File size: 13,633 Bytes
7607d15
df34a97
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7607d15
df34a97
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fbdf18f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4383817
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6ba215f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
df34a97
7607d15
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6a250e8
7607d15
 
6a250e8
7607d15
 
 
9765082
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7607d15
df34a97
 
 
 
 
 
 
 
fbdf18f
 
 
 
 
 
 
 
4383817
 
 
 
 
 
 
 
6ba215f
 
 
 
 
 
 
 
7607d15
 
 
 
 
 
 
 
9765082
 
 
 
 
 
 
 
7607d15
30436df
7607d15
6a250e8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
---
language:
- nl
- fr
- de
- it
- pl
- pt
- es
license: cc-by-4.0
size_categories:
- 1M<n<10M
task_categories:
- text-to-speech
- text-to-audio
pretty_name: CML-TTS
dataset_info:
- config_name: dutch
  features:
  - name: audio
    dtype: audio
  - name: wav_filesize
    dtype: int64
  - name: text
    dtype: string
  - name: transcript_wav2vec
    dtype: string
  - name: levenshtein
    dtype: float64
  - name: duration
    dtype: float64
  - name: num_words
    dtype: int64
  - name: speaker_id
    dtype: int64
  splits:
  - name: train
    num_bytes: 186374683541.98
    num_examples: 309785
  - name: dev
    num_bytes: 2912063172.928
    num_examples: 4834
  - name: test
    num_bytes: 2757891736.78
    num_examples: 4570
  download_size: 132987704971
  dataset_size: 192044638451.68802
- config_name: french
  features:
  - name: audio
    dtype: audio
  - name: wav_filesize
    dtype: int64
  - name: text
    dtype: string
  - name: transcript_wav2vec
    dtype: string
  - name: levenshtein
    dtype: float64
  - name: duration
    dtype: float64
  - name: num_words
    dtype: int64
  - name: speaker_id
    dtype: int64
  splits:
  - name: train
    num_bytes: 64984002840.768
    num_examples: 107598
  - name: dev
    num_bytes: 2257393207.796
    num_examples: 3739
  - name: test
    num_bytes: 2281630546.306
    num_examples: 3763
  download_size: 48345998335
  dataset_size: 69523026594.87
- config_name: german
  features:
  - name: audio
    dtype: audio
  - name: wav_filesize
    dtype: int64
  - name: text
    dtype: string
  - name: transcript_wav2vec
    dtype: string
  - name: levenshtein
    dtype: float64
  - name: duration
    dtype: float64
  - name: num_words
    dtype: int64
  - name: speaker_id
    dtype: int64
  splits:
  - name: train
    num_bytes: 369052038020.872
    num_examples: 608296
  - name: dev
    num_bytes: 3197115278.604
    num_examples: 5314
  - name: test
    num_bytes: 3288183839.092
    num_examples: 5466
  download_size: 280438261836
  dataset_size: 375537337138.568
- config_name: italian
  features:
  - name: audio
    dtype: audio
  - name: wav_filesize
    dtype: int64
  - name: text
    dtype: string
  - name: transcript_wav2vec
    dtype: string
  - name: levenshtein
    dtype: float64
  - name: duration
    dtype: float64
  - name: num_words
    dtype: int64
  - name: speaker_id
    dtype: int64
  splits:
  - name: train
    num_bytes: 30242801015.92
    num_examples: 50345
  - name: dev
    num_bytes: 938644924.81
    num_examples: 1765
  - name: test
    num_bytes: 979116355.51
    num_examples: 1835
  download_size: 21996805791
  dataset_size: 32160562296.239998
- config_name: polish
  features:
  - name: audio
    dtype: audio
  - name: wav_filesize
    dtype: int64
  - name: text
    dtype: string
  - name: transcript_wav2vec
    dtype: string
  - name: levenshtein
    dtype: float64
  - name: duration
    dtype: float64
  - name: num_words
    dtype: int64
  - name: speaker_id
    dtype: int64
  splits:
  - name: train
    num_bytes: 11127461686.356
    num_examples: 18719
  - name: dev
    num_bytes: 356048249
    num_examples: 853
  - name: test
    num_bytes: 367796887
    num_examples: 814
  download_size: 8114633186
  dataset_size: 11851306822.356
- config_name: portuguese
  features:
  - name: audio
    dtype: audio
  - name: wav_filesize
    dtype: int64
  - name: text
    dtype: string
  - name: transcript_wav2vec
    dtype: string
  - name: levenshtein
    dtype: float64
  - name: duration
    dtype: float64
  - name: num_words
    dtype: int64
  - name: speaker_id
    dtype: int64
  splits:
  - name: train
    num_bytes: 20722423371.0
    num_examples: 34265
  - name: dev
    num_bytes: 622824524.224
    num_examples: 1134
  - name: test
    num_bytes: 673141068.9
    num_examples: 1297
  download_size: 14421097659
  dataset_size: 22018388964.124
configs:
- config_name: dutch
  data_files:
  - split: train
    path: dutch/train-*
  - split: dev
    path: dutch/dev-*
  - split: test
    path: dutch/test-*
- config_name: french
  data_files:
  - split: train
    path: french/train-*
  - split: dev
    path: french/dev-*
  - split: test
    path: french/test-*
- config_name: german
  data_files:
  - split: train
    path: german/train-*
  - split: dev
    path: german/dev-*
  - split: test
    path: german/test-*
- config_name: italian
  data_files:
  - split: train
    path: italian/train-*
  - split: dev
    path: italian/dev-*
  - split: test
    path: italian/test-*
- config_name: polish
  data_files:
  - split: train
    path: polish/train-*
  - split: dev
    path: polish/dev-*
  - split: test
    path: polish/test-*
- config_name: portuguese
  data_files:
  - split: train
    path: portuguese/train-*
  - split: dev
    path: portuguese/dev-*
  - split: test
    path: portuguese/test-*
---
# Dataset Card for CML-TTS

