File size: 10,433 Bytes
6293f3a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
{
 "cells": [
  {
   "cell_type": "markdown",
   "id": "f31245e6",
   "metadata": {},
   "source": [
    "### Download entries from DIP-Bundestag and put them in a csv to further process them.\n",
    "\n",
    "See https://search.dip.bundestag.de/api/v1/swagger-ui/ for the API reference. We only request documents of the type antwort and based on the start and end date provided."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "8af55e90",
   "metadata": {},
   "outputs": [],
   "source": [
    "import requests\n",
    "from pprint import pprint\n",
    "import pandas as pd\n",
    "from pathlib import Path\n",
    "from pprint import pprint\n",
    "from tqdm import tqdm\n",
    "from concurrent.futures import ThreadPoolExecutor\n",
    "\n",
    "DIP_URL = \"https://search.dip.bundestag.de/api/v1/drucksache\"\n",
    "DIP_TOKEN = \"rgsaY4U.oZRQKUHdJhF9qguHMkwCGIoLaqEcaHjYLF\"\n",
    "\n",
    "START_DATE = \"2015-05-07\"\n",
    "END_DATE = \"2023-07-09\"\n",
    "\n",
    "REQUEST_URL = f\"{DIP_URL}?f.drucksachetyp=Antwort&f.datum.start={START_DATE}&f.datum.end={END_DATE}&format=json&apikey={DIP_TOKEN}\"\n",
    "\n",
    "df = pd.DataFrame()\n",
    "docs = []\n",
    "res = requests.get(REQUEST_URL)\n",
    "r_json = res.json()\n",
    "old_cursor = r_json[\"cursor\"]\n",
    "\n",
    "with ThreadPoolExecutor(max_workers=10) as pool:\n",
    "    count = 0\n",
    "    while True:\n",
    "        for doc in tqdm(r_json[\"documents\"]):\n",
    "            docs.append(doc)\n",
    "            doc_id = doc[\"id\"]\n",
    "            doc_number = doc[\"fundstelle\"][\"dokumentnummer\"]\n",
    "            url = doc[\"fundstelle\"][\"pdf_url\"]            \n",
    "            count += 1\n",
    "        res = requests.get(f\"{REQUEST_URL}&cursor={old_cursor}\")\n",
    "        r_json = res.json()\n",
    "        new_cursor = r_json[\"cursor\"]\n",
    "        if new_cursor == old_cursor:\n",
    "            print(\"Found same cursor. No new results.\")\n",
    "            break\n",
    "        old_cursor = new_cursor\n",
    "\n",
    "\n",
    "df = df.from_records(docs)\n",
    "print(f\"Extracted {len(df)} entries.\")\n",
    "df.to_csv(\"raw_entries.csv\")"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "58b0055f",
   "metadata": {},
   "source": [
    "### Read back csv written in previous step, and download the associated PDF with each entry"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "1bf8044e",
   "metadata": {},
   "outputs": [],
   "source": [
    "\n",
    "df = pd.read_csv(\"raw_entries.csv\")\n",
    "\n",
    "def download_file(download_path:Path,doc_id:str,url:str) -> None:\n",
    "    r = requests.get(url, allow_redirects=True)\n",
    "    if r.status_code != 200:\n",
    "        print(f\"Got status {r.status_code} for url {doc_id} and {url}\")\n",
    "        return False\n",
    "    with open(download_path / f\"{doc_id}.pdf\", 'wb') as f:\n",
    "        f.write(r.content)\n",
    "    \n",
    "    return True\n",
    "\n",
    "download_path = Path(\"./downloads2/\")\n",
    "download_path.mkdir(exist_ok=True)\n",
    "\n",
    "\n",
    "for i,row in df.iterrows():\n",
    "    pdf_url = eval(row[\"fundstelle\"])[\"pdf_url\"]\n",
    "    success = download_file(download_path,row[\"id\"],pdf_url)\n",
    "    df.at[i,\"download_success\"]=success\n",
    "\n",
    "df.to_csv(\"entries_with_download_status.csv\")"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "15959ea4",
   "metadata": {},
   "source": [
    "\n",
    "### Extract the text out of the downloaded pdfs"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "7417bc4e",
   "metadata": {},
   "outputs": [],
   "source": [
    "import pandas as pd\n",
    "import sys\n",
    "import pdftotext\n",
    "import fitz\n",
    "import re\n",
    "from pathlib import Path\n",
    "from dehyphen import FlairScorer\n",
    "from dehyphen import format\n",
    "from tqdm import tqdm\n",
    "\n",
    "HEADER_HEIGHT = 78\n",
    "FOOTER_HEIGHT = 70\n",
    "\n",
    "QUESTION_FONT_SIZE = 9.609999656677246\n",
    "ANSWER_FONT_SIZE = 10.678000450134277\n",
    "BULLET_POINT_ANSWER_SIZE = 6.0\n",
    "\n",
    "OUTPUT_PATH = 'raw_text_blocks.csv'\n",
    "\n",
    "scorer = FlairScorer(lang=\"de\")\n",
    "pattern = r'^\\s*\\d+\\.\\s*' # Matches a number followed by a dot and a space at the beginning of the string\n",
    "\n",
    "\n",
    "def process_text_block(block:dict = {},pdf_path:Path = None,remove_q_numbers: bool = False):\n",
    "    txt = []\n",
    "    font = None\n",
    "\n",
    "    for line in block.get(\"lines\", []):\n",
    "        for span in line[\"spans\"]:\n",
    "            span_txt = span[\"text\"]\n",
    "            span_font = span[\"font\"]\n",
    "            span_font_size = span[\"size\"]\n",
