File size: 10,776 Bytes
594180e 413e6e6 87141c1 594180e 413e6e6 594180e 413e6e6 594180e 413e6e6 594180e 413e6e6 594180e 413e6e6 594180e 413e6e6 594180e 87141c1 413e6e6 594180e 87141c1 594180e e31c89f 594180e 87141c1 594180e 87141c1 594180e 413e6e6 87141c1 594180e 87141c1 594180e 87141c1 594180e 413e6e6 594180e 413e6e6 e31c89f 594180e c1bb704 594180e e31c89f 594180e 87141c1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 |
# coding=utf-8
# Permission is hereby granted, free of charge, to any person obtaining
# a copy of this software and associated documentation files (the
# "Software"), to deal in the Software without restriction, including
# without limitation the rights to use, copy, modify, merge, publish,
# distribute, sublicense, and/or sell copies of the Software, and to
# permit persons to whom the Software is furnished to do so, subject to
# the following conditions:
# The above copyright notice and this permission notice shall be
# included in all copies or substantial portions of the Software.
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
# LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
# OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
# WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
"""Carla-COCO-Object-Detection-Dataset"""
import collections
import json
import os
import datasets
_DESCRIPTION = """\
This dataset contains 1028 images each 640x380 pixels.
The dataset is split into 249 test and 779 training examples.
Every image comes with MS COCO format annotations.
The dataset was collected in Carla Simulator, driving around in autopilot mode in various environments
(Town01, Town02, Town03, Town04, Town05) and saving every i-th frame.
The labels where then automatically generated using the semantic segmentation information.
"""
_HOMEPAGE = "https://github.com/yunusskeete/Carla-COCO-Object-Detection-Dataset"
_LICENSE = "MIT"
_URL = "https://huggingface.co/datasets/yunusskeete/Carla-COCO-Object-Detection-Dataset/resolve/main/Carla-COCO-Object-Detection-Dataset.tar.gz"
_CATEGORIES = ["automobile", "bike", "motorbike", "traffic_light", "traffic_sign"]
class CARLA_COCO(datasets.GeneratorBasedBuilder):
"""Carla-COCO-Object-Detection-Dataset"""
VERSION = datasets.Version("1.1.0")
def _info(self):
"""This method specifies the datasets.DatasetInfo object which contains informations and typings for the dataset"""
features = datasets.Features(
{
"image_id": datasets.Value("int64"),
"image": datasets.Image(),
"width": datasets.Value("int32"),
"height": datasets.Value("int32"),
"file_name": datasets.Value("string"),
"license": datasets.Value(dtype="int32"),
"url": datasets.Value("string"),
"date_captured": datasets.Value("string"),
"objects": datasets.Sequence(
{
"id": datasets.Value("int64"),
"area": datasets.Value("int64"),
"bbox": datasets.Sequence(datasets.Value("float32"), length=4),
"category": datasets.ClassLabel(names=_CATEGORIES),
}
),
}
)
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
)
def _split_generators(self, dl_manager):
"""This method is tasked with downloading/extracting the data and defining the splits depending on the configuration"""
archive = dl_manager.download(_URL)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"annotation_file_path": "annotations/train.json",
"files": dl_manager.iter_archive(archive),
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"annotation_file_path": "annotations/test.json",
"files": dl_manager.iter_archive(archive),
},
),
]
# method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
def _generate_examples(self, annotation_file_path, files):
"""
This method handles input defined in _split_generators to yield (key, example) tuples from the dataset.