## Table of Contents
- [Dataset Description](#dataset-description)
  - [Dataset Summary](#dataset-summary)
  - [Supported Tasks](#supported-tasks)
  - [Languages](#languages)
  - [How to use](#how-to-use)
- [Dataset Structure](#dataset-structure)
  - [Data Instances](#data-instances)
  - [Data Fields](#data-fields)
  - [Data Splits](#data-splits)
  - [Data Statistics](#data-statistics)
- [Dataset Creation](#dataset-creation)
  - [Curation Rationale](#curation-rationale)
  - [Source Data](#source-data)
  - [Annotations](#annotations)
  - [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
  - [Social Impact of Dataset](#social-impact-of-dataset)
  - [Discussion of Biases](#discussion-of-biases)
  - [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
  - [Dataset Curators](#dataset-curators)
  - [Licensing Information](#licensing-information)
  - [Citation Information](#citation-information)
  - [Contributions](#contributions)

## Dataset Description

- **Homepage:** [MultiLingual LibriSpeech ASR corpus](https://www.openslr.org/146/)
- **Repository:** [CML-TTS-Dataset](https://github.com/freds0/CML-TTS-Dataset)
- **Paper:** [CML-TTS A Multilingual Dataset for Speech Synthesis in Low-Resource Languages](https://arxiv.org/abs/2306.10097)

### Dataset Summary

CML-TTS is a recursive acronym for CML-Multi-Lingual-TTS, a Text-to-Speech (TTS) dataset developed at the Center of Excellence in Artificial Intelligence (CEIA) of the Federal University of Goias (UFG).
CML-TTS is a dataset comprising audiobooks sourced from the public domain books of Project Gutenberg, read by volunteers from the LibriVox project. The dataset includes recordings in Dutch, German, French, Italian, Polish, Portuguese, and Spanish, all at a sampling rate of 24kHz.

The data archives were restructured from the original ones from [OpenSLR](http://www.openslr.org/146) to make it easier to stream.


### Supported Tasks

- `text-to-speech`, `text-to-audio`: The dataset can also be used to train a model for Text-To-Speech (TTS).

### Languages

The dataset includes recordings in Dutch, German, French, Italian, Polish, Portuguese, and Spanish, all at a sampling rate of 24kHz.

### How to use

The `datasets` library allows you to load and pre-process your dataset in pure Python, at scale. The dataset can be downloaded and prepared in one call to your local drive by using the `load_dataset` function. 

For example, to download the German config, simply specify the corresponding language config name (i.e., "german" for German):
```python
from datasets import load_dataset

mls = load_dataset("ylacombe/cml-tts", "german", split="train")
```

Using the datasets library, you can also stream the dataset on-the-fly by adding a `streaming=True` argument to the `load_dataset` function call. Loading a dataset in streaming mode loads individual samples of the dataset at a time, rather than downloading the entire dataset to disk.
```python
from datasets import load_dataset

mls = load_dataset("ylacombe/cml-tts", "german", split="train", streaming=True)

print(next(iter(mls)))
```

#### *Bonus*
You can create a [PyTorch dataloader](https://huggingface.co/docs/datasets/use_with_pytorch) directly with your own datasets (local/streamed).

**Local:**

```python
from datasets import load_dataset
from torch.utils.data.sampler import BatchSampler, RandomSampler

mls = load_dataset("ylacombe/cml-tts", "german", split="train")
batch_sampler = BatchSampler(RandomSampler(mls), batch_size=32, drop_last=False)
dataloader = DataLoader(mls, batch_sampler=batch_sampler)
```

**Streaming:**

```python
from datasets import load_dataset
from torch.utils.data import DataLoader

mls = load_dataset("ylacombe/cml-tts", "german", split="train", streaming=True)
dataloader = DataLoader(mls, batch_size=32)
```

To find out more about loading and preparing audio datasets, head over to [hf.co/blog/audio-datasets](https://huggingface.co/blog/audio-datasets).

