#%% import datasets import pandas as pd import csv import os _ORIGIN = "http://dataome.mensxmachina.org/" _CITATION = """ """ class BioDataome(datasets.GeneratorBasedBuilder): METADATA = pd.read_csv(f"http://dataome.mensxmachina.org/biodataome_data.csv") BUILDER_CONFIGS = [ datasets.BuilderConfig(name=i, version=datasets.Version("1.0.0"), description=d) for i, d in zip( METADATA["GSE"], METADATA["Disease"], ) ] def _info(self) -> datasets.DatasetInfo: return datasets.DatasetInfo( description="", citation=_CITATION, homepage=_ORIGIN, license="", ) def _split_generators(self, dl_manager): gse = self.config.name url = self.METADATA[self.METADATA["GSE"] == gse]["Datapath"].values[0] metadata_url = self.METADATA[self.METADATA["GSE"] == gse]["DataAnnot"].values[0] data: datasets.download.DownloadManager = dl_manager.download(url) metadata: datasets.download.DownloadManager = dl_manager.download(metadata_url) new_name = os.path.dirname(data) + "/" + os.path.basename(data).split(".")[0] + "_processed.csv" df = pd.read_csv(data, index_col=0) df = df.T df.to_csv(new_name, index=False) return [ datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": new_name, "metadata": metadata}), ] def _generate_examples(self, filepath, metadata): print(filepath) with open(filepath, "r") as f: f_header = f.readline() with open(metadata, "r") as m: m_header = m.readline() for key, (row, meta) in enumerate(zip(f, m)): metadata = csv.reader([meta], quotechar='"').__next__() row = row.split(",") yield key, { "data": { i.strip(): j for i, j in zip(f_header.split(","), row) }, "metadata": { i.strip(): j for i, j in zip(m_header.split(","), metadata) } } #%% if __name__ == "__main__": ds = datasets.load_dataset("./load_script.py", "GSE17933") ds['train'][0] # %%