Datasets:
Tasks:
Question Answering
Languages:
English
Size:
10K<n<100K
ArXiv:
Tags:
multihop-tabular-text-qa
License:
File size: 6,923 Bytes
e3d13e5 4b41596 e3d13e5 4b41596 4e0d6bb e3d13e5 0874a8d 4c7de3c 69b2996 0874a8d 2a67722 4716d0b 2a67722 4716d0b 2a67722 4716d0b c5b5200 4716d0b e3d13e5 988bd87 e3d13e5 4c7de3c e3d13e5 4c7de3c e3d13e5 259842d e3d13e5 1f45c80 e3d13e5 988bd87 e3d13e5 988bd87 e3d13e5 4e0d6bb e3d13e5 259842d 4e0d6bb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 |
---
annotations_creators:
- crowdsourced
language_creators:
- crowdsourced
language:
- en
license:
- cc-by-4.0
multilinguality:
- monolingual
size_categories:
- 10K<n<100K
source_datasets:
- original
task_categories:
- question-answering
task_ids: []
paperswithcode_id: hybridqa
pretty_name: HybridQA
tags:
- multihop-tabular-text-qa
dataset_info:
config_name: hybrid_qa
features:
- name: question_id
dtype: string
- name: question
dtype: string
- name: table_id
dtype: string
- name: answer_text
dtype: string
- name: question_postag
dtype: string
- name: table
struct:
- name: url
dtype: string
- name: title
dtype: string
- name: header
sequence: string
- name: data
list:
- name: value
dtype: string
- name: urls
list:
- name: url
dtype: string
- name: summary
dtype: string
- name: section_title
dtype: string
- name: section_text
dtype: string
- name: uid
dtype: string
- name: intro
dtype: string
splits:
- name: train
num_bytes: 2717098352
num_examples: 62104
- name: validation
num_bytes: 151476865
num_examples: 3432
- name: test
num_bytes: 147058022
num_examples: 3428
download_size: 214370025
dataset_size: 3015633239
---
# Dataset Card for HybridQA
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** https://hybridqa.github.io/index.html
- **Repository:** [GitHub](https://github.com/wenhuchen/HybridQA)
- **Paper:** [HybridQA: A Dataset of Multi-Hop Question Answering over Tabular and Textual Data](https://arxiv.org/abs/1909.05358)
- **Leaderboard:** [HybridQA Competition](https://competitions.codalab.org/competitions/24420)
- **Point of Contact:** [Wenhu Chen]([email protected])
### Dataset Summary
Existing question answering datasets focus on dealing with homogeneous information, based either only on text or
KB/Table information alone. However, as human knowledge is distributed over heterogeneous forms,
using homogeneous information alone might lead to severe coverage problems.
To fill in the gap, we present HybridQA, a new large-scale question-answering dataset that
requires reasoning on heterogeneous information. Each question is aligned with a Wikipedia table
and multiple free-form corpora linked with the entities in the table. The questions are designed
to aggregate both tabular information and text information, i.e.,
lack of either form would render the question unanswerable.
### Supported Tasks and Leaderboards
[More Information Needed]
### Languages
The dataset is in English language.
## Dataset Structure
### Data Instances
A typical example looks like this
```
{
"question_id": "00009b9649d0dd0a",
"question": "Who were the builders of the mosque in Herat with fire temples ?",
"table_id": "List_of_mosques_in_Afghanistan_0",
"answer_text": "Ghurids",
"question_postag": "WP VBD DT NNS IN DT NN IN NNP IN NN NNS .",
"table": {
"url": "https://en.wikipedia.org/wiki/List_of_mosques_in_Afghanistan",
"title": "List of mosques in Afghanistan",
"header": [
"Name",
"Province",
"City",
"Year",
"Remarks"
],
"data": [
{
"value": "Kabul",
"urls": [
{
"summary": "Kabul ( Persian : کابل , romanized : Kābol , Pashto : کابل , romanized : Kābəl ) is the capital and largest city of Afghanistan...",
"url": "/wiki/Kabul"
}
]
}
]
},
"section_title": "",
"section_text": "",
"uid": "List_of_mosques_in_Afghanistan_0",
"intro": "The following is an incomplete list of large mosques in Afghanistan:"
}
```
### Data Fields
- `question_id` (str)
- `question` (str)
- `table_id` (str)
- `answer_text` (str)
- `question_postag` (str)
- `table` (dict):
- `url` (str)
- `title` (str)
- `header` (list of str)
- `data` (list of dict):
- `value` (str)
- `urls` (list of dict):
- `url` (str)
- `summary` (str)
- `section_title` (str)
- `section_text` (str)
- `uid` (str)
- `intro` (str)
### Data Splits
The dataset is split into `train`, `dev` and `test` splits.
| | train | validation | test |
| --------------- |------:|-----------:|-----:|
| N. Instances | 62682 | 3466 | 3463 |
## Dataset Creation
### Curation Rationale
[More Information Needed]
### Source Data
[More Information Needed]
#### Initial Data Collection and Normalization
[More Information Needed]
#### Who are the source language producers?
[More Information Needed]
### Annotations
[More Information Needed]
#### Annotation process
[More Information Needed]
#### Who are the annotators?
[More Information Needed]
### Personal and Sensitive Information
[More Information Needed]
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Additional Information
### Dataset Curators
[More Information Needed]
### Licensing Information
The dataset is under a [Creative Commons Attribution 4.0 International License](https://creativecommons.org/licenses/by/4.0/).
### Citation Information
[More Information Needed]
```
@article{chen2020hybridqa,
title={HybridQA: A Dataset of Multi-Hop Question Answering over Tabular and Textual Data},
author={Chen, Wenhu and Zha, Hanwen and Chen, Zhiyu and Xiong, Wenhan and Wang, Hong and Wang, William},
journal={Findings of EMNLP 2020},
year={2020}
}
```
### Contributions
Thanks to [@patil-suraj](https://github.com/patil-suraj) for adding this dataset.
|