Datasets:
Tasks:
Text Classification
Modalities:
Text
Formats:
parquet
Sub-tasks:
intent-classification
Languages:
Korean
Size:
10K - 100K
ArXiv:
License:
# coding=utf-8 | |
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""3i4K: Intonation-aided intention identification for Korean dataset""" | |
import csv | |
import datasets | |
from datasets.tasks import TextClassification | |
_CITATION = """\ | |
@article{cho2018speech, | |
title={Speech Intention Understanding in a Head-final Language: A Disambiguation Utilizing Intonation-dependency}, | |
author={Cho, Won Ik and Lee, Hyeon Seung and Yoon, Ji Won and Kim, Seok Min and Kim, Nam Soo}, | |
journal={arXiv preprint arXiv:1811.04231}, | |
year={2018} | |
} | |
""" | |
_DESCRIPTION = """\ | |
This dataset is designed to identify speaker intention based on real-life spoken utterance in Korean into one of | |
7 categories: fragment, description, question, command, rhetorical question, rhetorical command, utterances. | |
""" | |
_HOMEPAGE = "https://github.com/warnikchow/3i4k" | |
_LICENSE = "CC BY-SA-4.0" | |
_TRAIN_DOWNLOAD_URL = "https://raw.githubusercontent.com/warnikchow/3i4k/master/data/train_val_test/fci_train_val.txt" | |
_TEST_DOWNLOAD_URL = "https://raw.githubusercontent.com/warnikchow/3i4k/master/data/train_val_test/fci_test.txt" | |
class Kor_3i4k(datasets.GeneratorBasedBuilder): | |
"""Intonation-aided intention identification for Korean""" | |
VERSION = datasets.Version("1.1.0") | |
def _info(self): | |
return datasets.DatasetInfo( | |
description=_DESCRIPTION, | |
features=datasets.Features( | |
{ | |
"label": datasets.features.ClassLabel( | |
names=[ | |
"fragment", | |
"statement", | |
"question", | |
"command", | |
"rhetorical question", | |
"rhetorical command", | |
"intonation-dependent utterance", | |
] | |
), | |
"text": datasets.Value("string"), | |
} | |
), | |
supervised_keys=None, | |
homepage=_HOMEPAGE, | |
license=_LICENSE, | |
citation=_CITATION, | |
task_templates=[TextClassification(text_column="text", label_column="label")], | |
) | |
def _split_generators(self, dl_manager): | |
"""Returns SplitGenerators""" | |
train_path = dl_manager.download_and_extract(_TRAIN_DOWNLOAD_URL) | |
test_path = dl_manager.download_and_extract(_TEST_DOWNLOAD_URL) | |
return [ | |
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": train_path}), | |
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": test_path}), | |
] | |
def _generate_examples(self, filepath): | |
"""Generates 3i4K examples""" | |
with open(filepath, encoding="utf-8") as csv_file: | |
data = csv.reader(csv_file, delimiter="\t") | |
for id_, row in enumerate(data): | |
label, text = row | |
yield id_, {"label": int(label), "text": text} | |