--- license: apache-2.0 language: - ind pretty_name: "Twitter Indonesia Sarcastic" --- # Twitter Indonesia Sarcastic Twitter Indonesia Sarcastic is a dataset intended for sarcasm detection in the Indonesian language. This dataset is introduced in [Khotijah et al. (2020)](https://dl.acm.org/doi/10.1145/3406601.3406624), whereby Indonesian tweets are collected and labeled as either sarcastic or non-sarcastic. We took the [raw data](https://github.com/skhotijah/using-lstm-for-context-based-approach-of-sarcasm-detection-in-twitter/blob/main/dataset/Indonesia/imbalanced.csv), and performed several cleaning procedures such as: sentence order re-reversal, deduplication with minHash LSH, PII masking to remove usernames, hashtags, emails, URLs, and finally a random sampling to limit the non-sarcastic comments. Following [SemEval-2022 Task 6: iSarcasmEval](https://aclanthology.org/2022.semeval-1.111/), we used a 1:3 ratio to balance sarcastic with non-sarcastic comments. ## Dataset Structure ### Data Instances ```py { 'tweet': 'Terima kasih bapak telah mengendalikan banjir dengan baik sehingga Jakarta saat ini tidak ada lagi yang tidak banjir.. Semua sudah merata.. ?????? ', 'label': 1 } ``` ### Data Fields - `tweet`: PII-masked Twitter tweet content. - `label`: `0` for non-sarcastic, `1` for sarcastic. ### Data Splits | Split | #sarcastic | #non sarcastic | #total | | --------------------------- | :--------: | :------------: | :----: | | `train` | 470 | 1408 | 1878 | | `test` | 134 | 404 | 538 | | `validation` | 67 | 201 | 268 | | Total (cleaned; balanced) | 671 | 2013 | 2684 | | Total (cleaned; unbalanced) | 671 | 12190 | 12861 | | Total (raw) | 4350 | 13368 | 17718 | ### Dataset Directory ```sh twitter_indonesia_sarcastic ├── README.md ├── data # re-balanced dataset │   ├── test.csv │   ├── train.csv │   └── validation.csv └── raw_data ├── khotijah.csv # raw dataset └── khotijah_cleaned.csv # cleaned dataset ``` ## Authors Twitter Indonesia Sarcastic is prepared by: GitHub Profile ## References ```bibtex @inproceedings{10.1145/3406601.3406624, author = {Khotijah, Siti and Tirtawangsa, Jimmy and Suryani, Arie A.}, title = {Using LSTM for Context Based Approach of Sarcasm Detection in Twitter}, year = {2020}, isbn = {9781450377591}, publisher = {Association for Computing Machinery}, address = {New York, NY, USA}, url = {https://doi.org/10.1145/3406601.3406624}, doi = {10.1145/3406601.3406624}, booktitle = {Proceedings of the 11th International Conference on Advances in Information Technology}, articleno = {19}, numpages = {7}, keywords = {context, Sarcasm detection, paragraph2vec, lstm, deep learning}, location = {, Bangkok, Thailand, }, series = {IAIT '20} } @inproceedings{abu-farha-etal-2022-semeval, title = "{S}em{E}val-2022 Task 6: i{S}arcasm{E}val, Intended Sarcasm Detection in {E}nglish and {A}rabic", author = "Abu Farha, Ibrahim and Oprea, Silviu Vlad and Wilson, Steven and Magdy, Walid", editor = "Emerson, Guy and Schluter, Natalie and Stanovsky, Gabriel and Kumar, Ritesh and Palmer, Alexis and Schneider, Nathan and Singh, Siddharth and Ratan, Shyam", booktitle = "Proceedings of the 16th International Workshop on Semantic Evaluation (SemEval-2022)", month = jul, year = "2022", address = "Seattle, United States", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2022.semeval-1.111", doi = "10.18653/v1/2022.semeval-1.111", pages = "802--814", } ```