# coding=utf-8 # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """CSS: A Large-scale Cross-schema Chinese Text-to-SQL Medical Dataset""" import json import os import datasets logger = datasets.logging.get_logger(__name__) _CITATION = """\ """ _DESCRIPTION = "CSS is a large-scale cross-schema Chinese text-to-SQL datasets" _LICENSE = "CC BY-SA 4.0" _URL = "https://huggingface.co/datasets/zhanghanchong/css/resolve/main/css.zip" class CSS(datasets.GeneratorBasedBuilder): VERSION = datasets.Version("1.0.0") BUILDER_CONFIGS = [ datasets.BuilderConfig( name="css", version=VERSION, description="CSS: A Large-scale Cross-schema Chinese Text-to-SQL Medical Dataset", ), ] def _info(self): features = datasets.Features( { "query": datasets.Value("string"), "db_id": datasets.Value("string"), "question": datasets.Value("string"), "question_id": datasets.Value("string") } ) return datasets.DatasetInfo( description=_DESCRIPTION, features=features, supervised_keys=None, license=_LICENSE, citation=_CITATION, ) def _split_generators(self, dl_manager): downloaded_filepath = dl_manager.download_and_extract(_URL) return [ datasets.SplitGenerator( name=datasets.NamedSplit("example.train"), gen_kwargs={ "data_filepath": os.path.join(downloaded_filepath, "css/example/train.json"), }, ), datasets.SplitGenerator( name=datasets.NamedSplit("example.dev"), gen_kwargs={ "data_filepath": os.path.join(downloaded_filepath, "css/example/dev.json"), }, ), datasets.SplitGenerator( name=datasets.NamedSplit("example.test"), gen_kwargs={ "data_filepath": os.path.join(downloaded_filepath, "css/example/test.json"), }, ), datasets.SplitGenerator( name=datasets.NamedSplit("template.train"), gen_kwargs={ "data_filepath": os.path.join(downloaded_filepath, "css/template/train.json"), }, ), datasets.SplitGenerator( name=datasets.NamedSplit("template.dev"), gen_kwargs={ "data_filepath": os.path.join(downloaded_filepath, "css/template/dev.json"), }, ), datasets.SplitGenerator( name=datasets.NamedSplit("template.test"), gen_kwargs={ "data_filepath": os.path.join(downloaded_filepath, "css/template/test.json"), }, ), datasets.SplitGenerator( name=datasets.NamedSplit("schema.train"), gen_kwargs={ "data_filepath": os.path.join(downloaded_filepath, "css/schema/train.json"), }, ), datasets.SplitGenerator( name=datasets.NamedSplit("schema.dev"), gen_kwargs={ "data_filepath": os.path.join(downloaded_filepath, "css/schema/dev.json"), }, ), datasets.SplitGenerator( name=datasets.NamedSplit("schema.test"), gen_kwargs={ "data_filepath": os.path.join(downloaded_filepath, "css/schema/test.json"), }, ), ] def _generate_examples(self, data_filepath): """This function returns the examples in the raw (text) form.""" logger.info("generating examples from = %s", data_filepath) with open(data_filepath, encoding="utf-8") as f: css = json.load(f) for idx, sample in enumerate(css): yield idx, { "query": sample["query"], "db_id": sample["db_id"], "question": sample["question"], "question_id": sample["question_id"], }