File size: 5,847 Bytes
b811f30
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
import json

import datasets
import pandas as pd

id_to_original = {
    "1": "5-5-10-H-A1000C 100h-30k-3-crop",
    "2": "5-5-A1000C 100h-30k-9 crop",
    "3": "5-5-A1000C 100h-30k-9 crop2",
    "4": "5-5-A1000C 100h-30k-9-crop",
    "5": "5k-Cr-10-10-20Fe-H-Ageing1200C 4h-6-crop",
    "6": "Cr-5-5-10Fe-A1200C 4h-6 crop1",
    "7": "Cr-5-5-10Fe-A1200C 4h-6 crop2",
    "8": "Cr-5-5-10Fe-H1400-20h-A800-240h-80k-9crop1",
    "9": "Cr-5-5-10Fe-H1400-20h-A800-240h-80k-9crop2",
    "10": "Cr-5-5-10Fe-H1400-20h-A800-240h-80k-10 crop",
    "11": "Cr-5-5-10Fe-H1400-20h-A800-240h-80k-10 crop2",
    "12": "Cr-5-5-10Fe-H1400-20h-A1000-20h-50k-10 crop",
    "13": "Cr-5-5-10Fe-H1400-20h-A1000-240h-30k-8 crop2",
    "14": "Cr-5-5-A1200C 4h-20k-5-crop1",
    "15": "Cr-5-5-A1200C 4h-20k-5-crop2",
    "16": "Cr-10-10-20Fe-H20h-A1200C 20h-7-crop1",
    "17": "J955-H2-7-crop1",
    "18": "J955-H2-7-crop2",
    "19": "Cr-10-10-20Fe-A100h-1-crop1",
    "20": "Cr-10-10-20Fe-A100h-4-crop1",
    "21": "Cr-10Ni-10Al-20Fe-8 crop1",
    "22": "Cr-10Ni-10Al-20Fe-8 crop2",
    "23": "Cr-10Ni-10Al-20Fe-H1400C20h-9 crop1",
    "24": "Cr-10Ni-10Al-20Fe-H1400C20h-9 crop2",
}
ids_split = {
    datasets.Split.TEST: [
        "1",
        "5",
        "9",
        "14",
        "20",
    ],
    datasets.Split.VALIDATION: [
        "2",
        "7",
        "18",
        "22",
    ],
    datasets.Split.TRAIN: [
        "3",
        "4",
        "6",
        "8",
        "10",
        "11",
        "12",
        "13",
        "15",
        "16",
        "17",
        "19",
        "21",
        "23",
        "24",
    ]
}

_CITATION = """\
@article{xia2023Accurate,
  author = {Zeyu Xia and Kan Ma and Sibo Cheng and Thomas Blackburn and Ziling Peng and Kewei Zhu and Weihang Zhang and Dunhui Xiao and Alexander J Knowles and Rossella Arcucci},
  copyright = {CC BY-NC 3.0},
  doi = {10.1039/d3cp00402c},
  issn = {1463-9076},
  journal = {Physical Chemistry Chemical Physics},
  keywords = {},
  language = {English},
  month = {6},
  number = {23},
  pages = {15970--15987},
  pmid = {37265373},
  publisher = {Royal Society of Chemistry (RSC)},
  title = {Accurate Identification and Measurement of the Precipitate Area by Two-Stage Deep Neural Networks in Novel Chromium-Based Alloy},
  url = {https://doi.org/10.1039/d3cp00402c},
  volume = {25},
  year = {2023}
}
"""

_DESCRIPTION = 'A comprehensive, two-tiered deep learning approach designed for precise object detection and segmentation in electron microscopy (EM) images.'

_CATEGORIES = ["precipitate"]

_HOMEPAGE = 'https://github.com/xiazeyu/DT_SegNet'

_LICENSE = 'CC BY-NC 3.0'


def convert_image(image_path):
    with open(image_path, "rb") as image_file:
        return image_file.read()
    # return Image.open(image_path)


def convert_json(json_path):
    with open(json_path, "r") as json_file:
        json_str = json.dumps(json.load(json_file))
        return json_str  # .encode('utf-8')


def convert_txt(txt_path):
    yolo_data = {"bbox": [], "category": []}

    # Open and read the text file
    with open(txt_path, "r") as file:
        for line in file:
            # Split each line into components
            parts = line.strip().split()

            # The first part is the category, which is added directly to the 'category' list
            yolo_data["category"].append(int(parts[0]))

            # The rest of the parts are the bounding box coordinates, which need to be converted to floats
            # and added as a sublist to the 'bbox' list
            bbox = [float(coord) for coord in parts[1:]]
            yolo_data["bbox"].append(bbox)

    return yolo_data


def get_ds(pfx):
    image_array = []
    seg_annotation_array = []
    raw_seg_annotation_array = []
    det_annotation_array = []

    for img_idx in ids_split[pfx]:
        ydt = convert_txt(f"{pfx}/{img_idx}_label.txt")
        det_annotation_array.append({
            "bbox": ydt["bbox"],
            "category": ydt["category"],
        })
        image_array.append(convert_image(f"{pfx}/{img_idx}.png"))
        seg_annotation_array.append(convert_image(f"{pfx}/{img_idx}_label.png"))
        raw_seg_annotation_array.append(convert_json(f"{pfx}/{img_idx}.json"))

    data = {
        "id": ids_split[pfx],
        "original_name": [id_to_original[file] for file in ids_split[pfx]],
        "image": image_array,
        "det_annotation": det_annotation_array,
        "seg_annotation": seg_annotation_array,
        "raw_seg_annotation": raw_seg_annotation_array,
    }

    df = pd.DataFrame(data)

    features = datasets.Features({
        'id': datasets.Value('int8'),
        'original_name': datasets.Value('string'),
        'image': datasets.Image(),
        "det_annotation": datasets.Sequence(
            {
                "bbox": datasets.Sequence(datasets.Value("float32"), length=4),
                "category": datasets.ClassLabel(num_classes=1, names=_CATEGORIES),
            }
        ),
        'seg_annotation': datasets.Image(),
        'raw_seg_annotation': datasets.Value(dtype='string'),
    })

    data_info = datasets.DatasetInfo(
        description=_DESCRIPTION,
        features=features,
        homepage=_HOMEPAGE,
        license=_LICENSE,
        citation=_CITATION,
    )

    ds = datasets.Dataset.from_pandas(df,
                                      features=features,
                                      info=data_info,
                                      split=pfx)

    ds.VERSION = datasets.Version("1.0.0")

    return ds


ddd = datasets.DatasetDict(
    {
        str(datasets.Split.TRAIN): get_ds(datasets.Split.TRAIN),
        str(datasets.Split.VALIDATION): get_ds(datasets.Split.VALIDATION),
        str(datasets.Split.TEST): get_ds(datasets.Split.TEST),
    }
)

# ddd.save_to_disk('data/')
# ddd.push_to_hub('xiazeyu/DT_SegNet')