File size: 15,124 Bytes
12bf5e0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 |
[
{
"problem_text": "Calculate the de Broglie wavelength for an electron with a kinetic energy of $100 \\mathrm{eV}$",
"answer_latex": " 0.123",
"answer_number": "0.123",
"unit": "nm ",
"source": "chemmc",
"problemid": "1-38 ",
"comment": " "
},
{
"problem_text": "The threshold wavelength for potassium metal is $564 \\mathrm{~nm}$. What is its work function? \r\n",
"answer_latex": " 3.52",
"answer_number": "3.52",
"unit": "$10^{-19} \\mathrm{~J}$",
"source": "chemmc",
"problemid": " 1-18",
"comment": " Only the first part, the work function is taken"
},
{
"problem_text": "Evaluate the series\r\n$$\r\nS=\\sum_{n=0}^{\\infty} \\frac{1}{3^n}\r\n$$",
"answer_latex": " 3 / 2",
"answer_number": "1.5",
"unit": " ",
"source": "chemmc",
"problemid": "D-7 ",
"comment": " Math Part D (after chapter 4)"
},
{
"problem_text": "The relationship introduced in Problem $1-48$ has been interpreted to mean that a particle of mass $m\\left(E=m c^2\\right)$ can materialize from nothing provided that it returns to nothing within a time $\\Delta t \\leq h / m c^2$. Particles that last for time $\\Delta t$ or more are called real particles; particles that last less than time $\\Delta t$ are called virtual particles. The mass of the charged pion, a subatomic particle, is $2.5 \\times 10^{-28} \\mathrm{~kg}$. What is the minimum lifetime if the pion is to be considered a real particle?",
"answer_latex": " 2.9",
"answer_number": "2.9",
"unit": "$10^{-23} \\mathrm{~s}$ ",
"source": "chemmc",
"problemid": "1-49 ",
"comment": " "
},
{
"problem_text": "A household lightbulb is a blackbody radiator. Many lightbulbs use tungsten filaments that are heated by an electric current. What temperature is needed so that $\\lambda_{\\max }=550 \\mathrm{~nm}$ ?",
"answer_latex": " 5300",
"answer_number": "5300",
"unit": " $\\mathrm{~K}$\r\n",
"source": "chemmc",
"problemid": " 1-17",
"comment": " "
},
{
"problem_text": "Evaluate the series\r\n$$\r\nS=\\frac{1}{2}+\\frac{1}{4}+\\frac{1}{8}+\\frac{1}{16}+\\cdots\r\n$$\r\n",
"answer_latex": " 1",
"answer_number": "1",
"unit": " ",
"source": "chemmc",
"problemid": " D-6",
"comment": " Math Part D (after chapter 4)"
},
{
"problem_text": "Through what potential must a proton initially at rest fall so that its de Broglie wavelength is $1.0 \\times 10^{-10} \\mathrm{~m}$ ?",
"answer_latex": " 0.082",
"answer_number": "0.082",
"unit": "V ",
"source": "chemmc",
"problemid": "1-40 ",
"comment": " "
},
{
"problem_text": "Example 5-3 shows that a Maclaurin expansion of a Morse potential leads to\r\n$$\r\nV(x)=D \\beta^2 x^2+\\cdots\r\n$$\r\nGiven that $D=7.31 \\times 10^{-19} \\mathrm{~J} \\cdot$ molecule ${ }^{-1}$ and $\\beta=1.81 \\times 10^{10} \\mathrm{~m}^{-1}$ for $\\mathrm{HCl}$, calculate the force constant of $\\mathrm{HCl}$.",
"answer_latex": " 479",
"answer_number": "479",
"unit": "$\\mathrm{~N} \\cdot \\mathrm{m}^{-1}$ ",
"source": "chemmc",
"problemid": "5-9 ",
"comment": " "
},
{
"problem_text": "A line in the Lyman series of hydrogen has a wavelength of $1.03 \\times 10^{-7} \\mathrm{~m}$. Find the original energy level of the electron.",
"answer_latex": " 3",
"answer_number": "3",
"unit": " ",
"source": "chemmc",
"problemid": " 1-25",
"comment": " no units"
},
{
"problem_text": "A helium-neon laser (used in supermarket scanners) emits light at $632.8 \\mathrm{~nm}$. Calculate the frequency of this light.",
"answer_latex": " 4.738",
"answer_number": "4.738",
"unit": "$10^{14} \\mathrm{~Hz}$ ",
"source": "chemmc",
"problemid": " 1-15",
"comment": " just the first part is taken: frequency of light"