## Dataset Structure

### Data Instances

A typical data point comprises the path to the audio file, usually called `file` and its transcription, called `text`. Some additional information about the speaker and the passage which contains the transcription is provided.

```
{'audio': {'path': '6892_8912_000729.wav', 'array': array([-1.52587891e-...7344e-05]), 'sampling_rate': 24000}, 'wav_filesize': 601964, 'text': 'Proszę pana, tu pano... zdziwiony', 'transcript_wav2vec': 'proszę pana tu panow... zdziwiony', 'levenshtein': 0.96045197740113, 'duration': 13.648979591836737, 'num_words': 29, 'speaker_id': 6892}
```

### Data Fields

- audio: A dictionary containing the audio filename, the decoded audio array, and the sampling rate. Note that when accessing the audio column: `dataset[0]["audio"]` the audio file is automatically decoded and resampled to `dataset.features["audio"].sampling_rate`. Decoding and resampling of a large number of audio files might take a significant amount of time. Thus it is important to first query the sample index before the `"audio"` column, *i.e.* `dataset[0]["audio"]` should **always** be preferred over `dataset["audio"][0]`.

- text: the transcription of the audio file.

- speaker_id: unique id of the speaker. The same speaker id can be found for multiple data samples.

- transcript_wav2vec: the transcription of the audio file using the wav2vec model. Has been used to curate the dataset.

- wav_filesize: The size of the audio waveform file. Has been used to curate the dataset.

- levenshtein: The [Levenshtein distance](https://en.wikipedia.org/wiki/Levenshtein_distance) between the wav2vec transcription and the original transcription. Has been used to curate the dataset.

- duration: The duration of the audio in seconds.

- num_words: The number of words of the transcription.

### Data Splits

TODO

### Data Statistics

| Language   | Duration (Train) | Duration (Test) | Duration (Dev) | Speakers (Train) | Speakers (Test) | Speakers (Dev) |
|------------|-------------------|------------------|----------------|------------------|-----------------|----------------|
|            | M       | F       | M      | F      | M      | F      | M     | F     | M    | F    | M    | F    |
| Dutch      | 482.82  | 162.17  | 2.46   | 1.29   | 2.24   | 1.67   | 8     | 27    | 3    | 3    | 2    | 4    |
| French     | 260.08  | 24.04   | 2.48   | 3.55   | 3.31   | 2.72   | 25    | 20    | 8    | 9    | 10   | 8    |
| German     | 1128.96 | 436.64  | 3.75   | 5.27   | 4.31   | 5.03   | 78    | 90    | 13   | 17   | 13   | 15   |
| Italian    | 73.78   | 57.51   | 1.47   | 0.85   | 0.40   | 1.52   | 23    | 38    | 5    | 5    | 4    | 6    |
| Polish     | 30.61   | 8.32    | 0.70   | 0.90   | 0.56   | 0.80   | 4     | 4     | 2    | 2    | 2    | 2    |
| Portuguese | 23.14   | 44.81   | 0.28   | 0.24   | 0.68   | 0.20   | 20    | 10    | 5    | 4    | 6    | 3    |
| Spanish    | 279.15  | 164.08  | 2.77   | 2.06   | 3.40   | 2.34   | 35    | 42    | 10   | 8    | 11   | 9    |
| Total      | 3,176.13|         | 28.11  |         | 29.19  |         | 424   |       | 94   |      | 95   |      |


## Dataset Creation

### Curation Rationale

[Needs More Information]

### Source Data

#### Initial Data Collection and Normalization

[Needs More Information]

#### Who are the source language producers?

[Needs More Information]

### Annotations

#### Annotation process

[Needs More Information]

#### Who are the annotators?

[Needs More Information]

### Personal and Sensitive Information

The dataset consists of people who have donated their voice online. You agree to not attempt to determine the identity of speakers in this dataset.

## Considerations for Using the Data

### Social Impact of Dataset

[More Information Needed]

### Discussion of Biases

[More Information Needed]

### Other Known Limitations

[Needs More Information]

## Additional Information

### Dataset Curators

[Needs More Information]

### Licensing Information

Public Domain, Creative Commons Attribution 4.0 International Public License ([CC-BY-4.0](https://creativecommons.org/licenses/by/4.0/legalcode))

### Citation Information

```
@misc{oliveira2023cmltts,
      title={CML-TTS A Multilingual Dataset for Speech Synthesis in Low-Resource Languages}, 
      author={Frederico S. Oliveira and Edresson Casanova and Arnaldo Cândido Júnior and Anderson S. Soares and Arlindo R. Galvão Filho},
      year={2023},
      eprint={2306.10097},
      archivePrefix={arXiv},
      primaryClass={eess.AS}
}
```

### Contributions

Thanks to [@ylacombe](https://github.com/ylacombe) for adding this dataset.