File size: 4,871 Bytes
ee35848
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7dc1f1c
ee35848
10dc01d
 
ee35848
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10dc01d
ee35848
 
 
 
 
 
 
 
4eca053
ee35848
 
 
 
 
4eca053
ee35848
 
 
 
 
4eca053
ee35848
 
 
 
 
4eca053
ee35848
 
 
 
 
4eca053
ee35848
 
 
 
 
4eca053
ee35848
 
 
 
 
4eca053
ee35848
 
 
 
 
4eca053
ee35848
 
 
 
 
4eca053
ee35848
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""CSS: A Large-scale Cross-schema Chinese Text-to-SQL Medical Dataset"""


import json
import os

import datasets


logger = datasets.logging.get_logger(__name__)


_CITATION = """\
"""

_DESCRIPTION = "CSS is a large-scale cross-schema Chinese text-to-SQL dataset"

_LICENSE = "CC BY-SA 4.0"

_URL = "https://huggingface.co/datasets/zhanghanchong/css/resolve/main/css.zip"


class CSS(datasets.GeneratorBasedBuilder):
    VERSION = datasets.Version("1.0.0")

    BUILDER_CONFIGS = [
        datasets.BuilderConfig(
            name="css",
            version=VERSION,
            description="CSS: A Large-scale Cross-schema Chinese Text-to-SQL Medical Dataset",
        ),
    ]

    def _info(self):
        features = datasets.Features(
            {
                "query": datasets.Value("string"),
                "db_id": datasets.Value("string"),
                "question": datasets.Value("string"),
                "question_id": datasets.Value("string")
            }
        )
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            supervised_keys=None,
            license=_LICENSE,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        downloaded_filepath = dl_manager.download_and_extract(_URL)

        return [
            datasets.SplitGenerator(
                name=datasets.NamedSplit("example.train"),
                gen_kwargs={
                    "data_filepath": os.path.join(downloaded_filepath, "css/example/train.json"),
                },
            ),
            datasets.SplitGenerator(
                name=datasets.NamedSplit("example.dev"),
                gen_kwargs={
                    "data_filepath": os.path.join(downloaded_filepath, "css/example/dev.json"),
                },
            ),
            datasets.SplitGenerator(
                name=datasets.NamedSplit("example.test"),
                gen_kwargs={
                    "data_filepath": os.path.join(downloaded_filepath, "css/example/test.json"),
                },
            ),
            datasets.SplitGenerator(
                name=datasets.NamedSplit("template.train"),
                gen_kwargs={
                    "data_filepath": os.path.join(downloaded_filepath, "css/template/train.json"),
                },
            ),
            datasets.SplitGenerator(
                name=datasets.NamedSplit("template.dev"),
                gen_kwargs={
                    "data_filepath": os.path.join(downloaded_filepath, "css/template/dev.json"),
                },
            ),
            datasets.SplitGenerator(
                name=datasets.NamedSplit("template.test"),
                gen_kwargs={
                    "data_filepath": os.path.join(downloaded_filepath, "css/template/test.json"),
                },
            ),
            datasets.SplitGenerator(
                name=datasets.NamedSplit("schema.train"),
                gen_kwargs={
                    "data_filepath": os.path.join(downloaded_filepath, "css/schema/train.json"),
                },
            ),
            datasets.SplitGenerator(
                name=datasets.NamedSplit("schema.dev"),
                gen_kwargs={
                    "data_filepath": os.path.join(downloaded_filepath, "css/schema/dev.json"),
                },
            ),
            datasets.SplitGenerator(
                name=datasets.NamedSplit("schema.test"),
                gen_kwargs={
                    "data_filepath": os.path.join(downloaded_filepath, "css/schema/test.json"),
                },
            ),
        ]

    def _generate_examples(self, data_filepath):
        """This function returns the examples in the raw (text) form."""
        logger.info("generating examples from = %s", data_filepath)
        with open(data_filepath, encoding="utf-8") as f:
            css = json.load(f)
            for idx, sample in enumerate(css):
                yield idx, {
                    "query": sample["query"],
                    "db_id": sample["db_id"],
                    "question": sample["question"],
                    "question_id": sample["question_id"],
                }