},
{
"problem_text": "What is the uncertainty of the momentum of an electron if we know its position is somewhere in a $10 \\mathrm{pm}$ interval?",
"answer_latex": " 6.6",
"answer_number": " 6.6",
"unit": " $10^{-23} \\mathrm{~kg} \\cdot \\mathrm{m} \\cdot \\mathrm{s}^{-1}$",
"source": "chemmc",
"problemid": "1-47 ",
"comment": " discard the second part of the answer"
},
{
"problem_text": "Using the Bohr theory, calculate the ionization energy (in electron volts and in $\\mathrm{kJ} \\cdot \\mathrm{mol}^{-1}$ ) of singly ionized helium.",
"answer_latex": " 54.394",
"answer_number": "54.394",
"unit": "$\\mathrm{eV}$ ",
"source": "chemmc",
"problemid": "1-34 ",
"comment": " "
},
{
"problem_text": "When an excited nucleus decays, it emits a $\\gamma$ ray. The lifetime of an excited state of a nucleus is of the order of $10^{-12} \\mathrm{~s}$. What is the uncertainty in the energy of the $\\gamma$ ray produced?",
"answer_latex": " 7",
"answer_number": "7",
"unit": "$10^{-22} \\mathrm{~J}$ ",
"source": "chemmc",
"problemid": "1-51 ",
"comment": " "
},
{
"problem_text": "Calculate the wavelength and the energy of a photon associated with the series limit of the Lyman series.",
"answer_latex": " 91.17",
"answer_number": "91.17",
"unit": "nm ",
"source": "chemmc",
"problemid": " 1-28",
"comment": "only the first part of the question, the wavelength"
},
{
"problem_text": "Given a context information that there is also an uncertainty principle for energy and time:\n$$\n\\Delta E \\Delta t \\geq h\n$$, another application of the relationship has to do with the excitedstate energies and lifetimes of atoms and molecules. If we know that the lifetime of an excited state is $10^{-9} \\mathrm{~s}$, then what is the uncertainty in the energy of this state?",
"answer_latex": " 7",
"answer_number": "7",
"unit": " $10^{-25} \\mathrm{~J}$",
"source": "chemmc",
"problemid": " 1-50",
"comment": " "
},
{
"problem_text": "One of the most powerful modern techniques for studying structure is neutron diffraction. This technique involves generating a collimated beam of neutrons at a particular temperature from a high-energy neutron source and is accomplished at several accelerator facilities around the world. If the speed of a neutron is given by $v_{\\mathrm{n}}=\\left(3 k_{\\mathrm{B}} T / m\\right)^{1 / 2}$, where $m$ is the mass of a neutron, then what temperature is needed so that the neutrons have a de Broglie wavelength of $50 \\mathrm{pm}$ ?",
"answer_latex": " 2500",
"answer_number": "2500",
"unit": "$\\mathrm{K}$ ",
"source": "chemmc",
"problemid": "1-42 ",
"comment": " "
},
{
"problem_text": "The temperature of the fireball in a thermonuclear explosion can reach temperatures of approximately $10^7 \\mathrm{~K}$. What value of $\\lambda_{\\max }$ does this correspond to? ",
"answer_latex": " 3",
"answer_number": "3",
"unit": " $10^{-10} \\mathrm{~m}$\r\n",
"source": "chemmc",
"problemid": "1-8 ",
"comment": " "
},
{
"problem_text": "Show that l'H\u00f4pital's rule amounts to forming a Taylor expansion of both the numerator and the denominator. Evaluate the limit\r\n$$\r\n\\lim _{x \\rightarrow 0} \\frac{\\ln (1+x)-x}{x^2}\r\n$$\r\nboth ways and report the final result.",
"answer_latex": " -1/2",
"answer_number": "-0.5",
"unit": " ",
"source": "chemmc",
"problemid": "D-21 ",
"comment": " Math Part D (after chapter 4)"
},
{
"problem_text": "Evaluate the series\r\n$$\r\nS=\\sum_{n=1}^{\\infty} \\frac{(-1)^{n+1}}{2^n}\r\n$$",
"answer_latex": " 1/3",
"answer_number": "0.3333333",
"unit": " ",
"source": "chemmc",
"problemid": " D-8",
"comment": " Math Part D (after chapter 4)"
},
{
