File size: 1,996 Bytes
96a0b0e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b378525
96a0b0e
 
 
 
 
 
 
 
 
 
 
 
b378525
 
 
8cf3770
 
 
 
96a0b0e
b378525
 
 
8cf3770
b378525
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
---
dataset_info:
  features:
  - name: audio
    dtype:
      audio:
        sampling_rate: 16000
  - name: transcription
    dtype: string
  - name: duration
    dtype: float64
  splits:
  - name: train
    num_bytes: 4531568161.596
    num_examples: 5154
  - name: validation
    num_bytes: 1294272351.875
    num_examples: 1473
  - name: test
    num_bytes: 644375190
    num_examples: 737
  download_size: 6400544345
  dataset_size: 6470215703.471
configs:
- config_name: default
  data_files:
  - split: train
    path: data/train-*
  - split: validation
    path: data/validation-*
  - split: test
    path: data/test-*
license: cc-by-3.0
language:
- xh
task_categories:
- automatic-speech-recognition
tags:
- low resource languages
---

# Xhosa Merged Audio

This dataset was cultivated from [Beijuka/xhosa_parakeet_50hr](https://huggingface.co/datasets/Beijuka/xhosa_parakeet_50hr). This dataset orginally came from NCHLT isiXhosa Speech Corpus (see below).

The original corpus contained audio and transcription in 3-5 word segments. This meant that the majority of the dataset was ~5 seconds long. Whisper can receive an input of 30 seconds. This meant that the dataset required substantial padding. To reduce the amount of padding, the audio segments were merged together sequentially until a limit of 30 seconds was reached.

## Original Dataset
- Name: NCHLT isiXhosa Speech Corpus
- Size: Approximately 56 hours of transcribed speech
- Speakers: 209 (106 female, 103 male)
- Content: Prompted speech (3-5 word utterances read from a smartphone screen)
- Source: Audio recordings smartphone-collected in non-studio environment
- License: Creative Commons Attribution 3.0 Unported License (CC BY 3.0)

### Citation

```tex
De Vries, N.J., Davel, M.H., Badenhorst, J., Basson, W.D., de Wet, F., Barnard, E. and de Waal, A. (2014). A smartphone-based ASR data collection tool for under-resourced languages. Speech Communication, 56, 119-131. https://hdl.handle.net/20.500.12185/279
```