Datasets:
Tasks:
Text Classification
Modalities:
Text
Sub-tasks:
sentiment-classification
Size:
10K - 100K
License:
Add dataset script
Browse files
test.jsonl.gz → dataset/test.jsonl.gz
RENAMED
File without changes
|
train.jsonl.gz → dataset/train.jsonl.gz
RENAMED
File without changes
|
unsupervised.jsonl.gz → dataset/unsupervised.jsonl.gz
RENAMED
File without changes
|
imdb_dutch.py
ADDED
@@ -0,0 +1,127 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
# Lint as: python3
|
17 |
+
"""IMDB movie reviews dataset."""
|
18 |
+
import gzip
|
19 |
+
import json
|
20 |
+
|
21 |
+
import datasets
|
22 |
+
from datasets.tasks import TextClassification
|
23 |
+
|
24 |
+
|
25 |
+
_DESCRIPTION = """\
|
26 |
+
Large Movie Review Dataset translated to Dutch.
|
27 |
+
|
28 |
+
This is a dataset for binary sentiment classification containing substantially \
|
29 |
+
more data than previous benchmark datasets. We provide a set of 24,992 highly \
|
30 |
+
polar movie reviews for training, and 24,992 for testing. There is additional \
|
31 |
+
unlabeled data for use as well.\
|
32 |
+
"""
|
33 |
+
|
34 |
+
_CITATION = """\
|
35 |
+
@InProceedings{maas-EtAl:2011:ACL-HLT2011,
|
36 |
+
author = {Maas, Andrew L. and Daly, Raymond E. and Pham, Peter T. and Huang, Dan and Ng, Andrew Y. and Potts, Christopher},
|
37 |
+
title = {Learning Word Vectors for Sentiment Analysis},
|
38 |
+
booktitle = {Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies},
|
39 |
+
month = {June},
|
40 |
+
year = {2011},
|
41 |
+
address = {Portland, Oregon, USA},
|
42 |
+
publisher = {Association for Computational Linguistics},
|
43 |
+
pages = {142--150},
|
44 |
+
url = {http://www.aclweb.org/anthology/P11-1015}
|
45 |
+
}
|
46 |
+
"""
|
47 |
+
|
48 |
+
_DOWNLOAD_URL = "https://huggingface.co/datasets/yhavinga/imdb_dutch/resolve/main/dataset/{split}.gz"
|
49 |
+
|
50 |
+
|
51 |
+
class IMDBReviewsConfig(datasets.BuilderConfig):
|
52 |
+
"""BuilderConfig for IMDBReviews."""
|
53 |
+
|
54 |
+
def __init__(self, **kwargs):
|
55 |
+
"""BuilderConfig for IMDBReviews.
|
56 |
+
|
57 |
+
Args:
|
58 |
+
**kwargs: keyword arguments forwarded to super.
|
59 |
+
"""
|
60 |
+
super(IMDBReviewsConfig, self).__init__(
|
61 |
+
version=datasets.Version("1.0.0", ""), **kwargs
|
62 |
+
)
|
63 |
+
|
64 |
+
|
65 |
+
class Imdb(datasets.GeneratorBasedBuilder):
|
66 |
+
"""IMDB movie reviews dataset."""
|
67 |
+
|
68 |
+
BUILDER_CONFIGS = [
|
69 |
+
IMDBReviewsConfig(
|
70 |
+
name="plain_text",
|
71 |
+
description="Plain text",
|
72 |
+
)
|
73 |
+
]
|
74 |
+
|
75 |
+
def _info(self):
|
76 |
+
return datasets.DatasetInfo(
|
77 |
+
description=_DESCRIPTION,
|
78 |
+
features=datasets.Features(
|
79 |
+
{
|
80 |
+
"text": datasets.Value("string"),
|
81 |
+
"text_en": datasets.Value("string"),
|
82 |
+
"label": datasets.features.ClassLabel(names=["neg", "pos"]),
|
83 |
+
}
|
84 |
+
),
|
85 |
+
supervised_keys=None,
|
86 |
+
homepage="http://ai.stanford.edu/~amaas/data/sentiment/",
|
87 |
+
citation=_CITATION,
|
88 |
+
task_templates=[
|
89 |
+
TextClassification(text_column="text", label_column="label")
|
90 |
+
],
|
91 |
+
)
|
92 |
+
|
93 |
+
def _split_generators(self, dl_manager):
|
94 |
+
return [
|
95 |
+
datasets.SplitGenerator(
|
96 |
+
name=datasets.Split.TRAIN,
|
97 |
+
gen_kwargs={
|
98 |
+
"files": dl_manager.download(_DOWNLOAD_URL.format(split="train")),
|
99 |
+
"split": "train",
|
100 |
+
},
|
101 |
+
),
|
102 |
+
datasets.SplitGenerator(
|
103 |
+
name=datasets.Split.TEST,
|
104 |
+
gen_kwargs={
|
105 |
+
"files": dl_manager.download(_DOWNLOAD_URL.format(split="test")),
|
106 |
+
"split": "test",
|
107 |
+
},
|
108 |
+
),
|
109 |
+
datasets.SplitGenerator(
|
110 |
+
name=datasets.Split("unsupervised"),
|
111 |
+
gen_kwargs={
|
112 |
+
"files": dl_manager.download(
|
113 |
+
_DOWNLOAD_URL.format(split="unsupervised")
|
114 |
+
),
|
115 |
+
"split": "unsupervised",
|
116 |
+
"labeled": False,
|
117 |
+
},
|
118 |
+
),
|
119 |
+
]
|
120 |
+
|
121 |
+
def _generate_examples(self, files, split, labeled=True):
|
122 |
+
"""Generate aclImdb examples."""
|
123 |
+
for filepath in files:
|
124 |
+
with gzip.open(open(filepath, "rb"), "rt", encoding="utf-8") as f:
|
125 |
+
for _, line in enumerate(f):
|
126 |
+
example = json.loads(line)
|
127 |
+
yield _, example
|