"problem_text": "Calculate the percentage difference between $\\ln (1+x)$ and $x$ for $x=0.0050$",
"answer_latex": " 0.249",
"answer_number": "0.249",
"unit": " %",
"source": "chemmc",
"problemid": " D-4",
"comment": " Math Part D (after chapter 4)"
},
{
"problem_text": "Calculate the reduced mass of a nitrogen molecule in which both nitrogen atoms have an atomic mass of 14.00.",
"answer_latex": " 7.00",
"answer_number": "7.00",
"unit": " ",
"source": "chemmc",
"problemid": "1-30 ",
"comment": "no units "
},
{
"problem_text": "Two narrow slits are illuminated with red light of wavelength $694.3 \\mathrm{~nm}$ from a laser, producing a set of evenly placed bright bands on a screen located $3.00 \\mathrm{~m}$ beyond the slits. If the distance between the bands is $1.50 \\mathrm{~cm}$, then what is the distance between the slits?\r\n",
"answer_latex": " 0.139",
"answer_number": "0.139",
"unit": "mm ",
"source": "chemmc",
"problemid": "1-45 ",
"comment": " "
},
{
"problem_text": "Calculate the energy associated with an $\\alpha$ particle that has fallen through a potential difference of $4.0 \\mathrm{~V}$. Take the mass of an $\\alpha$ particle to be $6.64 \\times 10^{-27} \\mathrm{~kg}$.",
"answer_latex": " 1.3",
"answer_number": "1.3",
"unit": "$10^{-18} \\mathrm{~J} / \\alpha \\text {-particle}$",
"source": "chemmc",
"problemid": "1-41 ",
"comment": " "
},
{
"problem_text": "Calculate the number of photons in a $2.00 \\mathrm{~mJ}$ light pulse at (a) $1.06 \\mu \\mathrm{m}$\r\n",
"answer_latex": " 1.07",
"answer_number": "1.07",
"unit": " $10^{16}$ photons",
"source": "chemmc",
"problemid": " 1-13",
"comment": " part (a) only"
},
{
"problem_text": "The force constant of ${ }^{35} \\mathrm{Cl}^{35} \\mathrm{Cl}$ is $319 \\mathrm{~N} \\cdot \\mathrm{m}^{-1}$. Calculate the fundamental vibrational frequency",
"answer_latex": " 556",
"answer_number": "556",
"unit": " $\\mathrm{~cm}^{-1}$",
"source": "chemmc",
"problemid": " 5-14",
"comment": " "
},
{
"problem_text": "$$\r\n\\text {Calculate the energy of a photon for a wavelength of } 100 \\mathrm{pm} \\text { (about one atomic diameter). }\r\n$$\r\n",
"answer_latex": " 2",
"answer_number": "2",
"unit": " $10^{-15} \\mathrm{~J}$",
"source": "chemmc",
"problemid": "1-11 ",
"comment": " "
},
{
"problem_text": "A proton and a negatively charged $\\mu$ meson (called a muon) can form a short-lived species called a mesonic atom. The charge of a muon is the same as that on an electron and the mass of a muon is $207 m_{\\mathrm{e}}$. Assume that the Bohr theory can be applied to such a mesonic atom and calculate the frequency associated with the $n=1$ to $n=2$ transition in a mesonic atom.",
"answer_latex": " 1.69",
"answer_number": "4.59",
"unit": "$10^{17} \\mathrm{~Hz}$",
"source": "chemmc",
"problemid": " 1-37",
"comment": " only the ground state energy is there"
},
{
"problem_text": "$$\r\n\\beta=2 \\pi c \\tilde{\\omega}_{\\mathrm{obs}}\\left(\\frac{\\mu}{2 D}\\right)^{1 / 2}\r\n$$\r\nGiven that $\\tilde{\\omega}_{\\mathrm{obs}}=2886 \\mathrm{~cm}^{-1}$ and $D=440.2 \\mathrm{~kJ} \\cdot \\mathrm{mol}^{-1}$ for $\\mathrm{H}^{35} \\mathrm{Cl}$, calculate $\\beta$.",
"answer_latex": " 1.81",
"answer_number": "1.81",
"unit": " $10^{10} \\mathrm{~m}^{-1}$",
"source": "chemmc",
"problemid": " 5-10",
"comment": " "
},
{
"problem_text": "Two narrow slits separated by $0.10 \\mathrm{~mm}$ are illuminated by light of wavelength $600 \\mathrm{~nm}$. If a detector is located $2.00 \\mathrm{~m}$ beyond the slits, what is the distance between the central maximum and the first maximum?",
"answer_latex": " 12",
"answer_number": "12",
"unit": " mm",
"source": "chemmc",