    "            if span_txt==\"\" or span_txt.isspace():\n",
    "                #print(f\"Found empty string or only spaces in document {pdf_path}\")\n",
    "                continue\n",
    "            if font is None:\n",
    "                span_type = \"Unknown\"\n",
    "                if span_font_size == QUESTION_FONT_SIZE:\n",
    "                    span_type = \"Question\"\n",
    "                    if remove_q_numbers:\n",
    "                        span_txt = re.sub(pattern,\"\",span_txt)\n",
    "                elif span_font_size in [BULLET_POINT_ANSWER_SIZE,ANSWER_FONT_SIZE]:\n",
    "                    span_type = \"Answer\"\n",
    "                font = (span_font, span_font_size, span_type)\n",
    "            txt.append(span_txt)\n",
    "\n",
    "    if len(txt) > 1:\n",
    "        txt_joined = \"\\n\".join(txt)\n",
    "        txt_formatted = format.text_to_format(txt_joined)\n",
    "        txt_dehyphenated = scorer.dehyphen(txt_formatted)\n",
    "        txt = format.format_to_text(txt_dehyphenated)\n",
    "    else:\n",
    "        if len(txt) == 0:\n",
    "            txt = \"\"\n",
    "        else:\n",
    "            txt = txt[0]\n",
    "    txt = txt.strip()\n",
    "    if font is not None:\n",
    "        result = {\"file\": pdf_path.name, \"txt\": txt, \"font\": font[0], \"size\": font[1], \"type\": font[2]}\n",
    "    else:\n",
    "        result = {\"file\": pdf_path.name, \"txt\": \"Error\", \"font\": \"Error\", \"size\":\"Error\", \"type\": \"Error\"}\n",
    "    return result\n",
    "\n",
    "\n",
    "processed = []\n",
    "if Path(OUTPUT_PATH).exists():\n",
    "    df = pd.read_csv(OUTPUT_PATH,sep=\"|\")\n",
    "    processed = df[\"file\"].values\n",
    "else:\n",
    "    df = pd.DataFrame()\n",
    "\n",
    "res = []\n",
    "for pdf_path in tqdm(Path(\"./downloads2\").glob(\"*.pdf\"),desc=\"docs\"):\n",
    "\n",
    "    if pdf_path.name in processed:\n",
    "        print(f\"Found pdf in df: {pdf_path}\")\n",
    "        continue\n",
    "\n",
    "    doc = fitz.open(pdf_path) # open a document\n",
    "\n",
    "    for i,page in enumerate(doc):  # iterate the document pages\n",
    "        #page.draw_rect([0,HEADER_HEIGHT,page.rect.width,page.rect.height - FOOTER_HEIGHT])\n",
    "        res_raw = page.get_text(\"dict\",clip = [0,HEADER_HEIGHT,page.rect.width,page.rect.height - FOOTER_HEIGHT])\n",
    "        blocks = res_raw[\"blocks\"] # blocks on page\n",
    "\n",
    "        for block in blocks:\n",
    "            try:\n",
    "                block_res = process_text_block(block,pdf_path)\n",
    "                if block_res[\"type\"] != \"Unknown\" and  block_res[\"type\"] != \"Error\":\n",
    "                    res.append(block_res)\n",
    "            except Exception as e:\n",
    "                print(str(e),block)\n",
    "\n",
    "\n",
    "    #print(len(res))\n",
    "    if len(res) > 100:\n",
    "        df = pd.DataFrame.from_dict(res)\n",
    "\n",
    "        df.to_csv(OUTPUT_PATH, mode='a', header=not Path(OUTPUT_PATH).exists(),index=False,sep=\"|\")\n",
    "        df = pd.DataFrame()\n",
    "        res = []\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "c9d709c4",
   "metadata": {},
   "source": [
    "### Transform raw text into question / answer tuples"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "98cb494b",
   "metadata": {},
   "outputs": [],
   "source": [
    "df_f = pd.read_csv(\"./raw_text_blocks.csv\",sep=\"|\")\n",
    "print(len(df_f))\n",
    "files = df_f.groupby('file')\n",
    "\n",
    "pairs = []\n",
    "for i,group in files:\n",
    "\n",
    "    i = iter(group.groupby([(group.type != group.type.shift()).cumsum()]))\n",
    "\n",
    "    try:\n",
    "        while True:\n",
    "            elem1 = next(i)\n",
    "            if set(elem1[1].type.values) != {\"Question\"}:\n",
    "                print(\"Broken\")\n",
    "                continue\n",
    "            elem2 = next(i)\n",
    "            if set(elem2[1].type.values) != {\"Answer\"}:\n",
    "                print(\"Broken\")\n",
    "                continue\n",
    "\n",
    "            pair = {}\n",
    "            pair[\"question\"] = \"\\n\".join(list(elem1[1].txt.values))\n",
    "            pair[\"answer\"] = \"\\n\".join(list(elem2[1].txt.values))\n",
    "            pair[\"doc_id\"] = group.file.unique()[0].split(\".\")[0]\n",
    "            pairs.append(pair)\n",
    "    except StopIteration:\n",
    "        pass\n",
    "    \n",
    "df_res = pd.DataFrame.from_records(pairs)\n",
    "df_res.to_csv(\"final.csv\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "9a816523",
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "4a21ca40",
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "1ca5572b",
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.6"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}