# coding=utf-8 # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ConcluGen Dataset""" import json import datasets _CITATION = """\ @inproceedings{syed:2021, author = {Shahbaz Syed and Khalid Al Khatib and Milad Alshomary and Henning Wachsmuth and Martin Potthast}, editor = {Chengqing Zong and Fei Xia and Wenjie Li and Roberto Navigli}, title = {Generating Informative Conclusions for Argumentative Texts}, booktitle = {Findings of the Association for Computational Linguistics: {ACL/IJCNLP} 2021, Online Event, August 1-6, 2021}, pages = {3482--3493}, publisher = {Association for Computational Linguistics}, year = {2021}, url = {https://doi.org/10.18653/v1/2021.findings-acl.306}, doi = {10.18653/v1/2021.findings-acl.306} } """ _DESCRIPTION = """\ The ConcluGen corpus is constructed for the task of argument summarization. It consists of 136,996 pairs of argumentative texts and their conclusions collected from the ChangeMyView subreddit, a web portal for argumentative discussions on controversial topics. The corpus has three variants: aspects, topics, and targets. Each variation encodes the corresponding information via control codes. These provide additional argumentative knowledge for generating more informative conclusions. """ _HOMEPAGE = "https://zenodo.org/record/4818134" _LICENSE = "https://creativecommons.org/licenses/by/4.0/legalcode" _REPO = "https://huggingface.co/datasets/webis/conclugen/resolve/main" _URLS = { 'base_train': f"{_REPO}/base_train.jsonl", 'base_validation': f"{_REPO}/base_validation.jsonl", 'base_test': f"{_REPO}/base_test.jsonl", 'aspects_train': f"{_REPO}/aspects_train.jsonl", 'aspects_validation': f"{_REPO}/aspects_validation.jsonl", 'aspects_test': f"{_REPO}/aspects_test.jsonl", 'targets_train': f"{_REPO}/targets_train.jsonl", 'targets_validation': f"{_REPO}/targets_validation.jsonl", 'targets_test': f"{_REPO}/targets_test.jsonl", 'topic_train': f"{_REPO}/topic_train.jsonl", 'topic_validation': f"{_REPO}/topic_validation.jsonl", 'topic_test': f"{_REPO}/topic_test.jsonl" } class ArgsMe(datasets.GeneratorBasedBuilder): """382,545 arguments crawled from debate portals""" VERSION = datasets.Version("1.1.0") BUILDER_CONFIGS = [ datasets.BuilderConfig(name="base", version=VERSION, description="The base version of the dataset with no argumentative knowledge."), datasets.BuilderConfig(name="aspects", version=VERSION, description="Variation with argument aspects encoded."), datasets.BuilderConfig(name="targets", version=VERSION, description="Variation with conclusion targets encoded."), datasets.BuilderConfig(name="topic", version=VERSION, description="Variation with discussion topic encoded."), ] DEFAULT_CONFIG_NAME = "base" def _info(self): features = datasets.Features( { "argument": datasets.Value("string"), "conclusion": datasets.Value("string"), "id": datasets.Value("string") } ) return datasets.DatasetInfo( description=_DESCRIPTION, features=features, supervised_keys=None, homepage=_HOMEPAGE, license=_LICENSE, citation=_CITATION, ) def _split_generators(self, dl_manager): """Returns SplitGenerators.""" train_file = dl_manager.download(_URLS[self.config.name+"_train"]) validation_file = dl_manager.download(_URLS[self.config.name+"_validation"]) test_file = dl_manager.download(_URLS[self.config.name+"_test"]) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ "data_file": train_file, }, ), datasets.SplitGenerator( name=datasets.Split.VALIDATION, gen_kwargs={ "data_file": validation_file, }, ), datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={ "data_file": test_file, }, ) ] def _generate_examples(self, data_file): """ Yields examples as (key, example) tuples. """ with open(data_file, encoding="utf-8") as f: for row in f: data = json.loads(row) id_ = data['id'] yield id_, { "argument": data['argument'], "conclusion": data["conclusion"], "id": id_ }