"""
def process_annot(annot, category_id_to_category):
return {
"id": annot["id"],
"area": annot["area"],
"bbox": annot["bbox"],
"category": category_id_to_category[annot["category_id"]],
}
image_id_to_image = {}
idx = 0
# This loop relies on the ordering of the files in the archive:
# Annotation files come first, then the images.
for path, f in files:
file_name = os.path.basename(path)
if path == annotation_file_path:
annotations = json.load(f)
category_id_to_category = {category["id"]: category["name"] for category in annotations["categories"]}
image_id_to_annotations = collections.defaultdict(list)
for annot in annotations["annotations"]:
image_id_to_annotations[annot["image_id"]].append(annot)
image_id_to_image = {annot["file_name"]: annot for annot in annotations["images"]}
elif file_name in image_id_to_image:
image = image_id_to_image[file_name]
objects = [
process_annot(annot, category_id_to_category) for annot in image_id_to_annotations[image["id"]]
]
yield idx, {
"image_id": image["id"],
"image": {"path": path, "bytes": f.read()},
"width": image["width"],
"height": image["height"],
"file_name": image["file_name"],
"license": image["license"],
"url": image["url"],
"date_captured": image["date_captured"],
"objects": objects,
}
idx += 1
# class CARLA_COCO(datasets.GeneratorBasedBuilder):
# """Carla-COCO-Object-Detection-Dataset"""
# VERSION = datasets.Version("1.1.0")
# def _info(self):
# """This method specifies the datasets.DatasetInfo object which contains informations and typings for the dataset"""
# features = datasets.Features(
# {
# "id": datasets.Value("int64"),
# "image_id": datasets.Value("string"),
# "image": datasets.Image(),
# "width": datasets.Value("int32"),
# "height": datasets.Value("int32"),
# "file_name": datasets.Value("string"),
# "url": datasets.Value("string"),
# "objects": datasets.Sequence(
# {
# "id": datasets.Sequence(datasets.Value("int64")),
# "area": datasets.Sequence(datasets.Value("int64")),
# "bbox": datasets.Sequence(datasets.Value("float32"), length=4),
# "category": datasets.Sequence(datasets.ClassLabel(names=_CATEGORIES)),
# }
# ),
# }
# )
# return datasets.DatasetInfo(
# description=_DESCRIPTION,
# features=features,
# homepage=_HOMEPAGE,
# license=_LICENSE,
# )
# def _split_generators(self, dl_manager):
# """This method is tasked with downloading/extracting the data and defining the splits depending on the configuration"""
# archive = dl_manager.download_and_extract(_URL)
# return [
# datasets.SplitGenerator(
# name=datasets.Split.TRAIN,
# # These kwargs will be passed to _generate_examples
# gen_kwargs={
# "annotation_file_path": "annotations/train.json",
# "files": dl_manager.iter_archive(archive),
# }
# ),
# datasets.SplitGenerator(
# name=datasets.Split.TEST,
# # These kwargs will be passed to _generate_examples
# gen_kwargs={
# "annotation_file_path": "annotations/test.json",
# "files": dl_manager.iter_archive(archive),
# }
# ),
# ]
# # method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
# def _generate_examples(self, annotation_file_path, files):
# """
# This method handles input defined in _split_generators to yield (key, example) tuples from the dataset.
# The `key` is for legacy reasons (tfds) and is not important in itself, but must be unique for each example.
# """
# logger.info("generating examples from = %s", annotation_file_path)
# def process_annot(annot, category_id_to_category):
# return {
# "id": annot["id"],
# "area": annot["area"],
# "bbox": annot["bbox"],
# "category": category_id_to_category[annot["category_id"]],
# }
# image_id_to_image = {}
# idx = 0
# # This loop relies on the ordering of the files in the archive:
# # Annotation files come first, then the images.
# for path, f in files:
# file_name = os.path.basename(path)
# if path == annotation_file_path:
# annotations = json.load(f)
# category_id_to_category = {category["id"]: category["name"] for category in annotations["categories"]}
# image_id_to_annotations = collections.defaultdict(list)
# for annot in annotations["annotations"]:
# image_id_to_annotations[annot["image_id"]].append(annot)
# image_id_to_image = {annot["file_name"]: annot for annot in annotations["images"]}
# elif file_name in image_id_to_image:
# image = image_id_to_image[file_name]
# objects = [
# process_annot(annot, category_id_to_category) for annot in image_id_to_annotations[image["id"]]
# ]
# yield idx, {
# "image_id": image["id"],
# "image": {"path": path, "bytes": f.read()},
# "width": image["width"],
# "height": image["height"],
# "objects": objects,
# }
# idx += 1
|