--- library_name: transformers language: - hi license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer model-index: - name: Whisper Small Ori vi results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 11.0 type: mozilla-foundation/common_voice_11_0 args: 'config: hi, split: test' metrics: - name: Wer type: wer value: 15.251862231728003 --- # Whisper Small Ori vi This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.4021 - Wer: 15.2519 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 200 - training_steps: 1000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:-------:| | 0.458 | 0.2222 | 100 | 0.4649 | 16.8154 | | 0.4314 | 0.4444 | 200 | 0.4266 | 16.4319 | | 0.4275 | 0.6667 | 300 | 0.4166 | 15.5542 | | 0.3946 | 0.8889 | 400 | 0.4107 | 15.5764 | | 0.2151 | 1.1111 | 500 | 0.4051 | 15.5616 | | 0.2383 | 1.3333 | 600 | 0.4014 | 15.3551 | | 0.2176 | 1.5556 | 700 | 0.3979 | 15.5395 | | 0.2271 | 1.7778 | 800 | 0.3996 | 15.2371 | | 0.222 | 2.0 | 900 | 0.3966 | 15.4141 | | 0.1469 | 2.2222 | 1000 | 0.4021 | 15.2519 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.4.0 - Datasets 3.1.0 - Tokenizers 0.20.0