements")
return
vae_approx_filenames = [
('xlvaeapp.pth', 'https://huggingface.co/lllyasviel/misc/resolve/main/xlvaeapp.pth'),
('vaeapp_sd15.pth', 'https://huggingface.co/lllyasviel/misc/resolve/main/vaeapp_sd15.pt'),
('xl-to-v1_interposer-v4.0.safetensors',
'https://huggingface.co/mashb1t/misc/resolve/main/xl-to-v1_interposer-v4.0.safetensors')
]
def ini_args():
from args_manager import args
return args
prepare_environment()
build_launcher()
args = ini_args()
if args.gpu_device_id is not None:
os.environ['CUDA_VISIBLE_DEVICES'] = str(args.gpu_device_id)
print("Set device to:", args.gpu_device_id)
if args.hf_mirror is not None:
os.environ['HF_MIRROR'] = str(args.hf_mirror)
print("Set hf_mirror to:", args.hf_mirror)
from modules import config
from modules.hash_cache import init_cache
os.environ["U2NET_HOME"] = config.path_inpaint
os.environ['GRADIO_TEMP_DIR'] = config.temp_path
if config.temp_path_cleanup_on_launch:
print(f'[Cleanup] Attempting to delete content of temp dir {config.temp_path}')
result = delete_folder_content(config.temp_path, '[Cleanup] ')
if result:
print("[Cleanup] Cleanup successful")
else:
print(f"[Cleanup] Failed to delete content of temp dir.")
def download_models(default_model, previous_default_models, checkpoint_downloads, embeddings_downloads, lora_downloads, vae_downloads):
from modules.util import get_file_from_folder_list
for file_name, url in vae_approx_filenames:
load_file_from_url(url=url, model_dir=config.path_vae_approx, file_name=file_name)
load_file_from_url(
url='https://huggingface.co/lllyasviel/misc/resolve/main/fooocus_expansion.bin',
model_dir=config.path_fooocus_expansion,
file_name='pytorch_model.bin'
)
if args.disable_preset_download:
print('Skipped model download.')
return default_model, checkpoint_downloads
if not args.always_download_new_model:
if not os.path.isfile(get_file_from_folder_list(default_model, config.paths_checkpoints)):
for alternative_model_name in previous_default_models:
if os.path.isfile(get_file_from_folder_list(alternative_model_name, config.paths_checkpoints)):
print(f'You do not have [{default_model}] but you have [{alternative_model_name}].')
print(f'Fooocus will use [{alternative_model_name}] to avoid downloading new models, '
f'but you are not using the latest models.')
print('Use --always-download-new-model to avoid fallback and always get new models.')
checkpoint_downloads = {}
default_model = alternative_model_name
break
for file_name, url in checkpoint_downloads.items():
model_dir = os.path.dirname(get_file_from_folder_list(file_name, config.paths_checkpoints))
load_file_from_url(url=url, model_dir=model_dir, file_name=file_name)
for file_name, url in embeddings_downloads.items():
load_file_from_url(url=url, model_dir=config.path_embeddings, file_name=file_name)
for file_name, url in lora_downloads.items():
model_dir = os.path.dirname(get_file_from_folder_list(file_name, config.paths_loras))
load_file_from_url(url=url, model_dir=model_dir, file_name=file_name)
for file_name, url in vae_downloads.items():
load_file_from_url(url=url, model_dir=config.path_vae, file_name=file_name)
return default_model, checkpoint_downloads
config.default_base_model_name, config.checkpoint_downloads = download_models(
config.default_base_model_name, config.previous_default_models, config.checkpoint_downloads,
config.embeddings_downloads, config.lora_downloads, config.vae_downloads)
config.update_files()
init_cache(config.model_filenames, config.paths_checkpoints, config.lora_filenames, config.paths_loras)
from webui import *
|