Datasets:

Modalities:
Text
Formats:
parquet
Languages:
Korean
ArXiv:
Libraries:
Datasets
pandas
License:
File size: 6,610 Bytes
2469065
 
 
 
 
4d76b3d
2469065
4d76b3d
7b2ab57
2469065
 
 
 
 
 
 
 
 
 
5f260b9
ef51bf6
 
 
 
 
 
3078568
 
 
 
 
 
 
ef51bf6
 
 
 
1592c3e
ef51bf6
c5cbb40
1592c3e
c5cbb40
1592c3e
 
 
 
 
 
 
 
 
2469065
 
 
 
 
 
 
c5533ee
2469065
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
62adced
2469065
 
 
010b590
 
 
 
2469065
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
62adced
 
 
ef51bf6
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
---
annotations_creators:
- expert-generated
language_creators:
- expert-generated
language:
- ko
license:
- cc-by-4.0
multilinguality:
- monolingual
size_categories:
- 10K<n<100K
source_datasets:
- original
task_categories:
- text-classification
task_ids:
- intent-classification
pretty_name: 3i4K
dataset_info:
  features:
  - name: label
    dtype:
      class_label:
        names:
          '0': fragment
          '1': statement
          '2': question
          '3': command
          '4': rhetorical question
          '5': rhetorical command
          '6': intonation-dependent utterance
  - name: text
    dtype: string
  splits:
  - name: train
    num_bytes: 3102134
    num_examples: 55134
  - name: test
    num_bytes: 344024
    num_examples: 6121
  download_size: 1974323
  dataset_size: 3446158
configs:
- config_name: default
  data_files:
  - split: train
    path: data/train-*
  - split: test
    path: data/test-*
---

# Dataset Card for 3i4K

## Table of Contents
- [Dataset Description](#dataset-description)
  - [Dataset Summary](#dataset-summary)
  - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
  - [Languages](#languages)
- [Dataset Structure](#dataset-structure)
  - [Data Instances](#data-instances)
  - [Data Fields](#data-fields)
  - [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
  - [Curation Rationale](#curation-rationale)
  - [Source Data](#source-data)
  - [Annotations](#annotations)
  - [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
  - [Social Impact of Dataset](#social-impact-of-dataset)
  - [Discussion of Biases](#discussion-of-biases)
  - [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
  - [Dataset Curators](#dataset-curators)
  - [Licensing Information](#licensing-information)
  - [Citation Information](#citation-information)
  - [Contributions](#contributions)

## Dataset Description

- **Homepage:** [3i4K](https://github.com/warnikchow/3i4k)
- **Repository:** [3i4K](https://github.com/warnikchow/3i4k)
- **Paper:** [Speech Intention Understanding in a Head-final Language: A Disambiguation Utilizing Intonation-dependency](https://arxiv.org/abs/1811.04231)
- **Point of Contact:** [Won Ik Cho]([email protected])

### Dataset Summary

The 3i4K dataset is a set of frequently used Korean words (corpus provided by the Seoul National University Speech Language Processing Lab) and manually created questions/commands containing short utterances. The goal is to identify the speaker intention of a spoken utterance based on its transcript, and whether in some cases, requires using auxiliary acoustic features. The classification system decides whether the utterance is a fragment, statement, question, command, rhetorical question, rhetorical command, or an intonation-dependent utterance. This is important because in head-final languages like Korean, the level of the intonation plays a significant role in identifying the speaker's intention.

### Supported Tasks and Leaderboards

* `intent-classification`: The dataset can be trained with a CNN or BiLISTM-Att to identify the intent of a spoken utterance in Korean and the performance can be measured by its F1 score.

### Languages

The text in the dataset is in Korean and the associated is BCP-47 code is `ko-KR`.

## Dataset Structure

### Data Instances

An example data instance contains a short utterance and it's label:

```
{
  "label": 3,
  "text": "์„ ์ˆ˜์ž–์•„ ์ด ์ผ€์ด์Šค ์ € ์ผ€์ด์Šค ๋งŽ์„ ๊ฑฐ ์•„๋ƒ ์„ ๋ฐฐ๋ผ๊ณ  ๋ญ ํ•˜๋‚˜ ์ธ์ƒ์— ๋„์›€๋„ ์•ˆ์ฃผ๋Š”๋ฐ ๋‚ด๊ฐ€ ์ด๋ ‡๊ฒŒ ์ง„์ง€ํ•˜๊ฒŒ ๋‚˜์˜ฌ ๋•Œ ์ œ๋Œ€๋กœ ํ•œ๋ฒˆ ์กฐ์–ธ ์ข€ ํ•ด์ค˜๋ณด์ง€"
}
```

### Data Fields

* `label`: determines the intention of the utterance and can be one of `fragment` (0), `statement` (1), `question` (2), `command` (3), `rhetorical question` (4), `rhetorical command` (5) and `intonation-depedent utterance` (6).
* `text`: the text in Korean about common topics like housework, weather, transportation, etc.

### Data Splits

The data is split into a training set comrpised of 55134 examples and a test set of 6121 examples.

## Dataset Creation

### Curation Rationale

For head-final languages like Korean, intonation can be a determining factor in identifying the speaker's intention. The purpose of this dataset is to to determine whether an utterance is a fragment, statement, question, command, or a rhetorical question/command using the intonation-depedency from the head-finality. This is expected to improve language understanding of spoken Korean utterances and can be beneficial for speech-to-text applications.

### Source Data

#### Initial Data Collection and Normalization

The corpus was provided by Seoul National University Speech Language Processing Lab, a set of frequently used words from the National Institute of Korean Language and manually created commands and questions. The utterances cover topics like weather, transportation and stocks. 20k lines were randomly selected.

#### Who are the source language producers?

Korean speakers produced the commands and questions.

### Annotations

#### Annotation process

Utterances were classified into seven categories. They were provided clear instructions on the annotation guidelines (see [here](https://docs.google.com/document/d/1-dPL5MfsxLbWs7vfwczTKgBq_1DX9u1wxOgOPn1tOss/edit#) for the guidelines) and the resulting inter-annotator agreement was 0.85 and the final decision was done by majority voting.

#### Who are the annotators?

The annotation was completed by three Seoul Korean L1 speakers.

### Personal and Sensitive Information

[More Information Needed]

## Considerations for Using the Data

### Social Impact of Dataset

[More Information Needed]

### Discussion of Biases

[More Information Needed]

### Other Known Limitations

[More Information Needed]

## Additional Information

### Dataset Curators

The dataset is curated by Won Ik Cho, Hyeon Seung Lee, Ji Won Yoon, Seok Min Kim and Nam Soo Kim.

### Licensing Information

The dataset is licensed under the CC BY-SA-4.0.

### Citation Information

```
@article{cho2018speech,
	title={Speech Intention Understanding in a Head-final Language: A Disambiguation Utilizing Intonation-dependency},
	author={Cho, Won Ik and Lee, Hyeon Seung and Yoon, Ji Won and Kim, Seok Min and Kim, Nam Soo},
	journal={arXiv preprint arXiv:1811.04231},
	year={2018}
}
```

### Contributions

Thanks to [@stevhliu](https://github.com/stevhliu) for adding this dataset.