File size: 6,283 Bytes
2686e9a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
29c1bab
a3de7e3
ee3cbd7
 
 
 
29c1bab
a3de7e3
ee3cbd7
29c1bab
 
 
 
 
c6e77c9
29c1bab
 
 
a3de7e3
208158e
a3de7e3
ee3cbd7
 
 
 
a3de7e3
ee3cbd7
 
 
 
 
208158e
ee3cbd7
 
 
 
a3de7e3
ee3cbd7
c6e77c9
 
ee3cbd7
 
 
 
 
 
 
345f2aa
 
 
ee3cbd7
 
 
 
 
 
a3de7e3
208158e
 
 
 
 
 
ee3cbd7
208158e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ee3cbd7
eed4206
ee3cbd7
 
 
eed4206
 
208158e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fe1eb51
 
208158e
ee3cbd7
 
 
 
eed4206
ee3cbd7
 
88a0ee6
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
---
language:
- en
license: mit
tags:
- knowledge-graph
- rdf
- owl
- ontology
- cybersecurity
annotations_creators:
- expert-generated
pretty_name: D3FEND
size_categories:
- 100K<n<1M
task_categories:
- graph-ml
dataset_info:
  features:
    - name: subject
      dtype: string
    - name: predicate
      dtype: string
    - name: object
      dtype: string
  config_name: default
  splits:
    - name: train
      num_bytes: 46899451
      num_examples: 231842
  dataset_size: 46899451
viewer: false
---

# D3FEND: A knowledge graph of cybersecurity countermeasures

### Overview
D3FEND encodes a countermeasure knowledge base in the form of a
knowledge graph. It meticulously organizes key concepts and relations
in the cybersecurity countermeasure domain, linking each to pertinent
references in the cybersecurity literature. 

### Use-cases
Researchers and cybersecurity enthusiasts can leverage D3FEND to:
- Develop sophisticated graph-based models.
- Fine-tune large language models, focusing on cybersecurity knowledge
  graph completion.
- Explore the complexities and nuances of defensive techniques,
  mappings to MITRE ATT&CK, weaknesses (CWEs), and cybersecurity
  taxonomies.
- Gain insight into ontology development and modeling in the
  cybersecurity domain.

### Dataset construction and pre-processing

### Source:
- [Dataset Repository - 0.13.0-BETA-1](https://github.com/d3fend/d3fend-ontology/tree/release/0.13.0-BETA-1)
- [Commit Details](https://github.com/d3fend/d3fend-ontology/commit/3dcc495879bb62cee5c4109e9b784dd4a2de3c9d)
- [CWE Extension](https://github.com/d3fend/d3fend-ontology/tree/release/0.13.0-BETA-1/extensions/cwe)

#### Building and Verification:
1. **Construction**: The ontology, denoted as `d3fend-full.owl`, was
   built from the beta version of the D3FEND ontology referenced
   above using documented README in d3fend-ontology. This includes the
   CWE extensions. 
2. **Import and Reasoning**: Imported into Protege version 5.6.1,
   utilizing the Pellet reasoner plugin for logical reasoning and
   verification.
3. **Coherence Check**: Utilized the Debug Ontology plugin in Protege
   to ensure the ontology's coherence and consistency.

#### Exporting, Transformation, and Compression:
Note: The following steps were performed using Apache Jena's command
line tools. (https://jena.apache.org/documentation/tools/)
1. **Exporting Inferred Axioms**: Post-verification, I exported
   inferred axioms along with asserted axioms and
   annotations. [Detailed
   Process](https://www.michaeldebellis.com/post/export-inferred-axioms)
2. **Filtering**: The materialized ontology was filtered using
   `d3fend.rq` to retain relevant triples.
3. **Format Transformation**: Subsequently transformed to Turtle and
   N-Triples formats for diverse usability. Note: I export in Turtle
   first because it is easier to read and verify. Then I convert to
   N-Triples.
   ```shell
   arq --query=d3fend.rq --data=d3fend.owl --results=turtle > d3fend.ttl
   riot --output=nt d3fend.ttl > d3fend.nt
   ```
4. **Compression**: Compressed the resulting ontology files using
   gzip.

## Features
The D3FEND dataset is composed of triples representing the
relationships between different cybersecurity countermeasures. Each
triple is a representation of a statement about a cybersecurity
concept or a relationship between concepts. The dataset includes the
following features:

### 1. **Subject** (`string`)
The subject of a triple is the entity that the statement is about. In
this dataset, the subject represents a cybersecurity concept or
entity, such as a specific countermeasure or ATT&CK technique.

### 2. **Predicate** (`string`)
The predicate of a triple represents the property or characteristic of
the subject, or the nature of the relationship between the subject and
the object. For instance, it might represent a specific type of
relationship like "may-be-associated-with" or "has a reference."

### 3. **Object** (`string`)
The object of a triple is the entity that is related to the subject by
the predicate. It can be another cybersecurity concept, such as an
ATT&CK technique, or a literal value representing a property of the
subject, such as a name or a description.

### Usage
First make sure you have the requirements installed:

```python
pip install datasets
pip install rdflib
```

You can load the dataset using the Hugging Face Datasets library with
the following Python code:

```python
from datasets import load_dataset
dataset = load_dataset('wikipunk/d3fend', split='train')
```

#### Note on Format:
The subject, predicate, and object are stored in N3 notation, a
verbose serialization for RDF. This allows users to unambiguously
parse each component using `rdflib.util.from_n3` from the RDFLib
Python library. For example:

```python
from rdflib.util import from_n3
subject_node = from_n3(dataset[0]['subject'])
predicate_node = from_n3(dataset[0]['predicate'])
object_node = from_n3(dataset[0]['object'])
```

Once loaded, each example in the dataset will be a dictionary with
`subject`, `predicate`, and `object` keys corresponding to the
features described above.

### Example

Here is an example of a triple in the dataset:
- Subject: `"<http://d3fend.mitre.org/ontologies/d3fend.owl#T1550.002>"`
- Predicate: `"<http://d3fend.mitre.org/ontologies/d3fend.owl#may-be-associated-with>"`
- Object: `"<http://d3fend.mitre.org/ontologies/d3fend.owl#T1218.014>"`

This triple represents the statement that the ATT&CK technique
identified by `T1550.002` may be associated with the ATT&CK technique
identified by `T1218.014`.

### Acknowledgements
This ontology is developed by MITRE Corporation and is licensed under
the MIT license. I would like to thank the authors for their work
which has opened my eyes to a new world of cybersecurity modeling.

If you are a cybersecurity expert please consider [contributing to
D3FEND](https://d3fend.mitre.org/contribute/).

[D3FEND Resources](https://d3fend.mitre.org/resources/)

### Citation
```bibtex
@techreport{kaloroumakis2021d3fend,
  title={Toward a Knowledge Graph of Cybersecurity Countermeasures},
  author={Kaloroumakis, Peter E. and Smith, Michael J.},
  institution={The MITRE Corporation},
  year={2021},
  url={https://d3fend.mitre.org/resources/D3FEND.pdf}
}
```