--- license: mit base_model: dathi103/bert-job-german tags: - generated_from_trainer model-index: - name: gerskill-bert-job results: [] --- # gerskill-bert-job This model is a fine-tuned version of [dathi103/bert-job-german](https://huggingface.co/dathi103/bert-job-german) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1171 - Hard: {'precision': 0.7529644268774703, 'recall': 0.8355263157894737, 'f1': 0.7920997920997921, 'number': 456} - Soft: {'precision': 0.7906976744186046, 'recall': 0.8292682926829268, 'f1': 0.8095238095238095, 'number': 82} - Overall Precision: 0.7584 - Overall Recall: 0.8346 - Overall F1: 0.7947 - Overall Accuracy: 0.9675 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Hard | Soft | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:| | No log | 1.0 | 178 | 0.1177 | {'precision': 0.6027397260273972, 'recall': 0.7719298245614035, 'f1': 0.676923076923077, 'number': 456} | {'precision': 0.6629213483146067, 'recall': 0.7195121951219512, 'f1': 0.6900584795321638, 'number': 82} | 0.6107 | 0.7639 | 0.6788 | 0.9524 | | No log | 2.0 | 356 | 0.0978 | {'precision': 0.7474541751527495, 'recall': 0.8048245614035088, 'f1': 0.775079197465681, 'number': 456} | {'precision': 0.7058823529411765, 'recall': 0.7317073170731707, 'f1': 0.718562874251497, 'number': 82} | 0.7413 | 0.7937 | 0.7666 | 0.9620 | | 0.1344 | 3.0 | 534 | 0.1022 | {'precision': 0.7242718446601941, 'recall': 0.8179824561403509, 'f1': 0.768280123583934, 'number': 456} | {'precision': 0.735632183908046, 'recall': 0.7804878048780488, 'f1': 0.757396449704142, 'number': 82} | 0.7259 | 0.8123 | 0.7667 | 0.9632 | | 0.1344 | 4.0 | 712 | 0.1133 | {'precision': 0.762278978388998, 'recall': 0.8508771929824561, 'f1': 0.8041450777202073, 'number': 456} | {'precision': 0.7555555555555555, 'recall': 0.8292682926829268, 'f1': 0.7906976744186047, 'number': 82} | 0.7613 | 0.8476 | 0.8021 | 0.9665 | | 0.1344 | 5.0 | 890 | 0.1171 | {'precision': 0.7529644268774703, 'recall': 0.8355263157894737, 'f1': 0.7920997920997921, 'number': 456} | {'precision': 0.7906976744186046, 'recall': 0.8292682926829268, 'f1': 0.8095238095238095, 'number': 82} | 0.7584 | 0.8346 | 0.7947 | 0.9675 | ### Framework versions - Transformers 4.38.1 - Pytorch 2.1.2+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2