|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""CSS: A Large-scale Cross-schema Chinese Text-to-SQL Medical Dataset""" |
|
|
|
|
|
import json |
|
import os |
|
|
|
import datasets |
|
|
|
|
|
logger = datasets.logging.get_logger(__name__) |
|
|
|
|
|
_CITATION = """\ |
|
""" |
|
|
|
_DESCRIPTION = "CSS is a large-scale cross-schema Chinese text-to-SQL dataset" |
|
|
|
_LICENSE = "CC BY-SA 4.0" |
|
|
|
_URL = "https://huggingface.co/datasets/zhanghanchong/css/resolve/main/css.zip" |
|
|
|
|
|
class CSS(datasets.GeneratorBasedBuilder): |
|
VERSION = datasets.Version("1.0.0") |
|
|
|
BUILDER_CONFIGS = [ |
|
datasets.BuilderConfig( |
|
name="css", |
|
version=VERSION, |
|
description="CSS: A Large-scale Cross-schema Chinese Text-to-SQL Medical Dataset", |
|
), |
|
] |
|
|
|
def _info(self): |
|
features = datasets.Features( |
|
{ |
|
"query": datasets.Value("string"), |
|
"db_id": datasets.Value("string"), |
|
"question": datasets.Value("string"), |
|
"question_id": datasets.Value("string") |
|
} |
|
) |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
supervised_keys=None, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
downloaded_filepath = dl_manager.download_and_extract(_URL) |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.NamedSplit("example.train"), |
|
gen_kwargs={ |
|
"data_filepath": os.path.join(downloaded_filepath, "css/example/train.json"), |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.NamedSplit("example.dev"), |
|
gen_kwargs={ |
|
"data_filepath": os.path.join(downloaded_filepath, "css/example/dev.json"), |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.NamedSplit("example.test"), |
|
gen_kwargs={ |
|
"data_filepath": os.path.join(downloaded_filepath, "css/example/test.json"), |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.NamedSplit("template.train"), |
|
gen_kwargs={ |
|
"data_filepath": os.path.join(downloaded_filepath, "css/template/train.json"), |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.NamedSplit("template.dev"), |
|
gen_kwargs={ |
|
"data_filepath": os.path.join(downloaded_filepath, "css/template/dev.json"), |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.NamedSplit("template.test"), |
|
gen_kwargs={ |
|
"data_filepath": os.path.join(downloaded_filepath, "css/template/test.json"), |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.NamedSplit("schema.train"), |
|
gen_kwargs={ |
|
"data_filepath": os.path.join(downloaded_filepath, "css/schema/train.json"), |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.NamedSplit("schema.dev"), |
|
gen_kwargs={ |
|
"data_filepath": os.path.join(downloaded_filepath, "css/schema/dev.json"), |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.NamedSplit("schema.test"), |
|
gen_kwargs={ |
|
"data_filepath": os.path.join(downloaded_filepath, "css/schema/test.json"), |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, data_filepath): |
|
"""This function returns the examples in the raw (text) form.""" |
|
logger.info("generating examples from = %s", data_filepath) |
|
with open(data_filepath, encoding="utf-8") as f: |
|
css = json.load(f) |
|
for idx, sample in enumerate(css): |
|
yield idx, { |
|
"query": sample["query"], |
|
"db_id": sample["db_id"], |
|
"question": sample["question"], |
|
"question_id": sample["question_id"], |
|
} |
|
|