"problemid": "1-44 ",
"comment": " "
},
{
"problem_text": "$$\r\n\\text { If we locate an electron to within } 20 \\mathrm{pm} \\text {, then what is the uncertainty in its speed? }\r\n$$",
"answer_latex": " 3.7",
"answer_number": "3.7",
"unit": "$10^7 \\mathrm{~m} \\cdot \\mathrm{s}^{-1}$ ",
"source": "chemmc",
"problemid": "1-46 ",
"comment": " "
},
{
"problem_text": "The mean temperature of the earth's surface is $288 \\mathrm{~K}$. What is the maximum wavelength of the earth's blackbody radiation?",
"answer_latex": " 1.01",
"answer_number": "1.01",
"unit": " 10^{-5} \\mathrm{~m}",
"source": "chemmc",
"problemid": " 1-14",
"comment": " "
},
{
"problem_text": "The power output of a laser is measured in units of watts (W), where one watt is equal to one joule per second. $\\left(1 \\mathrm{~W}=1 \\mathrm{~J} \\cdot \\mathrm{s}^{-1}\\right.$.) What is the number of photons emitted per second by a $1.00 \\mathrm{~mW}$ nitrogen laser? The wavelength emitted by a nitrogen laser is $337 \\mathrm{~nm}$.",
"answer_latex": " 1.70",
"answer_number": "1.70",
"unit": " $\r\n10^{15} \\text { photon } \\cdot \\mathrm{s}^{-1}\r\n$",
"source": "chemmc",
"problemid": " 1-16",
"comment": " "
},
{
"problem_text": " Sirius, one of the hottest known stars, has approximately a blackbody spectrum with $\\lambda_{\\max }=260 \\mathrm{~nm}$. Estimate the surface temperature of Sirius.\r\n",
"answer_latex": "11000",
"answer_number": "11000",
"unit": " $\\mathrm{~K}$\r\n",
"source": "chemmc",
"problemid": " 1-7",
"comment": " "
},
{
"problem_text": "A ground-state hydrogen atom absorbs a photon of light that has a wavelength of $97.2 \\mathrm{~nm}$. It then gives off a photon that has a wavelength of $486 \\mathrm{~nm}$. What is the final state of the hydrogen atom?",
"answer_latex": " 2",
"answer_number": "2",
"unit": " ",
"source": "chemmc",
"problemid": " 1-26",
"comment": " no units"
},
{
"problem_text": "It turns out that the solution of the Schr\u00f6dinger equation for the Morse potential can be expressed as\r\n$$\r\nG(v)=\\tilde{\\omega}_{\\mathrm{e}}\\left(v+\\frac{1}{2}\\right)-\\tilde{\\omega}_{\\mathrm{e}} \\tilde{x}_{\\mathrm{e}}\\left(v+\\frac{1}{2}\\right)^2\r\n$$\r\nThe Harmonic Oscillator and Vibrational Spectroscopy\r\nwhere\r\n$$\r\n\\tilde{x}_{\\mathrm{e}}=\\frac{h c \\tilde{\\omega}_{\\mathrm{e}}}{4 D}\r\n$$\r\nGiven that $\\tilde{\\omega}_{\\mathrm{e}}=2886 \\mathrm{~cm}^{-1}$ and $D=440.2 \\mathrm{~kJ} \\cdot \\mathrm{mol}^{-1}$ for $\\mathrm{H}^{35} \\mathrm{Cl}$, calculate $\\tilde{x}_{\\mathrm{e}}$.",
"answer_latex": " 0.01961",
"answer_number": " 0.01961",
"unit": " ",
"source": "chemmc",
"problemid": "5-12 ",
"comment": "only first part taken of the question "
},
{
"problem_text": " In the infrared spectrum of $\\mathrm{H}^{127} \\mathrm{I}$, there is an intense line at $2309 \\mathrm{~cm}^{-1}$. Calculate the force constant of $\\mathrm{H}^{127} \\mathrm{I}$.",
"answer_latex": "313",
"answer_number": "313",
"unit": " $ \\mathrm{~N} \\cdot \\mathrm{m}^{-1}$",
"source": "chemmc",
"problemid": " 5-13",
"comment": " "
},
{
"problem_text": "Calculate the percentage difference between $e^x$ and $1+x$ for $x=0.0050$",
"answer_latex": " 1.25",
"answer_number": "1.25",
"unit": " $10^{-3} \\%$",
"source": "chemmc",
"problemid": "D-1",
"comment": "Math Part D (after chapter 4)"
},
{
"problem_text": "Calculate the kinetic energy of an electron in a beam of electrons accelerated by a voltage increment of $100 \\mathrm{~V}$",
"answer_latex": " 1.602",
"answer_number": "1.602",
"unit": " $10^{-17} \\mathrm{~J} \\cdot$ electron ${ }^{-1}$",
"source": "chemmc",
"problemid": "1-39 ",
"comment": " "
}
] |